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1 Basic de Rham cohomology

1.1 Recap on manifolds

In this course we study topological invariants of smooth manifolds. We assume
that the underlying topological space of a smooth manifold is Hausdorff, second
countable and paracompact.

Remark 1.1. The underlying topological space of a manifold is therefore a metriz-
able space. Paracompactness is important for the existence of smooth partitions
of unity subordiated to an open covering. Second countability implies that a man-
ifold admits an exhaustion by a sequence of compact subsets. 2

We admit manifolds with boundary, and more generally, manifolds with corners. A
manifold with corners is locally modeled on the subspaces [0,∞)n ⊂ Rn. A smooth
map U → V between open subsets U and V of [0,∞)n or [0,∞)m, respectively, is a
continuous map which extends to a smooth map between open neighbourhoods of U
or V in Rn or Rm, respectively. This fixes our convention for the notion a smooth
map between manifolds with corners in general, and for the coordinate transitions
in particular.

By Mf we denote the category of smooth manifolds and smooth maps.

The basic examples of manifolds are Rn and its open subsets.

Example 1.2. 1. From the point of view of topology a simple example is the disc
Dn := {x ∈ Rn | ‖x‖ < 1}.

2. A topologically more interesting example is the complement of a finite set of
points in Rn.

3. Much more interesting is already a so-called knot complement, R3 \ φ(S1),
where φ : S1 → R3 is an embedding.

4. The previous example can be generalized to complements of compact subman-
ifolds in Rn.

2
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The basic examples of manifolds with corners of codimension k for 0 ≤ k ≤ n are
open subsets of [0,∞)k × Rn−k which contain a point (0, x) for some x ∈ Rn−k. In
these cases n ∈ N is the dimension of the manifold.

A manifold with corners of codimension at most one is a manifold with boundary
(possibly empty). For example, the unit interval I := [0, 1] is a manifold with
boundary ∂I = {0, 1}. More generally, the product Ik × Rn−k is a manifold with
corners of codimension k.

The category Mf has coproducts and products. In the category of manifolds certain
fibre products exists. For example, a limit of a diagram

A

f
��

B
g // C

in Mf of manifolds without boundary exists and and is usually denoted by A×C B,
if the maps f and g are transverse: for every pair (a, b) ∈ A× B with f(a) = g(b)
we have

df(a)(TaA) + dg(b)(TbB) = TcC ,

where c := f(a). There are corresponding conditions for diagrams involving mani-
folds with corners which we will not spell out in detail.

A typical class of manifolds which are defined by fibre products are submanifolds.
So let f : A → C be a map and g : {∗} → C be the inclusion of an interior point
c. We assume that f is transverse to g. This means in this case that for every point
a ∈ A with f(a) = c the differential df(a) : TaA → TcC is surjective. If A has
corners, then we must require that the restriction of f to all faces is transversal, too.
Then we can define a submanifold f−1(c) as the fibre product {∗} ×C A.

Example 1.3. 1. Typical examples of manifolds naturally defined as submani-
folds are the spheres

Sn := {x ∈ Rn+1 | ‖x‖2 = 1} .

2. Another family of examples are Lie groups

O(n) := {A ∈ Mat(n, n,R) | AAt = 1} , n ≥ 1

Note that we must consider here AAt as an element in the symmetric matrices
in order to ensure regularity of the defining equation.
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3. Let U ⊂ Rk be open and f : U → Rm be a smooth map. Then the graph of f
defined by

Graph(f) := {(u, f(u)) ∈ Rk+m | u ∈ U}
can be presented as a fibre product:

Graph(f)

��

// ∗
0
��

U × Rm(u,y)7→f(u)−y // Rm

2

A closed codimension-zero submanifold N ⊂M (with boundary) can be defined
by an inequality N := {f ≥ 0}, where f : M → R is regular on the boundary
∂N = {f = 0}. We obtain N as a limit of

N

��

//M

f
��

[0,∞) // R

.

The condition on f is exactly the transversality condition for this diagram. The
function f is often called a boundary defining function. One can find local
coordinates for N near ∂N such that f|N is one of the coordinate functions.

More generally, a closed codimension-zero submanifold with corners of codimen-
sion at most k can locally be defined by a collection of inequalities N :=

⋂k
i=1{fi ≥

0}, or equivalently, as a limit of

N

��

//M

(f1,...,fk)
��

[0,∞)k // Rk

.

We again must require an appropriate transversality condition.

In certain cases manifolds can be glued along open submanifolds. We consider a
push-out diagram of manifolds

U //

��

V

W

.
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where both maps are open embeddings. Then we can form the colimit in Mf denoted
by V tU W if the colimit of the underlying topological spaces is Hausdorff.

Example 1.4. Consider the examples

(−1, 1) //

��

(−1,∞)

(−∞, 1)

, (−1, 1) //

��

R

R

where all maps are the canonical inclusions. In the first case the colimit exists and is
isomorphic to R. In the second case the colimit of the underlying topological spaces
is not Hausdorff. For example, the point represented by 1 in the lower left copy of R
can not be separated from the (different) point represented by 1 in the upper right
copy of R.

Let (Uα)α∈A be a countable open covering of a manifold M . Then we can represent
M as a push-out ⊔

(α,β)∈A2 Uα ∩ Uβ
i2
��

i1 //
⊔
α∈A Uα

��⊔
β∈A Uβ

//M

,

where i1 and i2 are induced by the two inclusions Uα∩Uβ → Uα and Uα∩Uβ → Uβ. 2

Manifolds naturally appear as parametrizing objects for geometric structures.

Example 1.5. Typical examples are the Grassmann manifolds Gr(k,Rn) and
Gr(k,Cn) of k-dimensional subspaces in Rn or Cn, respectively, for k, n ∈ N, 0 ≤
k ≤ n. We describe the manifold structure of Gr(k,Rn) in greater detail. Given a
decomposition Rn = V ⊕W with dim(V ) = k we obtain a chart φV,W : Hom(V,W )→
Gr(k,Rn) of a neighbourhood of V

by
φV,W (h) := {v + h(v) | v ∈ V } .

Of course Hom(V,W ) ∼= Rk(n−k) after choosing bases in V and W .

The Grassmann manifolds are the receptables of the Gauss-maps of submanifolds.
If M → Rn is k-dimensional submanifold, then the Gauss map γ : M → Gr(k,Rn)

6



maps a point m ∈M to the subspace TmM ∈ Gr(k,Rn). 2

Group objects in the category Mf are called Lie groups.

Example 1.6. Typical examples are the general linear groupsGL(n,R) andGL(n,C)
for n ∈ N, n ≥ 1. As manifolds they are open submanifolds of Mat(n, n,R) ∼= Rn2

or
Mat(n, n,C) ∼= R2n2

defined by the condition det(A) 6= 0.

Further examples of Lie groups are the orthogonal groups O(n) and their connected
components SO(n) for n ∈ N, n ≥ 1. The group O(n) consist of those elements
A of GL(n,R) which preserve the standard scalar product on Rn. This can be
expressed by the equation AtA = 1. The manifold structure on O(n) is defined by
its presentation as a submanifold of GL(n,R).

Similarly, the unitary group U(n) is defined as the subgroup of elements A of
GL(n,C) which preserve the standard hermitean scalar product on Cn. This can
be expressed by the equation A∗A = 1. The special unitary groups SU(n) is the
subgroup of U(n) defined by the additional condition that det(A) = 1.

In a similar way one can define other Lie groups as subgroups ofGL(n,R) orGL(n,C)
preserving natural geometric structures on Rn or Cn.

Examples of abelian Lie groups are Rn or the tori T n := (S1)n. 2

One defines the notion of an action of a Lie group on a manifold using the language
of the category Mf .

Example 1.7. Examples of actions are

1. the action of a Lie group G on itself by right or left multiplication,

2. the linear action of O(n) on Rn and the induced action Sn−1 or Gr(k,Rn),

3. the linear action of U(n) on Cn and the induced action on CPn−1 or Gr(k,Cn).

2

An action a : G ×M → M is proper if the map (a, prM) : G ×M → M ×M
is a proper map of the underlying topological spaces, i.e. it has the property that
preimages of compact subsets are compact.
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An action is called free, if for every g ∈ G with g 6= 1 the subset of fixed points
M g := {m ∈M | gm = m} is empty.

Example 1.8. These examples illustrate the notions of proper and freeness of an
action and demonstrate their independence.

1. Any action of a compact group is always proper. The action of a closed sub-
group H ⊂ G of a Lie group G on G by left- or right-multiplication is free. It
is proper if and only if H is closed.

2. We consider the vector field on the torus T 2 given by ∂1 + θ∂2 in the natural
coordinates, where θ ∈ R. Its flow is an action of R. It is given by (t, [x, y]) 7→
[x+ t, y + θt], where we write the points in T 2 as classes [x, y] ∈ R2/Z2. If θ is
irrational, then the action is free, but not proper.

3. The trivial action of a non-trivial finite group on a manifold M is proper, but
not free.

4. The action of R on S1 given by (t, u) 7→ exp(2πit)u is neither free nor proper.

2

An action of a Lie group G on a manifold M induces an equivalence relation encoded
in the equalizer diagram

G×M ⇒M ,

where the two arrows are the projection and the action. If the equalizer exists, then
it is called the quotient of M by the action of G and usually denoted by M/G.

Theorem 1.9. If a Lie group G acts properly and freely on a manifold M , then the
quotient M/G exists in Mf .

In general we know that a surjective submersion M → X presents X as a quotient of
M with respect to the equivalence relation M×XM ⇒M . So if we have a candidate
M → X for the quotient of a proper free action, then we must only verify that this
map is a surjective submersion and that the natural map

M ×G→M ×X M , (m, g) 7→ (m, a(g,m))

induces an isomorphism of equalizer diagrams.
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Example 1.10. Examples of manifolds defined by forming quotients are T n ∼=
Rn/Zn or CPn ∼= S2n+1/U(1). 2

Example 1.11. Let n ∈ N. If M is a manifold, then we can consider the space of
ordered n-tuples of pairwise distinct points in n. It is an open submanifold

Conf ordn (M) ⊆M×n := M × · · · ×M︸ ︷︷ ︸
n×

defined as the complement of the closed subset

{(x1, . . . xn) ∈M×n | (∃i, j ∈ {1, . . . , n} | xi = xj and i 6= j)} .

The permutation group Σn acts freely on Conf ordn (M) by

σ(x1, . . . , xn) = (xσ−1(1), . . . , xσ−1(n)) , σ ∈ Σn .

The configuration space of n-points in M is defined by

Confn(M) := Conf ordn (M)/Σn .

It is a interesting and in general complicated problem to understand the topology of
the configuration spaces of manifolds.

We have Conf1(Rn) ∼= Rn. We now analyse the next case Conf2(Rn). We have a
diffeomorphism Conf ord2 (Rn) ∼= Rn×(Rn\{0}) which maps (x1, x2) to (x1+x2

2
, x2−x1).

The first entry is called the center of mass of the configuration. The map is Σ2-
equivariant, if we define the action of the non-trivial element in Σ2 on the target by
(a, b) 7→ (a,−b). Hence

Conf2(Rn) ∼= Rn × (Rn/(Z/2Z)) ,

where Z/2Z acts by reflection at the origin. This space is homotopy equivalent to
RPn−1. 2

Example 1.12. Many interesting manifolds parametrizing geometric objects arise
as quotients of Lie groups by the action of subgroups.

1. For example, for k, n ∈ N, 1 ≤ k ≤ n−1 the Grassmann manifold Gr(k,Rn)
of k-dimensional subspaces in Rn can be presented as O(n)/O(k)× O(n− k).
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To this end we observe that every k-dimensional subspace can be written in the
form ARk for some A ∈ O(n). This gives a surjective map O(n)→ Gr(k,Rn).
The block-diagonally embedded subgroup O(k)× O(n− k) is the stabiliser of
the subspace Rk ⊆ Rn. One checks that O(n) → Gr(k,Rn) has the universal
properties of the quotient.

2. Another example is the manifold of all complex structures on R2n which can
be presented as GL(2n,R)/GL(n,C). To this end we fix the standard complex
structure J0 on R2n given by the standard identification R2n ∼= C. Every other
complex structure can be written in the form A−1J0A for some A ∈ GL(2n,R).
The subgroup GL(n,C) ⊂ GL(2n,R) is the stabilizer of J0.

3. The manifold of symmetric bilinear forms of index (p, q) on Rp+q is pre-
sented as SL(n,R)/SO(p, q), while the manifold of all orthogonal splittings of
such a form into a positive and negative definite part is O(p, q)/O(p)×O(q).

4. The sphere Sn−1 can be identified with the manifold of rays in Rn and presented
as SO(n)/SO(n− 1).

2

Many of these examples are related by locally trivial fibre bundles. In general,
for a free and proper action of a Lie group G on M we have a bundle M →M/G with
fibre G. The importance of recognizing manifolds as total spaces of fibre bundles is
that many aspects of their topology can be understood in terms of the topology of
base and fibre which have smaller dimensions and are often simpler.

In many cases we can apply the following theorem in order to detect fibre bun-
dles.

Theorem 1.13. A proper submersion is a locally trivial fibre bundle.

Example 1.14. Here are examples of fibre bundles

1. SO(n)→ Sn−1 with fibre SO(n− 1)

2. S2n+1 → CPn with fibre U(1)

3. Rn → T n with fibre Zn

4. U(n+ 1)→ CPn with fibre U(n)× U(1).
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2

Let M be a manifold with boundary N . Then we can choose an embedding

c : (−1, 0]×N →M

which identifies {0}×N with N . It is called a collar. If such a collar is chosen, then
we say that N is (presented as) a right boundary. Similarly, if the collar is given by
c : [0, 1)×N → N , then we say that N is a left boundary. The projection from the
collar to [0, 1) gives a boundary defining function which is ofter called the normal
coordinate.

Assume that N is a right boundary of M . Let now M ′ be a second manifold with left
boundary N ′ and collar c′ : [0, 1)×N ′ → M ′ and f : N → N ′ be a diffeomorphism.
Then we can form a new manifold M ∪f M ′ (often denoted by M ∪N M ′) called
the connected sum of M and M ′ along the boundary N . Its underlying
topological space is the quotient of M tM ′ by the relation c(0, n) ∼ c′(0, f(n)). The
smooth structure is defined such that the union of the two collars is diffeomorphic
to (−1, 1)×N via c(t, n) 7→ (t, n) for t ≤ 0 and c′(t, f(n)) 7→ (t, n) otherwise.

Let M be a manifold with boundary N . Then we present N as a right boundary
by choosing a collar c. It induces a presentation of N as a left boundary by setting
c′(t, n) := c(−t, n). We can now form a manifold without boundary M ∪idNM called
the double of M along N .

The construction of the connected sum along the boundary involves the choice of
the collars. By the following theorem these choices do not influence the resulting
diffeomorphism type.

Theorem 1.15. In the constructions above the isomorphism classes of M ∪f M ′ or
the double M ∪idN M do not depend on the choice of the collars

Example 1.16. 1. We can present the sphere Sn as a double of a disc Dn so that
the two copies of the disc correspond to the lower and upper hemispheres, and
the boundary gives rise to the equator.

2. We can present torus T n as a double of I × T n−1.

2
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Assume that we are given an embedding i : Sk ×Dn−k → M as a codimension zero
submanifold with boundary. Then M \i(Sk×int(Dn−k)) is a manifold with boundary
diffeomorphic to Sk × Sn−k−1. We can form

M ′ := M ∪Sk×Sn−k−1 Dk+1 × Sn−k−1 .

We say that M ′ is obtained from M by a surgery in codimension n − k along
i.

For example, assume that M has two connected components M0 and M1. Then,
using charts, we can find embedded discs Dn ↪→ Mi for i = 0, 1. We consider this
data as an embedding S0×Dn →M . If we do surgery on this datum, then we get a
connected manifold M ′ usually called the connected sum M0]M1. One can check
that up to diffeomorphism it does not depend on the choices.

Example 1.17. For g ∈ N, g ≥ 1 we can form a connected sum Σg of g copies of
T 2. We set Σ0 := S2. We have the following classification of surfaces.

Theorem 1.18. Let Σ be a compact connected surface. Then there exists a unique
g ∈ N called the genus of Σ such that Σ is isomorphic to:

1. Σg if Σ is orientable,

2. Σg]RP2 if is Σ is not orientable.

2

The following theorem is one starting point for the classification of closed mani-
folds.

Theorem 1.19. Every closed manifold of dimension n can be obtained from Sn by
a sequence of surgeries.

1.2 Recap of the basic definitions of de Rham cohomol-
ogy

Let M be a smooth manifold. By

Ω(M) : 0→ Ω0(M)
d→ Ω1(M)

d→ Ω2(M)
d→ . . .

12



we denote the de Rham complex of M consisting of real-valued smooth differential
forms. A form ω ∈ Ωk(M) is called closed, if dω = 0, and it is called exact, if there
exists α ∈ Ωk−1(M) such that ω = dα.

Example 1.20. 1. The 1-form ω := xdy + ydx on R2 is closed. Indeed,

dω = d(xdy + ydx) = dx ∧ dy + dy ∧ dx = 0 .

It is in fact exact: d(xy) = ω.

2. The form ω := dt on S1 (we parametrize S1 by t 7→ e2πit) is closed, but not
exact. If it would be, say ω = df , then

1 =

∫
S1

dt
Stokes

=

∫
∂S1

f = 0 .

Note that the parameter t does not give a smooth function on all of S1 since
it jumps at 1.

3. If f is a complex valued function defined on some open subset of C, then fdz
is a (complex valued) form. The function f is holomorphic exactly if fdz is
closed. Indeed, we have

d(fdz) = (∂zfdz + ∂z̄fdz̄) = ∂z̄f ∂z̄ ∧ ∂z .

2

Since d◦d = 0, an exact form is closed. The converse is not true in general. In order
to formalize this effect one introduces the R-vector spaces

H∗dR(M) := H∗(Ω(M))

called the de Rham cohomology of M . In detail, for k ∈ Z de k’th de Rham
cohomology is the R-vector space

Hk
dR(M) :=

ker(d : Ωk(M)→ Ωk+1(M))

im(d : Ωk−1(M)→ Ωk(M))
.

A closed k-form ω is exact iff its class [ω] ∈ Hk
dR(M) vanishes.

The number
bk(M) := dimRH

k
dR(M) ∈ N ∪ {∞}

is called the k’th Betti number of M . The Betti numbers are the most basic
invariants of M defined through de Rham cohomology.
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Example 1.21. We have

H0
dR(M) ∼= {f ∈ C∞(M,R) | f is locally constant} .

Let π0(M) denote the set of connected components of M . Then

H0
dR(M) ∼= Rπ0(M) .

The zeroth Betti number b0(M) is equal to the number of connected components of
M . 2

Example 1.22. In this example we list calculations of Betti numbers of various
manifolds. One goal of this course is to develop the methods to do these calculations.

1. For n ≥ 1 we have

bi(Sn) =

{
1 i = 0, n
0 else

2. For n ≥ 1, we have

bi(RP2n+1) =

{
1 i = 0, 2n+ 1
0 else

3. For n ≥ 1, we have

bi(RP2n) =

{
1 i = 0
0 else

4. For n ≥ 1 and i ∈ Z we have

bi(T n) =

(
n
i

)
.

5. For n ≥ 1 we have

bi(CPn) =

{
1 i = 0, 2, . . . , 2n
0 else

6. For a connected orientable surface Σ of genus g we have

bi(Σ) =


1 i = 0, 2
2g i = 1
0 else
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7. For a connected non-orientable surface Σ of genus g we have

bi(Σ) =


1 i = 0
2g i = 1
0 else

2

A smooth map f : M → N induces a map of complexes f ∗ : Ω(N) → Ω(M) and
therefore a map between cohomology groups HdR(f) : H∗dR(N) → H∗dR(M). It is
given by application of f ∗ to representatives

HdR(f)([ω]) := [f ∗ω] .

From now one we write f ∗ instead of HdR(f). These constructions are functorial,
i.e. we have the rule (g ◦ f)∗ = f ∗ ◦ g∗ for composeable smooth maps f and g. The
Rham cohomology group thus constitutes a functor H∗dR from Mfop to the category
of Z-graded real vector spaces.

The ∧-product turns Ω(M) into a commutative differential graded algebra.
Consequently, the de Rham cohomology H∗dR(M) is a graded commutative algebra
whose product will be denoted by ∪. The product in cohomology is given in terms
of representatives by

[α] ∪ [ω] = [α ∧ ω] .

The pull-back operations f ∗ on the level forms and cohomology are compatible with
the products. So the functor H∗dR actually takes values in graded commutative R-
algebras

Example 1.23. In the following we present the structure of de Rham cohomology
as a ring in a number of examples.

1. H∗dR(Sn) ∼= R[z]/(z2), where z is a generator in degree n.

2. H∗dR(RP2n+1) ∼= R[z]/(z2), where z is a generator in degree n.

3. H∗dR(RP2n) ∼= R.

4. H∗dR(CPn) ∼= R[z]/(zn+1), where z is a generator in degree 2.

5. The product S2 × S4 has the same Betti numbers as CP3. So the de Rham
cohomology groups are isomorphic. But the ring structures are different: We
have H∗dR(S2 × S4) ∼= R[x, y]/(x2, y2) with |x| = 2 and |y| = 4.
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6. H∗dR(T n) ∼= Λ∗H1
dR(T n).

2

Let f : I×M → N be a smooth map and fi : M → N , i = 0, 1 be the restrictions of
f to the boundary faces of the interval. The map f is called a homotopy from f0

to f1. If we are given f0 and f1, then we say that these maps are homotopic if such
a map f as above exists. We have the homotopy formula

f ∗1 − f ∗0 = dh+ hd : Ω(N)→ Ω(M) , (1)

where h : Ω(N)→ Ω(M) is given by the degree −1-map

h(ω) :=

∫
[0,1]

ι∂t(f
∗ω)|{t×M}dt .

The homotopy formula implies that

f ∗1 = f ∗0 : H∗dR(N)→ H∗dR(M) ,

i.e. the de Rham cohomology functor is homotopy invariant. Indeed, if dω = 0,
then

f ∗1ω − f ∗0ω = dhω .

A map f : M → N is called a homotopy equivalence if there exists a map
g : N →M called inverse up to homoptopy such that f ◦ g is homotopic to idM
and g ◦ f is homotopic to idN . In this case g∗ : H∗dR(M) → H∗dR(N) is inverse to
f ∗ : H∗dR(N)→ H∗dR(M). In particular, f ∗ is an isomorphism.

Example 1.24. The inclusion f : ∗ → Rn of the origin is a homotopy equivalence.
In fact, the inverse up to homoptopy g : Rn → ∗ is the unique map. We have
g ◦ f = id∗ and h(t, x) := tx is a homotopy from f ◦ g to idRn . Consequently

R = H∗dR(∗) ∼= H∗dR(Rn) ,

where we consider R as a graded commutative algebra in the natural way. 2

Example 1.25. The inclusion f : Sn → Rn+1 \ {0} is a homotopy equivalence. An
inverse up to homoptopy is given by g : Rn+1 \ {0} → Sn, g(x) := x

‖x‖ . We have

g ◦ f = idSn and h(t, x) := tx+ (1− t) x
‖x‖ is a homotopy from f ◦ g to idRn+1\{0} 2
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Example 1.26. One can use de Rham cohomology in order to show fixed point
theorems, for example the Brouwer fixed point theorem.

Theorem 1.27. If f : Dn → Dn is a smooth map, then it has a fixed point.

Proof. We argue by contraction. Assume that f has no fixed point. Then we con-
struct F : Dn → Sn−1 such that F (x) is the intersection of the ray with Sn−1 starting
in f(x) and going through x.

In order to see that F is smooth we argue as follows. We consider the pull-back

U

��

// ∗
1
��

Dn × [0,∞) // R

,

where the lower horizontal map is (x, t) 7→ ‖f(x) + t(x− f(x)‖2. We check transver-
sality: The derivative of the lower horizontal map with respect to t is

2〈f(x), x− f(x)〉+ 2t‖x− f(x)‖2 . (2)

If ‖f(x) + t(x− f(x)‖2 = 1, then this is non-zero. If it would be zero, then (for the
first transition we multiply by t and add and substract ‖f(x)‖2)

0 = 2t〈f(x), x− f(x)〉+ 2t2‖x− f(x)‖2

= ‖f(x) + (t(x− f(x))‖2 − ‖f(x)‖2 + t2‖x− f(x)‖2

=
(
1− ‖f(x)‖2

)
+ t2‖x− f(x)‖2 .

Since ‖f(x)‖2 ≤ 1 we conclude that both summand must vanish separately, and
therefore that t = 0 and ‖f(x)‖ = 1. But then from (2) we would have

〈f(x), x〉 = ‖f(x)‖2 = 1 ,

and since x and f(x) belong to Dn, also f(x) = x, a contradiction.

The map U → Sn−1 given by the projection to Dn × [0,∞) and application of
f(x) + t(x− f(x)) is the required map F .

The composition Sn−1 i→ Dn F→ Sn−1 is the identity. Hence

F ∗i∗ = id : Hn−1
dR (Sn−1)→ Hn−1

dR (Sn−1)

17



is an isomorphism of a non-trivial R-vector space. But Hn−1
dR (Dn) = 0 and thus

i∗ = 0. 2

Remark 1.28. In the theorem it suffices to assume that f is continuous. But then
the proof must be modified.

2

Example 1.29. We have seen in Example 1.11 that

Conf2(Rn) ∼= Rn × (Rn \ {0})/Z/2Z .

This space is homotopy equivalent to RPn−1. To see this we represent RPn−1 as
quotient Sn−1/Z/2Z. Then we define the map f : Conf2(Rn)→ RPn−1 by f(a, [b]) :=
[b/‖b‖]. An inverse up to homotopy is given by g([u]) := (0, [u]). Note that f ◦ g =
idRPn−1 . A homotopy from g ◦ f to idConf2(Rn) is given by

h(t, a, [b]) := (ta, [tb+ (1− t)b/‖b‖]) .

We conclude that (using the still unproven calculation of the cohomology of RPn−1)

H∗dR(Conf2(Rn)) ∼= H∗dR(RPn−1) ∼=
{

R[z]/(z2) , |z| = n− 1 n even
R n odd

.

2

If M is an oriented manifold and A ⊆ M is a precompact Borel measurable subset,
then we have an integration ∫

A

: Ω(M)→ R .

In particular, if A ⊆ M is a compact codimension zero submanifold with boundary
∂A, then we have Stokes’ theorem∫

A

dω =

∫
∂A

ω .

Here ∂A has the induced orientation. We represent orientations by nowhere vanishing
forms of maximal degree. If ν ∈ Ωdim(M) represents the orientation of M , then

(ιnν)|∂A ∈ Ωdim(M)−1(∂A)

18



represents the orientation of ∂A, where n is some outward pointing normal vector
field on ∂A.
Example 1.30. In this example we illustrate the induced orientation on a boundary.
We consider the sphere Sn−1 ⊂ Rn. We equip Rn with the standard orientation
represented by volRn = dx1∧· · ·∧dxn. We consider the chart of the upper hemisphere
{xn > 0} ∩ Sn−1 → Rn−1 given by the projection along the last coordinate. We ask
when this chart is compatible with the orientation.

The outward pointing unit normal vector at the north pole N := (0, . . . , 0, 1) ∈ Sn−1

is ∂n. Therefore (i∂nvolRn)(N) ∈ Λn−1(T ∗NS
n−1) represents the orientation in this

point. In the chart it is sent to (−1)n−1dx1 ∧ · · · ∧ dxn−1. Hence this chart is
compatible with the orientation exactly if n is odd.

2

If M is a closed oriented manifold, then the integral induces a homomorphism∫
[M ]

: H
dim(M)
dR (M)→ R , [ω] 7→

∫
M

ω .

Example 1.31. Let ν ∈ Ωdim(M)(M) represent the orientation of a closed manifold

M . Then we have [ν] 6= 0 in H
dim(M)
dR (M). In fact,

∫
[M ]

[ν] > 0. For example, we have

Hn
dR(Sn) 6∼= 0. Using the module structure of Hn

dR(M) over H0
dR(M) one can show

that for a compact oriented M we have bn(M) ≥ b0(M).

For example, the volume form of the sphere volSn represents a non-trivial class in
Hn
dR(Sn). 2

Example 1.32. Consider r, n ∈ N such that 0 ≤ r ≤ n. We consider the index set

Jr := {(i1, . . . , ir) ∈ {1, . . . , n}r | 1 ≤ i1 < · · · < ir ≤ n} .

For i := (i1, . . . , ir) ∈ Jr we define dti := dti1 ∧ · · · ∧ dtir . We show that the set of
forms

{dti ∈ Ωr(T n) |i ∈ Jr}
represents a linearly independent subset of Hr

dR(T n) (in fact a basis, but this can not
be shown here).

To this end for j ∈ Jr we consider the map fj : T r → T n given by sending (s1, . . . , sr)
to (1, . . . , s1, . . . , sr, . . . , 1), where si is put in place ji.
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Then f ∗j dt
i = volT r if the indices match, and zero else. We get for all i, j ∈ Jr that∫

[Tn]

f ∗j [dti] = δij .

2

1.3 Recap on basic homological algebra

Let C∗ be a cohomological chain complex of abelian groups. In detail

C : · · · d→ Cn−1 d→ Cn d→ Cn+1 d→ . . . .

It can equivalently be considered as a homological chain complex

· · · d→ C1−n
d→ Cn

d→ Cn−1
d→ . . .

by setting C−n := Cn for all n ∈ N.

Example 1.33. 1. The de Rham complex Ω(M) of a smooth manifold M is an
example.

2. For n ∈ Z and an abelian group A we can form the chain complex Sn(A) whose
only non-trivial entry is A in degree n.

2

A morphism of chain complexes C → D is a commutative diagram

. . .
d // Cn

��

d // Cn+1 d //

��

. . .

. . . d // Dn d // Dn+1 d // . . .

.

If f is a symbol for the morphism, then we let fn be the symbol for its component
in degree n.

We get a category of chain complexes Ch and morphisms of chain complexes.
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For n ∈ Z the degree n-cohomology of a chain complex C is the abelian group
defined by

Hn(C) :=
ker(d : Cn → Cn+1)

im(d : Cn−1 → Cn)
.

A standard notation for cohomology classes is [x] ∈ Hn(C), where x ∈ Cn is a cycle,
i.e. dx = 0 and [−] denotes the class in the quotient by the image of d. If f : C → D
is a morphism of chain complexes, then we define a map

H(f) : Hn(C)→ Hn(F ) , H(f)[x] := [fn(x)] .

It is well-defined and functorial. Hence we can consider Hn as a functor Ch→ Ab.
We often write f∗ := H(f).

A morphism between chain complexes is called a quasi isomorphism if it induces
an isomorphism in cohomology groups.

Example 1.34. 1. We have a quasi-isomorphism

f : S0(Z)
'→ (Q→ Q/Z)

such that f0 : Z→ Q is the inclusion.

2. We have a quasi-isomorphism

0 ' (Z id→ Z) .

Example 1.35. If A is an abelian group and (C, d) is a chain complex, then we can
form new chain complexes

C ⊗ A , Hom(C,A) , Hom(A,C) .

In the first case for c ⊗ a ∈ (C ⊗ A)i := Ci ⊗ A we set d(c ⊗ a) := dc ⊗ a. In
the second case, Hom(C,A)i := Hom(C−i, A) and dφ := (−1)iφ ◦ d. Finally, for
φ ∈ Hom(A,C)i := Hom(A,Ci) we define dφ := d ◦ φ.

The starting point of homological algebra is the observation that in general these
operations do not preserve quasi-isomorphisms.

We consider A := Z/3Z and the quasi-isomorphism f : S0(Z)→ (Q→ Q/Z)). Then

f ⊗ A ∼= S0(Z/3Z)→ 0
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which is not a quasi-isomorphism. The morphism

Hom(Z/3Z, f) ∼= 0→ (0→ Z/3Z) ,

again not a quasi-isomorphism.

The idea of derived functors is to improve this situation and to define versions of
these operations which preserve quasi-isomorphisms.

2

A homotopy between morphisms f0, f1 : C → D of chain complexes as a map
h : C → D of degree −1 such that

hd+ dh = f1 − f0 .

In this case
f0,∗ = f1,∗ : H∗(C)→ H∗(D) .

In particular, if f = dh + hd, then f∗ = 0, and if f − id = dh + hd, then f is a
quasi-isomorphism.

Remark 1.36. Note that the operations discussed in 1.35 preserve homotopy equiv-
alences. This shows that homotopy equivalence is a strictly stronger notion of equiv-
alence than quasi-isomorphism. 2

Example 1.37. If f : M → N is a morphism of manifolds, then f ∗ : Ω(N)→ Ω(M)
is a morphism of chain complexes. If f is a homotopy equivalence, then f ∗ is a quasi
isomorphism, in fact a homotopy equivalence. A homotopy f : I ×M →M between
f0 and f1 induces a homotopy between f ∗0 and f ∗1 . See (1). 2

An exact sequence of chain complexes

0→ A
f→ B

g→ C → 0

is a sequence of morphisms of chain complexes such that for every n ∈ Z the sequence
of abelian groups

0→ An
fn→ Bn gn→ Cn → 0

22



is exact. In this case we have the long exact sequence in cohomology

· · · → Hn(A)
f∗→ Hn(B)

g∗→ Hn(C)
∂→ Hn+1(A)→ . . . .

The map ∂ is called the boundary operator. Explicitly, it is given by

∂[c] = [db] , (3)

where b ∈ Bn is a lift of c and we observe that db ∈ An.

The boundary operator depends naturally on the exact sequence. A morphism be-
tween short exact sequences is a diagram

0 // A //

f
��

B //

��

C //

h
��

0

0 // A′ // B′ // C ′ // 0

.

Let ∂ and ∂′ be the associated boundary operators. Then we have the relation

∂′ ◦ h∗ = f∗ ◦ ∂ .

A map of short exact sequences induces a morphism between long exact sequence.

Example 1.38. We consider the chain complex

A : 0→ Z 5→ Z→ 0 .

We form the exact sequence of chain complexes

0→ Hom(A,Z)→ Hom(A,R)→ Hom(A,R/Z)→ 0 .

The boundary operator induces an isomorphism

H−1(Hom(A,R/Z))
∂,∼=→ H0(Hom(A,Z)) .

This can be verified by an explicit calculation. Let [φ] ∈ H−1(Hom(A,R/Z)) be rep-
resented by φ : Z → R/Z. The condition dφ = 0 says that φ has values in 1

5
Z/Z.

We choose a lift φ̃ : Z → R of φ. Such a lift is fixed by the choice of φ̃(1) ∈ R.
Then ∂[φ] = [5φ̃]. The homomorphism 5φ̃ has values in Z. Its class is zero if
5φ̃(1) ∈ 5Z. This is exactly the case when φ = 0. In the other direction, given a
class [κ] ∈ H0(Hom(A,Z)) we can take φ := [1

5
κ] as a preimage. This shows surjec-

tivity of ∂. 2
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If C is a chain complex, then we define the shift C[n] by

C[n]k := Cn+k , with differential (−1)nd (4)

Example 1.39. We have Sn(A) ∼= S0(A)[−n]. 2

A basic tool of homological algebra is the Five Lemma:
Lemma 1.40. Let

A //

a
��

B //

b
��

C //

c
��

D

d
��

// E

e
��

A′ // B′ // C ′ // D′ // E ′

be a morphism between exact sequences of abelian groups. If a, b, d, e are isomor-
phisms, then c is an isomorphism, too.

Example 1.41. If f : A→ B is a morphism of chain complexes, then we can form
a new chain complex Cone(f) := A[1] ⊕ B called the cone of f . Its differential is
given by

d(a, b) = (−da,−f(a) + db) .

We define H∗(f) := H∗(Cone(f)). We have an obvious exact sequence

0→ B → Cone(f)→ A[1]→ 0

and a long exact sequence

· · · → Hn(B)→ Hn(f)→ Hn+1(A)
f∗→ Hn+1(B)→ . . . .

If f is injective, then we have a quasi isomorphism coker(f) ' Cone(f) given by

Cone(f)→ B/A , (a, b)→ [b] .

This follows from the Five Lemma 1.40. A similar statement holds for surjective
maps. See Example 3.1. 2

Further aspects of homological algebra will be developed in Section 2.3.
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1.4 The Mayer-Vietoris sequence

Let U ∪V = M be a decomposition of a manifold into two open submanifolds.

Lemma 1.42. The following sequence of complexes is exact:

0→ Ω(M)
γ 7→(γ|U ,γ|V )
−−−−−−−→ Ω(U)⊕ Ω(V )

(α,β)7→α|U∩V −β|U∩V−−−−−−−−−−−−→ Ω(U ∩ V )→ 0 . (5)

Proof. The only non-trivial place is the surjectivity of the second map. To see this
we choose a partition of unity {χU , χV } subordinated to the covering {U, V } of M .
If ω ∈ Ω(U ∩V ), then χUω is defined on U ∩V and vanishes identically near ∂Ū ∩V .
Therefore it can be extended by zero to V . We will denote the extension still by
χUω. Similarly, χV ω can be extended by zero to U . Therefore the second map in
the sequence maps (χV ω,−χUω) to ω. 2

The long exact sequence associated to the short exact sequence (5) of de Rham
complexes is called the Mayer-Vietoris sequence:

· · · → Hn−1
dR (U∩V )

∂→ Hn
dR(M)→ Hn

dR(U)⊕Hn
dR(V )→ Hn

dR(U∩V )
∂→ Hn+1

dR (M)→ . . .

Here is a explicit formula for the boundary operator. It uses the explicit formula
for the preimage of ω obtained in the proof of Lemma 1.42 and (3). We let β be the
form given by

β|U := dχV ∧ ω , β|V = −dχU ∧ ω . (6)

Then
∂[ω] = [β] .

Example 1.43. In this example we calculate H∗dR(Sn). We can write Sn ∼= Rn∪Rn,
where the two copies of Rn are the complements of the north- and the southpoles
which intersect in a manifold diffeomorphic to Rn \ {0}. We can calculate H∗dR(Sn)
using the Mayer-Vietoris sequence and induction. We claim that for n ≥ 1 we have

Hk
dR(Sn) ∼=

{
R k = 0, n
0 else

.

Note that we have a homotopy equivalence Rn \ {0} ∼ Sn−1 (Example 1.25). We
start with the case n = 1. The non-trivial segment of the MV-sequence for n = 1 is

0→ H0
dR(S1)→ H0

dR(R t R)→ H0
dR(S0)→ H1

dR(S1)→ 0 .
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The middle map is, after natural identifications, given by (x, y) 7→ (x− y, x− y) and
has rank one. This implies the claim for n = 1. The beginning of the MV-sequence
for n ≥ 2 has the form

0→ H0
dR(Sn)→ H0

dR(Rn)⊕H0
dR(Rn)→ H0

dR(Rn)→ H1
dR(Sn)→ 0 .

The second map is (x, y) 7→ x − y, hence surjective. We conclude H0
dR(Sn) ∼= R

as expected since Sn is connected, and H1
dR(Sn) = 0. In higher degree the only

non-trivial segment of the MV-sequence is

0→ Hn−1
dR (Sn−1)→ Hn

dR(Sn)→ 0 .

This gives Hn
dR(Sn) ∼= R by induction.

Example 1.44. In this example we illustrate the explicit formula for the boundary
operator (6). We consider the circle which we cover as before by the two hemispheres
U, V . The intersection U ∩ V is the disjoint union of two intervals,

U ∩ V ∼= I+ t I− = (−π, π) t (−π, π) + π

in the natural parametrization. The boundary operator maps the class [(1, 0)] ∈
H0
dR(I+ t I−) to [β] ∈ H1

dR(S1), where β ∈ Ω1(S1) is given by

β|U∩I+ = dχV , β|U∩I− = 0 , β|V ∩I+ = −dχU , β|V ∩I− = 0 .

We have ∫
S1

β =

∫
I+

dχV = −1 .

Therefore, [β] = ∂[(0, 1)] indeed represents the generator of H1
dR(S1)

Example 1.45. This is a higher-dimensional generalization of Example 1.44. We
consider a codimension-one submanifold N ⊂M such that M \N has two connected
components M±. We can extend the embedding of N to an embedding of a collar
(−1, 1) × N → M such that M− ∩ (−1, 1) × N = (−1, 0) × N and define the open
subsets M̃± := M± ∪ (−1, 1) × N ⊆ M . The inclusion M± → M̃± is a homotopy
equivalence. Moreover, the inclusion N → M̃+ ∩ M̃− ∼= (−1, 1) × N is a homotopy
equivalence. We consider the covering {M̃+, M̃−} ofM . The Mayer-Vietoris sequence
reads after the obvious identifications

· · · → Hk−1
dR (N)

∂→ Hk
dR(M)→ Hk

dR(M+)⊕Hk
dR(M−)→ Hk

dR(N)→ . . . .
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If [ω] ∈ Hk−1
dR (N), then ∂[ω] ∈ Hk

dR(M) is represented by the form α which is
supported in (−1, 1)×N and characterized by

α|(−1,1)×N = dχM̃+
∧ pr∗Nω .

Let us now assume that M is closed and oriented, and that N is closed and has the
orientation induced as the boundary of [0, 1)×N . Assume that k = dim(M). Then
we have∫

[M ]

∂[ω] =

∫
M

α =

∫
(−1,1)×N

dχM̃+
∧ pr∗Nω = (−1)k

∫
N

ω = (−1)k
∫

[N ]

[ω] . (7)

Consequently, the boundary operator ∂ : H
dim(N)
dR (N) → H

dim(M)
dR (M) has at least

rank one.

Actually, it has rank one since bdim(M)(M) = 1, but we have not shown this at this
moment. 2

Example 1.46. Let n ≥ 2. We consider an embedding rDn :=
⊔
rD

n → Sn of
r pairwise disjoint discs into the sphere and let Snr be the manifold with boundary
∂Snr

∼=
⊔r
i=1 S

n−1 =: rSn−1 obtained by removing the interior of the image of this
embedding. We calculate the cohomology of Snr using the Mayer-Vietoris sequence.
Its beginning is

0→ H0
dR(Sn)→ H0

dR(Snr )⊕
r⊕
i=1

H0
dR(Dn)→

r⊕
i=1

H0
dR(Sn−1)

∂→ .

By counting connected components we see that ∂ = 0.

For k 6∈ {0, n− 1, n} we get

0 ∼= Hk
dR(Sn) ∼= Hk

dR(Snr ) .

The remaining piece of the sequence is

0→ Hn−1
dR (Snr )

i→
r⊕
i=1

Hn−1
dR (Sn−1)

∂→ Hn
dR(Sn)→ Hn

dR(Snr )→ 0 .

Since bn(Sn) = 1 we see from Example 1.45 that ∂ has rank one. This gives
Hn
dR(Snr ) = 0 and bn−1(Snr ) = r − 1. For later calculations we must understand

the kernel of ∂, i.e. the image of i. We equip all boundary components with the
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induced orientation from Sn. The choices of orientations induces via integration an
isomorphism

r⊕
i=1

Hn−1
dR (Sn−1) ∼= Rr .

In view of (7) we have ∂x = 0 iff
∑r

i=1 xi = 0.

2

Example 1.47. We now calculate the cohomology of the manifold Mr obtained from
Sn by attaching r handles of dimension 0 (r surgeries of codimension n).

We can write Mr as a boundary sum along 2rSn−1 of Sn2r with r(D1×Sn−1). We get
the Mayer-Vietoris sequence

· · · →
r⊕
i=1

Hk−1
dR (Sn−1)

∂→ Hk(Mr)→ Hk
dR(Sn2r)⊕

r⊕
i=1

Hk
dR(Sn−1)

!→
2r⊕
i=1

Hk
dR(Sn−1)

∂→ . . . .

Note that we identify the degree n− 1-cohomology of every component of ∂Sn2r with
R using some orientation orientation. For k = n − 1 the second component of the
map ! maps (x1, x2, . . . ) ∈ Rr to (±x1,∓x1,±x2,∓x2, . . . ) ∈ R2r. All these elements
belong to the image of the first component Hn−1

dR (Sn2r) → R2r of !. In order to see
this note that the canonical identification of Sn−1 with the boundary components
of [0, 1] × Sn−1 induces orientations on these boundary components. One of them
is compatible with the orientation induced from viewing the Sn−1 as a boundary
component of S2

2r, and the other is not. We conclude that for k = n− 1 the marked
map has rank 2r − 1.

We can now evaluate the Betti numbers. Assume first that n ≥ 3.

H∗dR(Mr) ∼=


R ∗ = 0
Rr ∗ = 1, n− 1
R ∗ = n
0 else

.

Similarly we get in the case n = 2 with Mr = Σr the surface of genus r:

H∗dR(Σr) ∼=


R ∗ = 0
R2r ∗ = 1
R ∗ = 2
0 else

.

28



2

1.5 Coverings by a finite group

Let G be a finite group acting freely on a manifold M . Then we consider the quotient
M/G. In this subsection we want to calculate the de Rham cohomology of M/G using
the knowledge of the de Rham cohomology of M . Here is a list of examples:

1. For n ≥ 1 we can represent the real projective spaces as RPn ∼= Sn/Z/2Z,
where Z/2Z acts on the sphere by the antipodal map.

2. For coprime integers p, q we define the action of Z/pZ on C2 by

[n](z0, z1) 7→ (e2πin
p z0, e

2πi qn
p z1) .

This action preserves the unit sphere S3 ⊂ C2 and has no fixed points there.
The quotient

L(p, q) := S3/Z/pZ (8)

is called a lense space of type (p, q).

3. The configuration space of k pairwise distinct points in a manifold M can be
written as a quotient

Confk(M) := Conf ordk (M)/Σk .

As a preparation consider an action (g, v) 7→ gv of a finite group G on a real vector
space V by linear transformations. We define the subspace of G-invariant vectors

V G := {v ∈ V | (∀g ∈ G | gv = v)} .

We further define the linear endomorphism

P : V → V , P (v) :=
1

|G|
∑
g∈G

gv .

Lemma 1.48. The endomorphism P of V is a projection onto V G.
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Proof. We calculate for v ∈ V and h ∈ G that

hP (v) = h
1

|G|
∑
g∈G

gv =
1

|G|
∑
g∈G

hgv =
1

|G|
∑
g∈G

gv = Pv ,

in particular we get P (v) ∈ V G. If v ∈ V G, then

P (v) =
1

|G|
∑
g∈G

gv =
1

|G|
∑
g∈G

v = v .

This implies P (P (v)) = v. Therefore P is a projection whose image is exactly V G. 2

We now come back to π : M →M/G. The group G acts on the complex Ω(M).

Lemma 1.49. The pull-back by π∗ induces an isomorphism of complexes Ω(M/G) ∼=
Ω(M)G.

Proof. Since π is a surjective submersion the pull-back π∗ : Ω(M) → Ω(M/G) is
injective.

If ω ∈ Ω(M/G) and g ∈ G, then the equality π ◦ g = π implies that g∗π∗ω = π∗ω,
hence π∗ω ∈ Ω∗(M)G.

Vice-versa, if β ∈ Ω∗(M)G, then there exists ω ∈ Ω(M/G) such that π∗ω = β. In
order to define β near a point x ∈ M/G we choose a neighbourhood U of x such
that π−1(U) ∼= U ×G. Fixing a point g ∈ G we get a section s : U → U ×G→ M .
We set ω|U := s∗β. The result is independent of the choice of g or the trivialization.
Indeed, if s′ is defined with a second choice then in a neighbourhood of x we have
s′ = hs for some h ∈ G. Then s′∗β = s∗h∗β = s∗β. 2

By functoriality of the de Rham cohomology the group G acts on the real vector
space H∗dR(M).

Proposition 1.50. The pull-back π∗ : HdR(M/G) → H∗dR(M) induces an isomor-
phism H∗dR(M/G) ∼= H∗dR(M)G.

Proof. By Lemma 1.49 it is clear that the image of π∗ is contained in H∗dR(M)G.

We first show injectivity of π∗. Note that g∗ : Ω(M)→ Ω(M) and hence P preserve
the differential. Let [ω] ∈ Hk

dR(M/G) be such that π∗[ω] = 0. Then there exists
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α ∈ Ωk−1(M) such that dα = π∗ω. Then dPα = Pdα = Pπ∗ω = π∗ω. We now use
Lemma 1.49. Let β ∈ Ω(G/M) be such that π∗β = Pα. Then dβ = ω and therefore
[ω] = 0.

We now show surjectivity of π∗. Let [γ] ∈ Hk
dR(M)G. For every g ∈ G there exists

αg ∈ Ωk−1(M) such that g∗ω − ω = dαg. This gives

ω = Pω − d 1

|G|
∑
g∈G

αg .

Hence [ω] = [Pω]. By Lemma 1.49 there exists β ∈ Ωk(M/G) with π∗β = Pω.
Moreover, dβ = 0. Hence [ω] = [Pω] = π∗[β]. 2

The upshot of this proof is that if a finite group G acts on a chain complex of rational
vector spaces C, then H∗(CG) ∼= H∗(C)G. The assumptions are needed in order to
be able to divide by the order |G| of G.

Example 1.51. In this example we calculate the cohomology of RPn ∼= Sn/Z/2Z.
We first observe that the antipodal map on Rn+1 preserves the orientation if and
only if n is odd. Since it also preserves the outer normal field on Sn ∼= ∂Dn+1 we see
that it preserves the orientation of Sn iff n is odd.

The non-trivial element of Z/2Z acts trivially on H0(Sn). This implies

H0
dR(RPn) = H0

dR(Sn)Z/2Z ∼= R .

For odd n it acts trivially on Hn
dR(Sn) so that

Hn
dR(RPn) = Hn

dR(Sn)Z/2Z ∼= R .

For even n it acts by −1 so that

Hn
dR(RPn) = Hn

dR(Sn)Z/2Z ∼= 0 .

The de Rham cohomology of RPn in all other degrees vanishes since the cohomology
of the sphere vanishes. The result of our calculation is:

1. For n ≥ 1, we have

bi(RP2n+1) =

{
1 i = 0, 2n+ 1
0 else
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2. For n ≥ 1, we have

bi(RP2n) =

{
1 i = 0
0 else

2

Example 1.52. In this example we demonstrate that the assumption of finiteness
of G in Proposition 1.50 is essential. We consider the usual action of Zn (which is
not finite) on Rn with T n ∼= Rn/Zn.

Then

H i
dR(Rn)Z

n ∼=
{

R i = 0
0 else

In the other hand
H i
dR(T n) ∼= R(ni) , i ∈ N .

2

2 Spectral sequence for filtered complexes and first

applications

2.1 Spectral sequence of a filtered chain complex

A decreasing filtration F of an abelian group A is a decreasing family of subgroups

· · · ⊆ Fp+1A ⊆ FpA ⊆ · · · ⊆ A

indexed by p ∈ Z. In the following we introduce some properties which a filtration
can have.

1. We say that F is separated if
⋂
p∈ZFpA = 0.

2. We say that it is exhaustive if
⋃
p∈ZFpA = A.

3. We say that the filtration is bounded below, if FpA = Fp−1A for all suf-
ficiently small p and bounded above if FpA = Fp+1A for sufficiently large
p.
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4. We say that the filtration is finite if it is bounded below and above.

For a filtered abelian group (A,F) and p ∈ Z we define the pth graded component
by

GrpA := FpA/Fp+1A .

A morphism of filtered abelian groups (A,F)→ (B,F) is a morphism f : A→
B of abelian groups such that f(FpA) ⊆ FpB for all p ∈ Z.

Lemma 2.1. Let f : (A,FA) → (B,FB) be a morphism of filtered abelian groups
such that Grp(f) : GrpA→ GrpB is an isomorphism for all p ∈ Z. If both filtrations
are exhaustive, separating and bounded above, then f : A→ B is an isomorphism of
abelian groups.

Proof. We consider the map of exact sequences

0 // Fp+1A //

��

FpA

��

// GrpA

��

// 0

0 // Fp+1B // FpB // GrpB // 0

.

Both filtrations as separating and bounded above. Consequently there exists some
p0 ∈ Z such that Fp0+1A = 0 and Fp0+1B = 0. We can start a downward induction
at p = p0 and use the Five Lemma in order to conclude that FpA → FpB is an
isomorphism for all p ∈ Z. Since both filtrations are exhaustive we can conclude
that f : A→ B is an isomorphism. 2

A filtration of a chain complex of abelian groups is a chain complex C = (Cq, d)
together with filtrations (FpCq)p∈Z for all q ∈ Z such that the differential is a mor-
phism of filtered groups. A filtered chain complex induces a sequence of chain com-
plexes (FpC)q∈Z. We have natural morphisms of chain complexes

. . . ↪→ Fp+1C ↪→ FpC ↪→ . . . ↪→ C .

We define an induced filtration on the cohomology H∗(X) by

FpHq(C) := im(Hq(FpC)→ Hq(C)) .

Note that we can not commute the operations of taking the graded components and
cohomology.
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Example 2.2. We consider the filtered chain complex C given in the form

F2C ⊆ F1C ⊆ F0C

by

(0→ 0) ⊆ (0→ 0⊕ Z) ⊆ (Z d→ Z⊕ Z) , dx := 0⊕ x .

The filtration of the cohomology (
H0(C)
H1(C)

)
is given by (

0
0

)
⊆
(

0
0

)
⊆
(

0
Z

)
.

The associated graded groups given in the form Gr1 ⊕Gr0 are(
Gr∗H0(C)
Gr∗H1(C)

)
∼=
(

0⊕ 0
0⊕ Z

)
.

The graded chain complex is given by

Gr∗(C) = (0⊕ Z)
0→ (Z⊕ Z) .

Its cohomology is (
H0(Gr∗(C)
H1(Gr∗(C))

)
∼=
(

0⊕ Z
Z⊕ Z

)
.

2

Our goal in the following is to calculate the groups GrpHq(C) starting from the
groups Hq(GrpC). The tool is called a spectral sequence.

For every p ∈ Z we have an exact sequence of chain complexes

0→ Fp+1C → FpC → GrpC → 0 .

It gives rise to a long exact sequence

· · · → Hq(Fp+1C)
i→ Hq(FpC)

pr→ Hq(GrpC)
∂→ Hq+1(Fp+1C)→ . . .
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We form the following triangle (called exact couple)⊕
p,qH

q(FpC) i //
⊕

p,qH
q(FpC)

pr
vv⊕

p,qH
q(GrpC)

∂

hh
(9)

Spectral sequences are derived from exact couples. In the following we explain this
construction in general. We consider two abelian groups E and W which are con-
nected by a triangle of homomorphisms

W i //W

pr
~~

E
∂

``

such that the sequence

· · · → W
i→ W

pr→ E
∂→ W → . . .

is exact. This datum is called an exact couple. Given an exact couple we define
the derived exact couple

W ′ i′ //W ′

pr′}}
E ′

∂′

aa

as follows:

1. E ′ := ker(d)/im(d), where d := pr ◦ ∂ : E → E

2. W ′ := im(i)

3. i′ := i|W ′

4. pr′ : W ′ → E ′ is given by w 7→ [pr(w̃)], where w̃ ∈ W is chosen such that
i(w̃) = w.

5. ∂′[e] = ∂e.

Lemma 2.3. The derived exact couple is well-defined.
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Proof. We first must show that the maps are well-defined. Then we must verify
exactness of the derived couple.

1. A priory the map i′ maps W ′ to W . But it is clear from the construction that
it takes values in the subspace W ′ ⊆ W .

2. Given w ∈ W ′ we can find w̃ ∈ W such that i(w̃) = w. We can therefore try to
define pr′(w) := [pr(w̃)], where [e] denotes the equivalence class modulo im(d)
of an element e ∈ E with de = 0. It is clear that ∂′[pr(w̃)] = [∂pr(w̃)] = 0 and
hence [pr(w̃)] ∈ E ′. We must check that [pr(w̃)] is independent of the choice
of w̃. A different choice can be written in the form w̃+∂e for some e ∈ E. But
then [pr(w̃ + ∂e)] = [pr(w̃)] + [pr(∂(ẽ))] = [pr(w̃)] + [de] = [pr(w̃)] in view of
the definition of E ′.

3. If de = 0, then pr(∂e) = 0, hence ∂e ∈ im(i) = W ′. Hence the definition of pr′

produces elements in the correct target. We must show that ∂′ is well-defined.
A different representative of [e] can be written in the form e+dẽ = e+pr(∂(ẽ)).
But then ∂(e+ pr(∂(ẽ))) = ∂e.

4. We show exactness for i′ ◦ ∂′. Let w ∈ W ′. Assume that i′(w) = 0. Then there
exists w̃ ∈ W such that i(w̃) = w and i(w) = 0. We have w = ∂e for some
e ∈ E. But then de = pr(∂e) = pr(w) = pr(i(w̃)) = 0. Hence w = ∂′[e].

On the other hand if [e] ∈ E ′, the i′(∂′([e])) = i(∂(e)) = 0.

5. We show exactness for pr′ ◦ i′. Let w ∈ W ′ be such that pr′(w) = 0. Let us
write w = i(w̃). Then pr(w̃) = de = pr(∂e) and hence pr(w̃ − ∂e) = 0. We
can replace w̃ by w̃ − ∂e and thus assume that w̃ = i(ŵ). We conclude that
w̃ ∈ W ′ and therefore w ∈ im(i′).

On the other hand, if w ∈ W ′, then we can write w = i(w̃). We have i′(w) =
i(i(w̃)) and hence pr′(i′(w)) = pr(i(w̃)) = 0.

6. Finally we show exactness at E. Let [e] ∈ E ′ be such that ∂′[e] = 0. Then we
have ∂e = 0 and hence e = pr(w) for some w ∈ W . We thus have e = pr′(i(w)).

On the other hand, if [e] = pr′(w), then we find w̃ ∈ W such that i(w̃) = w
and e = pr(w̃) + d(ẽ) for some ẽ ∈ E. Then ∂′[e] = ∂e = 0.

2

We can interate the formation of the derived couple. The r− 1’th derivation will be
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denoted by

Wr
ir //Wr

prr}}
Er

∂r

aa .

In particular we get a sequence of groups (Er)r≥1 and maps dr : Er → Er such that

dr ◦ dr = 0 and Er+1
∼= ker(dr)

im(dr
. This sequence (Er, dr)r≥1 is called the spectral

sequence associated to the exact couple.

We say that the spectral sequence degenerates at the rth page if dr′ = 0 for
all r′ ≥ r. This is e.g. the case if the rth derived couple is stable under further
derivation. In this case ir is surjective and we have an exact sequence

0→ Er
∂→ Wr

i→ Wr → 0 .

We now come back to the exact couple defined by a filtered chain complex. In this
case the groups E and W are bigraded as follows:

W p,q := Hq(FpC) , Ep,q := Hq+p(GrpC) .

We further set
W :=

⊕
p,q∈Z

W p,q , E :=
⊕
p,q∈Z

Ep,q .

The arrows have the following bidegrees:

1. i : W p+1,q → W p,q

2. ∂ : Ep,q → W p+1,q+p+1

3. pr : W p,q → Ep,q−p

We now analyse the derivation of (9). We first calculate the bidegrees of the mor-
phisms by induction.

1. ir : W p+1,q
r → W p,q

r .

2. ∂r : Ep,q
r → W p+1,q+p+1

r

3. prr : W p,q
r → Ep+r−1,q−p−r+1

r - This is shown by induction on r.

4. dr : Ep,q
r → Ep+r,q−r+1

r
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The case r = 1 is discussed above. Assume now that we have shown the case r − 1.
Then:

1. ir : W p+1,q
r → W p,q

r is the restriction of ir−1 : W p+1,q
r−1 → W p,q

r−1 into the image of

ir−1 : W p+2,q
r−1 → W p+1,q

r−1 . Therefore ir has the same bidgree as ir−1.

2. ∂r : Ep,q
r → W p+1,q+p+1

r is induced by the application of ∂r−1 : Ep,q
r−1 →

W p+1,q+p+1
r−1 to representatives. It has the same bidegree as ∂r−1.

3. The value of prr : W p,q
r → Ep+r−1,q−p−r+1

r on w ∈ W p,q
r is given by prr−1(w̃),

where w̃ ∈ W p+1,q
r−1 is such that ir−1(w̃) = w. Then by induction assumption

prr−1(w̃) ∈ Ep+r−1,q−p−r+1
r−1 .

Here is a picture of a part of an E4-term, where we have indicated the only differen-
tials which act between groups in this piece.

4 E0,4
4 E1,4

4 E2,4
4 E3,4

4 E4,4
4 E5,4

4

3 E0,3
4 E1,3

4 E2,3
4 E3,3

4 E4,3
4 E5,3

4

2 E0,2
4 E1,2

4 E2,2
4 E3,2

4 E4,2
4 E5,2

4

1 E0,1
4 E1,1

4 E2,1
4 E3,1

4 E4,1
4 E5,1

4

0 E0,0
4 E1,0

4 E2,0
4 E3,0

4 E4,0
4 E5,0

4

0 1 2 3 4 5

Consider p, q ∈ Z. We have a sequence of subquotients (Ep,q
r )r≥1 of Ep,q

1 . We can
define increasing (resp. decreasing) sequences of subgroups

· · · ⊆ Bp,q
r ⊂ Bp,q

r+1 ⊆ . . . Zp,q
r+1 ⊆ Zp,q

r ⊆ . . .

such that Ep,q
r := Zp,q

r /Bp,q
r for all r ≥ 1. We define

Bp,q
∞ :=

⋃
r≥1

Bp,q
r , Zp,q

∞ :=
⋂
r≥1

Zp,q
r , Ep,q

∞ :=
Zp,q
∞

Bp,q
∞

.
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Lemma 2.4. We assume that for each q the filtration of (FpCq)p∈Z is finite, exhaus-
tive and separating. Then for every p, q ∈ Z there exists r0 (possibly depending on
p, q) such that for all r ≥ r0 the differentials starting or ending at Ep,q

r are trivial.
Furthermore, for r ≥ r0 we have

Ep,q
r
∼= Ep,q

∞

and an isomorphism
GrpHp+q(C) ∼= Ep,q

∞ .

Proof. We get by inspection

W p,q
r = im(Hq(Fp+r−1C)→ Hq(FpC)) . (10)

We set p := p′ − r + 1 and get

W p′−r+1,q
r

∼= im(Hq(Fp′C)→ Hq(Fp′−r+1C)) .

The assumption implies that for every q ∈ Z there are p±(q) ∈ Z such that we have
FpCq = Cq for p ≤ p−(q) and FpCq = 0 for p ≥ p+(q) . Then for r ≥ p′ + 2− p−(q)
we have

W p′−r+1,q
r

∼= im(Hq(Fp′C)→ Hq(C)) = Fp′Hq(C) .

Moreover, ir : W p′−r+2,q
r → W p′−r+1,q

r is the injective and we have an exact sequence

0→ Fp′+1Hq(C)
ir→ Fp′Hq(C)→ Ep′,q−p

r → W p′+1,q+1
r .

If p′ + r ≥ p+(q + 1), then in view of (10) we have W p′+1,q+1
r = 0, and we get the

exact sequence

0→ Fp′+1Hq(C)→ Fp′Hq(C)→ Ep′,q−p′
r → 0 ,

i.e.
Grp

′
Hq(C) ∼= Ep′,q−p′

r ,

if r ≥ max{p′ + 2− p−(q), p+(q + 1)− p′}.

The assumption 2.4 thus implies that for every p′, q ∈ Z there exists r0 ∈ N such
that for r ≥ r0 we have

Ep′,q
r = Ep′,q

∞ , Grp
′
Hq(C) ∼= Ep′,q−p

∞ .
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2

A morphism between exact couples

(e, w) : (E1,W1, i1, pr1, ∂1)→ (E2,W2, i2, pr2, ∂2)

is a pair of morphisms of abelian groups e : E1 → E2 and w : W1 → W2 which are
compatible with the structure maps, i.e. the following relations hold:

w ◦ i1 = i2 ◦ w , e ◦ pr1 = pr2 ◦ w , w ◦ ∂ = ∂ ◦ e .

The construction of the derived exact couple is functorial, i.e. we get an induced
morphism

(e′, w′) := (E ′1,W
′
1, i
′
1, pr

′
1, ∂
′
1)→ (E ′2,W

′
2, i
′
2, pr

′
2, ∂
′
2) .

We refrain from writing out the details.

The construction of the spectral sequence associated to an exact couple is therefore
also functorial. We get an induced morphism of spectral sequences (E1,r, d1,r)r≥1 →
(E2,r, d2,r)r≥1. In detail this morphism is given by the collection (er)r≥1 of derivations
of e. Note that

er ◦ d1,r = d2,r ◦ er .

If the couples are bigraded as above, then these morphisms are compatible with the
induced bigradings.

If (E1,r, d1,r)r≥1 → (E2,r, d2,r)r≥1 is a morphism of spectral sequences such that for
some r0 ∈ N the map er0 : E1,r0 → E2,r0 is an isomorphism, then by induction we see
that er : E1,r → E2,r is an isomorphism for all r ≥ r0.

If
f : (C,FC)→ (D,FD)

is a morphism of filtered chain complexes, then we get a morphism of exact couples
and therefore a morphism of spectral sequences

Er(f) : (Er(C), dr)→ (Er(D), dr) .

Lemma 2.5. Assume that the filtrations of Cq and Dq are exhaustive, separating
and finite for all q. If for some r ∈ N the induced morphism Er(C) → Er(D) is an
isomorphism, then H∗(f) : H∗(C)→ H∗(D) is an isomorphism.
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Proof. By Lemma 2.4 the map Gr∗(H∗(f)) : Gr∗H∗(C) → Gr∗H∗(C) is an isomor-
phism. We check by inspection that the filtrations on Hq(C) and Hq(D) are finite,
exhaustive and separating. We now use Lemma 2.1 in order to transfer the statement
about the isomorphism from the graded groups to the cohomology groups themselfes.

2

The case r = 1 is of particular interest.

Corollary 2.6. If
f : (C,FC)→ (D,FD)

is a morphism of filtered chain complexes such that

Gr(f) : Gr(C)→ Gr(D)

is a quasi-isomorphism and assume that the filtrations of Cq and Dq are exhaustive,
separating and finite for all q. Then f : C → D is a quasi-isomorphism.

Proof. Note that E1(f) : E1(C) → E1(D) is the map Gr(f) : Gr(C) → Gr(D).
Apply Lemma 2.5. 2

Example 2.7. A double complex is a given by a family of abelian groups (Cp,q)p,q∈Z
together with homomorphisms d1 : Cp,q → Cp+1,q and d2 : Cp,q → Cp,q+1 for all
p, q ∈ Z which turn (C∗,q, d1) and (Cp,∗, d2) into chain complexes for all p ∈ Z or
q ∈ Z, and which satisfy d1d2 + d2d1 = 0.

Given a double complex C := ((Cp,q)p,q, d1, d2) we can form its total complex
tot(C). Its is given by

tot(C)n :=
⊕
p+q=n

Cp,q , d := d1 + d2 .

Indeed,

d : tot(C)n → tot(C)n+1 , dd = (d1+d2)(d1+d2) = d1d1+(d1d2+d2d1)+d2d2 = 0 .

The total complex of a double complex has two natural filtrations IF∗ and IIF∗
given by

IFk tot(C)n :=
⊕

p+q=n,p≥k

Cp,q , IIFk tot(C)n :=
⊕

p+q=n,q≥k

Cp,q .
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We thus get two spectral sequences (IEr,
Idr) and (IIEr,

IIdr). We have

IGrp(tot(C), d) ∼= (Cp,∗, d2) , IIGrp(tot(C), d) ∼= (C∗,q, d1)

and hence
IEp,q

1
∼= Hq(Cp,∗, d2) , IIEp,q

1
∼= Hq(C∗,p, d1)

For given n ∈ Z the filtrations ...F∗ tot(C)n are exhaustive and separating. They
are finite if Cn−q,q = 0 for sufficiently large or small q.

If this is the case, then we can apply Lemma 2.4 and get

IIEp,q
∞ = IIGrpHp+q(tot(C)) .

Observe that the finiteness assumption is satisfied if the double complex is supported
in the right upper quadrant, i.e. if Cp,q = 0 if one of the indices p, q is negative.

A typical application goes as follows. Let C∗,∗ → D∗,∗ be a morphism of double
complexes such that C∗,p → D∗,p is a quasi-isomorphism for all p. Assume that
for all n ∈ Z we have Cn−q,q = 0 and Dn−q,q = 0 for sufficiently large or small q.
Then totC → totD is a quasi isomorphism. Indeed, for all p, q ∈ Z we get an
isomorphism

IIEp,q
1 (C)

∼=→ IIEp,q
1 (D) .

We now apply Lemma 2.5.

2

Example 2.8. If (A, dA) and (B, dB) are chain complexes, then we define the double
complex C by

Cp,q := Ap⊗Bq , d1 := dA⊗id : Cp,q → Cp+1,q , d2 := (−1)pid⊗dB : Cp,q → Cp,q+1 .

The total complex of C is called the tensor product of the chain complexes A
and B

A⊗B := tot(C) .

This construction defines a symmetric monoidal structure on the category of chain
complexes.

We have a canonical map H∗(A) ⊗ H∗(B) → H∗(A ⊗ B) which sends [a] ⊗ [b] to
[a⊗ b]. Under certain assumptions it is an isomorphism. See Lemma 2.30. 2

42



2.2 Good coverings, Čech complex and finiteness of de Rham
cohomology

In this section we construct and analyse the Čech complex of sections of a vector
bundle V →M associated to an open covering U = (Uα)α∈A of M . We apply this to
the bundle of alternating forms. Our main result in this subsection shows that the
de Rham cohomology of a compact manifold is finite dimensional.

The natural home for these constructions is sheaf theory. The construction of the
Čech complex works for arbitrary sheaves of abelian groups. The proof of Lemma
2.11 apples equally well if one replaces the sheaf of sections of the vector bundle by
an arbitrary sheaf which admits the multiplication by a partition of unity, i.e. a fine
sheaf. We refrain from developing the sheaf language at this point.

For n ∈ N and α ∈ (α0, . . . , αn) ∈ An+1 we define the open subset

Uα := Uα0 ∩ · · · ∩ Uαn

of M . We further define the vector space

Čn(U , V ) :=
∏

α∈An+1

Γ(Uα, V ) .

Our notation for elements in this vector space is

φ = (φα)α∈An+1 , φα ∈ Γ(Uα, V ) ,

and we call φα a component of φ. For every i ∈ {0, . . . , n+ 1} and α ∈ An+2 we have
Uα ⊆ U(α0,...,α̂i,...,αn+1), where (α0, . . . , α̂i, . . . , αn+1) ∈ An+1 is the tuple derived from
α by omission of the i’th entry. We define homomorphisms

di : Čn(U , V )→ Čn+1(U , V )

given on the components by

(diφ)α := (φ(α0,...,α̂i,...,αn+1))|Uα .

We further define the Čech differential by

d : Čn(U , V )→ Čn+1(U , V ) , d :=
n+1∑
i=0

(−1)idi . (11)
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Lemma 2.9. For every n ∈ N the composition

Čn−1(U , V )
d→ Čn(U , V )

d→ Čn+1(U , V )

is trivial.

Proof. We use the relations (called cosimplicial relations)

di ◦ dj =

{
dj ◦ di−1 j < i
dj+1 ◦ di j ≥ i

}
.

We calculate

d(df) = d
n∑
j=0

(−1)jdj

=
n+1∑
i=0

(−1)idi

n∑
j=0

(−1)jdj =
n+1∑
i=0

n∑
j=0

(−1)i+jdidj

=
n+1∑
i=0

i−1∑
j=0

(−1)i+jdidj +
n+1∑
i=0

n∑
j=i

(−1)i+jdidj

=
n∑
j=0

n+1∑
i=j+1

(−1)i+jdidj +
n+1∑
i=0

n∑
j=i

(−1)i+jdj+1di

=
n∑
i=0

n+1∑
j=i+1

(−1)i+jdjdi +
n+1∑
i=0

n+1∑
j=i+1

(−1)i+j−1djdi

=
n∑
i=0

n+1∑
j=i+1

(−1)i+jdjdi +
n∑
i=0

n+1∑
j=i+1

(−1)i+j−1djdi

= 0 .

2

Definition 2.10. The complex (Č∗(U , V ), d) is called the Čech complex of sections
of V .

We have a natural map of complexes

i : Γ(M,V )→ Č(U , V ) , Γ(M,V ) 3 φ 7→ (φ|Uα)α∈A ∈ Č0(U , F ) ,
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where we view Γ(M,V ) as a chain complex concentrated in degree zero. If ω ∈
Γ(M,V ), then dω = 0 in the complex Γ(M,V ) and one must check that di(ω) = 0.
Indeed, we have

(d(iω))α0,α1 = (ω|Uα1
)|Uα0,α1

− (ω|Uα0
)|Uα0,α1

= 0 .

Lemma 2.11. The map i : Γ(M,V )→ Č(U , V ) is a quasi-isomorphism.

Proof. Let (χα) be a partition of unity for U . We define a map of complexes

r : Č(U , V )→ Γ(M,V ) , r(ω) :=

{ ∑
α χαωα ω ∈ Č0(U , V )

0 ω ∈ Čq(U , V ) , q ≥ 1
.

The compatibility with differentials is trivially satisfied. Note that r ◦ i = idΓ(M,V ).
It therefore suffices to show that i ◦ r ∼ idČ(U ,V )by construction a homotopy h. For

q ≥ 1 we define the component h : Čq(U , V )→ Čq−1(U , V ) of the homotopy by

h(ω)α0,...,αq−1 := (−1)q
∑
α

χαωα0,...,αq−1,α .

Note that supp(χαωα0,...,αq−1,α) is closed in Uα0,...,αq−1 . Therefore we can interpret the
terms on the right-hand side by extension by zero as an element in Γ(Uα0,...,αq−1 , V ).
Indeed, if x ∈ Uα0,...,αq−1 , then we have two cases. In the first we have x ∈ Uα0,...,αq−1,α

and χαωα0,...,αq−1,α is smooth near x. In the second case x ∈ Uα0,...,αq−1 \ Uα0,...,αq−1,α.
But then a neighbourhood of x does not intersect supp(χαωα0,...,αq−1,α).

For q ≥ 1 we have

(dh+ hd)(ω)α0,...,αq = (−1)q
q∑
i=0

(−1)i
∑
α

χαω
q
α0,...,α̂i,...,αq ,α

+(−1)q+1

q∑
i=0

(−1)i
∑
α

χαωα0,...,α̂i,...,αq ,α +
∑
α

χαωα0,...,αq

= ωα0,...,αq

= ((id− (i ◦ r))(ω))α0,...,αq

and for q = 0

(dh+ hd)(ω)α = (hdω0)α

= h(((ωβ)|U(α,β)
− (ωα)|U(α,β)

)(α,β))

=
∑
β

χβωα −
∑
β

χβωβ

= ((id− (i ◦ r))(ω))α .
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2

We now consider the Čech complex of the de Rham complex. In this case we write ď
for the Čech differential. For every q ∈ N we have a chain complex (Č(U ,ΛqT ∗M), ď).
For every p ∈ N the de Rham differential ddR induces homomorphism

dp,dR : Čp(U ,ΛqT ∗M)→ Čp(U ,Λq+1T ∗M) .

Since ď is defined using restriction along smooth maps it commutes with the de Rham
differential. If we set d1 := ď and d2 := (−1)pdp,dR, then we get a double complex
(Čp(U ,ΛqT ∗M,d1, d2).

We can consider the de Rham complex of M as a double complex with

Ω(M)p,q =

{
Ωq(M) p = 0

0 else

Note that tot(Ω(M)∗,∗) ∼= Ω(M). We have a natural map of double complexes

i : Ω(M)∗,∗ → Č(U ,ΛT ∗M) .

Lemma 2.12. The induced map of total complexes

Ω(M)→ tot(Č(U ,ΛT ∗M))

is a quasi-isomorphism.

Proof. We consider the induced map of spectral sequences

IIEr(Ω(M))→ IIEr(tot(Č(U ,ΛT ∗M))) .

The first page is given by the cohomology of d1. We clearly have

IIEp,∗
1 (Ω(M)) ∼=

{
Ω∗(M) p = 0

0 else
.

By Lemma 2.11 we also have

IIEp,∗
1 (tot(Č(U ,ΛT ∗M))) ∼=

{
Ω∗(M) p = 0

0 else
.

Under these identifications the map induced by i on the first page is the identity,
hence an isomorphism.
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We can now apply Lemma 2.5. Note that the spectral sequence is supported in the
right upper quadrant. Therefore the assumptions of the Lemma are satisfied. 2

We now study the spectral sequence (IEr(tot(Č(U ,ΛT ∗M))))r≥1. It is called the
Čech-de Rham spectral sequence. Note that

IEp,q
1 (tot(Č(U ,ΛT ∗M))) ∼=

∏
α∈Ap+1

Hq
dR(Uα) .

The Čech-de Rham spectral is a useful tool if the cohomology appearing on the right-
hand side of this isomorphism is simpler then the cohomology of M itself. In the
best situation the manifolds Uα are contractible.

Definition 2.13. A covering U is called good, if for every q ∈ N and α ∈ Aq+1 the
open subset Uα is either empty or contractible.

We define
AnU := {α ∈ An+1 | Uα 6= ∅}

If U is good, then we have

IEp,q
1 (tot(Č(U ,ΛT ∗M))r) =

{ ∏
α∈ApU

R q = 0

0 else
.

If U is finite and good, then IEp,q
∞ is finite-dimensional for every p and q.

Corollary 2.14. If M admits a finite good coverings, then Hn
dR(M) is finite-dimensional

for every n ∈ N.

Proof. For every p, q the R-vector space IEp,q
1 is finite-dimensional. Hence the R-

vector space
⊕

p+q=n,p,q≥0
IEp,q
∞ is finite-dimensional for every n ∈ N. Therefore

GrHn
dR(M) is finite-dimensional, and so is Hn

dR(M). 2

Proposition 2.15. Every manifold admits a good covering. If M is compact, then
M admits a finite good covering.

Proof. The second assertion follows easily from the first. A proof of the first using
some basic Riemann geometry goes as follows: We choose a Riemannain metric on
M . If M has a boundary we take care that the metric has a product structure near
the boundary.
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Recall that a subset U ⊂ M is called geodesically convex if for every two points
x, y ∈ U there exists a unique minimizing geodesic from x to y in U . The intersection
of a finite number of geodecsically convex subsets is again geodesically convex. A
geodesically convex subset is star shaped with respect to each of its points and is
thus contractible.

We now use the fact that small balls in Riemannian manifold are geodesically convex.
We therefore can fine a good covering of M by sufficiently small balls. 2

Corollary 2.16. If M is compact, then Hn
dR(M) is finite-dimensional for every

n ∈ N.

Example 2.17. The de Rham cohomology H∗dR(Gr(k,Rn)) of the Grassmann man-
ifolds is finite-dimensional. To see this we observe that Gr(k,Rn) is compact. To
this end we use the presentation

Gr(k,Rn) ∼=
O(n)

O(k)×O(n− k)

and the fact that the orthogonal groups are compact. 2

Example 2.18. Let M be a compact manifold and p : V →M be a vector bundle.
We identify M with the zero section in V . We claim that H∗dR(V ) and H∗dR(V \M)
are finite-dimensional. For the first we argue that p is a homotopy equivalence, hence
p∗ : H∗dR(M) → H∗dR(V ) is an isomorphism, and H∗dR(M) is finite-dimensional since
M is compact.

For the second we choose a metric ‖ − ‖ on V and form the sphere bundle

S(V ) := {v ∈ V | ‖v‖ = 1} .

This is a closed submanifold of V \M . The inclusion S(V )→ V \M is a homotopy
equivalence with inverse given by v 7→ ‖v‖−1v and homotopy (t, v) 7→ tv + (1 −
t)v‖v‖−1. The fibre of p|S(V ) : S(V ) → M is diffeomorphic to the sphere Sdim(V )−1

and hence compact. Therefore S(V ) is compact and H∗dR(S(V )) ∼= H∗dR(V \M) is
finite-dimensional.

2
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Definition 2.19. For a compact manifold M we define its Euler characteristic
by

χ(M) :=

dim(M)∑
i=0

(−1)ibi(M) .

The Euler characteristic is a numerical invariant of a manifold which is often easy to
calculate.

Example 2.20.

1. χ(S2n+1) = 0, n ∈ N.

2. χ(S2n) = 2, n ∈ N.

3. χ(Σg) = 2− 2g, where Σg is a compact oriented surface of genus g.

2.3 Filtered colimits, cohomology and tensor products

Let I be some small category. For an auxiliary category C we can consider the functor
category CI . We define the functor

const : C → CI

which maps an object C ∈ C to the constant functor const(C) ∈ CI with value
C. The limit and colimit are functors CI → C defined as right- or left-adjoints of
const (if they exist):

colimI : CI � C : const , const : C � CI : limI .

We call C complete (cocomplete) if the limit (colimit) exists for every small index
category I.

Example 2.21. Pull-backs, fibre products or equalizers are examples of limits. Push-
outs, quotients and coequalizers are examples of colimits.

2

By an evaluation of the definition of limits and colimits we have the following natural
isomorphisms for X, Y ∈ C and X ,Y ∈ CI :

Hom(colimIX , Y ) ∼= limIopHom(X , Y ) , Hom(X, limIY) ∼= limIHom(X,Y) ,
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where the limits or colimits on the right-hand sides are taken in the category Set.

Let k be a commutative ring and consider the category Mod(k) of k-modules.

Fact 2.22. The category of k-modules is complete and cocomplete.

In the following we analyze the compatibility of colimits in Mod(k) with tensor
products. The basic ingredient from algebra is the natural isomorphism

Hom(A⊗B,C) ∼= Hom(A, hom(B,C)) ,

where hom(B,C) ∈ Mod(k) denotes the k-module of homomorphisms from B to
C.

Let W be a k-module and V ∈Mod(k)I be a diagram. Then we can define a diagram
V ⊗W ∈Mod(k)I in the natural way.

Lemma 2.23. There is a natural isomorphism

colimI(V ⊗W ) ∼= (colimIV)⊗W .

Proof. It suffices to define for every k-module T an isomorphism

Hom(colimI(V ⊗W ), T ) ∼= Hom((colimIV)⊗W,T )

which is natural in T . Indeed, such an isomorphism is given by

Hom(colimI(V ⊗W ), T ) ∼= limIopHom(V ⊗W,T )
∼= limIopHom(V , hom(W,T ))
∼= Hom(colimIV , hom(W,T ))
∼= Hom(colimIV ⊗W,T ) .

2

Next we study the compatibility of cohomology with filtered colimits. We simplify
the discussion and restrict our attention to a special class of filtered index categories.
Let P be a filtered partially order set, i.e. a partially ordered set such that for
all p, q ∈ P there exists r ∈ P with p ≤ r and q ≤ r. We consider P as a category
such that

HomP (p, q) =

{
∗ q ≥ p
∅ q < p
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Example 2.24. Consider a module V over some ring k. Let P be the partially
ordered set of finitely generated submodules of V . For p ∈ P let Vp ⊆ V be the
corresponding submodule. Then the natural morphism is an isomorphism

colimp∈PVp
∼=→ V .

In order to see this we argue as follows: Let T be some k-module. Then we have a
natural map

Hom(V, T )→ limp∈P opHom(Vp, T )

given by φ 7→ (φ|Vp)p∈P op . We check that it is an isomorphism.

1. Injectivity: Let φ, φ′ ∈ Hom(V, T ) be mapped to the same element in the limit.
Then for every v ∈ V they coincide on the k-module generated by v. Hence
φ(v) = φ′(v).

2. Surjectivity: Let (φp)p∈P op ∈ limp∈P opHom(Vp, T ). For v ∈ V choose p ∈ P
such that v ∈ V . Then we define φ(v) := φp(v). One easily checks that φ is
well-defined. Furthermore it is the required preimage of (φp)p∈P op .

2

In the following we make the structure of objects in CP more explicit. For brevity
we take the example C := Ch, the category of chain complexes.

An object of ChP is called a P -indexed family of chain complexes. In detail this
datum associates to every p ∈ P a chain complex Cp. Furthermore, for every q ∈ P
with q ≥ p we are given a map iqp : Cp → Cq such that for every additional r ∈ P
with r ≥ q we have the relation irp = irqi

q
p.

In a similar manner we define P -indexed families of objects in any category, e.g.
abelian groups or chain complexes. Let us continue with chain complexes.

We have a very simple description of the chain complex colimp∈PCp as a quotient

⊕
(p,q)∈P,q≥pCp

iqp
,,

id

22
⊕

p∈P Cp
// colimp∈PCp .

For every p ∈ P we have the canonical map ip : Cp → colimp∈PCp. For q ∈ P with
q ≥ p we have the relation iqi

q
p = ip.
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Every element in colimp∈PCp is of the form ip(cp) for some p ∈ P and cp ∈ P .
Furthermore, ip(cp) = 0 if and only if there exists q ∈ P with q ≥ p such that
iqp(cp) = 0.

We now show that cohomology commutes with filtered colimits.

Lemma 2.25. Let P be a filtered partially ordered set and C be a P -indexed family
of chain complexes. Then we have a natural isomorphism

colimp∈PH
∗(Cp) ∼= H∗(colimpCp) .

Proof. The family of maps of complexes ip : Cp → colimpCp for p ∈ P induces a
map colimp∈PH

∗(Cp)→ H∗(colimpCp). We must show that it is an isomorphism.

We first show surjectivity. Let [c] ∈ H∗(colimpCp). Then there exists p ∈ P and
cp ∈ Cp such that ip(cp) = c. Since dc = 0 there exists q ∈ P with q ≥ p such that
diqpcp = 0. Then iq[i

q
p(cp)] = [c].

Next we show injectivity. Let [cp] ∈ H∗(Cp) be such that [ipcp] = 0. Then there
exists q ∈ P with q ≥ p and e ∈ Cq such that iqpip(cp) = de. But then iqp[cp] =
[iqpcp] = [de] = 0 so that ip[cp] = 0 in colimp∈PH

∗(Cp). 2

Example 2.26. The following example shows that in Lemma 2.25 one can not omit
the condition that the index category is filtered. Recall that a coequalizer is a
special case of a colimit. Its index category is not filtered. We consider the exact
chain complex

C : 0→ Z 2→ Z→ Z/2Z→ 0 .

Then we form the diagram

D : C

2
$$

0

<<C

where the first copy of Z is in degree 0. Its colimit is given by

colim D : 0→ Z/2Z 0→ Z/2Z id→ Z/2Z→ 0 .

We have

colim H∗(D) ∼= 0 , Hk(colim D) ∼=
{

Z/2Z k = 0
0 else

2
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We consider a field k and chain complexes of k-vector spaces. In this case coho-
mology commutes with tensor products. We start with a first result in this
direction.

Lemma 2.27. If C is a complex of k-vector spaces and V a k-vector space, then we
have a canonical isomorphism

H∗(C)⊗k V
∼=→ H∗(C ⊗k V ) , [c]⊗ v 7→ [c⊗ v] .

Proof. For every n ∈ Z we choose a basis of Hn(C) and cycles in Cn representing
the basis elements. Mapping the basis elements to the cycles we define a chain map
c : H(C)→ C, where we consider H(C) as a chain complex with trivial differentials.
This map is in fact a quasi-isomorphism. We now define

H∗(C)⊗k V → H∗(C ⊗k V ) , [x]⊗ v 7→ [c(x)⊗ v] . (12)

This map is independent of the choices made in the construction of c. Indeed, if c′ is
a different choice, then for [x] ∈ Hn(C) we have c(x)−c′(x) = dy for some y ∈ Cn−1.
Hence

c(x)⊗ v − c′(x)⊗ v = d(y ⊗ v) .

We must show that (12) is an isomorphism. This is obvious if dim(V ) = 1. The
map is functorial in V and therefore compatible with direct sums. It follows that it
is an isomorphism for finite-dimensional V . Since cohomology and tensor products
are compatible with filtered colimits and every vector space is a filtered colimit of
finite-dimensional ones, the map is an isomorphism in general. 2

Remark 2.28. Note that the argument would work for abelian groups instead of
k-vector spaces if we assume that H∗(C) and V are free.

If k is a ring and we consider chain complexes of k-modules, then Lemma 2.27 holds
(with a different argument) if one assumes that V is flat, i.e. if the functor (−)⊗ V
preserves short exact sequences. 2

Example 2.29. The assertion of Lemma 2.27 does not hold in general if one replaces
vector spaces over a field by modules over a ring k. Here is an example for Z-modules.
We consider the exact complex

C : 0→ Z 2→ Z→ Z/2Z→ 0
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and V := Z/2Z. Then we have

C ⊗ V : 0→ Z/2Z 0→ Z/2Z id→ Z/2Z→ 0 .

We have

H∗(C)⊗ Z/2Z ∼= 0 , Hk(C ⊗ Z/2Z) ∼=
{

Z/2Z k = 0
0 else

This example can also be considered as a counter example to a corresponding gen-
eralization of Lemma 2.30. 2

Lemma 2.30. We assume that C and D are complexes of k-vector spaces. Then we
have a canonical isomorphism H∗(C ⊗D) ∼= H∗(C)⊗H∗(D).

Proof. We construct quasi-isomorphisms c : H(C) → C and d : H(D) → D as in
Lemma 2.27. They induce a map of double complexes

c⊗ d : H(C)⊗H(D)→ C ⊗D .

We now study the induced map of spectral sequences IE(H(C)⊗H(D))→ IE(C ⊗
D). On the level of Ep,q

1 -terms it is given by

c⊗ idH(D) : Hp(C)⊗Hq(D)→ Hq(Cp ⊗D∗)
Lemma2.27∼= Cp ⊗Hq(D) .

The differential on the target is induced by the differential of C so that the induced
map on E2-terms is an isomorphism, again by Lemma 2.27.

Let us first assume that the complexes are lower bounded. Then we can apply Lemma
2.5 in order to conclude that c⊗ d is a quasi-isomorphism. The assumption that the
complexes are lower bounded ensures the finiteness of the relevant filtrations.

In order to treat the general case note that every chain complex can be written as a
filtered colimit of lower bounded chain complexes

C ∼= colim(· · · ⊆ C≥p+1 ⊆ C≥p ⊆ C≥p−1 ⊆ . . . ) ,

where
C≥p : . . . 0→ Cp → Cp+1 → . . .

is the subcomplex of C of chains of degree ≥ p. We now use that cohomology and
tensor products commute with filtered colimits. 2
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Remark 2.31. The argument for Lemma 2.30 generalizes to the case of chain com-
plexes of modules over an arbitrary ring k if we assume that the k-modules C∗ and
H∗(C), H∗(D) are free. 2

Lemma 2.32. We consider chain complexes of k-vector spaces C,D,D′ over a field
k. If g : D → D′ is a quasi isomorphism, then idC ⊗ g : C ⊗ D → C ⊗ D′ is a
quasi-isomorphism.

Proof. The map IIEp,∗
1 (C ⊗D)→ IIEp,∗

1 (C ⊗D′) is the map idHp(C) ⊗ g : Hp(C)⊗
D → Hp(C)⊗D′. In cohomology it induces the map

Hq(Hp(C)⊗D)
2.27∼= Hp(C)⊗Hq(D)

∼=→ Hp(C)⊗Hq(D′)
2.27∼= Hq(Hp(C)⊗D′) ,

hence an isomorphism. We now apply Lemma 2.5 in order to conclude that idC ⊗ g
is a quasi-isomorphism. Here again we first consider the case of lower bounded chain
complexes and then extend the result to all as at the end of the proof of Lemma
2.30. 2

Remark 2.33. The argument of Lemma 2.32 generalizes to the case of k-modules
over a ring k if we assume that H∗(C) and D,D′ are flat. 2

2.4 The Künneth formula

We now consider two manifolds M,N . We have a natural morphism of complexes

× : Ω(M)⊗ Ω(N)→ Ω(M ×N) , ω ⊗ α 7→ pr∗Mω ∧ pr∗Nα .

If both manifolds are not zero dimensional, then this map is far from being an
isomorphism.

Proposition 2.34 (Künneth formula). If N admits a finite good covering, then the
map × induces an isomorphism

× : H∗dR(M)⊗H∗dR(N)
∼=→ H∗dR(M ×N) . (13)
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Proof. We fix a finite good covering U of N . Then we have a diagram

Ω(M)⊗ Ω(N) //

'
��

Ω(M ×N)

'
��

Ω(M)⊗ tot(Č(U ,Λ∗T ∗M)) v // tot(Č(M × U ,Λ∗T ∗M))

The right vertical map is a quasi-isomorphism by Lemma 2.12. The left vertical map
is the product of idΩ(M) and a quasi-isomorphism (again by Lemma 2.12), hence
itself a quasi-isomorphism by Lemma 2.32.

We now consider the lower horizontal map. We filter both complexes such that Fp
is the subcomplex of Čech degree ≥ p. For fixed p the map of Ep,∗

1 (v) is a finite
product of maps

Ω(M)⊗ Ω(Uα)→ Ω(M × Uα)

for α ∈ Ap+1. This map fits into the square

Ω(M)⊗ Ω(∗)
idΩ(M)⊗pr∗∗
��

∼= // Ω(M)

pr∗M
��

Ω(M)⊗ Ω(Uα) // Ω(M × Uα)

,

where the vertical maps are quasi-isomorphisms since Uα is contractible (and for the
left map we also use Lemma 2.32). We conclude that Ep,∗

1 (v) is a quasi-isomorphism.
We apply Lemma 2.5 in order to conclude that (13) is an isomorphism. 2

Note that the Künneth isomorphism is induced by a morphism of rings.

Example 2.35. We can calculate the de Rham cohomology of tori using the Künneth
isomorphism and the presentation T n := S1 × · · · × S1 with n factors. We have an
isomorphism of rings H∗dR(S1) ∼= R[x] with |x| = 1. It follows that

H∗dR(T n) ∼= R[x1]⊗ · · · ⊗ R[xn] ∼= R[x1, . . . , xn] ,

where all generators are of degree 1. For the Betti numbers we get

bi(T n) =

(
n

i

)
. (14)

2
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Example 2.36. Let M be any manifold and n ∈ N. Then for k ∈ Z we have an
isomorphism

Hk−n
dR (M)⊕Hk

dR(M)
∼=→ Hk

dR(Sn ×M)

given by
(α, ω) 7→ 1× α + [volSn ]× ω .

2

Lemma 2.37. If M and N are compact manifolds, then we have

χ(M ×N) = χ(M)χ(N) .

Proof. We have

χ(M ×N) =
∑
n

(−1)n dim(Hn
dR(M ×N))

=
∑
n

(−1)n
∑
i+j=n

dim(H i
dR(M)⊗Hj

dR(N))

=
∑
n

∑
i+j=n

(−1)i+j dim(H i
dR(M)) dim(Hj

dR(N))

=
∑
i

(−1)i dim(H i
dR(M))

∑
j

(−1)j dim(Hj
dR(N))

= χ(M)χ(N)

2

Example 2.38. For a compact manifold M we have χ(S1×M) = 0 and χ(S2×M) =
2χ(M). Observe that χ(T n) = 0. Using the formula (14) this gives the identity

n∑
i=0

(−1)i
(
n

i

)
= 0 .

2
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3 Poincaré duality

3.1 Relative de Rham cohomology

The cone construction (Example 1.41) provides a functorial extension of a map be-
tween chain complexes to a short exact sequence of chain complexes. This allows us
to define functorally the relative cohomology of a morphism which fits into a long
exact sequence. In detail, let

f : (C, dC)→ (D, dD)

be a map of chain complexes. Then we form the short exact sequence of chain
complexes

0→ D → Cone(f)→ C[1]→ 0 ,

where
Cone(f) := C[1]⊕D , dCone(f)(c, d) := (−dCc,−f(c) + dDd)

and the maps are the obvious inclusion and projection. We define the relative
cohomology of f by

H∗(f) := H∗(Cone(f)[−1]) .

It fits into the long exact sequence in cohomology

· · · → Hn(f)→ Hn(C)→ Hn(D)→ Hn+1(f)→ . . . . (15)

Note that

Cone(f)[−1]n = Cn ⊕Dn−1 , dCone(f)[−1](c, d) = (dCc, f(c)− dDd) .

Example 3.1. If f is a surjection, then we have a smaller model for the relative
cohomology. In this case we consider the map of chain complexes

ker(f)→ Cone(f)[−1] , c 7→ (c, 0) .

The following diagram commutes

. . . // Hn−1(D) // Hn(ker(f)) //

��

Hn(C) // . . .

. . . // Hn−1(D) // Hn(f) // Hn(C) // . . .

,
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and consequenty, by the Five Lemma, we have an isomorphism

Hn(ker(f))
∼=→ Hn(f) .

2

Let f : N → M be a smooth map between manifolds. Then we apply the above
construction to the morphism of chain complexes f ∗ : Ω(M) → Ω(N) and get the
relative de Rham cohomology H∗dR(f) of f .

Let N →M is the inclusion of a closed submanifold. If M has boundaries, then this
assumption includes additional conditions as follows. We assume that there is a face
M ′ ⊆M such that the embedding factorizes as N →M ′ →M , and that N →M ′ is
transversal to all boundary faces of M ′. In fact, all what we need is that N admits
an open neighbourhood in M which has the structure of a bundle over N .

In this case we write
HdR(M,N) := H∗dR(f) .

Example 3.2. Let M := [−1, 1]2 ⊆ R2. The following examples are admitted.

1. S1 →M , f(exp2πit) = (1
2

sin(2πt), 1
2

cos(2πt)).

2. {∗} →M the inclusion of the point (0, 1). It is contained in the face [−1, 1]×
{1} and transversal to the boundary faces of that face.

3. [−1, 1]→ {−1} × [−1, 1], the inclusion of the boundary face.

The following examples are not admitted:

1. S1 → M , f(exp2πit) = (sin(2πt), cos(t)). This is not transversal to the bound-
ary faces.

2. (0, 1) → {−1} × (0, 1), the inclusion of the open boundary face. This is not
closed.

3. [−1, 1]→M , t 7→ (t, t), a diagonal. This is not considered to be transversal to
the boundary.

2
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We must understand the topology of M near N . In the discussion below we assume
for simplicity that N is a closed submanifold of the interior of M . But if N inter-
sects boundary faces, then the constructions are similar. For example, if it is the
embedding of a boundary face, then we must consider the half sided normal bundle
pointing into interior of M . The conclusions hold in general.

Since f is an immersion we have an inclusion of vector bundles

df : TN → f ∗TM .

The quotient N := f ∗TM/df(TN) is called the normal bundle of f . Let z : N →
N denote the zero section. The following differential geometric fact generalizes the
existence of a collar for a codimension one submanifold:

Fact 3.3. There exists a smooth map F : N → M which is a diffeomorphism onto
an open neighbourhood of N such that f = F ◦ z.

Proof. We sketch the idea. We choose a Riemannian metric on M and identify N
with the orthogonal complement of df(TN) ⊆ f ∗TM . The exponential map of M
provides a diffeomorphism of a neighborhood of the zero section of N with a neigh-
borhood of N in M . We now precompose with a scaling diffeomorphism which maps
N into a suitable neighborhood of its zero section. 2

From now on we identify N with its image under F .

Lemma 3.4. If N →M is the inclusion of a closed submanifold, then f ∗ : Ω(M)→
Ω(N) is surjective.

Proof. We consider the open covering {U,N} ofM with U := M\N and let {χU , χN}
be an associated partition of unity. For ω ∈ Ω(N) we define ω̃ ∈ Ω(M) as the exten-
sion by zero of χNpr

∗ω, where pr : N → N is the bundle projection. Then ω̃|N = ω.
2

Since f ∗ is surjective, by Example 3.1 we have HdR(M,N) ∼= H∗(Ω(M,N)), where
Ω(M,N) := ker(f ∗). The sequence

· · · → Hn−1(N)
∂→ Hn(M,N)→ Hn(M)→ Hn(N)→ . . .

is called the long exact sequence of the pair. Using the notation introduced in
the proof of Lemma 3.4 the boundary operator can be calculated as follows. If
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[ω] ∈ Hn−1(N), then we have

∂[ω] = [dχN ∧ pr∗ω] . (16)

Assume that M is compact and oriented of dimension n and N is the boundary of
M . Then the integration ∫

M

: Ωn(M)→ R

induces a homomorphism ∫
M

: Hn
dR(M,N)→ R .

Indeed, for ω ∈ Ωn−1(M,N) we have by Stoke’s theorem∫
M

dω =

∫
N

ω = 0 .

Example 3.5. We calculate H∗dR(Dn, Sn−1) using the long exact sequence. The
beginning is

0→ H0
dR(Dn, Sn−1)→ H0

dR(Dn)→ H0
dR(Sn−1)→ H1

dR(Dn, Sn−1)→ 0 .

The second map is injective. We conclude that H0
dR(Dn, Sn) = 0 and

H1
dR(Dn, Sn) ∼=

{
R n = 1
0 else

.

We further have the segment

0→ Hn−1
dR (Sn−1)→ Hn

dR(Dn, Sn−1)→ 0

showing that
Hn
dR(Dn, Sn−1) ∼= R .

We get

Hk
dR(Dn, Sn−1) ∼=

{
R n = k
0 else

. (17)

Let χ ∈ C∞c (Dn \ Sn−1) be such that
∫
Dn
χ(x)dx = 1. Then χvolRn ∈ Ωn(Dn, Sn−1)

is a closed from. Its cohomology class generates Hn
dR(Dn, Sn−1) since∫

Dn
[χvolRn ] = 1 .

2
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Let f : M → N be a morphism between manifolds. If H∗dR(M) and H∗dR(N) are
finite-dimensional, then so is H∗dR(f) by the long exact sequence (3.1). In this case
we define

χ(f) :=
∑
i∈Z

(−1)i dim H i(f) .

We have the relation
χ(M) = χ(N) + χ(f)

which immediately follows from the long exact sequence (3.1). If f is the inclusion
of a closed submanifold N ↪→M , then we write χ(M,N) := χ(f).

Example 3.6. For n ∈ N we consider Sn−1 → Dn. We have the relation χ(Dn) =
χ(Sn−1) + χ(Dn, Sn−1). We get

χ(Dn, Sn−1) = (−1)n

as expected by (17). 2

3.2 Compactly supported cohomology

For a manifold M let Ωc(M) denote the complex of forms with compact support.
The de Rham cohomology of M with compact support is defined by

H∗dR,c(M) := H∗(Ωc(M)) .

If M is oriented of dimension n and without boundary, then the integration over M
induces a homomorphism ∫

M

: Hn
dR,c(M)→ R .

In the following we discuss the functoriality of the cohomology with compact support.
If M → N is a proper map, then f ∗ : Ωc(N) → Ωc(M). Therefore H∗dR,c is a
contravariant functor defined on the category of manifolds and proper maps.

If iU : U →M is the inclusion of an open submanifold, then we have a map

iU! : Ωc(U)→ Ωc(M)

given by extension by zero. We get an induced map

iU! : HdR,c(U)→ HdR,c(M) .
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Lemma 3.7. Let M = U ∪ V be a covering of M by open subsets. Then we have
the following Mayer-Vietoris sequence

· · · → Hn−1
dR,c(M)

∂→ Hn
dR,c(U ∩ V )→ Hn

dR,c(U)⊕Hn
dR,c(V )→ Hn

dR,c(M)→ . . . (18)

Proof. The Mayer-Vietoris sequence is the long exact sequence associated to the
short exact sequence of complexes

0→ Ωc(U ∩ V )
(iU∩VU,! ,−iU∩VV,! )
−−−−−−−−→ Ωc(U)⊕ Ωc(V )

(α,ω)7→iU! (α)+iV! (ω)
−−−−−−−−−−−→ Ωc(M)→ 0 .

In order verify the surjectivity of the second map let ω ∈ Ωc(M). Using a partition
of unity {χU , χV } we get a preimage (χUω, χV ω). In order to show exactness in the
middle assume that iU! (α)+iV! (ω) = 0. Then ω|U\V = 0 and α|V \U = 0. In particular,
both forms are supported in U ∩V and therefore coincide up to sign. The injectivity
of the first map is clear. 2

Consider an inclusion f : N →M of a closed submanifold into a compact manifold.
Then we have an inclusion

i : Ωc(M \N)→ Ω(M,N) .

Proposition 3.8. Let f : N → M the inclusion of a closed submanifold into a
compact manifold. Then the map i induces an isomorphism in cohomology

H∗dR,c(M \N)→ H∗dR(M,N) .

Proof. We again assume for simplicity that N is a submanifold in the interior of M ,
but the general case is similar using a modified notion of a normal bundle (e.g. half
sided for the inclusion of a boundary face).

We use embedding of the normal bundle N into M as a neighborhood of N . We
choose a metric on N . For r ∈ (0, r) we let

Nr := {v ∈ V | ‖v‖ ≤ r} ⊂ N

be the subbundle of discs of radius r. We define the complex

Ωr(M) := {ω ∈ Ω(M) | ω|Nr = 0} .
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Note that for r′ < r we have Nr−1 ⊆ N(r′)−1 and hence Ω(r′)−1(M) ⊆ Ωr−1(M). We
thus get an incresing family of chain complexes (Ωr−1(M))r∈(0,∞). Note that for all
r ∈ (0,∞) we have

Ωr(M) ⊆ Ωc(M \N) ,

and
Ωc(M \N) =

⋃
r∈(0,∞)

Ωr(M) . (19)

Lemma 2.25 implies in view of (19) that

H∗(Ωc(M \N)) ∼= colimr∈(0,∞)H
∗(Ωr(M)) . (20)

The projection p : Nr → N is a homotopy equivalence with inverse the zero section z.
Indeed, p◦z = idN . The homotopy z◦p ∼ idNr is given by I×Nr 3 (t, v) 7→ tv ∈ Nr.
It follows that z∗ : H∗dR(Nr)→ H∗dR(N) is an isomorphism.

We have an exact sequence

0→ Ωr(M)→ Ω(M)→ Ω(Nr)→ 0 .

We argue that the second map is surjective. Let ω ∈ Ω(Nr). Then there exists an
open neighbourhood U of Nr and ω̃ ∈ Ω(U) such that ω̃|Nr = ω. We choose a cut-off
function χ ∈ C∞c (M) such that χ|Nr = 1 (note that {χ, 1−χ} is a partition of unity
for the covering (N \ Nr, U) of M). Then χω̃ extends to all of M and is a preimage
of ω.

For all r ∈ (0,∞) we get a map of long exact sequences

// Hn−1
dR (Nr−1) ∂′ //

z∗∼=
��

// Hn(Ωr−1(M)) //

ir
��

Hn
dR(M) // Hn

dR(Nr−1)∂ //

z∗∼=
��

// Hn−1
dR (N) ∂ // Hn

dR(M,N) // Hn
dR(M) // Hn

dR(N) //

. (21)

The two right squares obviously commute. In order to show that the left square
commutes we start with [ω] ∈ Hn−1

dR (N) and show that ir∂
′p∗[ω] = ∂ω. Indeed, on

the one hand, using the notation from above and ω̃ := pr∗ω, we have ir∂
′p∗[ω] =

[d(χω̃)] = [dχ∧pr∗ω], where χ ∈ C∞(M) is such that χ|Nr−1 ≡ 1 and χ|M\N2r−1 ≡ 0,
and pr : N → N is the bundle projection. On the other hand, ∂[ω] = [dχ ∧ pr∗ω]
by (16)
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Applying the Five Lemma to (21) we see that

ir : Hn(Ωr−1(M))→ Hn
dR(M,N)

is an isomorphism for all r ∈ (0,∞). We conclude that

Hn
dR,c(M \N)

(20)∼= colimr∈(0,∞)H
n(Ωr−1(M)) ∼= Hn

dR(M,N)

2

Example 3.9. Since Dn \ Sn−1 is diffeomorphic to Rn we have

Hk
dR,c(Rn) ∼=

{
R n = k
0 else

We can use the integral ∫
Rn

: Hn
dR,c(Rn)→ R

in order to detect the cohomology. 2

3.3 Poincaré duality

If C is a chain complex over some ring k, then we define the dual chain complex
C∗ = hom(C, n) by

(C∗)n := hom(C−n, k) , d : C∗,n → C∗,n+1 , d(φ) := (−1)nφ ◦ d .

Let M be an oriented manifold M of dimension n. We define maps

φk : Ωk(M)→ Ωn−k
c (M)∗ , ω 7→ (α 7→ (−1)(n+1)k

∫
M

ω ∧ α)

for all k ∈ Z. Note that Ωn−k
c (M)∗ = (Ωc(M)[n]∗)k.

Lemma 3.10. If M has no boundary, then the collection of homomorphims φ =
(φk)k induces a morphism of complexes

φ : Ω(M)→ Ωc(M)[n]∗ .
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Proof. The proof is a calculation using Stoke’s theorem. For this reason we must
exclude the presence of a boundary. We are careful and distinguish the de Rham
differential ddR from the differential (−1)nddR = d of the shifted complex Ωc(M)[n].
For α ∈ Ωc(M)[n]−k−1 = Ωn−k−1

c (M) and ω ∈ Ωk(M) we have

(dφk(ω))(α) = (−1)kφk(ω)(dα)

= (−1)k+nφk(ω)(ddRα)

= (−1)k+n+(n+1)k

∫
M

ω ∧ ddRα

= (−1)n+(n+1)k

∫
M

ddR(ω ∧ α)− (−1)n+(n+1)k

∫
M

ddRω ∧ α

= (−1)n−1+(n+1)k

∫
M

ddRω ∧ α

= (−1)n−1+(n+1)k−(n+1)(k+1)φk+1(dω)(α)

= φk+1(dω)(α) .

2

In this section we analyze conditions under which the morphism φ in Lemma 3.10 is
a quasi-isomorphism.

Let C again be a complex of k-modules over some ring. We have an evalution pairing

C ⊗ C∗ → k

which is a morphism of complexes if we consider the target as a complex concentrated
in degree zero. It induces the second morphism in the composition

H(C)⊗H(C∗)→ H(C ⊗ C∗)→ k

and hence a morphism
H(C∗)→ H(C)∗ .

Applying this to C = Ωc(M)[n] we get the second map in the composition

PM : HdR(M)
φ→ H(Ωc(M)[n]∗)→ HdR,c(M)[n]∗ .

This map is natural in the sense that for an inclusion iU : U → M we have the
equality

PM(ω)(iU! (α)) = PU(iU,∗ω)(α) . (22)
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Example 3.11. If M = Rn, then

PRn : Hk
dR(Rn)→ Hn−k

dR,c(R
n)∗

is an isomorphism for all k ∈ Z. Indeed we must consider the case k = 0, since
for k 6= 0 the target and domain both vanish. Let [1] ∈ H0

dR(Rn) be the generator.
A generator of Hn

dR,c(Rn) is given by [χvolRn ], where χ ∈ C∞c (Rn) is such that∫
Rn φ(x)dx = 1. Note that

PRn([1])([χvolRn ]) = (−1)(n+1)n

∫
Rn

1 ∧ χvolRn = 1 .

2

We generalize the Example 3.11 from Rn to star shaped open subsets G ⊂ Rn and
geodesically convex subsets of a Riemannian manifold.

Lemma 3.12. If G ⊆ Rn is open and star shaped with respect to 0 ∈ Rn, then the
Poincaré duality map

PG : Hk
dR(G)→ Hn−k

dR,c(G)∗

is an isomorphism for all k ∈ Z.

Proof. Note that by the Poincaré Lemma

Hk
dR(G) ∼=

{
0 k 6= 0
R k = 0

}
.

It is clear by a similar argument as in Lemma 3.11 that PG is injective. It suffices
to show that

Hk
dR,c(G) ∼=

{
0 k 6= n
R k = n

}
.

For simplicity we assume that G is bounded. In the following, our notation for an
inclusion of an open subset is iXY : X → Y . Let B be an open ball at zero such that
B̄ ⊆ G. It suffices to show that

iBG,! : HdR,c(B)→ HdR,c(G)

is an isomorphism. Since G is bounded there exists r ∈ (0, 1) such that rG ⊂ B.
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Let fr : B → B be the multiplication with r. We have an obvious homotopy
H : [r, 1]×B → B, H(s, x) := sx , from fr to idB. We get a chain homotopy

h : Ω(B)→ Ω(B)

such that dh+ hd = id− f ∗r . Recall that

h(ω) :=

∫ 1

r

(ι∂sH
∗ω)|{s}×Mds .

From the formula we deduce that if ω ∈ iBrB,!(Ωc(rB)), then h(ω) ∈ Ωc(B).

If we precompose the identity dh+ hd = id− f ∗r with irBB,! we get a chain homotopy

h ◦ irBB,! : Ωc(rB)→ Ωc(B)

from f ∗r ◦ irBB,! to irBB,!. The first map is an isomorphism since it is just the pull-back
with the diffeomorphism fr : B → rB. Hence irBB,! : HdR,c(rB) → HdR,c(B) is an
isomorphism.

In a similar manner we show that irGG,! : HdR,c(rG) → HdR,c(G) is an isomorphism.
We now have factorizations

irBB,! = irGB,! ◦ irBrG,! , irGG,! = iBG,! ◦ irGB,! .

The first shows that irBrG,! is injective. Consequently, the equivalent map

iBG,! : HdR,c(B)→ HdR,c(G)

is injective, too. The second implies that

iBG,! : HdR,c(B)→ HdR,c(G)

is surjective.

If G is not bounded, then we must modify the rescaling map fr appropriately and
argue similarly. 2

Corollary 3.13. If M is an n-dimensional Riemannian manifold without boundary
and G ⊆M is a geodesically convex subset, then

PG : Hk
dR(G)→ Hn−k

dR,c(G)∗

is an isomorphism for all k ∈ Z.
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Proof. We use the exponential map in order to reduce to the case considered in
Lemma 3.12. 2

Proposition 3.14. If M is a manifold without boundary which admits a Riemannian
metric and a finite good covering by geodesically convex subsets, then

PM : HdR(M)→ HdR,c(M)[n]∗

is an isomorphism.

Proof. We argue by induction on the number of elements of the covering. The case
of one element is done by Corollary 3.13.

Let us now assume that the case of at most n − 1 element is settled. Let U :=
{U1, . . . , Un} be a good covering of M by geodesically convex subsets for some metric.
We define U :=

⋃n−1
i=1 Un and consider the following map of long exact sequences. The

upper sequence is the Mayer-Vietoris sequence associated to the covering {U,Un} of
M .

Hk−1
dR (U ∩ Un) ∂ //

PU∩Un
��

// Hk
dR(M) //

PM
��

Hk
dR(U)⊕Hk

dR(Un)

PU⊕PUn
��

// Hk
dR(U ∩ Un)

PU∩Un
��

Hn−k+1
dR,c (U ∩ Un)∗ ∂

∗
// Hn−k

dR,c(M)∗ // Hn−k
dR,c(U)∗ ⊕Hn−k

dR,c(Un)∗ // Hn−k
dR,c(U ∩ Un)∗

The lower sequence is the dual of the sequence (18). The right two squares commute
by the naturality (22) of P−. We must verify that the square involving the boundary
operators commutes. For our purpose it suffices that it commutes up to sign. Let
ω ∈ Ωk−1(U ∩ Un) and α ∈ Ωn−k+1

c (M) be closed. Then we have ∂[ω] = dχUn ∧ ω,
where (χU , χUn) is a partition of unity. We get

PM(∂[ω])([α] = ±
∫
M

(dχUn ∧ ω) ∧ α

= ±
∫
M

ω ∧ (dχUn ∧ α)

= ±PU∩Un(ω)(∂[α])

= ±PU∩Un(∂∗ω)([α]) ,

where the signs only depend on k and n. Now note that {U1∩Un, . . . , Un−1∩Un} and
{U1, . . . , Un−1} are a good coverings of U ∩ Un and {U1, . . . , Un−1} by geodesically
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convex subsets, respectively, by n − 1 open subsets. Consequently, PU , PUn and
PUn∩U are isomorphisms. We use the Five Lemma in order to conclude that PM is
an isomorphism. 2

Corollary 3.15 (Poincaré duality). If M is a closed oriented n-dimensional mani-
fold, then for all k ∈ Z we have an isomorphism

PM : Hk
dR(M)

∼=→ Hn−k
dR (M)∗ .

In particular, we have the identity of Betti numbers

bk(M) = bn−k(M) .

Proof. We choose a Riemannian metric g on M . If M is compact, then the proof of
Proposition 2.15 produces a finite good covering of M by geodesically convex subsets.
We also use compactness of M for the isomorphism HdR,c(M) ∼= HdR(M). 2

Corollary 3.16. If M is a closed oriented and connected n-dimensional manifold,
then we have bn(M) = 1.

Proof. We have bn(M) = b0(M) = 1 since M is connected. 2

Corollary 3.17 (Alexander duality). If M is a compact oriented n-dimensional
manifold and N ↪→ M is a closed submanifold such that M \ N has no boundary,
then for all k ∈ Z we have an isomorphism

PM : Hk
dR(M \N)

∼=→ Hn−k
dR (M,N)∗ .

In particular, we have the identity of Betti numbers

bk(M \N) = bn−k(M,N) .

Proof. We use the Poincaré duality isomorphism

PM\N : Hk
dR(M \N)

∼=→ Hn−k
dR,c(M \N)∗

and Proposition 3.8 which states that HdR,c(M \N) ∼= HdR(M,N). 2

Note that the condition on the pair (M,N) in 3.17 says that either M is closed and
N is a closed submanifold in M or N ↪→M is the inclusion of the boundary of M .
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Corollary 3.18 (Intersection form). Let M is a closed oriented 2m-dimensional
manifold. Then we have a non-degenerated bilinear form

〈−,−〉 : Hm(M)⊗Hm(M)→ R , 〈[ω], [α]〉 :=

∫
M

ω ∧ α .

It is symmetric for even m and antisymmetric for odd m. This form is called the
intersection form of M .

Proof. The form is nondegenerated since it induces the Poincaré duality isomorphism
PM : Hm

dR(M)
∼→ Hm

dR(M)∗ up to sign. 2

Corollary 3.19. Let M be a closed oriented 4k + 2-dimensional manifold. Then
b2k+1(M) is even.

Proof. The antisymmetric intersection form is non-degenerated. Hence it lives on an
even-dimensional vector space. 2

We consider a closed oriented manifold M of dimension 4k. Its intersection form is
a non-degenerated symmetric bilinear form on H2k

dR(M).

Definition 3.20. The signature of the intersection form of a 4m-dimensional man-
ifold is called the signature of M and denoted by sign(M).

If M op denotes M with the opposite orientation, then sign(M op) = −sign(M).

Example 3.21. We consider the manifold S2 × S2. Then by the Künneth formula
H2
dR(S2 × S2) ∼= H2

dR(S2) ⊗ H0
dR(S2) ⊕ H0

dR(S2) ⊗ H2
dR(S2) is spanned by pr∗1volS2

and pr∗2volS2 . In this basis the intersection form is given by the matrix(
0 1
1 0

)
.

In particular, its signature is 0. 2

Corollary 3.22. If M is a closed oriented manifold of dimension n, then

χ(M) ∈


2Z + sign(M) n ≡ 0(4)

2Z n ≡ 2(4)
{0} n ≡ 1(2)

.
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Proof. If n = 2k, then

χ(M) =
2k∑
i=0

(−1)ibi(M) = bk(M)+
k−1∑
i=0

(−1)i(bi(M)+b2k−i(M)) = bk(M)+2
k∑
i=0

(−1)ibi(M)

and note that bk(M) is even for odd k by Corollary 3.19 and bk(M) ≡ sign(M) mod
2 for even k. If n = 2k + 1, then

χ(M) =
2k∑
i=0

(−1)ibi(M) =
k∑
i=0

(−1)i(bi(M)− b2k+1−i(M)) = 0

2

Let 〈., .〉 be a bilinear form on a vector space V . A subspace L ⊆ V is called isotropic
if the restriction of 〈., .〉 vanishes. Is is called maximally isotropic if it is isotropic
and maximal with this property. If the form is non-degenerated, then L is called
Lagrangian if it is isotropic of dimension dim(L) = dim(V )/2. A non-degenerated
symmetric bilinear form on a real vector space admits a lagrangian subspace if and
only if its signature vanishes.

Example 3.23. Let M be closed oriented of dimension n and consider the non-
degenerated form

〈., .〉 : HdR(M)⊗HdR(M)→ R , 〈[ω], [α]〉 =

∫
M

ω ∧ α .

For example, the subspace ⊕
k<n

2

Hk
dR(M) ⊆ HdR(M)

is isotropic. It is Lagrangian if n is odd.

Assume now that the closed manifold M is the boundary of a compact oriented
manifold W . We consider the restriction r : HdR(W )→ HdR(M).

Lemma 3.24. The subspace im(r) ⊆ HdR(M) is Lagrangian.

Proof. We first show that im(r) is isotropic. We have by Stoke’s theorem for [ω], [α] ∈
HdR(W )

〈r([ω]), r([α])〉 =

∫
M

(ω ∧ α)|M =

∫
W

d(ω ∧ α) = 0 .
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The pairing induces a map κ : im(r) → (HdR(M)/im(r))∗. We show that this map
is an isomorphism.

We first show surjectivity of κ. Let [ω] ∈ HdR(W ), [β] ∈ HdR(M) and β̃ ∈ Ω(W ) be
some extension of β. Then we have

〈r([ω]), [β]〉 =

∫
M

ω|M ∧ β =

∫
W

d(ω ∧ β̃) = ±
∫
W

ω ∧ dβ̃ = ±PW ([ω])(∂[β]) .

We now fix [β] ∈ H(M) and assume that 〈r([ω]), [β]〉 = 0 for all [ω] ∈ H(W ). Since
PW : HdR(W ) → HdR(W,N)[n]∗ is an isomorphism we conclude that ∂[β] = 0 and
hence [β] ∈ r(HdR(W )) so that [β] represents zero in the quotient (HdR(M)/im(r))∗.

In order to show injectivity of κ we now fix [ω] ∈ H(W ) and assume that 〈r([ω]), [β]〉 =
0 for all [β] ∈ HdR(M). Then we conclude that r([ω]) = 0 since the pairing is non-
degenerated.

The fact that κ is an isomorphism implies that im(r) is maximally isotropic of di-
mension dimH(M)/2. 2

Assume now that n = 4m. Then the intersection im(r) ∩H2m
dR (M) is Lagragian for

the intersection form.

Corollary 3.25. If a closed oriented manifold M of dimension 4m is a boundary of
a compact oriented manifold, then sign(M) = 0. The signature is an obstruction
against being an oriented boundary.

At the moment we do not have an example of non-trivial signature but we will see
some later in the course.

2
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4 De Rham cohomology with coefficients in a flat

bundle

4.1 Connections, curvature, flatness, cohomology

In this section we consider some elements of the local geometry of vector bundles.
We discuss connections and its curvature. We are in particular interested in flat
connections.

Definition 4.1. A connection ∇ on a vector bundle V →M is a R-linear map

∇ : Γ(M,V )→ Γ(M,T ∗M ⊗ V )

which satisfies the Leibniz rule

∇(fφ) = f∇φ+ df ⊗ φ , f ∈ C∞(X) , φ ∈ Γ(M,V ) .

Usually one writes for a vector field X ∈ Γ(M,TM) and a section φ ∈ Γ(M,V )

∇Xφ := ιX∇φ .

In this notation, for f ∈ C∞(M), we have the relations

∇fXφ = f∇Xφ , ∇Xfφ = f∇Xφ+ df ⊗ φ .

Lemma 4.2. A vector bundle V →M admits connections.

Proof. Assume that V ∼= M × Rk. Such an isomorphism of vector bundles is called
a trivialization and induces an isomorphism of section spaces

Γ(M,V ) ∼= C∞(M)⊗ Rk .

We define the associated trivial connection on V by ∇triv := d⊗ idRk .

In the general case we fix an open covering (Uα)α∈A of M by domains of trivializations
V|Uα

∼= Uα × Rk and a subordinated partition of unity (χα)α∈A. The trivializations
induce trivial connections ∇triv

α on V|Uα for all α ∈ A. For φ ∈ Γ(M,V ) we can
consider ∇triv

α (χαφ|Uα) as a section in Γ(M,V ) be extension by zero. We define

∇φ :=
∑
α

∇triv
α (χαφ|Uα) .
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One checks by calculations that ∇ is R-linear and satisfies the Leibniz rule. 2

For p ∈ Z we consider the p-forms on M with coefficients in V

Ωp(M,V ) := Γ(M,ΛpT ∗M ⊗ V ) .

The ∧-product

ω ∧ (α⊗ v) := (ω ∧ α)⊗ v , ω, α ∈ Ω(M) , v ∈ Γ(M,V )

turns the sum
Ω(M,V ) :=

⊕
p∈Z

Ωp(M,V )

into a Z-graded Ω(M) module. Note that a connection is an R-linear map

∇ : Ω0(M,V )→ Ω1(M,V ) .

Lemma 4.3. A connection ∇ on V has a unique extension

∇′ : Ω(M,V )→ Ω(M,V )

as an R-linear degree one-map satisfying the Leibniz rule

∇′(ω ∧ φ) = (−1)pω ∧∇′φ+ dω ∧ φ

for all p ∈ N, ω ∈ Ωp(M) and φ ∈ Ω(M,V ).

Proof. We first show uniqueness. If ∇′1,∇′2 are two extensions of ∇, then the Leibniz
rule implies that their difference δ := ∇′1 −∇′2 satisfies

δ(ω ∧ φ) = (−1)pω ∧ δ(φ)

for ω ∈ Ωp(M) and φ ∈ Ω(M,V ). Furthermore, since both extend ∇ we have

δ(φ) = 0

for φ ∈ Ω0(M,V ).

Let ω ∈ Ωp(M,V ). In order to show that δ(ω) = 0 it suffices to show that χδ(ω) = 0
for every smooth function χ supported in a chart domain of M .
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Assume that (xi) are coordinates on an open subset U ⊆ M and χ ∈ C∞c (U). We
can choose χ1 ∈ C∞c (U) such that χχ1 = χ. We have

ω|U =
∑
I

dxI ⊗ φI

for a uniquely determined collection of sections (φI)I in Ω0(U, V ), where the sum
runs over the set of multi-indices I = (i1 < · · · < ip). We have

χω = χ
∑
I

d(χ1x
I) ∧ χ1φI ,

where χ1x
I ∈ C∞(M) and χ1φI ∈ Ω0(M,V ) are understod by extension by zero. We

have

χδ(ω) = δ(χω)

= δ(χ
∑
I

d(χ1x
I) ∧ χ1φI)

= (−1)pχ
∑
I

d(χ1x
I) ∧ δ(χ1φI)

= 0 .

The argument for the existence is similar. We choose an open covering U = (Uα)α∈A
by chart domains, a subordinated partition of unity (χα)α∈A, a collection of smooth
functions (χα,1)α∈A with χα,1 ∈ C∞c (Uα), χαχα1 = χα, and local coordinates (xiα)α∈A.
Given ω ∈ Ω(M,V ), then ω|Uα =

∑
I dx

I
α ∧ φα,I for uniquely determined sections

φα,I ∈ Ω(Uα, V ). We define

∇′ω := (−1)p
∑
α∈A

χα
∑
I

dxIα ∧∇(χα,1φI) .

One checks by a calculation that ∇′ has the required properties. 2

From now on we write ∇ := ∇′ also for the extension.

We consider a vector field X ∈ Γ(M,TM) on M . We define the operation of inser-
tion of X

iX : Ω(M,V )→ Ω(M,V )

of degree −1 such that on elementary tensors it is given by iX(ω ⊗ φ) := iXω ∧ φ.

We further define a version of the Lie derivative

L∇X := ∇iX + iX∇ : Ω(M,V )→ Ω(M,V ) .
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Note that L∇X is given on elementary tensors by

L∇X(ω ⊗ φ) = LXω ⊗ φ+ ω ∧∇Xφ .

Indeed,

L∇X(ω ⊗ φ) = (∇iX + iX∇)(ω ⊗ φ)

= ∇(iXω ⊗ φ) + iX(dω ⊗ φ+ (−1)deg(ω)ω ∧∇φ)

= diXω ⊗ φ+ (−1)deg(ω)−1iXω ∧∇φ+ iXdω ⊗ φ
+(−1)deg(ω)iXω ∧∇φ+ ω ⊗∇Xφ

= ((diX + iXd)ω)⊗ φ+ ω ⊗∇Xφ

= LXω ⊗ φ+ ω ⊗∇Xφ

Lemma 4.4. For vector fields X, Y ∈ Γ(M,TM) and ψ ∈ Ω1(M,V ) we have

[iY ,L∇X ]ψ = −zi[X,Y ]ψ .

Proof. We calculate for ω ∈ Ω1(M) and φ ∈ Γ(M,V ) and using

2dω(X, Y ) = X(ω(Y ))− Y (ω(X))− ω([X, Y ])

that

[iY ,L∇X ](ω ⊗ φ) = iYL∇X(ω ⊗ φ)− L∇XiY (ω ⊗ φ)

= iYLXω ⊗ φ+ ω(Y )∇Xφ−∇X(ω(Y )φ)

= (iY diX + iY iXd)ω ⊗ φ+ ω(Y )∇Xφ−∇X(ω(Y )φ)

= Y (ω(X)) + 2dω(X, Y )⊗ φ−X(ω(Y ))φ

= −ω([X, Y ])⊗ φ

In general, the composition

Ωp−1(M,V )
∇→ Ωp(M,V )

∇→ Ωp+1(M,V )

does not vanish.

Definition 4.5. We define the curvature of a connection as the degree 2-map
R∇ := ∇ ◦∇.

Lemma 4.6. The R-vector space Ωp(M, End(V )) can be identified with the degree
p-homomorphisms of Ω(M)-modules Ω(M,V )→ Ω(M,V ).
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Proof. The result of the action of α ⊗ Φ ∈ Ωp(M, End(V )) on ω ⊗ φ ∈ Ω(M,V ) is
given by α ∧ ω ⊗ Φ(φ). Here α, β ∈ Ω(M), Φ ∈ Γ(M, End(V )) and φ ∈ Γ(M,V ).
Clearly, α⊗ Φ acts as a degree p-homomorphism of Ω(M)-modules.

Given a degree p-homomorphism of Ω(M)-modules Ω(M,V ) → Ω(M,V ) one first
uses the C∞(M)-linearity in order to see that it is given by a uniquely determined
section of the bundle End(ΛT ∗M ⊗ V ) ∼= End(ΛT ∗M) ⊗ End(V ). Since ΛRk is a
graded commutative unital algebra a degree p-homomorphism ΛRk → ΛRk of ΛRk-
modules is given by multiplication by an element of ΛpRk. Applying this fibrewise
we conclude that a degree p-homomorphism of Ω(M)-modules Ω(M,V )→ Ω(M,V )
must be given by a uniquely determined section of ΛpT ∗M ⊗ End(V ). 2

Lemma 4.7. We have R∇ ∈ Ω2(M, End(V )).

Proof. We must show that R∇ is a morphism of Ω(M)-modules Ω(M,V )→ Ω(M,V )
of degree 2. By definition R∇ increases the degree by two. Let α ∈ Ωp(M). Then
applying the Leibniz rule twice we get

R∇ ◦ α = ∇ ◦∇ ◦ α = (−1)p∇ ◦ α ◦ ∇+∇ ◦ dα
= (−1)2pα ◦ ∇ ◦ ∇+ (−1)pdα ◦ ∇ + (−1)p+1dα ◦ ∇+ ddα

= α ◦R∇

2

Lemma 4.8. For vector fields X, Y ∈ Γ(M,TM) and a section φ ∈ Γ(M,V ) we
have the following formula:

R(X, Y )φ =
1

2

(
∇X(∇Y φ)−∇Y (∇Xφ)−∇[X,Y ]φ

)
.

Proof. We have

2R(X, Y )φ = iY iX(∇ ◦∇)φ

= iY (−∇iX∇φ+ L∇X∇φ)

= −iY∇∇Xφ+ iYL∇X∇φ
= −∇Y∇Xφ+ L∇X∇Y φ+ [iY ,L∇X ]∇φ
= −∇Y∇Xφ+∇X∇Y φ+ [iY ,L∇X ]∇φ

Lemma4.4
= ∇X∇Y φ−∇Y∇Xφ−∇[X,Y ]φ .
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2

Definition 4.9. A connection ∇ on a bundle V →M is called flat if R∇ = 0.

If ∇ is flat, then ∇ turns Ω(M,V ) into a complex. We let V := (V,∇) be the
notation of a bundle with a (flat) connection.

Definition 4.10. We call

HdR(M,V) := H(Ω(M,V ),∇)

the de Rham cohomology of M with coefficients in the flat bundle V.

Remark 4.11. It follows from the Leibniz rule that the difference between two
connections on V is a homomorphism Ω(M,V ) → Ω(M,V ) of degree one, i.e by
Lemma 4.6 an element of Ω1(M, End(V )). If we fix a connection ∇, then every other
connection on V can uniquely be written in the form ∇+ α for α ∈ Ω1(M, End(V )).

If ∇ is a connection on V , then we get an induced connection ∇′ on End(V ) by

∇′Φ = ∇ ◦ Φ + Φ ◦ ∇ : Ω0(M, End(V ))→ Ω1(M, End(V )) .

One checks the Leibniz rule by a calculation. From now one we will write ∇′ := ∇.
We get

R∇+α = R∇ +∇(α) + α ◦ α . (23)

2

Example 4.12. On a trivial bundle V := M × Rn we have a trivial connection
∇triv. If we identify Ω0(M,V ) ∼= C∞(M)⊗ V using the trivialization, then ∇trivφ =
dφ. We have Ω(M,V ) ∼= Ω(M) ⊗ V as complexes and HdR(M,V ) ∼= HdR(M) ⊗ V
by Lemma 2.27.

If α ∈ Ω1(M, End(V )) ∼= Ω1(M)⊗ Mat(n,R), then by (23) we have

R∇
triv+α = dα + α ◦ α .

So ∇triv + α is flat if and only if

dα + α ◦ α = 0 .
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Let us write the term α ◦ α in local coordinates. Write α = dxi ⊗ Ai. Then

α ◦ α = dxi ∧ dxj ⊗ Ai ◦ Aj =
1

2
dxi ∧ dxj ⊗ [Ai, Aj] .

If dim(V ) = 1, then this term vanishes and flatness is equivalent to dα = 0. If
dim(V ) > 1, then flatness is a nonlinear partial differential equation for α. 2

Example 4.13. In order to get a more interesting result we admit complex coeffi-
cients. We consider the trivial bundle S1 ×C→ S1. Let α = λdt for λ ∈ C∞(S1,C)
and ∇ := ∇triv − λdt. Note that ∇ is flat (as every connection on a bundle over a
one-dimensional manifold).

We set V := (V,∇) and calculate the cohomology HdR(M,V) explicity. First of all

ker(∇) = {f ∈ C∞(S1) | df = λf} .

We get f(t) = f(0) exp(
∫ t

0
λ(s)ds). We call

hol∇ := exp(

∫ 1

0

λ(s)ds) ∈ C∗

the holonomy of ∇. If the holonomy is trivial (i.e. = 1), then f is determined by
its value f(0) ∈ C. Otherwise the solution does not close to a periodic function. We
thus get

H0
dR(S1,V) ∼=

{
0 hol(∇) 6= 1
C hol(∇) = 1

.

Let now ωdt ∈ Ω1(S1, V ). We try to solve ∇f = ωdt. This is the ordinary differential
equation f ′ − λf = ω. We first consider the equation on R and discuss periodicity
afterwards. The method of variation of constants gives the ansatz f = CΦ where
Φ(t) = exp(

∫ t
0
λ(s)ds). We get the equation C ′(t) = Φ(t)−1ω(t) and hence

f(t) = f(0)Φ(t) + Φ(t)

∫ t

0

Φ(s)−1ω(s)ds .

Periodicity requires that

0 = f(0)− f(1) = f(0)(1− Φ(1))− Φ(1)

∫ 1

0

Φ(t)−1ω(t)dt = 0 .
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If hol(∇) 6= 1, then this equation has a unique solution for f(0). If hol(∇) = 1, then

we can solve this equation if and only if
∫ 1

0
Φ(t)−1ω(t)dt = 0. We get an isomorphism

H1
dR(S1,V)

∼=→ C , [ωdt] 7→
∫ 1

0

Φ(t)−1ω(t)dt .

We conclude that

H1
dR(S1,V) ∼=

{
0 hol(∇) 6= 1
C hol(∇) = 1

.

4.2 Geometry of flat vector bundles

In this section we discuss some elements of the global geometry of vector bundles
equipped with a connection. We consider the parallel transport. We are in particular
interested in consequences of the flatness of the connection.

Let V be a vector bundle with connection ∇.

Definition 4.14. A section φ ∈ Γ(M,V ) is called parallel if it satisfies the equation
∇φ.

Lemma 4.15. Let U ⊆ R be an interval, t0 ∈ U and V → U be a vector bundle
with connection ∇. Then every vector v ∈ Vt0 (the fibre of V at t0) has a unique
extension to a parallel section φ ∈ Γ(U, V ).

Proof. We first assume that V is trivial of dimension n. Then there exists a unique
α ∈ C∞(U, Mat(n, n,R)) such that ∇ = ∇triv + αdt. The section φ is obtained by
solving the differential equation

φ′ = −αφ , φ(t0) = v .

This differential equation is linear with non-constant coefficients smoothly depending
on t and therefore has a unique global solution.

For a general V this construction produces the section φ in the domain of a local
trivialization of V . Because of the uniqueness these local solutions can be patched
together. 2

Lemma 4.16. A vector bundle on an interval is trivial.
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Proof. Let V → U be a vector bundle on an interval. We fix a point t0 ∈ U . By
Lemma 4.2 we can choose a connection. If we fix a basis (vi) of Vt0 , then the parallel
extensions (φi) of the basis vectors will give a trivialization of V .

We claim that these sections are linearly independent at each point of U . We consider
a subinterval U ′ ⊆ U which is a domain of a local trivialization of V and assume that
t1 ∈ U ′ is such that (φi(t1))i is linearly independent in Vt1 . We consider the matrix
Φ(t) formed by these sections defined using the local trivialization. We further write
∇|U ′ = ∇triv + αdt. Then

det(Φ(t))′ = det(Φ(t))Tr(Φ(t)−1Φ′(t)) = − det(Φ(t))Tr(Φ(t)−1α(t)Φ(t)) .

This differential equation implies

det(Φ(t)) = det(Φ(t1)) exp(−
∫ t

t1

Tr(Φ(s)−1α(s)Φ(s))ds)

for all t ∈ U ′. Now det(Φ(t1)) 6= 0 expresses the fact that (φi(t1))i is a basis. We
conclude that det(Φ(t)) 6= 0 on U ′.

We obtain the global statement by patching. 2

In the following we show that a connection on a vector bundle gives rise to local
trivializations by radial parallel transport. We consider a ball U ⊆ Rn and a
vector bundle V → U with a connection ∇. Given v ∈ V0 we can define a section
φ ∈ Γ(U, V ) such that for x ∈ U the value φ(x) is the value of a parallel extension
of v along the path [0, 1]x ∩ U . The smooth dependence of solutions of ordinary
differential equations on parameters shows that φ is smooth. Again, if (vi) is a basis
of V0, then the corresponding basis (φi) is a trivialization of V .

Let v ∈ V0 and φ ∈ Γ(U, V ) be the section obtained by radial parallel transport.

Lemma 4.17. If ∇ is flat, then ∇φ = 0.

Proof. We calculate for vectors X, Y ∈ Rn such that X ∈ U (which we also consider
as constant vector fields so that [X, tY ] = 0)

(∇X∇tY φ)(tX)
Lemma4.8

= (∇tY∇Xφ)(tX) + (2R∇(X, tY )φ)(tX)

= 0 .

Here the first term vanishes since φ is parallel along the ray R+X, and the second
term vanishes since R∇ = 0. The section tX 7→ ∇tY φ(tX) on the ray R+X is thus

82



parallel. Since it vanishes for t = 0 it vanishes identically. Therefore, setting t = 1,
we get (∇Y φ)(X) = 0. 2

Corollary 4.18. Let V → M be a vector bundle with a connection ∇. Then the
following assertions are equivalent:

1. The connection ∇ is flat.

2. The bundle V →M admits local trivializations by parallel sections.

Proof. If ∇ is flat, then by Lemma 4.17 the bundle V → M admits local trivial-
izations by parallel sections obtained by radial parallel transport. Vice versa, if V
admits local trivializations by parallel sections, then locally in such a trivialization
∇ = ∇triv. In particular it is flat. 2

Remark 4.19. In this long remark we recall the relation between vector bundles
and cocycles.

Let us assume that we have two local trivializations (φi)i and (ψ)i of V by families
of sections. Then we consider the matrix valued function (gi

j) defined by

gi
jφj = ψi .

If the sections are parallel with respect to a connection ∇, then we get

0 = ∇gijφj = dgi
jφj

for all i. Since (φj)j is a basis we see that dgi
j = 0 for all i, j. Hence the matrix-valued

function (gi
j) is locally constant.

Let V →M be a k-dimensional real vector bundle, U = (Uα)α∈A be an open covering,
(φα,j), j ∈ {1, . . . , k}, α ∈ A, families of sections in Γ(Uα, V ) which trivialize V|Uα . We
then consider the associated cocycle, i.e. the family of Mat(k, k,R)-valued functions

(gαβ)αβ∈A2 , gαβ : Uα ∩ Uβ → Mat(k, k,R)

characterized by
gαβ,i

jφβ,j = φα,i .

We have the cocycle relations
gαβgβγ = gαβ (24)
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on Uα ∩ Uβ ∩ Uγ for all αβγ ∈ A3.

Vice versa, given an open covering U = (Uα)α∈A and a collection of Mat(k, k,R)-
valued functions

(gαβ)αβ∈A2 , gαβ : Uα ∩ Uβ → Mat(k, k,R)

as above satisfying the cocycle relations (24), then we can define a vector bundle as
the quotient

W :=
⊔

Uα × Rk/ ∼ .

Here (u, x) ∈ Uα × Rk and (v, x) ∈ Uβ × Rk are related with respect to the relation
∼ if u = v (in M) and y = (gαβ)tx. The cocycle relation ensures that ∼ is an
equivalence relation.

The canonical maps Uα × Rk → W are local trivializations of W . The associated
cocycle is exactly the one we started with.

Assume that the cocycle came from a collection of local trivializations of a vector

bundle V as above. Then we can define an isomorphism W
∼=→ V which sends the

class of (u, x) ∈ Uα × Rk to xiφα,i(u) ∈ V .

If V is a flat bundle, then we can find local trivializations V|Uα := Uα×Rn such that
the associated cocycle (gα,β) consists of locally constant Mat(k, k,R)-valued functions.

Conversely, if we are given a cocycle (gαβ)αβ consisting of locally constant func-
tions, then the associated vector bundle W is equipped with a flat connection ∇.
It is characterized by the property that for every x ∈ Rk and α ∈ A the section
Uα 3 u 7→ [u, x] ∈ W is parallel. 2

4.3 Properties of the de Rham cohomology with coefficients
in a flat bundle

Let (V,∇) be a vector bundle with connection on M and f : N → M be a smooth
map. We have induced maps f ∗ : Ω(M,V )→ Ω(N, f ∗V ). First of all, the pull-back
of ψ ∈ Ω(M,V ) = Γ(M,Λ(T ∗M)⊗ V ) is naturally a section ψ̃ ∈ Γ(N, f ∗Λ(T ∗M)⊗
f ∗V ). We now apply the bundle map

Λ(df)∗ ⊗ idf∗V : f ∗Λ(T ∗M)⊗ f ∗V → Λ(T ∗N)⊗ f ∗V
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in order to get the section

f ∗ψ ∈ Γ(N,Λ(T ∗N)⊗ V ) = Ω(N, f ∗V ) .

Note that f ∗ : Ω(M,V )→ Ω(N, f ∗V ) is a homomorphism of Ω(M)-modules, where
the action of Ω(M) on the target is induced from the action of Ω(N) via f ∗ : Ω(M)→
Ω(N).

Lemma 4.20. The bundle f ∗V → N has an induced connection f ∗∇ which is
uniquely characterized by the property that for φ ∈ Γ(M,V ) we have

(f ∗∇)(f ∗φ) = f ∗(∇φ) .

The extension of f ∗∇ to Ω(N, f ∗V ) satisfies a similar relation

f ∗(∇ω) = (f ∗∇)(f ∗ω) (25)

for every ω ∈ Ω(M,V ).

Proof. Given x ∈ N we can find a trivializing family of sections (φi)i of V in a
neighborhood Ux of f(x). Then (f ∗φi) is a trivializing family of sections of f ∗V
on f−1(Ux). The condition ∇x(f

∗φi) = f ∗(∇φi) for all i uniquely determines a
connection ∇x on f ∗V|f−1(Ux). One easily checks using the Leibnitz rule that it is
independent of the choice of the trivializing family. Indeed, let (φ′i)i be a second
trivializing family with induced connection ∇′x. Then there exists a matrix valued
function (gi

j) such that φ′i = gi
jφj. We have

∇x(f
∗φ′i) = ∇x(f

∗gi
j)(f ∗φj)

= d(f ∗gi
j)⊗ f ∗φj + f ∗(gi

j)f ∗(∇φj)
= f ∗(dgi

j ⊗ φj + gi
j∇φi)

= f ∗(∇gijφj)
= f ∗(∇φ′i)
= ∇′x(f ∗φ′i) .

We can perform this construction for each point x ∈ N , and for x, y ∈ N the result-
ing connections ∇x and ∇y coincide on the intersections f−1(Ux) ∩ f−1(Uy) by the
uniqueness statement. Hence we get a globally defined connection f ∗∇. Technically
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one chooses a partition of unity (χx)x∈N subordinated to the open covering (Ux)x∈N
and sets f ∗∇ :=

∑
x∈N χx∇x.

If ω = α⊗ φ for α ∈ Ωp(M) and φ ∈ Γ(M,V ), then f ∗ω = f ∗α⊗ f ∗φ. We have

(f ∗∇)(f ∗ω) = df ∗α⊗ f ∗φ+ (−1)pf ∗α⊗ (f ∗∇)(f ∗φ)

= f ∗dα⊗ f ∗φ+ (−1)pf ∗α⊗ f ∗(∇φ)

= f ∗(∇ω) .

This implies (25). 2

Lemma 4.21. Let f : N →M be a smooth map and (V,∇) be a vector bundle with
connection on M . Then we have Rf∗∇ = f ∗R∇.

Proof. We have for every φ ∈ Γ(M,V )

(f ∗R)(f ∗φ) = f ∗(Rφ)

= f ∗(∇∇φ)

= (f ∗∇)(f ∗(∇φ))

= (f ∗∇)(f ∗∇)(f ∗φ)

= Rf∗∇(f ∗φ) .

This implies the assertion. 2

If ∇ is flat, then f ∗∇ is flat, too. We define the pull-back of a flat bundle by
f ∗V := (f ∗V, f ∗∇). The relation (25) expresses the fact that

f ∗ : Ω(M,V)→ Ω(N, f ∗V)

is a morphism of complexes. Hence we get an induced morphism in cohomology

f ∗ : HdR(M,V)→ HdR(N, f ∗V) .

Lemma 4.22. 1. If f0 and f1 are homotopic, then we have an isomorphism Ψ1 :

f ∗0 V
∼=→ f ∗1 V which only depends on the homotopy.

2. The following diagram commutes

HdR(M,V)
f∗0 //

f∗1

((

HdR(M, f ∗0 V)

Ψ1vv
HdR(N, f ∗1 V)
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i.e. the de Rham cohomology with coefficients in a flat bundle is homotopy
invariant.

Proof. Let h : I ×N →M be a homotopy from f0 to f1. Given

v ∈ (h∗V )(0,n)
∼= (f ∗0V )n

we define Ψ(t, n)(v) ∈ (h∗V )(t,n) to be the parallel transport of v long the path
s 7→ (st, n). We get a bundle map

Ψt : f ∗0V → h∗tV , (f ∗0V )n 3 v 7→ Ψ(t, n)(v) ∈ (h∗V )(t,n) .

Evaluating at t = 1 we get a bundle map Ψ1 : f ∗0V → f ∗1V .

We observe that for ψ ∈ Γ(I ×N, h∗V ) we have

∂t(Ψ
−1
t n∗tψ) = Ψ−1

t n∗t (Lh
∗∇
∂t ψ) , (26)

where nt : N → I ×N , nt(n) := (t, n).

We show that Ψ−1
t (h∗t∇)Ψt = f ∗0∇. To this we show that the family of connections

t 7→ ∇t := Ψ−1
t (h∗t∇)Ψt

on f ∗0V is constant. For a section φ ∈ Γ(N, f ∗0V ) we define a section

ψ ∈ Γ(I ×N, h∗V ) , ψ(t, n) := Ψ(t, n)φ(n) .

Then we have
∇tφ = Ψ−1

t n∗t (h
∗∇)ψ .

We calculate the derivative with respect to t. Let X ∈ Γ(N, TN). Then

∂t∇t,Xφ = ∂t[Ψ
−1
t n∗t (h

∗∇)Xψ]
(26)
= Ψ−1

t n∗tLh
∗∇
∂t (h∗∇)Xψ

= Ψ−1
t n∗t (h

∗∇)∂t(h
∗∇)Xψ

= Ψ−1
t n∗t

[
(h∗∇)X(h∗∇)∂tψ + 2Rh∗∇(∂t, X)ψ

]
= 0,

since (h∗∇)∂tψ = 0 and Rh∗∇ = 0. It follows that

Ψ−1
t (h∗t∇)Ψt = ∇t = ∇0 = f ∗0∇ .
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In particular, we get an isomorphism Ψ1 : f ∗0 V→ f ∗1 V of flat bundles.

We now claim that the maps of chain complexes

f ∗0 : Ω(M,V)→ Ω(N, f ∗0 V)

and

Ω(M,V)
f∗1→ Ω(N, f ∗1 V)

Ψ−1
1→ Ω(N, f ∗0 V)

are chain homotopic. To this end we define the degree −1-map

H : Ω(M,V)→ Ω(N, f ∗0 V)

by

H(ψ) :=

∫ 1

0

Ψ−1
t n∗t (ι∂th

∗ψ)dt .

We have

((f ∗0∇)H +H∇)ψ

= (f ∗0∇)

∫ 1

0

Ψ−1
t n∗t (ι∂th

∗ψ)dt+

∫ 1

0

Ψ−1
t n∗t (ι∂th

∗(∇ψ))dt

=

∫ 1

0

(f ∗0∇)Ψ−1
t n∗t (ι∂th

∗ψ)dt+

∫ 1

0

Ψ−1
t n∗t (ι∂th

∗(∇ψ))dt

=

∫ 1

0

Ψ−1
t n∗t (h

∗∇)(ι∂th
∗ψ)dt+

∫ 1

0

Ψ−1
t n∗t (ι∂th

∗(∇ψ))dt

=

∫ 1

0

Ψ−1
t n∗tLh

∗∇
∂t h∗ψdt−

∫ 1

0

Ψ−1
t n∗t (ι∂t(h

∗∇)(h∗ψ))dt+

∫ 1

0

Ψ−1
t n∗t (ι∂th

∗(∇ψ))dt

=

∫ 1

0

Ψ−1
t n∗tLh

∗∇
∂t h∗ψdt−

∫ 1

0

Ψ−1
t n∗t (ι∂th

∗(∇ψ))dt+

∫ 1

0

Ψ−1
t n∗t (ι∂th

∗(∇ψ))dt

=

∫ 1

0

Ψ−1
t n∗tLh

∗∇
∂t h∗ψdt

(26)
=

∫ 1

0

∂tΨ
−1
t n∗th

∗ψdt

= Ψ−1
1 f ∗1ψ − f ∗0ψ

2
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4.4 Global structure and further examples of flat vector bun-
dles

Definition 4.23. A manifold M is called simply connected if every two paths
with the same endpoints are homotopic through paths with these endpoints.

Note that this differs from the usual definition of this notion. We do not assume that
M is connected on the one hand. On the other hand, our definition involves smooth
paths and homotopies instead of continuous ones.

Theorem 4.24. If M is connected and simply connected, then every flat vector
bundle V on M is trivial.

Proof. Let V = (V,∇). We choose a point m0 ∈ M . We are going to construct an
isomorphism

Ψ : M × Vm0 → V

such that Ψ∇triv = ∇Ψ. Let m ∈M . We choose a path γ from m0 to m. We define
Ψγ
m : V0 → Vm by parallel transport along the path γ. We must verify that Ψγ

m

does not depend on the choice of the path γ. Since any two paths are homotopic we
will consider a homotopy h : [0, 1]× [0, 1] of paths from m0 to m. We can trivialize
h∗V ∼= [0, 1]× [0, 1]×Vm0 using the connection h∗∇ and the parallel transport along
rays starting in (0, 0). The restriction of this trivialization to {i} × {1} is Ψhi

m for
i = 0, 1. Since h(−, 1) is constant with value m the parallel transport from V(0,1) to
V(1,1) is the identity if one identifies nbthe fibres h∗V(s,1) for all s ∈ [0, 1] with Vm.
We conclude that Ψh0

m = Ψh1
m .

We now show that Ψ is smooth and preserves the connection. Let m1 ∈ M . We fix
a path γ1 from m0 to m1 and a coordinate neighbourhood of m1 diffeomorphic to a
ball in Rn. For m ∈ U let γm be the straight path (this uses the local coordinates)
from m1 to m and Ψγm

m be the corresponding parallel transport. Then

Ψγ
m(v) = Ψγm

m (Ψγ1
m1

(v)) ,

where γ is a smooth concatenation of γm and γ1. The section m 7→ Ψγm
m (Ψγ

m1
(v)) is

smooth and parallel by Lemma 4.17. The last property is equivalent to the equality
Ψ∇triv = ∇Ψ. 2
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Example 4.25. The manifold Rn is simply connected. If γ0 and γ1 are two paths
with the same endpoints, then h(s, t) := sγ1(t) + (1− s)γ0(t) is a homotopy between
them.

We now show that Sn is simply connected for n ≥ 2. We use the following general
fact which is a consequence of Sard’s theorem.

Fact 4.26. If f : M → N is a map between smooth manifolds and dim(N) <
dim(M), then f(N) is a Lebesgue zero set in M .

If γ0 and γ1 are paths in Sn and n ≥ 2, then their joint image is a Lebesgue zero set.
Hence there exists a point o ∈ Sn which does not belong to the union of the images
of the paths. Therefore the two paths are contained in Sn \ {o} ∼= Rn and can be
connected by a homotopy with constant endpoints as in the first example.

2

Example 4.27. The manifold S1 is not simply connected. In Example 4.13 we have
seen that the de Rham cohomology of S1 with coefficients in a flat bundle depends
non-trivially on the bundle. Hence these flat bundles can not all be isomorphic.

Example 4.28. In this example we show that the fibre wise de Rham cohomol-
ogy of a locally trivial fibre bundle E → B is a vector bundle which has a natural
flat connection. It is called the Gauss-Manin connection.

Let E → B be a locally trivial fibre bundle bundle. For b ∈ B let Eb be the fibre at
b. We fix an integer p and consider the set

Hp(E/B) :=
⊔
b∈B

Hp
dR(Eb) . (27)

We assume that Hp
dR(Eb) is finite-dimensional for all b ∈ B. In this case we equip

Hp(E/B) with the structure of a vector bundle over B as follows. By definition,
the bundle projection Hp(E/B) → B maps the component Hp

dR(Eb) to the point b.
The fibres of this projection are vector spaces. The manifold structure on Hp(E/B)
is defined in terms of local trivializations. It suffices to check that the associated
cocycles are given by smooth functions. In the present case they turn out to by
locally constant.
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Let φ : U × F
∼=→ E|U be a local trivialization of E → B. For u ∈ U we write

φu : F → Eu for the inclusion of the fibre over u. Then we define an associated local
trivialization of Hp(E/B) by

Hp(E/B)|U
∼=→ U ×Hp

dR(F )

by Hp(E/B)u 3 x 7→ (u, φ∗ux), u ∈ U . Given another trivialization ψ we consider
the transition function

g : U × F → F , (u, f) 7→ g(u, f) := (ψ−1
u ◦ φu)(f) .

We have
φ∗u ◦ ψ−1,∗

u = (ψ−1
u ◦ φu)∗ = g(u,−)∗ ∈ Aut(Hp

dR(F )) .

By homotopy invariance of the de Rham cohomology this function with values in
Aut(Hp

dR(F )) is locally constant.

By the constructions in Example 4.19 it follows that Hp(E/B) has the structure of
a locally trivial vector bundle with a flat connection ∇H(E/B). This connection is
called the Gauss-Manin connection. 2

More generally we have:

Lemma 4.29. Let E → B be a locally trivial fibre bundle and V be a flat bundle on
E. Then the fibrewise de Rham cohomology Hp(E/B,V) (if it is finite dimensional)
is a vector bundle on B with a flat Gauss-Manin connection ∇Hp(E/B,V).

2

Example 4.30. We consider a torus T 2 := R2/Z2. Let A = (Aij) ∈ SL(2,Z).
This matrix acts as a linear transformation on R2 and preserves the lattice Z2.
Consequently it descends to a diffeomorphism fA : T 2 → T 2 such that

R2 A //

π
��

R2

π
��

T 2 fA // T 2

commutes. We now consider the action of Z on R × T 2 given by (n, (t, x)) = (t +
n, fnA(x)) and let TfA := R × T 2/Z be the quotient. This is the mapping torus of
the automorphism fA of T 2.
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A similar construction works for arbitrary pair of a manifold M and automorphism
f : M →M . We consider the induced cation of Z on R×M and define the mapping
torus of f by Tf := (R×M)/Z. The projection to the first factor induces a map

p : Tf → R/Z ∼= S1 , [t, x] 7→ [t] .

This is a locally trivial fibre bundle with fibre M .

We now determine the bundleH1(TfA/S
1)→ S1 explicitly. It will again be a mapping

torus. The cohomology H1
dR(T 2) has a basis xi = [αi], i = 1, 2, where αi ∈ Ω1(T 2)

is characterized by π∗αi = dti and (t1, t2) are the coordinates on R2. We have
A∗ti = Aijt

j. This implies H1(fA)(xi) = Aijx
j. We start with the trivial bundle

R×H1
dR(T 2)→ R. The group Z acts on the total space by

(n, (t, x)) := (t+ n,H1(fA)−1(x)) .

The quotient is the vector bundle TH1(fA)−1 → S1, again a mapping torus. We have
a canonical identification of bundles

TH1(fA)−1
∼= H(TfA/S

1) .

On the fibre over [t] ∈ [S1] this identification is given by the map

(TH1(fA)−1)[t]
∼= H1

dR(T 2) ∼= H1
dR({t} × T 2) ∼= H1(TfA/S

1)[t] .

This is independent of the choice of the representative t of the class [t]. Indeed, we
have

(TH1(fA)−1)[t]
// H1

dR(T 2)

H1(fA)−1

��

// H1
dR({t} × T 2)] //H1(TfA/S

1)[t]

(TH1(fA)−1)[t+n]
// H1

dR(T 2) // H1
dR({t+ n} × T 2)

H1((···+n)×fA)

OO

//H1(TfA/S
1)[t+n]

where the left square commutes by the definition of TH1(fA)−1 and the right square
by the definition of TfA .

The trivial connection ∇triv on R×H1
dR(T 2)→ R is Z-invariant. In descends to the

Gauss-Manin connection on the bundle H1(TfA/S
1)→ S1. It is not trivial. Indeed,

the parallel transport for ∇H1(TfA/S
1) along the loop s 7→ [s] in S1 is given by

H1(fA) ∈ Aut(H1(TfA/S
1)[0]) ∼= H1

dR(T 2) .
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Indeed, if [0, x] ∈ H1(TfA/S
1)[0], then the parallel transport is [1, x] = [0, H1(fA)(x)] ∈

H1(TfA/S
1)[0].

In the basis (x1, x2) the linear map H1(fA) is the multiplication by the matrix A. 2

Example 4.31. Let Γ be a finite group which acts freely on a connected manifold
E. We set B := E/Γ. The fibres of f : E → B are zero-dimensional. In this case
Hq(E/B) ∼= 0 for q ≥ 1. The bundle H0(E/B)→ B is non-trivial. Let R[Γ] be the
real vector space generated by Γ. The right multiplication of Γ on itself induces a
linear action of Γ on R[Γ]:

γ(
∑
g∈Γ

rgg) :=
∑
g∈Γ

rggγ
−1 =

∑
g∈Γ

rgγg .

For a point e ∈ E we get an identification

Γ
∼→ Ef(e) , γ 7→ γe .

The pull-back along this map gives an identification

H0(E/B)f(e) = H0
dR(Ef(e))

∼→ R[Γ] .

We now define an isomorphism

(E × R[Γ])/Γ
∼→ H0(E/B) , [e,

∑
g∈G

ngg] 7→
∑
g∈Γ

ng[ge] .

In order to see that this is well-defined we calculate

[γe, γ
∑
g∈G

ngg] 7→
∑
g∈Γ

ng[gγ
−1γe] =

∑
g∈Γ

ng[ge] .

This flat bundle H0(E/B) is not trivial. Let σ be a path from e to γe. In B we have
f(e) = f(γe) and f ◦σ is a loop. The parallel transport of [e, x] ∈ H0(E/B)f(e) along
this loop is [γe, x] = [e, γ−1x]. After identification H0(E/B)f(e)

∼= R[γ] the parallel
transport H0(E/B) along this loop is given by the action of γ−1 on R[Γ].

2

In order to apply Theorem 4.24 we must be able to decide whether manifolds are sim-
ply connected. We now state a theorem which we will show later after the discussion
of the fundamental group.

93



Theorem 4.32. Let E → B is a locally trivial fibre bundle with typical fibre F .

1. If F and B are connected and simply connected, then E is connected and simply
connected.

2. If F is connected and E is connected and simply connected, then B is simply
connected.

Proof. (Sketch) This is a consequence of the long exact homotopy sequence

· · · → π2(B, f(e))→ π1(F, e)→ π1(E, e)→ π1(B, f(e))→ π0(F )→ π0(E)→ π0(B) .

This sequence will be introduced in homotopy theory. 2

Example 4.33. We can use Theorem 4.32 in order to show the following statements:

1. CPn is simply connected. Indeed we have a fibre bundle S2n+1 → CPn with
simply connected total space and connected fibre S1.

2. SU(n) is simply connected. We have a fibre bundle SU(n + 1) → S2n+1 with
fibre SU(n). The base is simply connected for n ≥ 1. We now argue by
induction. We start with the observation that SU(2) ∼= S3 is simply connected.

3. The Grassmann manifold Gr(k,Cn) is simply connected. We have a fibre
bundle SU(n)/S(U(k) × U(n − k)) → Gr(k,Cn) with simply connected total
space and connected fibre.

5 The Leray-Serre spectral sequence and applica-

tions

5.1 Construction of the Leray-Serre spectral sequence

We consider a local trivial fibre bundle f : E → B. In this section we construct a
spectral sequence which converges against a graded version of HdR(E) and determine
its second page E2. It is called the Leray-Serre spectral sequence.

The spectral sequence is associated by the construction in Subsection 2.1 to a de-
creasing filtration (FpΩ(E))∈Z of the de Rham complex of the total space E of the
bundle.
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We start with a technical result which can be interpreted as the determination of
the E1-term of the spectral sequence for a trivial bundle. For two vector bundles
Vi →Mi, i = 0, 1, we define the vector bundle

V0 � V1 := pr∗M0
V0 ⊗ pr∗M1

V1

over M0 ×M1. For example, the ∧-product induces a canonical isomorphism

ΛT ∗M0 � ΛT ∗M1
∼= ΛT ∗(M0 ×M1) .

This bundle has a bigrading given by

Λs,tT ∗(M0 ×M1) := ΛsT ∗M0 � ΛtT ∗M1 .

The bigrading of the bundle induces a bigrading of its space of sections

Ωs,t(M0 ×M1) := Γ(M0 ×M1,Λ
s,tT ∗(M0 ×M1)) . (28)

We can decompose the de Rham differential on Ω(M0×M1) as d = dM0 +dM1 , where
dMi differentiate in the Mi-directions for i = 0, 1. Then (Ω∗,∗(M0×M1), dM1 , dM2) is
a double complex whose total complex is (Ω(M0 ×M1), d).

The exterior product

× : Ω(M0)⊗ Ω(M1)→ Ω(M0 ×M1) , α⊗ ω := pr∗M0
α ∧ pr∗M1

ω

induces a map of double complexes. We stress that on the left-hand side we consider
the algebraic tensor product of complexes. Hence, if M0 and M1 are both are not
zero-dimensional, then × is not an isomorphism of complexes. Nevertheless, under
suitable finiteness assumption, it is a quasi-isomorphism by the Künneth theorem
2.34. In the following we show a partial Künneth theorem.

Lemma 5.1. If M0 admits a finite good covering, then for every p ∈ Z

× : (Ω(M0)⊗ Ωp(M1), dM0 ⊗ idΩp(M1))→ (Ω∗,p(M0 ×M1), dM0)

is a quasi-isomorphism. In particular,

Hq
dR(M0)⊗ Ωp(M1) ∼= Hq(Ω∗,p(M0 ×M1), dM0) .
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Proof. We choose a finite good covering V := (Vβ)β∈B of M0. We get an induced
covering V ×M1 = (Vβ ×M1)β∈B of M0 ×M1. We have a commutative square

Ω(M0)⊗ Ωp(M1)
× //

ιM0
⊗id

��

Ω∗,p(M0 ×M1)

ιM0×M1

��

tot(Č(V ,ΛT ∗M0))⊗ Ωp(M1)
×̌ // tot(Č(V ×M1,ΛT

∗M0 � ΛpT ∗M1))

. (29)

We know by Lemma 2.12 that ιM0 is a quasi-isomorphism. The same argument also
shows that ιM0×M1 is a quasi-isomorphisms. By Lemma 2.30 the left vertical map
ιM0 ⊗ id is a quasi-isomorphism.

We now use the finiteness of the covering in order to commute the tensor product by
Ωp(M1) with the products involved in the construction of the Čech complex in the
left lower corner. After this identification the lower horizontal map is induced by the
exterior product maps

Ω(Vβ)⊗ Ωp(M1)→ Ω∗,p(Vβ ×M1) (30)

for all β ∈ Bk+1 and k ∈ N.

In order to show that × is a quasi-isomorphism it suffices to show that ×̌ is a quasi-
isomorphism. To this end we compare the induced map of spectral sequences

(Er(×̌))r≥1 : (IEalg
r , dalgr )r≥1 → (IEr, dr)r≥1

associated to the filtration by Čech degree. In particular, Ealg,k,∗
1 → Ek,∗

1 is the map
induced in cohomology by the product of the maps (30).

Let β ∈ Bk+1, v ∈ Vβ and iv : v → Vβ be the inclusion. Then we have a commutative
diagram

Ω(Vβ)⊗ Ωp(M1)
× //

i∗v⊗idΩp(M1)

��

Ω∗,p(Vβ ×M1)

(iv×idM1
)∗

��
Ωp(M1) Ωp(M1)

Since Vβ is contractible to v, the map i∗v and hence the left vertical map are quasi-
isomorphisms. The right vertical map is a quasi-isomorphism, too. Indeed, a homo-
topy inverse is given by

pr∗Vβ : Ωp(M1)→ Ω∗,p(Vβ ×M1) .
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We have
(iv × idM1)∗ ◦ pr∗Vβ = idΩp(M1)

and the usual homotopy h : Ω(Vβ ×M1) → Ω(Vβ ×M1) (associated to the product
of the contraction of Vβ with idM1) from pr∗Vβ ◦ (iv × idM1)∗ to idΩ(Vβ×M1) restricts

to the complex Ω∗,p(Vβ ×M1).

We conclude that × in (29) is a quasi-isomorphism.

The second assertion of the Lemma follows from the first and Lemma 2.27. 2

We now turn back to a locally trivial fibre bundle f : E → B. Let F denote the
typical fibre. We first describe the filtration of Ω(E) leading to the Leray-Serre
spectral sequence. The vertical tangent bundle of f is defined by

T vf := ker(df : TE → f ∗TB) .

Since f is a submersion, df is a surjective vector bundle map and its kernel T vf is
indeed a vector subbundle of TE. Its sections are called vertical vector fields. We
have an inclusion of bundles of algebras of multi vector fields

ΛT vf ↪→ ΛTE ,

and we define an decreasing filtration of ΛTE by subbundles

FpΛTE = im(ΛpT vf ∧ ΛTE → ΛTE) .

For an inclusion of vector spaces W → V let

W⊥ := {v′ ∈ V ∗ | v′|W = 0} ⊆ V ∗

be the annihilator of W . If W ′ ⊆ W , then we have W⊥ ⊆ W ′,⊥.

We have a canonical isomorphism

ΛT ∗E ∼= (ΛTE)∗

given by evaluation of a differential forms on multi vector fields. For every n ∈ Z we
define the decreasing filtration of ΛnT ∗E by subbundles by

FpΛnT ∗E := (Fn−p+1ΛnTE)⊥ ⊆ ΛnT ∗E .
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Finally we set
FpΩ(E) := Γ(E,FpΛT ∗E) ⊆ Ω(E) . (31)

It is obvious that these subspaces form a decreasing filtration of the Z-graded vector
space Ω(E). Special cases are

FpΩn(E) =

{
Ωn(E) p ≤ 0

0 p ≥ n+ 1
. (32)

Example 5.2. If E → B is trivialized, i.e. E ∼= F ×B, then we have

FpΩ(E) ∼=
⊕
s≥p

Ω∗,s(F ×B) .

In this case it is clear that the filtration is compatible with the de Rham differential.
We shall see next, this is true in general. 2

Lemma 5.3. The filtration of Ω(E) is compatible with the differential.

Proof. We could refer to Example 5.2 and the fact that E is locally trivial. But we
give an alternative proof which better explains the reason why the Lemma holds.

We start with giving an alternative description of the filtration. The lowest non-
trivial step of the filtration of Ωn(E) is FnΩn(E) and contains all n-forms pulled
back from B and their products with functions. Indeed, these forms are exactly
those annihilated by insertion of a vertical vector field. The next step is the space of
forms which are annihilated by the insertion of two vertical fields, and so on.

Explicitly, we have all p ∈ Z

FpΩn(E) = {ω ∈ Ωn(E) | (∀(Xi)
n−p+1
i=1 ∈ Γ(E, T vf)n−p+1 | iX1 . . . iXn−p+1ω = 0)} .

Next we observe that Γ(E, T vf) is closed under the commutator of vector fields.
Indeed, a vector field X ∈ Γ(E, TE) is vertical exactly if X(f ∗φ) = 0 for all φ ∈
C∞(B). But for two vertical vector fields X, Y and any φ we have

[X, Y ](f ∗φ) = X(Y (f ∗φ))− Y (X(f ∗φ)) = 0 .

Hence the commutator [X, Y ] is vertical, too.
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Let ω ∈ FpΩn(E). We use the formula

(n+ 1)dω(Z1, . . . , Zn+1) =
n+1∑
i=1

(−1)iZiω(Z1, . . . , Ẑi, . . . , Zn+1)

+
∑
i<j

(−1)i+jω([Zi, Zj], Z1, . . . , Ẑi, . . . , Ẑj, . . . , Zn+1) .

If n + 1 − p + 1 of the vector fields Zi are vertical, then every term contains an
insertion of at least n− p+ 1 vertical vector fields and hence vanishes. 2

Definition 5.4. The Leray-Serre spectral sequence (LSSS) (Er, dr)r≥1 of the
locally trivial fibre bundle f : E → B is the spectral sequence associated to the
filtration (FpΩ(E))p∈Z defined in (31).

For every n ∈ N the filtration F∗Ωn(E) is finite, exhaustive and separating. Conse-
quently we have a finite exhaustive and separating filtration on Hn(E) (called the
LSS-filtration) and

Ep,n−p
∞

∼= GrpHn(E) .

In fact, by (32) the group Ep,n−p
r stabilizes at the n+ 1 page, i.e. we have Ep,n−p

n+1
∼=

Ep,n−p
∞ .

We assume that the typical fibre F of the bundle admits a finite good covering. Then
by Example 4.28 for every q ∈ Z we have the bundles Hq(E/B)→ B of fibrewise de
Rham cohomology of degree q which has a flat Gauss-Manin connection ∇Hq(E/B).

Proposition 5.5. For every q ∈ Z we have an isomorphism of complexes

(E∗,q1 , d1) ∼= (Ω∗(B,Hq(E/B)), (−1)q∇Hq(E/B)).

In particular, we have isomorphisms

Ep,q
2
∼= Hp(B,Hq(E/B)) .

Proof. We fix a good covering U := (Uα)α∈A of the base B and trivializations

Ψα : Uα × F
∼=→ E

of the fibre bundle. Then f−1U := (f−1(Uα))α∈A is an open covering of E. Recall
that Hq(E/B)→ B is described by the family of local trivializations

ψα : Hq(E/B)|Uα
∼= Uα ×Hq

dR(F ) (33)
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and the locally constant transition maps

Uαβ 3 u→ gαβ(u) = ψα,u ◦ ψ−1
β,u := Ψ∗α,u ◦Ψ∗,−1

β,u ∈ End(Hq
dR(F )) (34)

where Ψα,u is the restriction of the trivialization to the fibre over u ∈ Uαβ. Then we
have a natural isomorphism

Ω(B,Hq(E/B)) ∼=

{
(ωα)α∈A ∈

∏
α∈A

Hq
dR(F )⊗ Ω(Uα) |

(
∀αβ ∈ A2 | gαβωβ = ωα

)}
.

(35)
The differential of ω = (ωα)α∈A is given by

(∇Hq(E/B)ω)α = dωα . (36)

We will see that (E∗,q1 , d1) has the same description.

We define a filtration of the Čech complex

Fp tot(Č(f−1U ,ΛT ∗E))n :=
⊕
s

Čs(f−1U ,FpΛn−sT ∗E) .

The associacted spectral sequence with be denoted by (E ′r, d
′
r). Note that the Čech

differential preserves the filtration. The natural map

i : Ω(E)→ tot(Č(f−1U ,ΛT ∗E))

is compatible with the filtrations.

Lemma 5.6. The induced map of spectral sequences E(i) : (Er, dr)r≥1 → (E ′r, d
′
r)r≥1

is an isomorphism.

Proof. By the arguments of Lemma 2.11 and Lemma 2.12 (the main observation is
that the filtration F∗Ω(E) is induced by a filtration of the bundle ΛT ∗E), for all
p ∈ Z we have a quasi-isomorphisms

Fpi : FpΩ(E)→ Fp tot(Č(f−1U ,ΛT ∗E)) . (37)

Hence for all p ∈ Z we have quasi-isomorphisms

Grpi : GrpΩ(E)→ Grp tot(Č(f−1U ,ΛT ∗E)) .

The induced map in cohomology is an isomorphism of E1(i) : E1 → E ′1. It follows
that E(i) is an isomorphism of spectral sequences.
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2

Consequently we must calculate E ′,∗,q1 and d′1. Let s ∈ N and α = (α0, α1, . . . , αn) ∈
As+1. Using Ψα0 we get an isomorphism of filtered chain complexes,

Ω(f−1Uα) ∼= Ω(F × Uα) ,

where the filtration on the right-hand side is defined by

FpΩn(F × Uα) :=
⊕
t≥p

Ω(F × Uα)n−t,t ,

see Example 5.2. The total complex of the Čech complex is a sum of products of
these pieces. Consequently we get an isomorphism of complexes

Grp(tot(Č(f−1U ,ΛT ∗E))) ∼=
⊕
s,t

∏
α∈As+1

Ωt−p,p(F × Uα) (38)

with differential d = ď + (−1)sdF on the summand with index (s, t). This complex
is again a total complex associated to a double complex with differentials ď and
(−1)sdF on the summand

∏
α∈As+1 Ωt−p,p(F × Uα).

By definition, E ′,∗,p1 is the cohomology of (38). In order to compute it we will use
again a spectral sequence. We consider its filtration by the Čech degree and the
associated spectral sequence (E ′′r , d

′′
r)r≥1. Its first term is the cohomology of the

differential dF . By Lemma 5.1 we get

E ′′,s,t1
∼=

∏
α∈As+1

H t−p
dR (F )⊗ Ωp(Uα) .

Now d′′1 is induced by the ď. We shall give an explicit formula of d1 : E ′′,s,t1 → E ′′,s+1,t
1 .

We have d′′1 =
∑s+1

i=0 (−1)idi, where

di :
∏

α∈As+1

H t−p
dR (F )⊗ Ωp(Uα)→

∏
α∈As+2

H t−p
dR (F )⊗ Ωp(Uα)

is given by
(diω)α = ωα0,...,α̌i,...,αs+2 |Uα

for i ≥ 1 and
(d0ω)α = (gα0α1 ⊗ id)ωα1,...,αs+2 |Uα ,
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see (34). The distinction between the cases i = 0 and i ≥ 1 encounters the fact that
in the case i = 0 we must change the trivialization from Ψα1 to Ψα0 .

The complex (E ′′,∗,t1 , d1) is canonically isomorphic to the complex

Č(U ,ΛpT ∗B ⊗Ht−p(E/B)) .

To this end we again use the trivialization ψα0 (see (33)) in order to define the
isomorphism

Ωp(Uα,Ht−p(E/B)) ∼= H t−p
dR (F )⊗ Ωp(Uα)

for all α ∈ As+1 and s ∈ N. Then

Čs(U ,ΛpT ∗B ⊗Ht−p(E/B)) ∼=
∏

α∈As+1

H t−p
dR (F )⊗ Ωp(Uα) .

The differential ď is given by the same formulas as d′′1 above. To this end we must
observe that gα0α1 = ψα0 ◦ ψ−1

α1
.

By Lemma 2.11 we get

E ′′,s,t2 =

{
Ωp(B,Ht−p(E/B)) s = 0

0 s 6= 0
.

Consequently

Ep,q−p
1

∼= E ′,p,q−p1
∼= HqGrp(tot(Č(f−1U ,ΛT ∗E))) ∼= E ′′,0,q2

∼= Ωp(B,Hq−p(E/B)) .

It remains to identify the differential d1 with ∇H(E/B). To this end we use the picture
(35) which we compare with

E ′′,0,t2
∼= ker(d′′1 : E ′′,0,t1 → E ′′,1,t1 ) .

Under this isomorphism we indeed have in view of

(ďω)αβ = ωα|Uαβ − gαβωβ |Uαβ

E ′′,0,t2
∼=

{
(ωα)α∈A ∈

∏
α∈A

Hq
dR(F )⊗ Ωt(Uα) |

(
∀αβ ∈ A2 | gαβωβ = ωα

)}
.

The differential d1 is induced by ď+dII , where dII is the product of (−1)s+t−p(idHt−p
dR (F )⊗

dUα) on
∏

α∈As+1 H
t−p
dR (F )⊗Ωp(Uα). If we apply this to s = 0 and elements in ker(ď)

we see that (d1ω)α = (−1)t−pdωα as required in view of (36). 2
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5.2 Gysin sequence for Sn-bundles

We consider the Leray-Serre spectral sequence for a locally trivial fibre bundle f :
E → B with fibre F = S1.

Since the diffeomorphisms of S1 act as identity on H0(S1) the bundle H0(E/B) is
trivial and one-dimensional as a flat bundle. The constant function 1 ∈ Ω0(E) gives
a global parallel section which we use to trivialize H0(E/B).

The bundle H1(E/B) may be non-trivial. Since Hi(E/B) = 0 for i 6∈ {0, 1} the
second page of the LSSSs has only two lines.

1 H0(B,H1(E/B)) H1(B,H1(E/B)) H2(B,H1(E/B)) H3(B,H1(E/B))

0 H0(B) H1(B) H2(B) H3(B)

0 1 2 3

where we have only indicated the non-trivial differentials in the range pictured.

Therefore the LSSS degenerates at the third page and by Lemma 2.4 we have short
exact sequences

0→ E0,q
3 → Hq

dR(E)→ E1,q−1
3 → 0

for all q ∈ Z. If we express the third page in terms of the data of the second page,
then we obtain a long exact sequence which is called the Gysin sequence of the
bundle E → B

· · · → Hq
dR(B)

f∗→ Hq
dR(E)

σ→ Hq−1
dR (B,H1(E/B))

d2→ Hq+1
dR (B)→ . . . .

Example 5.7. In this example we use the Gysin sequence in order to calculate the de
Rham cohomology of CPn. We use the bundle S2n+1 → CPn with fibre S1. We know
by Theorem 4.32 that CPn is simply connected and thereforeH1(S2n+1/CPn)→ CPn
is a trivial one-dimensional flat bundle. If we fix a trivialization (the choice will be
discussed later), then the LSSS has the form (with B := CPn)
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1 H0(B) H1(B) H2(B) H3(B) H4(B) H5(B) H6(B)

0 H0(B) H1(B) H2(B) H3(B) H4(B) H5(B) H6(B)

0 1 2 3 4 5 6

In the case of CP3 is the complete picture. Since Hk
dR(S2n+1) = 0 for 1 ≤ k ≤ 2n we

see that all indicated differentials must be isomorphisms. We inductively conclude:

1. H0
dR(CPn) ∼= R

2. H1
dR(CPn) ∼= 0

3. H2
dR(CPn) ∼= R

4. . . .

5. H2n−2
dR (CPn) ∼= R

6. H2n−1
dR (CPn) ∼= 0

7. H2n
dR(CPn) ∼= R.

8. Hk
dR(CPn) ∼= 0 for k ≥ 2n+ 1.

Hence

Hk
dR(CPn) ∼=

{
R k = 2i , i ∈ {0, 1, . . . , n}
0 else

.

We further note that the map

H2n+1
dR (S2n+1)

σ→ E2n,1
2
∼= H2n

dR(CPn)

is an isomorphism. The isomorphisms depend on the choice of the trivialization of
H1(S2n+1/CPn). We discuss this in more detail when we analyze the multiplicative
structure. 2

There is a Gysin sequence for bundles f : E → B with fibre Sn for all n ≥ 1. To
this end we consider the structure of the LSSS. It again has only two non-trivial
rows. The only possible non-trivial differential after the E2-term is dn+1. So we have
E2
∼= En+1 and En+2

∼= E∞. We write out the E4-term the case n = 3 for simplicity
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3 E0,3
4 E1,3

4 E2,3
4 E3,3

4 E4,3
4 E5,3

4

2 0 0 0 0 0 0

1 0 0 0 0 0 0

0 E0,0
4 E1,0

4 E2,0
4 E3,0

4 E4,0
4 E5,0

4

0 1 2 3 4 5

where Ep,0
n+1
∼= Hp(B) and Ep,n

n+1
∼= Hp(B,Hn(E/B)).

Hence we get a long exact Gysin sequence

· · · → Hk
dR(B,Hn(E/B))

dn+1→ Hk+n+1
dR (B)

f∗→ Hk+n+1
dR (E)

σ→ Hk+1
dR (B,Hn(E/B))→ . . . .

Example 5.8. Let n ≥ 1. The group of unit quaternions Sp(1) ∼= S3 acts on Hn+1 by
left multiplication. It preserves the quaternionic scalar product 〈x, y〉 :=

∑n+1
i=1 x

∗
i yi.

Indeed, we have

〈qx, qy〉 =
n+1∑
i=1

x∗i q
∗qyi =

n+1∑
i=1

x∗i yi = 〈x, y〉

since q∗q = 1 for a unit quaternion q ∈ Sp(1). The real part of the scalar product
is the usual euclidean scalar product on Hn+1 ∼= R4(n+1). Consequenty the action of
Sp(1) restricts to an action on the unit sphere S8n−1. The quotient

HPn := S4n+3/Sp(1)

is called the quaternionic projective space. We therefore have a fibre bundle
S4n+3 → HPn with fibre Sp(1) ∼= S3.

Since S4n+3 is simply connected and S3 is connected the manifold HPn is simply
connected by Theorem 4.32. We again conclude that differentials of the E2-term of
the LSSS between non-zero groups are isomorphisms. As in the case of the complex
projective space we obtain

Hk
dR(HPn) ∼=

{
R k = 4i , i ∈ {0, 1, . . . , n}
0 else

.

2
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5.3 Functoriality of the Leray-Serre spectral sequence

In general it is very difficult to calculate higher differentials of the LSSS. Most calcu-
lations start from simple cases and then use the functoriality and the multiplicativity
of the spectral sequence. In this subsection we discuss functoriality.

A map from a fibre bundle f ′ : E ′ → B′ to a fibre bundle f : E → B is a commutative
diagram

E ′

f ′

��

g // E

f
��

B′
ḡ // B

. (39)

Note that ḡ is determined by g.

Lemma 5.9. The map g∗ : Ω(E) → Ω(E ′) is filtration perserving. Consequently it
induces a map of LSSS’es

E(g∗) : (Er, dr)r≥1 → (E ′r, d
′
r)r≥1 .

Proof. Note that for e′ ∈ E ′ and X ∈ Te′E ′ we have dḡ(df ′(X)) = df(dg(X)). If X
is vertical, then df ′(X) = 0 and hence df(dg(X)) = 0. Consequently, if X is vertical,
then dg(X) is vertical, too.

Fix n, p ∈ Z and ω ∈ FpΩn(E). Let (Xi)1,...,n−p+1 be a collection of vertical tangent
vectors at e′. Then we have

iX1 . . . iXn−p+1(g∗ω)(e′) = idg(X1) . . . idg(Xn−p+1)ω(g(e′)) = 0 .

We conclude that g∗ω ∈ FpΩn(E ′). 2

Lemma 5.10. We have a canonical map of flat vector bundles

g] : ḡ∗H(E/B)→ H(E ′/B′) .

Proof. The map g induces for every b′ ∈ B′ a smooth map gb′ : E ′b′ → Eḡ(b′). We get
a map g∗b′ : HdR(Eḡ(b′))→ HdR(E ′b′). The collection of these maps give a map

g] : ḡ∗H(E/B)→ H(E ′/B′)

if we consider both sides as disjoint unions of real vector spaces, see (27). We must
verify that this map is smooth and preserves connections.
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Let U ⊆ B and Ψ : U ×F → E|U be a trivialization. We can assume (after shrinking
U if necessary), that there exists a trivialization Ψ′ : ḡ−1U × F ′ → E ′|ḡ−1U . The
trivializations of the fibre bundles induce trivializations of the cohomology bundles
Ψ∗ : H(E/B)|U

∼→ U×HdR(F ) and Ψ′∗ : H(E ′/B′)|ḡ−1U
∼→ ḡ−1U×HdR(F ′). In these

trivializations the Gauss-Manin connections are the trivial connections. For u′ ∈ U ′
let Gu′ : F ′ → F be the composition Gu′ : (Ψ−1 ◦ g ◦ Ψ′)(u′,−) : F ′ → F . With
respect to the trivializations Ψ′∗ and ḡ∗Ψ∗ the map g] is represented by u′ 7→ G∗u′ :
HdR(F )→ HdR(F ′). By the homotopy invariance of de Rham cohomology this map
is locally constant. It is hence smooth and preserves the trivial connections. 2

Lemma 5.11. The following diagram commutes:

Ep,q
2

∼=
��

E2(g) // E ′,p,q2

∼=
��

Hp
dR(B,Hq(E/B))

ḡ∗ // Hp
dR(B′, ḡ∗Hq(E/B))

g] // Hp
dR(B′,Hq(E ′/B′))

Proof. We show that the corresponding diagram on the level of E1-terms commute.

Ep,q
1

∼=
��

E1(g) // E ′,p,q1

∼=
��

Ωp(B,Hq(E/B))
ḡ∗ // Ωp(B′, ḡ∗Hq(E/B))

g] // Ωp(B′,Hq(E ′/B′))

.

We use the presentation (35) and the identification of the E1-terms with the E ′1-terms
given in Lemma 5.6.

We are reduced to the case of trivial bundles and a map

G : U ′ × F ′ → U × F , (u′, f ′) 7→ (Ḡ(u′), Gu′(f
′)) ,

where Ḡ : U ′ → U is the underlying map of base spaces. This map can be decomposed
as

U ′ × F ′ → U ′ × F → U × F , (u′, f ′) 7→ (u′, Gu′(f
′)) 7→ (Ḡ(u′), Gu′(f

′))

The map E1(G) is induced by the map of complexes

(Gr Ω(U × F ), dF )
Ḡ∗→ (Gr Ω(U ′ × F ), dF )

G]→ (Gr Ω(U ′ × F ′), dF ) .
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In cohomology we get

Ω(U,HdR(F ))
Ḡ∗→ Ω(U ′, HdR(F ))

G]→ Ω(U ′, HdR(F ′)) .

2

Example 5.12. We can use the LSSS in order to study the kernel of the map
f ∗ : H∗dR(B)→ H∗dR(E).

Let E → B be a fibre bundle with connected fibres. Then we can consider id : B →
B as a fibre bundle and the map of fibre bundles

E

f
��

f // B

idB
��

B
idB // B

. (40)

We study the induced map of LSSS E(f) : (idBEr,
idBdr)r≥1 → (fEr,

fdr)r≥1. Note
that (idBEr,

idBdr) degenerates at the second page which has the form

idBEp,q
2
∼=
{
Hp(B) q = 0

0 else
.

We also have
fEp,q

2
∼=
{
Hp(B) q = 0
∗ else

,

and the map E(f) induced exactly the identification of the zero lines.

Let us fix p ∈ Z. Then we have a sequence of quotients

fEp,0
2 → fEp,0

3 → . . . fEp,0
p+1 = Ep,0

∞

where fEp,0
k+1 is the cokernel of fdk : fEp−k,k−1

k → Ep,0
k .

Corollary 5.13. A class x ∈ Hp(B) ∼= fEp,0
2 pulls back to zero on E if an only

if its class in fEp,0
∞ vanishes, i.e. if its class in fEp,0

k is hit by fdk for some k ∈
{2, . . . , q − 1}.

2
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Example 5.14. We consider the bundle f : S2n+1 → CPn. If x ∈ H2k
dR(CPn) ∼= R

for k ∈ {2, . . . , n}, then x is in the image of fd2 (which is an isomorphism). Hence
f ∗x = 0. This is of course also clear since H2k

dR(S2n+1) = 0. 2

Example 5.15. Let E → B be a locally trivial fibre bundle over a connected base
and b ∈ B. We identify the fibre Eb with F . Then we get a map fibre bundles

F

p

��

ψ // E

f
��

p
b // B

. (41)

Given a class x ∈ Hq
dR(F ) one can ask whether it extends to a class x̃ ∈ Hq

dR(E), i.e.
ψ∗x̃ = x. We consider the induced map of LSSS E(ψ) : (fEr,

fdr)r≥1 → (pEr,
pdr)r≥1.

We have
pEp,q

2
∼=
{
Hq
dR(F ) p = 0

0 else
.

This spectral sequence degerates at the second (actually the first) page. We also
have

fEp,q
2
∼=
{
Hq
dR(F ) p = 0
∗ else

,

and E(ψ) induces the obvious identification of the zero column.

We fix q ∈ Z. We have a decreasing chain of subspaces

fE0,q
2 ⊇ fE0,q

3 ⊇ fE0,q
4 ⊇ · · · ⊇ fE0,q

q+1 = fE0,q
∞ ,

where fE0,q
k+1 = ker(fdk : fE0,q

k → fEk+1,q−k
k ).

Corollary 5.16. A class x ∈ Hq(F ) ∼= fE0,q
2 extends to E if and only if it belongs

to the kernel of all differentials fdk for k ∈ {2, . . . , q}.

2

Example 5.17. We consider again the bundle S2n+1 → CPn with fibre S1. Let
orS1 ∈ H1

dR(S1) be the class of a normalized volume form. This class does not
extend to S2n+1 since fd2orS1 6= 0 (again since fd2 is an isomorphism). Of course
this is also a priori clear since H1

dR(S2n+1) = 0.

2
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5.4 The multiplicative structure of the Leray-Serre spectral
sequence

Let A be a differential graded algebra and (FpA)p∈Z be a decreasing filtration of A
as a chain complex. We say the filtration is multiplicative if the product restricts
to maps

FpA⊗F qA→ Fp+qA .

We get induced maps
GrpA⊗Grq(A)→ Grp+qA

so that Gr(A) is a bigraded differential algebra.

We now consider the exact couple of a multiplicatively filtered differential graded
commutative algebra. We observe that

W =
⊕
p,q

Hq(FpA)

is a graded commutative algebra, graded by cohomological degree. Similarly,

E =
⊕
p,q

Hp+q(Grp(A))

is a graded commutative algebra graded by cohomological degree. Both algebras
are actually bigheaded with p as an additional degree. The maps i : W → W and
pr : W → E are morphisms of graded algebras. Furthermore, ∂ : W → E satisfies
the Leibnitz rule, i.e. it is a derivation. Indeed, if [x] ∈ Ep,q and [y] ∈ Ep′,q′ with
representatives x ∈ FpAp+q and y ∈ Fp′Ap′+q′ , then we have

∂([x]∪ [y]) = ∂([x∪ y]) = [dx∪ y] + [(−1)p+qx∪ dy] = ∂[x]∪ [y] + (−1)p+q[x]∪ ∂[y] .

We call a bigraded exact couple (E,W, i, pr, ∂) multiplicative if E and W are
graded commutative algebras, i and pr are morphisms of graded algebras, and ∂
satisfies the Leibniz rule as above.

Lemma 5.18. If (W,E, i, pr, ∂) is a bigraded multiplicative exact couple, then the
derived exact couple is bigraded multiplicative again.

Proof. The image of a homomorphism of graded commutative algebras is again a
graded commutative algebra. Hence W ′ = i(W ) is a graded commutative algebra
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and i′ : W ′ → W ′ is a homomorphism of algebras since it just a restriction of a
homomorphism.

The cohomology of a derivation with square zero is an algebra with multiplication de-
fined on representatives. The composition d := pr ◦ ∂ is a derivation. Consequently
E ′ = H(d) is a graded commutative algebra. It is immediate from the definition
∂′[e] = [∂e] that ∂′ is again a derivation. Finally the map pr′ : W ′ → E ′ is induced

by the homomorphism W
pr→ ker(d) by factorization over quotients and hence a

homomorphism of algebras. 2

Lemma 5.19. If f : E → B is a locally trivial fibre bundle, then the filtration
(FpΩ(E))p is multiplicative. Consequently, the Leray-Serre spectral sequence is bi-
graded multiplicative.

Proof. Let ω ∈ F pΩn(E) and α ∈ F qΩm(E). We must show that ω∧α ∈ F p+qΩn+m(E).
Let X1, . . . , Xn+m−p−q+1 be a collection of vertical vectors at e ∈ E. It follows from
the derivation property of the insertion operation that iXn+m−p−q+1 . . . iX1(ω ∧α) is a
sum over pairs (r, s) ∈ N2 satisfying r+s = n+m−p−q+1 of terms where r vectors
are inserted into ω and s vectors are inserted into α. The conditions r < n + p − 1
and s < m+q−1 together imply that r+s < n+m−p−q−2. Hence this case does
not appear in the sum and we have for every term r ≥ n + p− 1 or s ≥ m− q + 1.
Hence every term of the sums vanishes. 2

Corollary 5.20. Let E → B be a locally trivial fibre bunds. Then for every r ≥ 1
the r’th page Er of the LSSS is a bigraded, graded-commutative algebra, and dr is a
derivation of total degree one and bidegree (−r, r + 1).

Example 5.21. We now determine the ring structure on HdR(CPn) and fix a pre-
ferred basis.

Let 1 := c0 ∈ H0
dR(CPn) ∼= E0,0

2 be the canonical generator. We consider the inclusion
of a point ι : ∗ → CPn and the diagram

S1 //

g

��

S2n+1

f
��

∗ ι // CPn

.

Then

fE0,1
2

E2(ι)→ gE0,1
2
∼= H1

dR(S1)

∫
S1∼= R
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is an isomorphism. We fix a generator of u ∈ fE0,1
2 such that

∫
S1 E2(ι)(u) = 1. Then

we define the generator

x2 := c1 := d2(u) ∈ fE2,0
2
∼= H2

dR(CPn) .

We now define inductively for k = 1, . . . , n

x2k+2 := fd2(u ∪ x2k) = c1 ∪ x2k = ck1 .

We claim that the multiplication u : fEp,0
2 → fEp,1

2 is an isomorphism. Note that we
have a multiplicative isomorphism

(fE∗,q1 , d1) ∼= (Ω∗(CPn)⊗Hq
dR(S1), d⊗ idHq

dR(S1)) ,

and that the multiplication u ∪ · · · : H0
dR(S1) → H1

dR(S1) is an isomorphism. Since
the differentials fd2 : fEk,1

2 → fEk+2,1
2 are isomorphisms for k = 0, . . . , n − 1 we

conclude that x2k = ck1 6= 0 as long as k ≤ n. Hence {xk} is a basis of the one-
dimensional R-vector space H2k

dR(CPn) for k = 0, . . . , n. We thus have determined
the ring structure:

Corollary 5.22. We have an isomorphism of graded rings

HdR(CPn) ∼= R[c1]/(cn+1
1 ) .

For 1 ≤ k ≤ n the inclusion Ck+1 ↪→ Cn+1 induces a diagram

S2k+1 g //

fk
��

S2n+1

fn
��

CPk i // CPn

.

We get an induced morphism of LSSS’es E(g) : (fnEr,
fndr)r≥1 → (fkEr,

fkdr)r≥1.
In particular, fnE0,1

r → fkE0,1
r is an isomorphism and compatible with the choices

of u. Using the functoriality of the LSSS we conclude that i∗c1,CPn = c1,CPk (with
selfexplaining notation).

Corollary 5.23. The restriction map i∗ : H∗dR(CPn)→ H∗dR(CPk) is just the canon-
ical quotient map R[c1]/(cn+1

1 )→ R[c1]/(ck+1
1 ).

2
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6 Chern classes

6.1 The first Chern class

A complex line bundle is a one-dimensional complex vector bundle. Let L→ M
be a complex line bundle. Then by Lemma 4.2 we can choose a connection ∇. The
section idL ∈ Γ(M, End(L)) gives a canonical identification of End(L) with the trivial
line bundle. The curvature (see Definition 4.5) of ∇ (which as a priori an element
R∇ ∈ Ω2(M, End(L))) can therefore be interpreted as an element of Ω2(M,C). We
define the first Chern form

c1(∇) := − 1

2πi
R∇ ∈ Ω2(M,C) . (42)

Lemma 6.1. 1. The first Chern form c1(∇) is closed.

2. The cohomology class c1(L) := [c1(∇)] ∈ H2
dR(M,C) does not depend on the

choice of ∇ (This justifies the notation!).

3. For line bundles L,L′ on M we have c1(L⊗ L′) = c1(L) + c1(L′).

4. If L is trivial, then c1(L) = 0.

5. We have c1(L∗) = −c1(L), where L∗ is the dual bundle.

6. For a map f : M ′ →M we have c1(f ∗L) = f ∗c1(L).

Proof. 1. In general, the curvature of a connection∇ on a vector bundle L satisfies
the Bianchi-identity

∇End(L)R∇ = [∇,∇ ◦∇] = ∇ ◦∇ ◦ ∇−∇ ◦∇ ◦ ∇ = 0 .

Since ∇End(L)idL = 0 our trivialization of End(L) identifies the connection on
End(L) with the trivial connection. Consequently, for a line bundle, we have
dR∇ = 0.

2. Let ∇,∇′ be two connections. We consider the bundle L̃ := pr∗ML → I ×M
and the connection ∇̃ := pr∗M∇ + t(pr∗M∇′ − pr∗M∇), where t : I → R is the
coordinate.

Note that ∇̃|{0}×M = ∇ and ∇̃|{1}×M = ∇′. This implies R∇̃|{0}×M = R∇ and

R∇̃|{1}×M = R∇
′
. Using the the homotopy invariance of de Rham cohomology
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at the marked equality we get

[c1(∇)] = [c1(∇̃)]{0}×M
!

= [c1(∇̃)]{1}×M = [c1(∇′)] .

3. We have for homogeneous φ ∈ Ω(M,L) and φ′ ∈ Ω(M,L′) that

∇L⊗L′(φ ∧ φ′) = ∇φ ∧ φ′ + (−1)deg φφ ∧∇′φ′

and hence

R∇
L⊗L′

(φ ∧ φ′) = R∇φ ∧ φ′ + φ ∧R∇′φ′ = (R∇ +R∇
′
)(φ ∧ φ′) .

(the two mixed terms cancel each other).

4. If L is trivial, then we can take the trivial connection ∇triv. We have R∇
triv

= 0
and hence c1(L) = 0.

5. The tensor product L ⊗ L∗ is trivialized by the evaluation. Hence c1(L) +
c1(L∗) = 0.

6. We use the identity
f ∗R∇ = Rf∗∇ .

2

Definition 6.2. The cohomology class c1(L) ∈ H2
dR(M ;C) is called the first Chern

class of the line bundle L.

We consider the functor
VectC : Mfop → Set

which associates to every manifoldM the set of isomorphism classes of complex vector
bundles on M , and to f : M ′ →M the pull-back f ∗ : VectC(M)→ VectC(M ′).

Definition 6.3. A characteristic class of degree p for complex vector bundles is
a natural transformation

VectC → Hp
dR(. . . ,F) ,

where F ∈ {R,C}.

Lemma 6.4. Let c : VectC → Hp
dR(. . . ;F) be a characteristic class of degree p for

vector bundles and p ≥ 1. Then we have c(E) = 0 if E is trivializable.
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Proof. If E → M is trivializable, then we have an isomorphism E ∼= f ∗E ′, where
E ′ ∈ VectC(∗) and f : M → ∗. Then c(E) = f ∗c(E ′) = 0 since already c(E ′) ∈
Hp
dR(∗;F) = 0. 2

Example 6.5. The transformation

VectC(M) 3 E 7→ dim(E) ∈ H0
dR(M)

is a characteristic class of degree zero.

For every vector bundle E →M we can define the line bundle det(E) := ΛmaxE. If
E is one-dimensional, then det(E) ∼= E. The transformation

VectC(M) 3 E 7→ c1(det(E)) ∈ H2
dR(M ;C)

is a characteristic class of degree one.

Characteristic classes can be used to distinguish vector bundles or to descide wether
they are trivializable.

2

Example 6.6. One CPn we have the tautological line bundle Ltaut → CPn. It is a
subbundle of the trivial bundle CPn × Cn+1 → CPn. We consider the chart

Cn 3 z = (z1, . . . , zn) 7→ [1 : z1 : · · · : zn] ∈ CPn

of CPn. On this chart we can trivialize Ltaut using the section s(z) := (1, z1, . . . , zn).
We let P be the orthogonal projection from the trivial n+1-dimensional bundle onto
Ltaut and define the connection ∇ on Ltaut by

∇φ := P∇trivφ, φ ∈ Γ(CPn, Ltaut) .

On the right-hand side of this formula φ is considered as a section of the trivial
bundle CPn × Cn+1 → CPn in the natural way. We have

∇s = Pds =
z̄tdz

1 + z̄tz
⊗ s .
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For the curvature we get

R∇ = d
z̄tdz

1 + z̄tz

=
dz̄t ∧ dz
1 + ‖z‖2

− (dz̄tz + z̄tdz) ∧ z̄tdz
(1 + ‖z‖2)2

=
(1 + ‖z‖2)dz̄t ∧ dz − dz̄tz ∧ z̄tdz

(1 + ‖z‖2)2
.

We first assume that n = 1. Then

R∇ =
(1 + |z|2)dz̄ ∧ dz − |z|2dz̄ ∧ dz

(1 + |z|2)2
=

1

(1 + |z|2)2
dz̄ ∧ dz =

2i

(1 + r2)2
volC ,

where r = |z|. We calculate∫
CP1

R∇ = 2πi

∫ ∞
0

2rdr

(1 + r2)2
= 2πi

∫ ∞
0

ds

(1 + s)2
= 2πi .

This implies:

Corollary 6.7. ∫
CP1

c1(Ltaut) = −1 .

We now consider the higher-dimensional case. Note that (dz̄tz∧z̄tdz)2 = 0. Therefore

(R∇)n =
(1 + ‖z‖2)n(dz̄t ∧ dz)n − n(1 + ‖z‖2)n−1(dz̄t ∧ dz)n−1 ∧ (dz̄tz ∧ z̄tdz)

(1 + ‖z‖2)2n
.

We have the identities

(dz̄t ∧ dz)n = (2i)nn!volCn , (dz̄t ∧ dz)n−1 ∧ (dz̄tz ∧ z̄tdz) = (2i)n(n− 1)!‖z‖2volCn .

We get

(R∇)n =
(2i)nn!volCn

(1 + r2)n+1
.

Using that volCn = volS2n−1r2n−1dr we get∫
CPn

(R∇)n = (2i)nn!vol(S2n−1)

∫ ∞
0

r2n−1dr

(1 + r2)n+1
.
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We simplify the integral to

1

2

∫ ∞
0

r2n−2

(1 + r2)n+1
2rdr =

1

2

∫ ∞
0

sn−1

(1 + s)n+1
ds =

1

2

Γ(n)

Γ(n+ 1)
=

1

2n
.

Here we use the general formula (for p, q, r > 0)∫ ∞
0

sp−1ds

(1 + qs)p+r
=

Γ(p)Γ(r)

qpΓ(p+ r)
.

We further have

vol(S2n−1) =
2πn

Γ(n)
=

2πn

(n− 1)!
.

So ∫
CPn

(R∇)n = (2i)nn!
2πn

(n− 1)!

1

2n
= (2πi)n .

We get:

Corollary 6.8. ∫
CPn

c1(Ltaut)n = (−1)n .

In particular, we conclude using Lemma 6.4 that for every n ≥ 1 the bundle Ltaut →
CPn is not trivializable.

2

For every manifold M we have a natural inclusion HdR(M) ↪→ HdR(M ;C), where we
consider the target as a real vector space by restriction of structure. It induces an

isomorphism HdR(M)⊗R C
∼=→ HdR(M ;C).

Recall that HdR(CPn) ∼= R[c1]/(cn+1
1 ) for the generator c1 ∈ H2

dR(CPn) fixed in
Example 5.21. We get an induced isomorphism HdR(CPn;C) ∼= C[c1]/(cn+1

1 ).

Lemma 6.9. We have c1 = −c1(Ltaut). In particular, the first Chern class of the
tautological bundle is real, i.e. c1(Ltaut) ∈ HdR(CPn).

Proof. In view of Corollary 5.23 it suffices to show this on CP1. We consider the
LSSS (Er, dr)r≥1 for the bundle f : S3 → CP1. On S3 we consider the form

θ := (
1

2πi
z̄tdz)|S3 ∈ Ω1(S3) (43)
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defined by restricting a form defined on all of C2. We parametrize a fibre of f through
z ∈ S3 by R/Z 3 t 7→ exp(2πit)z ∈ C2. The push-forward of ∂t at the point t is
2πi exp(2πit)z. The pull-back of θ is thus given by dt, i.e. the normalized volume
form of the fibres. The class [θ] ∈ Gr0Ω1(S3) is closed and represents a class u ∈ E0,1

1 .
We now calculate

dθ = (
1

2πi
dz̄t ∧ dz)|S3 ∈ Ω2(S3) .

If we insert the vertical vector iz at the point z ∈ S3, then we get − 1
2π
dz̄tz. If we

insert in this the tangent vector X ∈ TzS3, then we get

− 1

2π
dz̄t(X)z = − 1

2π
X̄ tz = 0

since the tangent space TzS
3 is the orthogonal complement of the line through z.

Consequently, dθ ∈ F 1Ω2(S3). This means that d1u = 0. Hence u ∈ E0,1
2 is ex-

actly the normalized generator fixed in Example 5.21. It follows that dθ repre-
sents d2u. To this end we must consider dθ as a representative for a section of
Ω2(CP1,H0(S3/CP1,C)). A local section s of the bundle S3 → CP1 induces a local
trivialization of H0(S3/CP1;C)→ CP1. We consider the section given by

CP1 3 [1 : z] 7→ s(z) :=
(1, z)√
1 + |z|2

∈ S3 .

We must calculate the pull-back

s∗dθ = ds∗θ

= d(
1

2πi

z̄√
1 + |z|2

d
z√

1 + |z|2
) + d(

1

2πi

1√
1 + |z|2

d
1√

1 + |z|2
)

=
1

2πi
d

z̄√
1 + |z|2

∧ d z√
1 + |z|2

.

We have

d
z√

1 + |z|2
=

dz√
1 + |z|2

− z(z̄dz + dz̄z)

2
√

1 + |z|23 =
(2 + |z|2)dz − z2dz̄

2
√

1 + |z|23
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Hence

s∗dθ =
1

2πi

(2 + |z|2)dz̄ − z̄2dz

2
√

1 + |z|23 ∧ (2 + |z|2)dz − z2dz̄

2
√

1 + |z|23

=
(4 + 4|z|2 + |z|4)dz̄ ∧ dz − |z|4dz̄ ∧ dz

8πi(1 + |z|2)3

=
dz̄ ∧ dz

2πi(1 + |z|2)2

=
volC

π(1 + |z|2)2

We have ∫
CP1

c1 =

∫
C
s∗dθ =

∫
C

volC
π(1 + |z|2)2

= 1 . (44)

Since
∫
CP1 c1(Ltaut) = −1 we see that c1 = −c1(Ltaut). 2

Lemma 6.10. Let L→M be a line bundle over a compact manifold M . Then there
exists n ∈ N and a map s : M → CPn such that (s∗Ltaut)∗ ∼= L. Consequently we
have

c1(L) = s∗c1

and c1(L) is real.

Proof. For every m ∈ M we choose a section sm ∈ Γ(M,L) such that sm(m) 6= 0.
Then we find a finite sequence of points {m0, . . . ,mn} ⊂M such that

n⋃
k=0

{smk 6= 0} = M .

We define the map
s := [sm0 : · · · : smn ] : M → CPn .

We obtain the isomorphism of line bundles L
∼→ (s∗Ltaut)∗ such that for every m ∈M

the vector x =
∑n

i=0 aismi(m) ∈ Lm is mapped to the element of (s∗Ltautm )∗ given by

s∗Ltautm 3 (m, (b0, . . . , bn)) 7→
n∑
i=0

aibi .

Note that this is well-defined independently of the choice of the representation of x
since (b0, . . . , bn) ∼ (sm0(m), . . . , smn(m)). 2
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Remark 6.11. The last conclusion of Lemma 6.10 that c1(L) is real is true in general
without any assumption on the compactness of M . Here is an argument. There exists
an increasing sequence of compact submanifolds (with boundary) M1 ⊆ M2 ⊆ . . .
such that M =

⋃
iMi. We have HdR(M) = limi∈NopHdR(Mi). A class in HdR(M) is

real iff its restriction to Mi is real for all i ∈ N. Since c1(L)|Mi
= c1(L|Mi

)is real by
Lemma 6.10 we conclude that c1(L) is real, too.

2

Example 6.12. We continue to use the notation of Lemma 6.10. We can use the
isomorphism s∗Ltaut ∼= L∗ in order to induce a metric on L∗. Let π : E →M be the
unit-sphere bundle of L∗. We get the map of fibre bundles

E

π
��

r // S2n+1

f
��

M
s // CPn

which induces diffeomorphisms on fibres. We get an induced map of LSSS’es E(r) :
(fEr,

fdr)r≥1 → (πEr,
fdr)r≥1. We trivialize H1(E/M) ∼= s∗H1(S2n+1/CPn) by

pulling back the trivialization of H1(S2n+1/CPn). Hence the spectral sequence has
the form

1 H0(M) H1(M) H2(M) H3(M) H4(M) H5(B) H6(M)

0 H0(M) H1(M) H2(M) H3(M) H4(M) H5(M) H6(M)

0 1 2 3 4 5 6

where the differential is given by multiplication by c1(L) and H∗(M) is a shorthand
for H∗dR(M).

Example 6.13. In this example we calculate c1(TCPn) := c1(det(TCPn)). We define
a map of complex vector bundles over CPn

a : TCPn → Hom(L,Cn+1/L)

as follows. Let X ∈ TxCPn and ` ∈ Lx. Then we choose a local holomorphic section
φ of L such that φ(x) = `. We define

a(X)(`) := [∇triv
X φ] .
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Holomorphy of the section is necessary in order to get a complex linear map in X.
The right-hand side is independent of the choice of the extension φ. This follows
from the Leibnitz rule. Namely, any other extension can be written in the form fφ,
where f is holomorphic and f(1) = 1. Then we have

[∇triv
X (fφ)] = [∇triv

X φ+X(f)φ] = [∇triv
X φ] .

We now show that a is an isomorphism. It suffices to show injectivity. Using the
local section s in Example 6.6 we can choose φ = λs for a suitable constant λ. We
get

a(X)(`) = λ[(1− P )∇triv
X s] = λ[(0, X)− z̄tX

1 + ‖z‖2
(1, z)] .

If X − z̄tX
1+‖z‖2 z = 0 and z̄tX

1+‖z‖2 = 0, then X = 0.

In other words, we have an exact sequence

0→ C→ L∗ ⊕ · · · ⊕ L∗︸ ︷︷ ︸
n+1×

→ TCPn → 0 . (45)

This implies
det(TCPn) ∼= (L∗)n+1 .

We conclude:

Corollary 6.14. c1(CPn) = (n+ 1)c1.

2

Example 6.15. We consider an oriented surface Σg of genus g. If we choose a
Riemannian metric on Σg, then we can define a complex structure on TΣg such that
multiplication by i in TxΣg is the positive π/2-turn, i.e. for X ∈ TxΣg we have
〈X, iX〉 = 0 and the family (X, iX) is an oriented basis. We let S(Σg)→ Σg be the
unit-sphere bundle. We are interested in the topology of this bundle.

Let c1(TΣg) ∈ H2
dR(Σg) be the first Chern class of TΣg (considered as a complex

vector bundle). The number

d(TΣg) :=

∫
Σg

c1(TΣg)

is called the degree of the TΣg.
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We start with Σ0
∼= S2 ∼= CP1. In this case we get

d(TΣg) =

∫
CP1

c1(TCP1)
Cor.6.14

=

∫
CP1

2c1
(44)
= 2 .

In the case g = 1 we have Σ1
∼= T 2. Since TΣ1 is trivializable we have

d(TΣ1) =

∫
Σ1

c1(TΣ1) = 0 .

Recall that we can obtain Σg from S2 by attaching g handles. Further recall that

d(TΣg) =

∫
Σg

c1(∇)

for any connection ∇ on TΣg.

We can arrange the connection ∇ on TΣg such that the situation near every handle
looks the same. The attachment of one handle changes the integral by H −D = −2,
where H is the contribution of the handle and D is the contribution of the two discs
removed. Therefore attaching g handles gives a change of the integral by −2g. We
conclude that the degree of the tangent bundle of a genus g-surface is

d(TΣg) = 2− 2g = χ(Σg) .

Corollary 6.16 (Gauss-Bonnet). We have∫
c1(TΣg) = χ(Σg) .

We can now calculate the cohomology of the unit sphere bundle S(Σg). Since the
base Σg and the fibre S1 of S(Σg) are connected the manifold S(Σg) is connected,
too. Thus H0(S(Σg)) ∼= R. For the higher degree cohomology we use the Gysin
sequence

0→ H1
dR(Σg)→ H1

dR(S(Σg))
σ→ H0

dR(Σg)
−dvolΣg→ H2

dR(Σg)→ H2
dR(S(Σg))

σ→ H1
dR(Σg)→ 0 .

and

H3
dR(S(Σg))

σ∼= H2
dR(Σg) .
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If d 6= 0, then σ induces isomorphisms

H1
dR(S(Σg)) ∼= H1

dR(Σg) ∼= H2
dR(S(Σg)) .

We have

Hk
dR(S(Σg)) ∼=


R k = 0
R2g k = 1, 2
R k = 3
0 else

.

If d = 0, then g = 1 and

Hk
dR(S(Σ1)) ∼=


R k = 0
R3 k = 1, 2
R k = 3
0 else

.

6.2 Cohomology of bundles over spheres

In this subsection we consider a locally trivial fibre bundle E → Sn. The LSSS has
only two non-trivial columns. Its only non-trivial differential after the E2-term is dn.
Therefore E2

∼= En and En+1
∼= E∞.

We assume that n ≥ 2. In this case Sn is simply connected and we can trivialize the
bundles Hq(E/Sn). This trivialization induces the first isomorphism in

Hn
dR(Sn,Hq(E/Sn)) ∼= Hn

dR(Sn)⊗Hq(F ) ∼= Hq(F ) ,

where the second uses the choice of a generator volSn ∈ Hn
dR(Sn) which we normalize

such that
∫
Sn

volSn = 1. We therefore get

Hk(Sn,Hq(E/Sn)) ∼=
{
Hq(F ) k = 0, n

0 else

Here we write out the the E4-term for n = 4.
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4 H4(F ) 0 0 0 H4(F )

3 H3(F ) 0 0 0 H3(F )

2 H2(F ) 0 0 0 H2(F )

1 H1(F ) 0 0 0 H1(F )

0 H0(F ) 0 0 0 H0(F )

0 1 2 3 4

We get a long exact sequence

Hk−n
dR (F )→ Hk

dR(E)
σ→ Hk

dR(F )
dn→ Hk−n+1

dR (F )→ . . .

Example 6.17. Let G be a Lie group and recall that a class x ∈ HdR(G) is called
primitive if µ∗x = x ⊗ 1 + 1 ⊗ x, where µ : G × G → G is the group multiplication
and we use the Künneth formula HdR(G×G) ∼= HdR(G)⊗HdR(G).

For n ≥ 3 will show inductively:

Lemma 6.18. We have an isomorphism

HdR(SU(n)) ∼= R[u3, u5, . . . , u2n−1] ,

where the generators ui of degree i are primitive.

The case n = 2 is clear since

SU(2) ∼= S3 , HdR(SU(2)) ∼= R[u3] ,

where u3 corresponds to the orientation class of S3 which we normalize such that∫
S3 u3 = 1.

For the induction step from n to n + 1 we consider the bundle SU(n + 1) → S2n+1

with fibre SU(n). By induction assumption we get

E2n+1
∼= R[w3, w5, . . . , w2n−1, w2n+1]
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as rings, where the elements w2k−1 generate E0,2k−1
2n+1 for k = 2, . . . , n, and the last

element w2n+1 generates E0,2n+1
2n+1 . Here is the picture for n = 3.

8 w3w5 w3w5w7

7

6

5 w5 w5w7

4

3 w3 w3w7

2

1

0 1 w7

0 1 2 3 4 5 6 7

We have
d2n+1w2k−1 ∈ E2n+1,2k−2n

2n+1 = 0 , k = 2, . . . , n .

Therefore also all differentials of the products of the generators vanish. Consequently

E2
∼= E2n+1

∼= E∞ .

We choose classes

u2k−1 ∈ H2k−1
dR (SU(n+ 1)) , k = 2, . . . , n

and
u2n+1 ∈ F2n+1H2n+1

dR (SU(n+ 1))

which are detected by the classes wk. We define a multiplicative filtration (actually
a grading) of R[u3, . . . , u2n+1] such that u2k−1 ∈ F0 for all k = 2, . . . , n and u2n+1 ∈
F2n+1. Then we get a map of filtered rings

R[u3, . . . , u2n+1]→ HdR(SU(n+ 1))
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which induces is an isomorphism of associated graded rings. Consequently it is an
isomorphism.

We also get an explicit understanding of the classes. For k ≤ n the classes

u2k−1 ∈ H2k−1
dR (SU(n+ 1))

are characterized by the property that they restrict to classes with the same name
in H2k−1

dR (SU(n)) under the inclusion SU(n) ↪→ SU(n + 1). Furthermore, the class
u2n+1 is the pull-back of the normalized generator volS2n+1 ∈ H2n+1

dR (S2n+1) under the
projection SU(n+ 1)→ S2n+1.

It remains to show that u2k−1 is primitive. Note that the inclusion SU(n)→ SU(n+
1) is a group homomorphism. For k = 2, . . . , n the generator u2k−1 ∈ HdR(SU(n+1))
is primitive if and only if its restriction to SU(n) is primitive. So by induction it
suffices to show that u2n+1 is primitive.

Let a : SU(n+ 1)× S2n+1 → S2n+1 be the action. The associativity relation is

a ◦ (id× a) = a ◦ (µ× id) : SU(n+ 1)× SU(n+ 1)× S2n+1 → S2n+1 .

By definition we have

a∗volS2n+1 = u2n+1 ⊗ 1 + 1⊗ volS2n+1 .

We now compare the identities

(µ×id)∗a∗volS2n+1 = (µ∗⊗id)(u2n+1⊗ 1 + 1⊗volS2n+1) = µ∗u2n+1⊗ 1 + 1⊗volS2n+1

and

(id×a)∗a∗volS2n+1 = (id⊗a∗)(u2n+1⊗1+1⊗volS2n+1) = u2n+1⊗1⊗1+1⊗u2n+1⊗1+1⊗1⊗volS2n+1

in order to conclude that

µ∗u2n+1 = u2n+1 ⊗ 1 + 1⊗ u2n+1 .

2

Example 6.19.
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Lemma 6.20. We have an isomorphism

HdR(U(n)) ∼= R[u1, u3, . . . , u2n−1]

where the generators ui of degree i are primitive. Furthermore, the inclusion SU(n)→
U(n) induces a map in cohomology which sends u1 to zero and otherwise identifies
the generators with the same names.

Proof. We argue as in the proof of Lemma 6.18. We use the bundles U(n+1)→ S2n+1

with fibre U(n) and induction. We start with U(1) = S1.

In order to get the restriction map to SU(n) we use the comparison of spectral
sequences for the bundle map

SU(n+ 1)

��

// U(n+ 1)

��
S2n+1 S2n+1

.

2

This calculation is compatible with the fact that we have a diffeomorphism (not a
group homomorphism)

U(1)× SU(n)
∼=→ U(n) .

It maps a pair (λ, g) to the product of diag(λ, 1, . . . , 1) and g.

6.3 The Leray-Hirsch theorem and higher Chern classes

We consider a fibre bundle f : E → B. Then the cohomology of the total space
HdR(E) becomes a graded commutative algebra over the graded commutative ring
HdR(B) such that x ∈ HdR(B) acts on HdR(E) by left multiplication with f ∗x.

Let us now assume that the bundle has a connected base B. We choose a base point
in B and consider the fibre F := f−1({b}) as the concrete model of the fibres of the
bundle. We assume that F is compact.

Proposition 6.21 (Leray-Hirsch Theorem). If the restriction HdR(E) → HdR(F )
is surjective, then we have an isomorphism HdR(E) ∼= HdR(F ) ⊗HdR(B) as graded
HdR(B)-modules.
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Proof. We first observe that the LSSS is a spectral sequence of differential graded
HdR(B)-algebras. We can choose a split s : HdR(F )→ HdR(E) of the restriction map
as graded vector spaces. This induces a trivialization of the fibrewise cohomology
bundle H(E/B)→ B by

B ×HdR(F ) 3 (b, x) 7→ s(x)|Eb ∈ H(E/B)b ⊆ H(E/B)

We further have the isomorphism

E2
∼= HdR(F )⊗HdR(B)

of HdR(B)-algebras. By assumption and Corollary 5.16 the classes in HdR(F )⊗1 are
annihilated by all differentials. Consequently the LSSS degenerates at the second
term. We get a morphism

HdR(F )⊗HdR(B)→ HdR(E) , f ⊗ b 7→ s(f) ∪ b

of filtered HdR(B)-modules, where we set

Fp(HdR(F )⊗HdR(B)) =
⊕
t≥p

HdR(F )⊗H t
dR(B) .

This map induces an isomorphism of graded groups and is therefore an isomorphism.
2

Remark 6.22. If one works with other multiplicative cohomology theories, then for
the Leray-Hirsch theorem one must assume that the restriction map from the coho-
mology of the total space to the cohomology of the fibre is split surjective. Since in
our case the cohomology takes values in real vector spaces, every surjection is split. 2

Let E → B be a complex vector bundle over a connected base space B. We set n :=
dim(E). Then we define the projective bundle f : P(E) → B with fibre CPn−1.
By definition, point in P(E) is a line in E. We furthermore have a tautological
bundle L→ P(E). A point in L is a pair of a line in E and a point in this line. A
local trivialization of E → B induces a local trivialization of P(E) → B naturally.
In this way we can define the manifold structure on the projective bundle.

We set x := c1(L) ∈ H2
dR(P(E)). By Example 5.21 the restriction to the fibre of

the collection of classes (1, x, x2, . . . , xn−1) generates the cohomology of the fibre
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P(E)→ B as a vector space. So the assumption of the Leray-Hirsch theorem 6.21 is
satisfied. We take the split

s : HdR(CPn−1)→ HdR(P(E)) (46)

of the restriction to the fibre given by s(ck1) := xk for k = 0, . . . , n − 1 in order to
define the isomorphism of graded HdR(B)-modules

R[c1]/(cn1 )⊗HdR(B)
∼=→ HdR(P(E)) . (47)

In general, this is not an isomorphism of rings since xn does not necessarily
vanish in H∗dR(P(E)). This observation is the starting point for the definition of
Chern classes. Note that xn can be expressed as a unique linear combination of the
xk for k = 0, . . . , n−1 with coefficients in HdR(B). More precisely, there are uniquely
determined classes ci(E) ∈ H2i(B), i = 1, . . . , n such that

n∑
i=0

(−1)if ∗cn−i(E)xi = 0 , (48)

where we set c0(E) := 1.

Definition 6.23. For i = 1, . . . , n = dim(E) the class ci(E) ∈ H2i
dR(B) is called the

i’th Chern class of the bundle E. For i > n we set ci(E) := 0.

Remark 6.24. The Chern classes measures the deviation of the map (47) from a
homomorphism of algebras, i.e. the deviation of the split (46) from being a morphism
of graded rings. Indeed, s is a ring homomorphism if and only if ci(E) = 0 for all
i = 1, . . . , n.

The following is easy to check:

Corollary 6.25. The association E 7→ ci(E) is a characteristic class of degree 2i
for complex vector bundles (see Definition 6.3).

Example 6.26. Let us check that the first Chern class c1 coincides with our previous
construction (Definition 6.2) of the first Chern class for line bundles. If E → B is
a line bundle, then P(E) = B and L = E. The defining relation for the new Chern
classes is c1(E) − c0(E)x = 0. In view of c0(E) = 1 and x = c1(L) (old definition)
we conclude that the new definition reproduces the old one. 2
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The projective bundle P(E) → B is the bundle of flags of length one of E. More
generally we can define the bundle Fk(E) → E of flags of length k. A point in
Fk(E) is an increasing sequence of subspaces V1 ⊂ · · · ⊂ Vk of a fibre of E such
that the quotient V`+1/V` of two consecutive ones is one-dimensional. The manifold
F(E) := Fn−1(E) is the manifold of complete flags.

For k = 1, . . . , n we have fibre bundles Fk(E) → Fk−1(E) with fibre CPn−k. Note
that on Fk−1(E) we have a bundle Vk−1(E)→ Fk−1(E) such that the fibre of Vk−1(E)
over the flag V1 ⊂ · · · ⊂ Vk−1 in Eb is Vk−1. To give an extension V1 ⊂ · · · ⊂ Vk of this
flag is equivalent to give a line in Eb/Vk−1. Hence we have a canonical isomorphism
Fk(E) ∼= P(E/Vk−1(E)) of bundles over Fk−1(E).

The bundle Fk(E)→ Fk−1(E) satisfies the assumption of the Leray-Hirsch theorem.
for all k = 1, . . . , n. Consequently, this theorem can be applied to the bundle F(E)→
B as well.

On F(E) we have line bundles Lk → F(E) for k = 1, . . . , n such that the fibre of Lk
on the flag (V1 ⊂ · · · ⊂ Vn) ∈ F(E) is Vk/Vk−1. We define classes

xk := c1(Lk) ∈ H2
dR(F(E)) , k = 1, . . . , n .

We know that HdR(F(E)) is a free HdR(B)-module generated by the monomials

xi11 ∪ xi22 ∪ · · · ∪ xinn , 0 ≤ ik ≤ n− k , k = 1, . . . , n .

Let f : F(E) → B be the projection. If we choose a metric on E, then we get a
natural map ρk : F(E) → P(E) which sends the flag (V1 ⊂ · · · ⊂ Vn) to the line
Vk∩V ⊥k−1. We have a natural isomorphism ρ∗kL

∼= Lk and hence ρ∗kx = xk. From (48)
we get

n∑
i=0

(−1)if ∗cn−i(E)xik = 0 , k = 1, . . . , n .

This implies the identity of polynomials in t

n∑
i=0

(−1)itif ∗cn−i(E) =
n∏
k=1

(xk − t) .

In other words, we can express the pull-back of the Chern classes through the ele-
mentary symmetric functions in the xk. We have

f ∗ci(E) = σi(x1, . . . , xk) =: σi(x) .
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For example

σ1(x1, . . . , xk) = x1 + · · ·+ xn ,

σ2(x1, . . . , xk) = x1x2 + · · ·+ xn−1xn ,

σ3(x1, . . . , xk) = x1x2x3 + · · ·+ xn−2xn−1xn .

Corollary 6.27. We have an isomorphism

HdR(F(Cn) ∼=
R[x1, . . . , xn]

(σ1(x), . . . , σn(x))
.

We define the total Chern class

c(E) :=
n∑
i=0

ci(E)

such that

f ∗c(E) =
n∏
k=1

(1 + xi) . (49)

Lemma 6.28. For bundles E → B and E ′ → B we have the identity

c(E ⊕ E ′) = c(E) ∪ c(E ′) .

Proof. The method of the proof of this Lemma is called the splitting principle.

We define a map
d : F(E)×B F(E ′)→ F(E ⊕ E ′)

such that

d((V1 ⊂ · · · ⊂ Vn), (W1 ⊂ · · · ⊂ Wn′)) = (V1 ⊂ · · · ⊂ Vn ⊂ Vn⊕W1 ⊂ · · · ⊂ Vn⊕Wn′) .

Then

d∗(xk) =

{
yk k = 1, . . . , n
y′k−n k = n+ 1, . . . , n+ n′

,

where yk, y
′
k are the classes on F(E) ×B F(E ′) pulled back from the corresponding

classes on F(E) and F(E ′) using the projections pr : F(E) ×B F(E ′) → F(E) and
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pr′ : F(E) ×B F(E ′) → F(E ′). Let g : F(E) → B and g′ : F(E) → B be the
projections. Then we get

(pr, pr′)∗(g, g′)∗c(E ⊕ E ′) = d∗f ∗c(E ⊕ E ′)

= d∗
n+n′∏
k=1

(1 + xk)

=
n∏
k=1

(1 + yk) ∪
n′∏
k=1

(1 + y′k)

= pr∗g∗c(E) ∪ pr′∗g′∗c(E ′)
= (pr, pr′)∗(g, g′)∗c(E) ∪ c(E ′)

2

For example, if E = L⊕ L′ is a sums of two line bundles, then we have

c(E) = 1 + c1(L) + c1(L′) + c1(L)c1(L′) ,

i.e. in particular
c2(E) = c1(L)c1(L′) .

Example 6.29. We calculate the higher Chern classes of TCPn. The exact sequence
(45) gives

c(TCPn) = c((n+ 1)L∗) = c(L∗)n+1 = (1 + c1)n+1 =
n+1∑
k=0

(
n+ 1

k

)
ck1 .

We read off that

ck(TCPn) =

(
n+ 1

k

)
ck1

for k = 1, . . . , n. 2

Example 6.30. We consider a complex vector bundle E → B of dimension n.

Lemma 6.31. If E admits a nowhere vanishing section then cn(E) = 0.

Proof. If E admits such a section, then we get a decomposition E = C⊕ E ′, where
the trivial summand C is generated by the section. Since c1(C) = 0 we get

c(E) = c(C)c(E ′) = c(E ′) = 1 + · · ·+ cn−1(E ′) .
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2

For example, in view of Example 6.29 the bundle TCPn → CPn does not admit any
nowhere vanishing section. 2

Example 6.32. In this example we provide a formula for the Chern classes of a tensor
product E ⊗ F of two complex vector bundles of dimensions e and f over B. We
work in the polynomial ring Z[x1, . . . , xe, y1, . . . , yf ]. We let σi(x) := σi(x1, . . . , xe)
and σi(y) := σi(y1, . . . , yf ), where σi are the elementary symmetric functions. These
polynomials generate a polynomial subring

Z[σ1(x), . . . , σe(x), σ1(y), . . . , σf (y)] ⊆ Z[x1, . . . , xe, y1, . . . , yf ] .

We now observe that

u :=
e∏
i=1

f∏
j=1

(1 + xi + yj) ∈ Z[σ1(x), . . . , σe(x), σ1(y), . . . , σf (y)] .

More precisely we write u = u(σ1(x), . . . , σe(x), σ1(y), . . . , σf (y)).

Lemma 6.33. We have

c(E ⊗ F ) = u(c1(E), . . . , cn(E), c1(F ), . . . , cf (F )) .

Proof. We use the splitting principle. We consider the pull-back diagram

F(E)×B F(F ) r //

s

��

h

''

F(F )

q

��
F(E)

p // B

.

The Leray-Hirsch theorem holds for all maps in this diagram. In particular, the
pull-back

h∗ : HdR(B)→ HdR(F(E)×B F(F ))

is injective.

We have decompositions in to sums of line bundles

p∗E ∼= L1 ⊕ · · · ⊕ Le , q∗F ∼= H1 ⊕ · · · ⊕Hf .
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This gives

h∗(E ⊗ F ) =
e⊕
i=1

f⊕
j=1

s∗Li ⊗ r∗Hj .

We let xi := s∗c1(Li) and yj := r∗c1(Hj). Then

h∗c(E ⊗ F ) =
e∏
j=1

f∏
j=1

(1 + xi + yj) = h∗u(c1(E), . . . , ce(E), c1(F ), . . . , cf (F )) .

Since h∗ is injective the assertion of the Lemma follows. 2

Let us make the formula explicit for two 2-dimensional bundles.

c(E ⊗ F )

= 1 +
(

2c1(E) + 2c1(F )
)

+
(

3c1(E)c1(F ) + c1(E)2 + c1(F )2 + 2c2(E) + 2c2(F )
)

+
(

2c1(E)c2(F ) + 2c2(E)c1(F ) + c1(E)2c1(F ) + c1(E)c1(F )2

+2c1(E)c2(E) + 2c1(F )c2(F )
)

+
(
c2(E)2 + c2(F )2 + c1(E)2c2(F ) + c2(E)c1(F )2

+c1(E)c2(E)c1(F ) + c1(E)c1(F )c2(F )− c2(E)c2(F )
)
.

Similar formulas exists in general, but they are not easy. In order to deal with
tensor products of bundles a better adapted choice of characteristic classes are the
components of the Chern character, see Subsection 8.3.

2

6.4 Grassmannians

In this section we calculate the de Rham cohomology of the Grassmann manifold
Gr(k,Cn). Let L → Gr(k,Cn) be the k-dimensional tautological bundle. It is a
subbundle of the n-dimensional trivial bundle Cn × Gr(k,Cn) → Gr(k,Cn) and we
let L⊥ → Gr(k,Cn) be the orthogonal complement of L.
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We define cohomology classes of Gr(k,Cn) by ci := ci(L), i = 1, . . . , k and dj =
cj(L

⊥) for j = 1, . . . , n− k. Since L⊕ L⊥ is trivial we have the relations∑
i+j=k

cidj = 0 , k = 1, . . . , n ,

where we set ci := 0 for i > k and dj := 0 for j > n−k. In the following Proposition
we show that HdR(Gr(k,Cn)) is generated as a ring by these characteristic classes ci
and dj with exactly these relations.

Proposition 6.34. We have an isomorphism

HdR(Gr(k,Cn)) ∼=
R[c1, . . . , ck, d1, . . . , dn−k]

(
∑

i+j=k cidj = 0 , k = 1, . . . , n)
.

Proof. We consider the bundles of complete flags F(L) → Gr(k,Cn) and F(L⊥) →
Gr(k,Cn) and denote the Chern classes of the canonical bundles by xi ∈ H2

dR(F(L)),
i = 1, . . . , k, and by yj ∈ HdR(F(L⊥)), j = 1, . . . , n− k. We now observe that

F(L)×Gr(k,Cn) F(L⊥) ∼= F(Cn) ,

and we use the same notation xi and yj for the pull-back of these characteristic
classes along the projection from the fibre product to its factors. We write σi(x, y)
for the ith elementary symmetric function on the variables xi and yj. Then we have
the relations

σk(x, y) =
∑
i+j=k

σi(x)σj(y) , k = 1, . . . , n .

We now use that by Corollary 6.27

HdR(F(Cn)) ∼=
R[x1, . . . , xk, y1, . . . , yn−k]

(σ1(x, y), . . . , σn(x, y))
.

The Leray-Hirsch theorem for the bundle

F(Cn) ∼= F(L)×Gr(k,Cn F(L⊥)→ Gr(k,Cn) (50)

induces an isomorphism

HdR(Gr(k,Cn))[x1, . . . , xk, y1, . . . , yn−k]

((ci = σi(x), i = 1, . . . , k) , (dj = σj(y), j = 1, . . . , n− k))

∼=→ R[x1, . . . , xk, y1, . . . , yn−k]

(σ1(x, y), . . . , σn(x, y))
.
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If we restrict to the subspace of HdR(Gr(k,Cn)) generated by the classes ci and dj,
then we get a map

R[c1,...,ck,d1,...,dn−k]

(
∑
i+j=k cidj=0,k=1,...,n)

[x1, . . . , xk, y1, . . . , yn−k]

((ci = σi(x), i = 1, . . . , k) , (dj = σj(y), j = 1, . . . , n− k))
→ R[x1, . . . , xk, y1, . . . , yn−k]

(σ1(x, y), . . . , σn(x, y))

which sends ci to σi(x) and dj to σj(y). By inspection we see that it is an isomor-
phism. It follows that

HdR(Gr(k,Cn)) ∼=
R[c1, . . . , ck, d1, . . . , dn−k]

(
∑

i+j=k cidj = 0 , k = 1, . . . , n)
.

Example 6.35. In this example we consider the Stiefel manifold V (k,Cn) of k-tuples
of orthonormal vectors.

Lemma 6.36. We have

H`
dR(V (k,Cn)) = 0 , ` = 1 . . . , 2(n− k) .

Proof. We have a presentation of the Stiefel manifold as a homogeneous space

V (k,Cn) ∼= U(n)/U(n− k) .

Indeed, U(n) acts transitively on k-tuples of orthonormal vectors in Cn, and the
stabilizer of the tuple (e1, . . . , ek) (the beginning of the standard basis) is the sub-
group U(n − k) ⊆ U(n) embedded as lower right block. We consider the LSSS
spectral sequence for the bundle U(n) → V (k,Cn) with fibre U(n − k). Note that
the polynomial generators (see Lemma 6.20)

u2i−1 ∈ E0,2i−1
2

∼= H2i−1
dR (U(n− k)) , i = 1, . . . , n− k

extend to U(n) and are therefore (Corollary 5.16) permanent cycles (i.e. they are
annihilated by all higher differentials). The polynomials of their extension to U(n)
generate the cohomology of U(n) in degrees ≤ 2(n − k). For ` ∈ {1, . . . , 2(n − k)}
the restriction H`

dR(U(n))→ H`
dR(U(n− k)) is injective

Assume that ` ∈ {1, . . . , 2(n − k)} is minimal such that there is a non-trivial class
x ∈ H`

dR(V (k,Cn)) = E0,`
2 . Then this class can not be hit by any differential and

therefore survives to the E∞-page. In other words, it lifts non-trivially to U(n). But
then its restriction to the fibre U(n − k) would be non-trivial. This is contradicts
the observation made in the previous paragraph. 2
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Example 6.37. Here we generalize Example 6.10 to higher-dimensional bundles.

Let V → B be a k-dimensional vector bundle. We say that V is globally generated
if there exists a family of sections (si)

n
i=1 of V such that for every b ∈ B the collection

of values (si(b))i=1,...,n generates the fibre Vb as a complex vector space. If B is
compact, then V is globally generated. Indeed, one can choose for every point b ∈ B
a collection of sections (si,b)i=1,...,k of V such that the values (si,b(b))i=1,...,k generate
Vb. Then

Ub := {b′ ∈ B | Vb′ = 〈s1,b(b
′), . . . , sk,b(b

′)〉}
is an open neighborhood of b. By the compactness of B there is a finite subset
A ⊆ B such that

⋃
a∈A Ua = B. Then the finite collection (si,a)i∈{1,...,k},a∈A of sections

globally generates V .

Note that one can show more generally, that a vector bundle over a connected man-
ifold B is always globally generated, independently of compactness of B.

Assume now that (si)
n
i=1 generates the bundle V → B globally. Such a collection of

sections gives rise to a map s : B → Gr(k,Cn) as follows. For b ∈ B we define a
surjective map

f(b)∗ : Cn,∗ → Vb , x 7→
n∑
i=1

xisi(b) .

Its adjoint is the injective map

f(b) : V ∗b → Cn ,

and we set
s(b) := im(f(b)) ⊆ Cn .

We have a pull-back diagram

V ∗ S //

��

L

��
B s // Gr(k,Cn)

,

or equivalently, an isomorphism V ∼= s∗L∗. We conclude that

ci(V ) = (−1)is∗ci(L) , i = 1, . . . , k .

2
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Example 6.38. We consider isomorphism of complex bundles

TGr(k,Cn)→ Hom(L,Cn/L) , TxGr(k,Cn) 3 X 7→
(

[φ] 7→ [∇triv
X φ̃(x)]

)
,

where φ̃ is a section of L such that φ̃(x) = φ, or

TGr(k,Cn) ∼= Hom(L,Cn/L) ∼= L∗ ⊗ Cn/L .

This allows to calculate, but the answer is complicated.

2

7 Geometric applications of cohomology - degree

and intersection numbers

7.1 The mapping degree

We consider two closed connected oriented manifolds M and N of the same di-
mension k and a smooth map f : M → N . Note that Hk

dR(M) and Hk
dR(N) are

one-dimensional real vector spaces. We fix basis vectors by choosing the normalized
volume classes [volM ] ∈ Hk

dR(M) and [volN ] ∈ Hk
dR(N) such that

∫
M

[volM ] = 1 and∫
N

[volN ] = 1.

Definition 7.1. The mapping degree deg(f) ∈ R of f is defined such that

f ∗[volN ] = deg(f)[volM ] ,

or equivalently, by

deg(f) :=

∫
M

f ∗[volN ] .

It is clear that deg(f) only depends on the homotopy classes of f . Moreover, it
changes its sign if the orientation of exactly one of M or N is flipped.

Example 7.2. We consider a closed curve f : S1 → C \ {0}. Such a map has a
winding number nf . It can be calculated by

nf =
1

2πi

∫
S1

df

f
.
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By normalizing we get a map f1 := f/|f | : S1 → S1. We claim that deg(f1) = nf .

We parametrize S1 by t ∈ [0, 1] using t 7→ e2πit. Then dt is the normalized volume
form in this chart. We have

deg(f1) =

∫ 1

0

f ∗1dt

=
1

2πi

∫ 1

0

ln(
f(e2πit)

|f(e2πit)|
)′dt

=
1

2πi

∫ 1

0

1

2

(
ln(f(e2πit))− ln(f̄(e2πit))

)′
dt

=
1

2

∫ 1

0

(
f ′(e2πit)

f(e2πit)
− f̄ ′(e2πit)

f̄(e2πit)
)dt

=

∫ 1

0

f ′(e2πit)

f(e2πit)
dt

=
1

2πi

∫
S1

df

f
= nf .

2

Recall that a point m ∈M is called regular if df(m) : TmM → Tf(m)N is surjective
(i.e. an isomorphism in our case since both manifolds have the same dimension).

Definition 7.3. We define the sign of f at a regular point m ∈M of f by

sf (m) :=

{
1 df(m) preserves the orientation
−1 df(m) does not preserve the orientation

.

A point n ∈ N is called a regular value of f , if every point m ∈ f−1({n}) is
a regular point of f . It is good to know the following theorem from differential
topology:

Theorem 7.4 (Sard). The set of regular values of a smooth map has full Lebesgue
measure. In particular it is dense.
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Theorem 7.5. If n ∈ N is a regular value of f , then

deg(f) =
∑

m∈f−1({n})

sf (m) .

Proof. Every m ∈ f−1({n}) admits an open neighbourhood Um such that f|Um :
Um → f(Um) is a diffeomorphism of Um onto an open neighbourhood f(Um) of n.
In particular, for m ∈ f−1({n}) we have f−1({n}) ∩ Um) = {m}. Consequently, the
preimage f−1({n}) of the regular point n ∈ N is discrete. Since f is continuous, this
preimage is also closed. Since M is compact we see that f−1({n}) is finite. Therefore
we can find a closed neighbourhood B ⊆ N of n which is diffeomorphic to a ball with
smooth boundary S := ∂B such that B ⊂ f(Um) for all m ∈ f−1({n}). We consider
the end of the long exact sequence of the pair (N \ Int(B), S).

· · · → Hk−1
dR (S)

∂→ Hk
dR(N \ Int(B), S)→ Hk

dR(N \ Int(B))→ 0 .

By Example 1.45 we know that ∂ is surjective and therefore Hk
dR(N \ Int(B)) = 0.

We can find a form α ∈ Ωk−1(N \ Int(B)) such that dα = volN |N\Int(B). By Stoke’s
theorem we have

1 =

∫
N

volN =

∫
N\Int(B)

volN +

∫
B

volN =

∫
N\Int(B)

dα +

∫
B

volN =

∫
S

α +

∫
B

volN .

(51)
Here we orient S as the boundary of N \ Int(B).

We have ∫
M

f ∗volN =

∫
M\f−1(Int(B))

f ∗volN +

∫
f−1(B)

f ∗volN .

By Stoke’s theorem∫
M\f−1(Int(B))

f ∗volN =

∫
M\f−1(Int(B))

f ∗dα =

∫
∂f−1(Int(B))

f ∗α =
∑

m∈f−1({n})

∫
f−1(S)∩Um

f ∗α .

Furthermore, ∫
f−1(B)

f ∗volN =
∑

m∈f−1({n})

∫
f−1(B)∩Um

f ∗volN .
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We thus have

deg(f) =

∫
M

f ∗volN

=
∑

m∈f−1({n})

(∫
f−1(S)∩Um

f ∗α +

∫
f−1(B)∩Um

f ∗volN

)

=
∑

m∈f−1({n})

sf (m)

(∫
S

α +

∫
B

volN

)
(51)
=

∑
m∈f−1({n})

sf (m) .

2

Observe that Theorem 7.5 implies that the mapping degree deg(f) is an integer.

Example 7.6. Let G be a finite group acting on an oriented closed connected
manifold in an orientation preserving way. Then we can consider the projection
f : M →M/G. In this case every point m ∈M is regular and sf (m) = 1 if we equip
M/G with the induced orientation. We get deg(f) = ]G.

Let L ⊂ L′ be two lattices of full rank in Rn. Then we have a map of tori Rn/L →
Rn/L′ which has degree [L′ : L] = ](L′/L).

The mapping degree of the projection S2n−1 → L(p, q) is p, see (8) for notation.

2

Example 7.7. Every closed oriented manifold M of dimension n admits a map
f : M → Sn of degree 1. Let m ∈ M and φ : U → Rn be an orientation preserving
chart at m. Let χ ∈ C∞c (U) be such that χ(m) ≡ 1 near m and 0 ≤ χ < 1 otherwise.
We identify Sn ∼= Rn ∪{∞} using the coordinate x

‖x‖2 in a neighbourhood of ∞. We
define f by

f(m) :=

{
φ(m)
χ(m)

m ∈ U
∞ m 6∈ U

.

Indeed,

m→ f(m)

‖f(m)‖2
=
φ(m)χ(m)

‖φ(m)‖2
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extends smoothly by zero from U \ {m} to M \ {m}. Note that f−1({0}) = {m} is
a regular point and sf (m) = 1. Hence deg(f) = 1.

Let k ∈ Z. Then we can perform this construction near a collection of k points of M
and also use orientation reversing charts if k < 0. Consequently, there exists maps
of degree k from M to Sn for every k ∈ Z.

2

Example 7.8. Here is a typical application of the mapping degree as a tool for
showing that an equation has a solutions. Let f : Rn → Rn be a smooth map which
is the identity near ∞.

Corollary 7.9. For every b ∈ Rn the equation

f(x) = b , x ∈ Rn

has a solution.

Proof. We identify Rn with Sn \ {N} (the complement of the north pole) as usual.
Then f uniquely extends to a smooth map f̃ : Sn → Sn which is regular at N . Since
f−1({N}) = {N} we see that | deg(f)| = 1.

Assume by contradiction that b ∈ Rn is such that f−1({b}) = ∅. Since Sn is compact
the image of f is closed. Hence f−1({b′}) = ∅ for all b′ in a neighbourhood of b. In
particular, by Sard’s theorem 7.4 we can find a regular value b′ with empty preimage
and conclude that deg(f) = 0. A contradiction.

2

Example 7.10. Let again M be a closed oriented and connected manifold of dimen-
sion n. In general there is no map of non-vanishing degree from Sn to M .

Assume that there is ` ∈ {1, . . . , n− 1} such that H`
dR(M) 6= 0. Let x ∈ H`

dR(M) be
a non-vanishing element. By Poincaré duality there exists y ∈ Hn−`

dR (M) such that∫
M
x ∪ y = 1. Hence x ∪ y = [volM ]. Let f : Sn →M be any map. It follows

deg(f) =

∫
Sn
f ∗[volM ] =

∫
Sn
f ∗x ∪ f ∗y = 0

since f ∗x ∈ H`
dR(Sn) = 0.
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For example, for n ≥ 2 the degree of every map Sn → T n or S2n → CPn vanishes.

2

Example 7.11. Let n ∈ N, n ≥ 2 and f : S4n → HPn a smooth map. Then for
every regular value x ∈ HPn the number ]f−1({x}) is even. 2

Example 7.12. Let f : M → N be a map between closed connected oriented man-
ifolds of the same dimension. Thenf ∗ : H∗dR(N) → H∗dR(M) is injective if and only
if deg(f) 6= 0. 2

Example 7.13. For a product of maps we have deg(g × f) = deg(g) deg(f). 2

Example 7.14. Let p ∈ C[z] be a polynomial of degree n. We can form the homo-
geneous polynomial zn0 p(

z1
z0

) ∈ C[z0, z1] of degree n. The latter can be considered as
a map

f : CP1 → CP1 , [z0 : z1] 7→ [zn0 : zn0 p(
z1

z0

)] .

We first calculate the degree of this map.

We consider Ltaut as a subbundle of the trivial 2-dimensional bundle CP1 × C2. In
particular, for [z0 : z1] ∈ CP1 we have (z0, z1) ∈ Ltaut[z0,z1].

We define sections s0, s1 ∈ Γ(CP1, Ltaut,∗) given by si([z0 : z1])(z0, z1) = zi for i = 0, 1.
Then we define the sections sn0 and sn0p(

s1
s0

) of (Ltaut,∗)n. These sections do not
vanish simultaneously. By Lemma 6.10 this pair of sections gives rise to the map f
and we have f ∗Ltaut,∗ = (Ltaut,∗)n. We conclude that f ∗c1 = nc1 and consequently
deg(f) = n.

We consider a point x ∈ C such that z 7→ p(z)−x has only simple zeros. If y is such a
zero, then df([1 : y]) = dp(y) is an isomorphism. We have f−1({[1 : x]}) ∼= {p = x}.
Since f is holomorphic df preserves the orientation at every regular point m ∈ CP1.
Consequently, sf (m) = 1. We conclude that

]{p = x} = ]{f = [1 : x]} = deg(f) = n

as expected since the polynomial p(z) − x ∈ C[z] of degree n has exactly n zeros if
they are all simple.
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7.2 Integration over the fibre and the edge homomorphism

We consider a locally trivial fibre bundle f : E → B with closed fibre F of dimension
n which is fibrewise oriented. By definition, a fibrewise orientation is an orien-
tation of the vertical tangent bundle T vf = ker(df). For every b ∈ B we therefore
have T vf|Eb

∼= TEb and an induced orientation of the fibre Eb of the bundle over b.
In this subsection we construct a natural map∫

E/B

: H∗dR(E)→ H∗−ndR (B)

called integration over the fibre. It generalizes the integration map∫
F

: Hn
dR(F )→ R .

In fact, if F is a closed oriented manifold, then we can consider the bundle F → ∗
which has a fibrewise orientation. With the identification R ∼= H0

dR(∗) we will have
the equality

∫
F/∗ =

∫
F

.

Integration over the fibre is induced by an integration map on the level of de Rham
complexes which we describe first. The integral over the fibre of a form ω ∈ Ωk(E)
is the form ∫

E/B

ω ∈ Ωk−n(B)

defined as follows. Let b ∈ B and X1, . . . , Xk−n be vectors in TbB. We choose lifts
X̃i ∈ Γ(Eb, TE) such that df(e)(X̃i(e)) = Xi for all i = 1, . . . , k − n and e ∈ Eb.
Then

iX̃k−n . . . iX̃1
ω|Eb ∈ Ωn(Eb) .

Note that this form does not depend on the choice of the lifts X̃i. We define the
evaluation of

∫
E/B

ω at b and on the vectors X1, . . . , Xk−n by

(

∫
E/B

ω)(b)(X1, . . . , Xk−n) :=

∫
Eb

iX̃k−n . . . iX̃1
ω|Eb .

In order to define the integral we use the orientation of Eb induced by the fibrewise
orientation. Using local trivializations one can check that this construction produces
a smooth form. More details follow below. We get a map∫

E/B

: Ωk(E)→ Ωk−n(B) .
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We now show compatibility with the differential.

In order to incorporate the homotopy formula and a fibrewise Stokes theorem into
the story we consider generally a bundle of compact manifolds with boundary. The
typical fibre F is then compact, oriented, and has a boundary ∂F . We let ∂E → B
be the corresponding bundle with fibre ∂F and induced fibrewise orientation.

Lemma 7.15. For ω ∈ Ω(E) we have the identity

(−1)nd

∫
E/B

ω +

∫
∂E/B

ω =

∫
E/B

dω . (52)

Proof. Since this equality can be checked locally in B we can assume that E =
F × R` and B = R`. We have ω =

∑
p+q=n ω

p,q with ωp,q ∈ Ωp,q(F × R`) (see

(28) for notation), and we can write ωp,q =
∑

J∈Iq ω
p,q
J ∧ dxJ , where Iq := {(1 ≤

i1 < · · · < iq ≤ `)} is the index set for the standard basis of ΛqR`,∗ and ωp,qJ is
a section of pr∗FΛpT ∗F → F × R` considered as a subbundle of ΛpT ∗(F × R`), i.e
ωp,qJ ∈ Ωp,0(F × R`) in the notation of (28). Then∫

E/B

ω =
∑

J∈Ik−n

∫
F

ωn,k−nJ dxJ .

We calculate

d

∫
E/B

ω = d
∑

J∈Ik−n

∫
F

ωn,k−nJ dxJ

=
∑̀
i=1

∂i
∑

J∈Ik−n

∫
F

ωn,k−nJ dxi ∧ dxJ

=
∑̀
i=1

∑
J∈Ik−n

∫
F

∂iω
n,k−n
J dxi ∧ dxJ
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On the other hand,∫
E/B

dω =

∫
E/B

(dF + dB)ω

= (−1)n
∑

J∈In−k

∫
F

∂iω
n,k−n
J dxi ∧ dxJ

+
∑

J∈In−k+1

∫
E/B

dFωn−1,k−n
J dxj

= (−1)n
∑

J∈In−k

∫
F

∂iω
n,k−n
J dxi ∧ dxJ

+
∑

J∈In−k+1

∫
∂F

ωn−1,k−n
J dxJ

= (−1)nd

∫
E/B

ω +

∫
∂F

ω .

2

Example 7.16. The formula (52) can be considered as a generalization of the ho-
motopy formula (1). In fact, if ω ∈ Ω([0, 1] ×M), then by specializing (52) to the
bundle [0, 1]×M →M we get

ω|{1}×M − ω|{0}×M =

∫
I×M/M

dω + d

∫
I×M/M

ω .

Here we have used that
∫
∂([0,1]×M)/M

ω = ω|{1}×M − ω|{0}×M . 2

Corollary 7.17. If F is closed, then we have a map of complexes∫
E/B

: Ω(E)→ Ω(B)[n] .

We get an induced integration map in cohomology∫
E/B

: Hk
dR(E)→ Hk−n

dR (B)

for all k ∈ Z.
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Proof. Note that the sign (−1)n in the formula (52) takes care of the same sign in
the definition of the differential of the shifted complex Ω(B)[n], see (4). 2

Lemma 7.18 (Naturality of integration). For a pull-back diagram

E ′ h //

f ′

��

E

f
�� ��

B′
g // E

we have the identity

g∗ ◦
∫
E/B

=

∫
E′/B′

◦h∗

of maps on forms as well as in cohomology.

Proof. Immediate from the definitions. 2

Lemma 7.19 (Projection formula). We consider a fibre bundle f : E → B with
closed oriented n-dimensional fibres. For x ∈ HdR(E) and y ∈ HdR(B) we have∫

E/B

(x ∪ f ∗y) = (

∫
E/B

x) ∪ y .

Proof. This follows immediately from the corresponding identity on the level of
forms. 2

Example 7.20. We consider an iterated bundle E → G → B with closed fibres.
The choice of fibrewise orientations for two of the three bundles E → G, G→ B and
E → B induces an orientation on the third such that∫

E/B

=

∫
G/B

◦
∫
E/G

holds. 2

Note that
∫
E/B

annihilates F 1HdR(E) and therefore induces a map

Gr0Hk
dR(E)→ Hk−n

dR (B) .
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We consider the LSSS of E → B. The orientation of the fibres induces a trivialization
of Hn(E/B). We get

Ep,n
2
∼= Hp

dR(B) .

Here is a picture for n = 3.

3 H0
dR(B) H1

dR(B) H2
dR(B) H3

dR(B) H4
dR(B) H5

dR(B)

2 E0,2
2 E1,2

2 E2,2
2 E3,2

2 E4,2
2 E5,2

2

1 E0,1
2 E1,1

2 E2,1
2 E3,1

2 E4,1
2 E5,1

2

0 H0
dR(B) H1

dR(B) H2
dR(B) H3

dR(B) H4
dR(B) H5

dR(B)

0 1 2 3 4 5

The line marks the entries contributing to H4
dR(E).

A class x ∈ Gr0(Hk
dR(E)) is detected by an element ξ ∈ Ek−n,n

∞ ⊆ Ek−n,n
2 (the

encircled entry in the picture above). Under the identification Ek−n,n
2

∼= Hn−k
dR (B)

we have ξ =
∫
E/B

x. In order to see this let ω be a representative for x. This

form represents a section ξ ∈ Ωk(B,Hn(E/B)) = Ek−n,n
1 . Under the trivialization

Ωk−n(B,Hn(E/B)) ∼= Ωn−k(B) it corresponds to
∫
E/B

ω.

Example 7.21. We consider the Hopf bundle h : S2n−1 → CPn−1. We know that
the normalized volume class [volS2n−1 ] ∈ H2n−1

dR (S2n−1) is detected by the element
λu ∪ c1 ∈ E2n−2,1

2 for a suitable non-vanishing λ ∈ R. We determine the factor λ.
The form (compare with (43))

θ := (
1

2πi
z̄tdz)|S2n−1 ∈ Ω1(S2n−1)

represents u ∈ E0,1
2 .

We can choose the representative ω ∈ Ω2(CPn−1) of c1 ∈ H2
dR(CPn−1) ∼= E2,0

2 such
that dθ = h∗ω. By assumption the product λθ ∧ h∗ωn−1 represents [volS2n−1 ]. Note
that

∫
S2n−1/CPn−1 θ = 1. Hence, by the projection formula 7.19

1 =

∫
S2n−1

λθ ∧ h∗ωn−1 =

∫
S2n−1/CPn−1

λθ ∧
∫
CPn−1

ωn−1 6.8
= λ .
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2

7.3 Transgression

Let f : E → B be a fibre bundle with fibre F over a connected base B. We consider
a positive integer k and a cohomology class x ∈ Hk

dR(B) such that f ∗x = 0. Let
x = [ω] for a closed form ω ∈ Ωk(B). Then there exists α ∈ Ωk−1(E) such that
dα = f ∗ω. Since k is positve we have (dα)|F = (f ∗ω)|F = 0.

Lemma 7.22. The class [α|F ] ∈ Hk−1
dR (F ) only depends on x up to the image of the

restriction Hk−1
dR (E)→ Hk−1

dR (F ).

Proof. The form α is determined by ω up to closed forms in Ωk(E). Therefore
[α|F ] ∈ Hk−1

dR (F ) is determined by ω to the image of the restriction map as asserted.
If we choose a different representative ω′, then ω′ − ω = dβ for some β ∈ Ωk−1(B).
We can take α′ = α + f ∗β. If k ≥ 2, then (f ∗β)|F = 0 and therefore [α|F ] = [α′|F ] in

Hk−1
dR (F ). If k = 1, then [β|F ] ∈ im(Hk−1

dR (E)→ Hk−1(F )). Indeed, β|F is a constant
and can be extended as a constant to E. 2

In the following definition α is as above.

Definition 7.23. Let E → B be a fibre bundle with fibre F over a connected base
B, k a positive integer, and x ∈ ker(f ∗ : Hk

dR(B)→ Hk
dR(E)). The class

T (x) := [α|F ] ∈ Hk−1
dR (F )

im(Hk−1
dR (E)→ Hk−1

dR (F ))

is called the transgression of x.

We now consider the LSSS for the bundle f : E → B. The transgression inverts,
in some sense, the differential dk : E0,k−1

k → Ek,0
k . Indeed, if x ∈ ker(f ∗) and

y ∈ T (x) ⊆ Ek−1,0
2 , then d`y = 0 for all ` ∈ N with 2 ≤ ` ≤ k − 1, and dky = [x] in

Ek,0
k , where [x] denotes the class of x under the quotient map E0,k

2 → E0,k
k .

The transgression annihilates decomposable elements.

Lemma 7.24. If x = a ∪ b for classes of non-zero degree and a ∈ ker(f ∗), then
0 ∈ T (x).
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Proof. We can choose α := γ ∪ f ∗β, where β represents b and dγ = f ∗ω for a repre-
sentative ω of a. But (f ∗β)|F = 0 and therefore α|F = 0. 2

Example 7.25. We consider the bundle S2n+1 → CPn. Then T (c1) = u, the nor-
malized volume form of the fibre. Since H1

dR(S2n−1) = 0 the transgression is unique.
2

Example 7.26. We consider the bundle f : V (k,Cn) → Gr(k,Cn) with fibre U(k)
and let L → Gr(k,Cn) be the tautological bundle. We assume that i ∈ N is such
that i ≤ 2(n− k). Recall the calculation of the cohomology of U(k) in 6.20.

Lemma 7.27. The transgressive classes in H2i−1
dR (U(k)) ∼= fE0,2i−1

2 are multiples of
the generator u2i−1.

Proof. In order to see this let x ∈ H2i−1
dR (U(k)) be a polynomial in the generators

u1, . . . , u2i−3. We must show that x is not transgressive.

Assume by contradiction that x is transgressive. We consider the standard embed-
ding Cn−(k−i) → Cn. We get a bundle map

V (i,Cn−(k−i)) //

g

��

V (k,Cn)

f

��
Gr(i,Cn−(k−i)) h // Gr(k,Cn)

,

where V (i,Cn−(k−i))→ V (k,Cn) maps the orthonormal system (v1, . . . , vi) in Cn−(k−i)

to the system (v1, . . . , vi, en−(k−i)+1, . . . , en) in Cn obtained by adding the last k − i
basis vectors. On the level of fibres this bundle map is given by standard the em-
bedding U(i) → U(k) up to conjugation. We have an associated map of LSSS’es.
If x ∈ H2i−1

dR (U(k)) = fE0,2i−1
2 is a polynomial in the generators u1, . . . , u2i−3 and

transgressive, then its restriction E(h)(x) ∈ gE0,2i−1
2

∼= H2i−1
dR (U(i)) would be non-

trivial (by Lemma 6.20) and transgressive, too. By Lemma 5.16 it would extend to a
non-trivial class in H2i−1

dR (V (i,Cn−(k−i))). Since 2i−1 ≤ 2(n− (k− i)− i) = 2(n−k)
this is impossible in view of Lemma 6.36. 2

The transgression
T (ci(L)) ∈ H2i−1

dR (U(k))
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is the well-defined since H2i−1
dR (V (k,Cn)) = 0 by Lemma 6.36. This class is trans-

gressive. By Lemma 7.27 there exists λi ∈ R such that

d2i(λiu2i−1) = [ci(L)] ∈ E0,2i
2i , T (ci) = λiu2i−1 .

Of course we have λ1 = 1. It seems to be complicated to determine the numbers λi
for i ≥ 2 without further theory.

2

7.4 The Thom class of a sphere bundle and Poincaré-Hopf

We consider a fibre bundle f : E → B with fibre Sn−1 over a connected base B. A
trivialization of Hn−1(E/B) → B is called orientation. Equivalenty one can give
an orientation as a fibrewise orientation as defined in Subsection 7.2. We refer to
Subsection 5.2 for spectral sequence calculations in this case.

We have a class
u ∈ E0,n−1

n = E0,n−1
2

∼= Hn−1
dR (Sn−1)

which we normalize such that
∫
Sn−1 u = 1.

Definition 7.28. We define the Euler class of the oriented sphere bundle by

χ(E) := dn(u) ∈ En,0
n = En,0

2
∼= Hn

dR(B) .

Note that χ(E) changes its sign if we switch the orientation of the sphere bundle.
Sometimes we write χ(E → B) in order to indicate that the Euler class is an invariant
of the bundle.

Remark 7.29. The Euler class is a characteristic class for oriented sphere bundles.
If

g∗E //

g∗f
��

E

f
��

B′
g // B

is a pull-back diagram of bundles with fibre Sn−1 and the orientation of g∗f is induced
from the orientation of f , then we have the relation

g∗χ(E) = χ(g∗E) .

151



This immediately follows from the functoriality of the LSSS shown in Lemma 5.9.2

The Gysin sequence has the form

· · · ···∪χ(E)→ Hk
dR(B)

f→ Hk
dR(E)

σ→ Hk−n+1
dR (B)

···∪χ(E)→ Hk+1
dR (B)→ . . .

In particular we have f ∗χ(E) = 0.

We have two cases with different behavour:

1. If χ(E) 6= 0, then · · · ∪ χ(E) : H0
dR(B)→ Hn

dR(B) is injective. Hence

Hn−1
dR (E) ∼= im(f ∗ : Hn−1

dR (B)→ Hn−1
dR (E)) .

The restriction Hn−1
dR (E)→ Hn−1

dR (Sn−1) therefore vanishes. The transgression

T : ker(f ∗ : Hn
dR(B)→ Hn

dR(E))→ Hn−1
dR (Sn−1)

is well-defined. We have T (χ(E)) = u.

2. If χ(E) = 0, then there exists a class Th(E) ∈ Hn−1
dR (E) such that Th(E)|Sn−1 =

u. Such a class is called a Thom class of the sphere bundle. Vice versa, if
the sphere bundle bundle admits a Thom class, then χ(E) = 0. See Corollary
5.16. In this case, by the Leray-Hirsch theorem, HdR(E) is a free module over
HdR(B) with generators 1 and Th(E). Note that

∫
E/B

Th(E) = 1.

Example 7.30. We consider the S1-bundle S2n+1 → CPn. In this case

χ(S2n+1 → CPn) = c1 .

This class does not vanish. Hence the S1-bundle S2n+1 → CPn does not admit a
Thom class. 2

Example 7.31. We consider the trivial bundle Sn−1 × B → B. In this case the
LSSS degenerates at the second term and χ(Sn−1 × B → B) = 0. A Thom class is
given by [volSn−1 ]× 1 ∈ Hn−1

dR (Sn−1×B). The Leray-Hirsch theorem is equivalent to
the Künneth theorem.

If E → B is a oriented bundle with fibre Sn−1 and χ(E → B) 6= 0, then the bundle
is not trivial. 2
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We now consider a real n-dimensional vector bundle V → B. We choose a metric
so that we can form the unit sphere bundle S(V ) → B. The vector bundle V is
oriented if and only if the sphere S(V )→ B is oriented.

Definition 7.32. We define the Euler class of the oriented vector bundle V by
χ(V ) := −χ(S(V )) ∈ Hn

dR(B).

Exercise: Show that χ(V ) does not depend on the choice of the metric in V . 2

Lemma 7.33. If V admits a nowhere vanishing section, then χ(V ) = 0.

Proof. Let f : S(V )→ B be the sphere bundle. If X is a nowhere vanishing section,
then we can define the normalized section Y := X

‖X‖ ∈ Γ(B, S(V )). Note that

f ∗χ(V ) = 0. Since id = f ◦ Y we have

χ(V ) = Y ∗f ∗χ(V ) = 0 .

2

We consider a real n-dimensional vector bundle V → B. If X ∈ Γ(B, V ) is transverse
to the zero section 0V , then Z(X) := {X = 0} ⊆ B is a codimension-n submanifold.

Definition 7.34. We say that X has non-degenerated zeros if X and 0V are
transverse.

If B and V are oriented, then Z(X) has an induced orientation. If dim(B) = n, then
Z(X) is zero dimensional. In this case an orientation of Z(X) is a function

degX : Z(X)→ {1,−1} .

It associates to b ∈ Z(X) the local degree.

Remark 7.35. In the following we describe how one can check in local coordinates
that X has non-degenerated zeros and how one can calculate the local degree. We
identify B with the zero section of V . If b ∈ B, then we write 0b ∈ Vb ⊆ V for the
corresponding point in the zero section. We have a natural decomposition

TV|B ∼= TB ⊕ V .

Let us describe this decomposition at a point b ∈ B. We have a natural inclusion
ιb : Vb → T0bV which maps A ∈ Vb to ιb(A) = d

dt |t=0
tA ∈ T0bV . Moreover, the
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differential of the zero section 0V gives an inclusion d0V (b) : TbB → T0bV . This gives

the isomorphism d0V (b)⊕ ιb : TbB ⊕ Vb
∼=→ T0bV .

Assume that b ∈ Z(X). Then dX(b) − d0V (b) : TbB → T0b(V ) has values in ιb(Vb).
In order to see this we use local coordinates x of B centered at b and a trivialization
of V . We write points in V as pairs (x, ξ) with ξ ∈ Rn. The section X is then given
by x 7→ (x, ξ(x)). The differential of this map is (id, dξ(x)). The zero section 0V is
given by x 7→ (x, 0). So finally, dX(b)− d0V (b) is (0, dξ(0)).

Corollary 7.36. We see that X and 0V are transverse at 0b of dξ(0) is surjective.

Let us now assume that dim(B) = n = dim(V ). Then b ∈ Z(X) is non-degenerated
if and only if dξ(0) is an isomorphism. In this case

ι−1
b ◦ (dX(b)− d0V (b)) : TbB → Vb

is an isomorphism.

Let us now assume that B and V are oriented. Then we get induced orientations of
the vector spaces TbB and Vb for all b ∈ B.

Corollary 7.37. The local degree is given by W

degX(b) :=

{
1 ι−1

b ◦ (dX(b)− d0V (b)) perserves orientations
−1 else

2

Example 7.38. The non-degenerated zeros of a gradient vector field ξ on R2 are
classified into tree types:

source: ξ(x, y) := (x, y). We have sξ(0) = 1.

saddle: ξ(x, y) := (x,−y). We have sξ(0) = −1.

sink: ξ(x, y) := (−x,−y). We have sξ(0) = 1.

The rotation field ξ(x, y) = (−y, x) has sξ(0) = 1. 2

Theorem 7.39 (Poincaré-Hopf). Let V → B be an n-dimensional real oriented
vector bundle over a closed oriented manifold B of dimension n. If the zeros of a
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section X ∈ Γ(B, V ) are non-degenerated, then we have the equality∫
B

χ(V ) =
∑

b∈Z(X)

degX(b) .

Proof. Ldet f : S(V ) → B be the sphere bundle of V for some choice of a metric.
We choose a closed form ω ∈ Ωn(B) such that χ(V ) = [ω]. Since f ∗χ(V ) = 0 we
can choose α ∈ Ωk−1(S(V )) such that f ∗ω = dα. Note that −α|S(Vb) represents the
normalized volume form for all b ∈ B.

For every zero b ∈ Z(X) we let Ub be a small oriented coordinate ball with smooth
boundary centered at b not containing any other zero of X. For r ∈ (0, 1] we let
rUb ⊂ Ub be the scaled neighbourhood.

We calculate for every r ∈ (0, 1]:∫
B

χ(V ) =

∫
B

ω

=
∑

b∈Z(X)

(∫
B\Int(rUb)

ω +

∫
rUb

ω

)

=
∑

b∈Z(X)

(∫
B\Int(rUb)

Y ∗f ∗ω +

∫
rUb

ω

)

=
∑

b∈Z(X)

(∫
B\Int(rUb)

Y ∗dα +

∫
rUb

ω

)

=
∑

b∈Z(X)

(
−
∫
∂(rUb)

Y ∗α +

∫
rUb

ω

)
.

The minus sign comes from the fact that we orient ∂(rUb) as the boundary of rUb
and not of B \ Int(rUb). We now consider the limit r → 0. We clearly have

limr→0

∫
rUb

ω = 0 .

We write Yr := Y|∂(rUb). We use an orientation preserving trivialization of V near b.

We parametrize ∂(rUb) by ξ ∈ Sn−1. Then we have Yr(ξ) = (rξ, X(rξ)
‖X(rξ)‖). The Taylor

expansion of X at 0 gives X(x) = dX(0)(x) +O(x2). Then we have

Yr(ξ) = (rξ,
dX(0)(rξ) +O(r2)

‖dX(0)(rξ) +O(r2)‖
) = (O(r),

dX(0)(ξ) +O(r)

‖dX(0)(ξ) +O(r)‖
) = (0,

dX(0)(ξ)

‖dX(0)(ξ)‖
)+O(r) .
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The map

Xo : Sn−1 → Sn−1 , ξ 7→ dX(0)(ξ)

‖dX(0)(ξ)‖
has degree degX(b). Since −α|S(Vb) represents the normalized volume class it follows
that

limr→0

∫
∂(rUb)

Y ∗α =

∫
Sn−1

Xo,∗α|S(Vb) = − degX(b) .

Therefore ∫
B

χ(V ) =
∑

b∈Z(X)

degX(b) .

2

Example 7.40. Let M be a closed oriented n-dimensional manifold. Then we can
consider the Euler class χ(TM) ∈ Hn

dR(M). The following numbers are equal:

1. The Euler characteristic χ(M).

2. The number
∫
M
χ(TM).

3. The number
∑

m∈M degX(m) for every vector fieldX onM with non-degenerated
zeros.

In Theorem 7.39 we have shown the equality of 2. and 3. In order to relate these
numbers with the Euler characteristic 1. one usually employs Morse theory. This
goes beyond the scope of this course.

2

We now assume that V is a complex vector bundle of complex dimension n and V|R
is the underlying real bundle.

Lemma 7.41. We have the equality

cn(V ) = χ(V|R) .

Proof. We choose a hermitean metric on V . We factorize the projection f : S(V )→
B as S(V )

h→ P(V )
g→ B. Note that h : S(V ) → P(V ) is the orthonormal frame

bundle of the tautological bundle L→ P(V ). We choose a closed form ω ∈ Ω2(P(V ))
representing −c1(L) ∈ H2

dR(P(V )). Since h∗c1(L) = 0 we can choose θ ∈ Ω1(S(V ))
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such that dθ = h∗ω. We further choose closed forms wi ∈ Ω2i(B) representing the
Chern classes ci(V ) ∈ H2i

dR(B).

By definition of the Chern classes (see (48)) on P(V ) we have the relation

0 =
n∑
i=0

(−1)ic1(L)ig∗cn−i(V ) .

Hence there exists a form α ∈ Ω2n−1(P(V )) such that

dα =
n∑
i=0

ωi ∧ g∗wn−i .

We get

f ∗wn = d

(
h∗α−

n∑
i=1

θ ∧ h∗ωi−1 ∧ f ∗wn−i

)
. (53)

We have (
h∗α−

n∑
i=1

θ ∧ h∗ωi−1 ∧ f ∗wn−i

)
|S2n−1

= −
(
θ ∧ h∗ωn−1

)
S2n−1 .

Now by Example 7.21 we have∫
S2n−1

θ ∧ h∗ωn−1 = 1 .

Hence (h∗α−
∑n

i=1 θ ∧ h∗ωi−1 ∧ f ∗wn−i) is an extension θ ∧ h∗ωn−1 from the fi-
bre S2n−1 to S(V ). The relation (53) now asserts that [volS2n−1 ] ∈ fE0,2n−1

2
∼=

H2n−1
dR (S2n−1) is transgressive and fd2n[volS2n−1 ] = −cn. On the other hand, by defi-

nition of the Euler class of V , we have fd2n[volS2n−1 ] = −χ(V|R). 2

Example 7.42. For two complex vector bundles V and V ′ we have

χ(VR ⊕ V ′R) = χ(V ) ∪ χ(V ′) .

This is because the same relation holds for the highest Chern classes. 2
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Example 7.43. Let Σg be a closed oriented surface of genus g ∈ N and X be a
vector field on Σg with non-degenerated zeros. Then we have∑

b∈Σg

degX(b) = 2− 2g .

Indeed, we have ∫
Σg

χ(TΣg|R) =

∫
Σg

c1(TΣg)
Cor.6.16

= 2− 2g

where TΣg is the tangent bundle of Σg considered as a complex vector bundle. If
the vector field is holomorphic, then it has exactly 2 − 2g zeros since in this case
degX(b) = 1 for all zeros.

For example, ∂1 provides a holomorphic vector field on T 2 without zeros. This is
compatible with the calculation since T 2 has genus one.

On CP1 we have a vector field X given by Re(z∂z) in coordinates [1 : z]. Note that
in the coordinate u = z−1 near ∞ it is given by −Re(u∂u). This vector field has
two non-degenerated zeros, namely at 0 and ∞. Since it is holomorphic we have
degX(0) = degX(∞) = 1. Since CP1 has genus 0 we see that this is again compatible
with the Poincaré-Hopf theorem.

2

Example 7.44. We consider a holomorphic vector field with non-degenerated zeros
on CPn. Then it has exactly n+ 1 zeros. Indeed, by holomorphy the degrees are all
positive and by Example 6.29 we have

χ((TCPn)|R) = cn(TCPn) =

(
n+ 1

n

)
= (n+ 1)cn1

and hence

]Z(X) =
∑

x∈Z(X)

degX(x) =

∫
CPn

χ((TCPn)|R) = (n+ 1)

∫
CPn

cn1 = n+ 1 .

Here is an example. We let X be the vector field given by Re(
∑n

i=1 zi∂zi) in the
coordinates [1 : z1 : · · · : zn]. The non-degenerated zeros of this vector field are the
n+ 1 points

[1 : 0 : · · · : 0] , [0 : 1 : 0 : · · · : 0] , . . . , [0 : · · · : 0 : 1] .
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2

Exercise: Calculate the number of zeros of a non-generated vector field onGr(2,C4).
2

Exercise: Show the relation χ(V ⊕ V ′) = χ(V ) ∪ χ(V ′) 2

Example 7.45. A vector field on S2n×S2n with non-degenerated zeros has at least
4 zeros. 2

7.5 Intersection numbers

We let M be a closed oriented manifold of dimension n. Then we have a Poincaré
duality isomorphism

PM : Hk
dR(M)

∼=→ Hn−k
dR (M)∗ .

It was given by

Hk
dR(M) 3 x 7→

(
Hn−k
dR (M) 3 y 7→ (−1)(n+1)k

∫
M

x ∪ y ∈ R
)
.

Let P ⊂ M be an oriented closed submanifold of dimension p. Then we have the
integration map ∫

P

: Hp
dR(M)→ R , x 7→

∫
P

x|P ,

i.e. an element
∫
P
∈ Hp

dR(M)∗. By Poincaré duality we get a de Rham cohomology
class

{P} := P−1
M (

∫
P

) ∈ Hn−p
dR (M)

called the Poincaré dual of P . Note that the degree of the Poincaré dual of P is
the codimension of P .

Let now Q ⊂ M be a second closed oriented submanifold of complementary dimen-
sion q = n− p. Then we can form the product {P} ∪ {Q} ∈ Hn

dR(M) and define the
number ∫

M

{P} ∪ {Q} ∈ R .
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We assume that P and Q intersect transversely in M . Then P ∩Q := P ×M Q is a
zero-dimensional submanifold of M . Since M is compact, this intersection is a finite
set. It furthermore comes with an induced orientation, i.e. a function s : P ∩ Q →
{1,−1}. Let us describe this orientation explicitly. Let x ∈ P ∩ Q. Then we have
an isomorphism of vector spaces TxQ⊕ TxP

∼→ TxM induced by the inclusions. We
define the sign s(x) ∈ {1,−1} to be equal to 1 if this map preserves orientations,
and as −1 else. Note the order of TxP and TxQ in this formula. We define the
intersection number of P and Q in M as

〈P ∩Q〉 :=
∑

x∈P∩Q

s(x) .

Theorem 7.46. We have

〈P ∩Q〉 =

∫
M

{P} ∪ {Q} .

Proof. First we construct an explicit de Rham representative of the Poincaré dual
{P} of P . We choose a metric on M . It induces a metric on the normal bundle
π : N → P which we identify with a tubular neighborhood of P , see Fact 3.3.

We can choose a form κ ∈ Ωq−1(S(N)) such that
∫
S(N)/P

κ = 1 and dV = π∗α for

some form α ∈ Ωq(P ). Indeed, if χ(S(N)) 6= 0, then we can choose κ such that dκ =
f ∗α for a closed form α ∈ Ωp(P ) representing the Euler class χ(S(N)) ∈ Hp

dR(P ).
Else we let κ be a representative of a Thom class Th(S(N)) ∈ Hq−1

dR (S(N)) of S(N).

We identify P with the zero section of N . Using the diffeomorphism

S(N)× (0,∞)
∼=→ N \ P , (ξ, t) 7→ tξ

we extend the form κ to N \ P . Furthermore we consider a function χ ∈ C∞(0,∞)
such that χ(t) = 0 for large t and χ(t) = 1 for small t. The closed form

d(χκ) = dχ ∧ κ+ χ π∗α ∈ Ωp(N \ P )

extends smoothly to the zero section P and then by zero to M . We denote this
extension by ωP . We claim that this extension ωP represents (−1)(n+1)(n−p)+1{P}.
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Let x = [β] ∈ Hp
dR(M). Then we calculate using the projection formula∫

M

[ωP ] ∪ x =

∫
N

d(χκ) ∧ β

=

∫
S(N)×(0,∞)

d(χκ) ∧ β

= −limt→0

∫
S(N)×{t}

κ ∧ β

= −limt→0

∫
S(N)×{t}

κ ∧ π∗β

= −
∫
P

β .

On the other hand

PM([ωP ])(x) = (−1)(n+1)(n−p)
∫
M

[ωP ] ∪ x

We now calculate the quantity∫
M

{P}∪{Q} = (−1)(n+1)(n−p)+1(−1)(n+1)(n−q)(−1)(n−p)(n−q)
∫
Q

ωP = (−1)pq+1

∫
Q

ωP .

Let x ∈ P ∩ Q. Then we can assume after appropriate choice of the embedding
N → M that Nx ⊂ Q. The contribution of the neighborhood of x to the integral
(−1)pq+1

∫
Q
ωP is thus

−s(x)

∫
S(Nx)×R

d(χκ) = s(x) limt→0

∫
S(Nx)×{t}

κ = s(x) .

Note that the orientation of Nx is such that TxP ⊕ Nx
+→ TxM is orientation pre-

serving. This is exactly the case of (−1)pqs(x) = 1.

2

In particular, the number
∫
M
{P} ∪ {Q} is an integer. Note that the intersection

number is only defined if P and Q are transverse. But the number
∫
M
{P} ∪ {Q} is

always defined and can be taken as a definition of the intersection number in this case.
Furthermore, in order to define the classes {P} and {Q} and therefore

∫
M
{P}∪{Q}

it is not necessary to assume that P → M is an embedding. Just a smooth map
suffices. Furthermore, theses classes, respective this number only depends on the
homotopy class of these maps.
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Proposition 7.47. Let P and Q be two closed oriented submanifolds of M of di-
mensions p and q which intersect transversally. Then we have the relation

{P} ∪ {Q} = {P ∩Q}

in Hn−p−q
dR (M).

Proof. We can assume by choosing the embedding N → M appropriately that N ∩
Q→ P ∩Q is the normal bundle of P ∩Q in Q. Then we can take (ωP )|Q = ωP∩Q.
We calculate for every [β] ∈ Hn−p−q

dR (M) that∫
M

{P} ∪ {Q} ∪ [β] = (−1)(n+1)(2n−p−q)
∫
M

ωP ∧ ωQ ∧ β

= −(−1)(n+1)(2n−p−q)
∫
P

ωQ ∧ β

= (−1)(n+1)(2n−p−q)
∫
P∩Q

β

= (−1)(n+1)(2n−p−q)+(n+1)(n−p−q)
∫
M

{P ∩Q} ∧ [β]

=

∫
M

{P ∩Q} ∧ [β] .

2

Example 7.48. Let V → B be a real oriented vector bundle of dimension k on a
closed oriented manifold B of dimension n. We choose a section s ∈ Γ(B, V ) which
is transverse to the zero section and let Z = {s = 0} be the smooth submanifold of
zeros. We have dim(Z) = n− k. We define the orientation of Z such that at x ∈ Z
the isomorphism Vx ⊕ TxZ → TxM induced by ds(x) preserves orientations. Note
the order of the summands.

The following Lemma generalizes the Poincaré-Hopf theorem.

Lemma 7.49. We have the equality {Z} = χ(V ).

Proof. We consider the bundle V ⊕ R → B. Its sphere bundle p : S(V ⊕ R) → B
has a canonical section with image N = {(0b, 1) | b ∈ B}. Fibrewise stereographic

projection gives a diffeomorphism S(V ⊕ R) \N
∼=→ V . We identify B with the zero

section of V and therefore with a submanifold of S(V ⊕ R). We consider the class
{B} ∈ Hk

dR(S(V ⊕R)) which is represented by a form (−1)(n+k+1)k+1ωB constructed

162



as above. The normal bundle at B is identified with p∗V , and its sphere bundle
is π : p∗S(V ) → B Therefore ωB is the extension by zero of a form d(χκ) with
dκ = π∗α where α is closed and represents χ(V ). We view the section s as a section
of S(V ⊕ R). Then s∗ωB is a choice for (−1)knωZ , i.e. we get

s∗{N} = (−1)(n+1+k)k+1(−1)(n+1)(n−k)+1(−1)kn{Z} = (−1)kn{Z} .

The factor (−1)kn comes from our convention for the orientation of Z. Let z be the
zero section of V . Then we have z∗ωB = z∗dκ so that

z∗{N} = (−1)(n+k+1)k+1χ(S(V )) = (−1)knχ(V ) .

Note that s and z are homotopic by (t, b) 7→ ts(b). It follows that

χ(V ) = {Z} .

2

2

Example 7.50. Let Ltaut,∗ → CPn be the dual of the tautological bundle. A hy-
persurface of degree d in CPn is by definition a submanifold of the form H = Z(s)
for some holomorphic section s ∈ Γ(CPn, (Ltaut,∗)d). By Lemma 7.41 we have that
χ((Ltaut,∗)d|R) = c1((Ltaut,∗)d) = dc1. Therefore, we have {H} = dc1. Assume now
that n = 2. Then we can consider the intersection number of two hypersurfaces H1

and H2 of degrees d1 and d2, respectively. We get

〈H1 ∩H2〉 =

∫
CP2

d1c1 ∪ d2c1 = d1d2

provided that the intersection is transverse. Since the Hi are complex submanifolds
all signs are positive and we actually have

〈H1 ∩H2〉 = ]H1 ∩H2 .

Exercise: Calculate the the number of points of H1 ∩ · · · ∩ Hn, where Hi is a hy-
persurface in CPn of degree di for i = 1, . . . , n. We assume that the intersection is
transverse. 2
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Example 7.51. We consider the manifold S2 × S2. Let N ⊂ S2 be the north pole.
Then we have submanifolds S2×{N}, {N}×S2 of S2×S2. The middle cohomology
of S2×S2 is generated by the Poincaré duals [volS2 ]×1, 1× [volS2 ] ∈ H2

dR(S2×S2) of
the these submanifolds. They intersect transversally in the point (N,N) with index
1. This is compatible with

∫
S2×S2([volS2 ]× 1) ∪ (1× [volS2 ]) = 1. 2

8 Interesting differential forms

8.1 G-manifolds and invariant forms

Let G be a connected Lie group which acts on a manifold M . For g ∈ G let ag :
M →M be the action. If M = G, then we write Lg (resp. Rg) for the action by left
(resp. right) multiplication. Note that Rg(h) := hg−1, i.e. also R is a left-action. A
form ω ∈ Ω(M) is called G-invariant, if a∗gω = ω holds for all g ∈ G.

For every g ∈ G we have the equality da∗g = a∗gd. If ω is G-invariant, then so is
dω. Since a∗g preserves wedge products the wedge product of two G-invariant forms
is again G-invariant.

We can thus define differential graded subalgebra

Ω(M)G := {ω ∈ Ω(M) | (∀g ∈ G | a∗gω = ω)} ⊆ Ω(M)

of G-invariant forms.

Lemma 8.1. If G is compact, then there exists a right G-invariant volume form
volG ∈ Ωdim(G)(G)G such that

∫
G

volG = 1.

Proof. We choose a non-trivial element v ∈ Λdim(G)(Lie(G)∗). Then we define a form
ω ∈ Ωdim(G)(G) by

ω(g) := dR∗g−1v , g ∈ G .

This form is G-invariant since

(R∗hω)(g) = dR∗h−1ω(gh−1) = dR∗h−1dR∗(h−1g)−1v = (Rg−1hRh−1)∗v = R∗g−1v = ω(g) .

We orient G using this form and define the normalized volume form by

volG :=
1∫
G
ω
ω .
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2

We now make the technical assumption that M is closed and oriented in order to
simplify the proof of the following Lemma.

Lemma 8.2. If G is compact, then then inclusion i : Ω(M)G → Ω(M) is a quasi-
isomorphism.

Proof. We define the averaging map

A : Ω(M)→ Ω(M)G , A(ω) :=

∫
g∈G

agω volG(g) .

Indeed, A produces G-invariant forms since for every for h ∈ G we have the chain of
equalities

a∗hA(ω) =

∫
G

a∗ha
∗
gω volG(g)

=

∫
G

a∗ghω volG(g)

!
=

∫
G

a∗gω (R∗h−1volG)(g)

=

∫
G

a∗gω volG(g)

= A(ω) ,

where at the marked equality we use the diffeomorphism R−1
h : G → G in order to

reparameterize the domain G of integration. Since G is compact and the integrand
is smooth we can interchange differentiation and integration over G. The map A
preserves the differential since

dA(ω) = d

∫
G

a∗gω volG(g) =

∫
G

da∗gω volG(g) =

∫
G

a∗gdω volG(g) = A(dω) .

If ω is G-invariant, then A(ω) = ω by the normalization of volG, i.e. we have the
equality A ◦ i = idΩ(M)G . This shows that i : H(Ω(M)G)→ HdR(M) is injective.

We now show surjectivity. Surjectivity follows immediately from the claim that

[Aω] = [ω] ,

where [ω] ∈ H∗dR(M) is the class of a closed form ω ∈ Ω(M). In the proof of this
claim we use the simplifying assumptions.
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Remark 8.3. In order to drop the assumption that M is closed and oriented one
can perform a similar argument using the pairing between simplicial homology and
cohomology instead of the pairing with the cohomology in the complementary di-
mension. In the present course we have not developed this homology theory. 2

By Poincaré duality the equality [Aω] = [ω] holds if and only if for every class
[α] ∈ H∗dR(G) we have the equality∫

G

α ∧ ω =

∫
G

α ∧ A(ω) . (54)

We can express A(ω) as a uniform limit for n → ∞ of a sequence An(ω), n ∈ N, of
Riemann sums of the form

∑
i cia

∗
gi
ω such that

∑
i ci = 1. Since G is connected, we

have
[a∗gω] = [ω] ∈ H∗dR(G) , ∀g ∈ G

and therefore [
∑

i cia
∗
gi
ω] = [ω]. We get∫

G

α ∧ ω =

∫
G

α ∧ An(ω)

for every n and thus (54) by taking the limit n→∞. This shows the claim. 2

We now apply this to the action of the group G×G on G by (g, h)k := gkh−1.

Lemma 8.4. For a compact connected Lie group G the evaluation at the identity
provides an isomorphism

(Ω(G)G×G, d)→ (Λ(Lie(G)∗)G, 0) .

In particular we get an isomorphism

HdR(G) ∼= Λ(Lie(G)∗)G .

Proof. It is clear that the evaluation at the identity

Ω(G)G×{1} → Λ(Lie(G)∗)

is an isomorphism of graded vector spaces since every element on the right-hand side
can be uniquely extended to an invariant form. This extension is invariant under
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G × G if and and only if it is invariant under the adjoint action of G on itself.
Consequently, the evaluation at the identity is an isomorphism

Ω(G)G×G
∼=→ (Λ(Lie(G)∗)G .

It remains to identify the differential on (Λ(Lie(G)∗)G induced by the de Rham
differential on Ω(G)G×G. Let ω ∈ Ωn(G)G×G. We insert n + 1 left-invariant vector
fields X1, . . . Xn+1 into dω. Then the Cartan formula expresses dω(X1, . . . , Xn+1) as
a sum of terms indexed by i which vanish separately. First of all

ω(X1, . . . X̌i, . . . , Xn+1) ∈ C∞(G)

is invariant and hence

Xiω(X1, . . . X̌i, . . . , Xn+1) = 0 .

Moreover, in the second group the terms are of the form (we write the case i = 1)

n+1∑
j=2

(−1)jω([X1, Xj], X1, . . . , X̌j, . . . , Xn+1)(e)

= (ad(X1)ω(e))(X1, . . . , X̌j, . . . , Xn+1)

= 0

2

Example 8.5. We can apply this to the torus T n. We have

H∗dR(T n) ∼= Λ∗Lie(T n)∗ ∼= Λ∗Rn .

This reproduces the result of Example 2.35. 2

Remark 8.6. The product µ : G×G→ G turns the algebra Λ(Lie(G)∗) into a Hopf
algebra over R with coproduct

∆ = dµ∗ : Λ(Lie(G)∗)→ Λ(Lie(G)∗)⊗ Λ(Lie(G)∗) .

Since conjugation by a fixed element is a group homomorphism the coproduct ∆
restricts to a Hopf algebra structure

∆ : Λ(Lie(G)∗)G → Λ(Lie(G)∗)G ⊗ Λ(Lie(G)∗)G .

We have the following structural result.
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Proposition 8.7 (Milnor-Moore). A finite dimensional graded Hopf algebra over R
is the graded commutative algebra R[(vi)i∈A] where vi are primitive generators of odd
degree and A is a finite set.

We have already observed this structure for G = U(n) (Example 6.20) and G =
SU(n) and (Example 6.17).

2

We consider idLie(G) as an element of

θ ∈ Λ1(Lie(G)∗)⊗ Lie(G) .

This element in G-invariant under the tensor product action of G on Λ1(Lie(G)∗)⊗
Lie(G). It is called the canonical one-form.

Let ρ : G→ Aut(V ) be a representation of G and set

θρ := (1⊗ dρ)(θ) ∈ Λ1(Lie(G)∗)⊗ End(V ) .

This element is again G-invariant under the tensor product action of G. Finally,
since Tr : End(V )→ C is G-invariant the form

κρ,p := Tr(θ∧pρ ) ∈ Λp(Lie(G)∗)G

is G-invariant, too.

In this way we can construct cohomology classes on G.

We have ∆∗θ = θ ⊗ 1 + 1⊗ θ. This gives ∆∗θpρ =
∑

s+t=p

(
p
s

)
θsρ ⊗ θtρ and therefore

∆∗κρ,p =
∑
s+t=p

(
p

s

)
κρ,s ⊗ κρ,t .

For given representation ρ, if p ≥ 1 is minimal such that κρ,p 6= 0, then κρ,p is
primitive.

Example 8.8. We shall make this explicit in the case G = SU(2) which we identify
for the present purpose with the unit quaternions. Then Lie(SU(2)) ∼= Im(H) =
R〈I, J,K〉. We consider the representation ρ of SU(2) on H. We write

θρ = dx⊗ I + dy ⊗ J + dz ⊗K ,
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where x, y, z are coordinates on Im(H) dual to I, J,K. Then

θ3
ρ = 6dx ∧ dy ∧ dz ⊗ IJK = −6dx ∧ dy ∧ dz ⊗ idH .

Consequently
κρ,3 = Tr(θ3

ρ) = −24dx ∧ dy ∧ dz .

Under the identification SU(2) ∼= S3 the invariant extension of dx∧ dy∧ dz becomes
the Euclidean volume form. Since vol(S3) = 2π2 we get

κρ,3 = −48π2[volSU(2)] .

2

Exercise: We consider the case G = U(n) and the standard representation of U(n)
on Cn. Determine λp ∈ R such that κρ,p = λpup for p = 1, . . . , 2n− 1. 2

Example 8.9. We consider again a compact Lie group G. Then we can find an
invariant scalar product 〈., .〉 on the Lie algebra Lie(G). Indeed, we can start with
an arbitrary scalar product and then average. We can now define the form ω ∈
(Λ3Lie(G)∗)G by

ω(X, Y, Z) := 〈[X, Y ], Z〉 .

In order to see that it is alternating observe that

〈[X, Y ], Z〉 = −〈Y, [X,Z]〉 = −〈[X,Z], Y 〉

by symmetry and invariance of the scalar product. If Lie(G) is not abelian, then
ω 6= 0.

Corollary 8.10. If G is a compact Lie group with non-abelian Lie algebra, then
H3
dR(G) 6= 0.

8.2 Chern forms

We consider a complex vector bundle V → B. In this subsection we define differential
forms representing the Chern classes ci(V ) ∈ H2i

dR(B) of V for i ∈ N. If we choose
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a connection ∇ on V , then we can define the curvature form R∇ ∈ Ω2(B, End(V )).
We consider the inhomogeneus form

1− 1

2πi
R∇ ∈ Ω(B, End(V ))

with components in degree zero and two. We have a polynomial functor det :
Vect(B)→ Vect(B) which maps a vector bundle to its maximal alternating power.
Using the action of this functor on morphisms we can define the total Chern form

c(∇) := det(1− 1

2πi
R∇) ∈ Ω(B, End(det(V ))) ∼= Ω(B,C) .

Definition 8.11. The homogeneous components of the total Chern form are denoted
by ci(∇) ∈ Ω2i(B,C) and called the Chern forms of (V,∇).

We thus have
c(∇) = 1 + c1(∇) + · · ·+ cdim(V )(∇) .

Lemma 8.12. The total Chern form c(∇) is closed. Consequently the Chern forms
ci(∇) ∈ Ω2i(B) are closed for all i = 1, . . . , dim(V ).

Proof. We calculate, using the identity d det(A) = det(A)Tr(A−1dA) and the Bianchi
identity [∇, R∇] = 0,

dc(∇) = d det(1− 1

2πi
R∇)

= [∇, det(1− 1

2πi
R∇)]

= det(1− 1

2πi
R∇) Tr

(
[∇, 1− 1

2πi
R∇]

1− 1
2πi
R∇

)
= 0 .

2

Our goal is to show that the closed form c(∇) represents the total Chern class of
V . This will follows from the splitting principle and the corresponding assertions
for line bundles. We prepare this argument by verifying some properties of these
cohomology classes c′(V ) := [c(∇)]. For the moment we use the superscript ′ in
order to distinguish these classes from the previously defined ones.
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Lemma 8.13. The Chern forms have the following properties:

1. The cohomology class of c′(V ) := [c(∇)] ∈ HdR(B,C) does not depend on the
choice of the connection.

2. For a smooth map f : B′ → B we have f ∗c′(V ) = c′(f ∗V ). In particular,
V 7→ c′i(V ) is a characteristic class of degree 2i for complex vector bundles.

3. We have c′(V ⊕ V ′) = c′(V ) ∪ c′(V ′).

Proof. Assume that ∇′ is a second connection. Let pr : [0, 1] × B → B be the
projection. On pr∗V → [0, 1] × B we consider the connection ∇̃ := pr∗∇ + tpr∗α,
where α := ∇′ −∇ ∈ Ω1(B, End(V )) and t is the coordinate of [0, 1]. We define the
transgression Chern form

c̃(∇′,∇) :=

∫
[0,1]×B/B

c(∇̃) ∈ Ω(B,C) .

By Stoke’s theorem we get

dc̃(∇′,∇) = c(∇′)− c(∇) .

This shows 1.

For 2. we use f ∗R∇ = Rf∗∇ and f ∗ ◦ det ∼= det ◦f ∗ in order to conclude that
f ∗c(∇) = c(f ∗∇). This implies the assertion.

Finally, for 3. we use the identity

det(V ⊕ V ′) ∼= det(V )⊗ det(V ′)

which implies

det(1− 1

2πi
R∇⊕∇

′
) = det(1− 1

2πi
(R∇⊕R∇′)) = det(1− 1

2πi
R∇)∧det(1− 1

2πi
R∇

′
) .

2

Lemma 8.14. If dim(V ) = 1, then we have c′(V ) = c(V ).

Proof. In this case

det(1− 1

2πi
R∇) = 1− 1

2πi
R∇

under the natural identifications. The assertion now follows immediately from (42).
2
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Lemma 8.15. We have c′(V ) = c(V ) in general.

Proof. Let p : F(V )→ B be the bundle of total flags. Then we have

p∗c(V ) = c(p∗V )
(49)
=

k∏
i=1

c(Li)
Lemma 8.14

=
k∏
i=1

c′(Li) = p∗c′(V ) .

We finally use that p∗ is injective. 2

Example 8.16. If the complex vector bundle V → B admits a flat connection ∇,
then ci(V ) = 0 for all i ≥ 1. Indeed, if ∇ is flat, then we have ci(∇) = 0.

Corollary 8.17. If V → B is a complex vector bundle and c(V ) 6= 1, then V does
not admit a flat connection.

2

8.3 The Chern character

We have seen in Example 6.33 that Chern classes do not behave well with respect to
tensor products. In this subsection we introduce the Chern character which behaves
well under sums and tensor products.

Let V → B be a vector bundle. We choose a connection ∇ and define the Chern
character form

ch(∇) = Tr e−
1

2πi
R∇ .

Here we consider the exponential function as a formal power series. We have

ch(∇) = dim(V )− 1

2πi
TrR∇ +

1

2!(2πi)2
Tr (R∇)2 − 1

3!(2πi)3
Tr (R∇)3 + . . . .

The sum is finite since (R∇)k = 0 for 2k > dim(B).

Lemma 8.18. 1. The form ch(∇) is closed.

2. The class ch(V ) := [ch(∇)] ∈ HdR(B) is independent of the choice of the
connection of V . It is called the Chern character of the bundle V .

3. For a map f : B′ → B we have f ∗ch(V ) = ch(f ∗V ).
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4. We have ch(V ⊕ V ′) = ch(V ) + ch(V ′) , ch(V ⊗ V ′) = ch(V ) ∪ ch(V ′).

Proof. For 1. we calculate, using the Bianchi identity

dch(∇) = dTr e−
1

2πi
R∇

= Tr[∇, e−
1

2πi
R∇ ]

= 0

The arguments for 2. and 3. are the same as for corresponding assertions of Lemma
8.13. We have

ch(∇⊕∇′) = Tr e−
1

2πi
(R∇⊕R∇′ ) = Tr

(
e−

1
2πi

R∇ ⊕ e−
1

2πi
R∇
′)

= ch(∇) + ch(∇′) .

Furthermore, we have

R∇⊗1+1⊗∇′ = R∇ ⊗ 1 + 1⊗R∇′ .

This gives

e−
1

2πi
(R∇⊗1+1⊗R∇′ ) = e−

1
2πi

R∇ ⊗ e−
1

2πi
R∇
′

.

Consequently,
ch(∇⊗ 1 + 1⊗∇′) = ch(∇) ∧ ch(∇′) .

This implies 4. 2

Let us fix n ∈ N. We define the polynomials

sk(x) :=
n∑
i=1

xk ∈ Z[x1, . . . , xn] , k ∈ N .

These polynomials are symmetric and therefore belong to the subring

Z[σ1(x), . . . , σn(x)] ⊂ Z[x1, . . . , xn] .

There are unique polynomials

pk(σ1, . . . , σn) ∈ Z[σ1, . . . , σn]

such that
sk(x) = pk(σ1(x), . . . , σn(x)) .
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We have

p1(σ) = σ1

p2(σ) = σ2
1 − 2σ2

p3(σ) = σ3
1 − 3σ2σ1 + 3σ3

...

Proposition 8.19. For a vector bundle V → B we have

ch(V ) = dim(V ) +
∞∑
k=1

1

k!
pk(c1(V ), . . . , cn(V )) .

Proof. Note that for n = 1 we have pk(c) = ck. Let dim(V ) = 1. Then we have by
definition

ch(V ) =
∞∑
k=0

1

k!
c1(V )k = 1 +

∞∑
k=1

1

k!
pk(c1(V )) .

We now consider the general case. We use the splitting principle. Let p : F(V )→ B
be the bundle of full flags of V . Then we have

p∗ch(V ) = ch(p∗V ) = ch(
n⊕
i=1

Li) =
n∑
i=1

ch(Li) .

The right-hand side can be rewritten with xi = c1(Li) as

n∑
i=1

ch(Li) =
n∑
i=1

∞∑
k=0

1

k!
xki =

∞∑
k=0

1

k!

n∑
i=1

xki =
∞∑
k=0

1

k!
sk(x) =

∞∑
k=0

1

k!
pk(c1(V ), . . . , cn(V )) .

2

Vice versa one can express the Chern of a bundle classes in terms of the components of
the Chern character. There are unique polynomials hi ∈ Q[a1, . . . , an] for i = 1, . . . , n
such that

σi(x) = hi(s1(x), . . . , sn(x)) , i = 1, . . . , n .

Then
ci(V ) = hi(1!ch1(V ), . . . , n!chn(V )) .
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We have

h1(a) = a

h2(a) =
1

2
(a2

1 − a2)

h3(a) =
1

6
(a3

1 − 3a1a2 + 2a3)

...

For example,

c3(V ) =
1

6
(ch1(V )3 − 6ch1(V )ch2(V ) + 12ch3(V )) .

Example 8.20. We can continue Example 6.38. Note that TGr(k,Cn) ∼= L∗⊗Cn/L.
Then

ch(TGr(k,Cn)) = ch(L∗) ∪ (n− ch(L)) .

We now use that chi(L
∗) = (−1)ich(L). We get

chk(TGr(k,Cn)) =
n∑
j=1

(−1)n−j+1chn−j(L) ∪ chj(L) + (n− k)chn(L) .

9 Exercises

1. Let k, n ∈ N and 0 ≤ k ≤ n. We consider the set V (k,Rn) of k-tuples of linearly
independent vectors in Rn.

1. Equip V (k,Rn) with a smooth manifold structure by representing it as an open
submanifold of (Rn)k.

2. Show that the linear action of GL(n,R) on Rn induces a smooth and transitive
left action on V (k,Rn).

3. Show that the map V (k,Rn) → Gr(k,Rn), which maps the k-tuple of vectors
to its span, is a locally trivial fibre bundle.

4. Show that GL(k,R) acts freely from the right on V (k,Rn) preserving the fibres
of π.

5. Show that π presents Gr(k,Rn) as the quotient V (k,Rn)/GL(k,R).
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6. Give a presentation of V (k,Rn) as quotient GL(n,R)/GL(n− k,R).

The manifold V (k,Rn) is called Stiefel manifold.

2. Consider integers n, p, q ∈ N such that 0 < p < q < n. Let F ((p, q),Rn) denote
set of pairs of linear subspaces V,W ⊆ Rn such that V ⊆ W and dim(V ) = p,
dim(W ) = q. These tuples are called flags of type (p, q).

1. Equip F ((p, q),Rn) with the structure of a smooth manifold by representing
it as a submanifold of Gr(p,Rn)×Gr(q,Rn). The manifold F (p,Rn) is called
flag manifold of type (p, q):

2. Show that the linear action of GL(n,R) on Rn induces a smooth action of
GL(n,R) on F ((p, q),Rn).

3. Show that this action is transitive and describe the stabilizer of the standard
flag Rp ⊆ Rq.

4. Show that map F ((p, q),Rn)→ Gr(q,Rn), (V,W ) 7→ W is a locally trivial fibre
bundle with fibre Gr(p,Rq).

5. Represent F ((p, q),Rn) as a quotient of GL(n,R).

The goal of the following two exercises is to practise explicit calculations with forms
and the de Rham Lemma.

3. Let n ∈ N, n ≥ 1 and set Cn+1,∗ := Cn+1 \ {0}. We have a projection
π : Cn+1,∗ → CPn which sends x ∈ Cn+1,∗ to the subspace spanned by x. Let
α ∈ Ω2(Cn+1,∗) be given by

α :=
1

2i

∑n
i=0 dz

i ∧ dz̄i

‖z‖2
.

1. Show that there exists a uniquely determined form ω ∈ Ω2(CPn) such that
π∗ω = α|ker(dπ)⊥

2. Show that ω is real.

3. Show that ω is invariant under the natural action of U(n+ 1) on CPn.

4. Show that dω = 0.

5. Show that ωn is nowhere vanishing.
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6. Let CP1 ⊂ CPn+1 be the submanifold of lines contained in C2 ⊆ Cn+1. Show
that ω|CP1 is nowhere vanishing. Orient CP1 using ω|CP1 and calculate

∫
CP1 ω.

7. Show that ωn is nowhere vanishing. Orient CPn using ωn and calculate
∫
CPn ω

n.

4. We consider the form volRn := dx1 ∧ · · · ∧ dxn ∈ Ωn(Rn).

1. Show that [volRn ] = 0 in Hn
dR(Rn).

2. Show that there is a form α ∈ Ωn−1(Rn) such that dα = volRn .

3. Determine a form α in 2. explicitly.

4. Show that such a form α is unique if one requires that it is SO(n)-invariant
and determine this unique solution explicitly.

5. Show that there is no GL(n,R)0- or O(n)-invariant form α ∈ Ωn−1(Rn) such
that dα = volRn . Here GL(n,R)0 := {A ∈ GL(n,R) | det(A) > 0}.

6. Show that there is no bounded (i.e. the coefficients of α with respect to the
standard basis dx1 ∧ · · · ∧ dxn−1, . . . are bounded) form α ∈ Ωn−1(Rn) such
that dα = volRn .

5. We fix positive numbers n1, . . . , nr ∈ N and consider the manifold

M :=
r∏
i=1

Snr .

Construct an injective ring homomorphism

R[x1, . . . , xr]/(x
2
1, . . . , x

2
r)→ H∗dR(M) ,

where |xi| = ni.

6. Fix an integer n. Multiplication by n on Rn induces a map f : T n → T n given
by f([x]) := [nx]. Show that f ∗ : Hk

dR(T n) → Hk
dR(T n) is multiplication by nk (use

without proof that bk(T
n) =

(
n
k

)
).
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7. We consider the exact sequence of abelian groups

0→ (Z 9→ Z)
(3,1)→ (Z 3→ Z)→ (Z/3Z→ 0)→ 0 .

Calculate the long exact cohomology sequence explicitly.

8. Let M be a compact manifold with boundary i : N →M .

1. Show that i∗ : Ω(M)→ Ω(N) is surjective.

2. Define Ω(M,N) := ker(i∗). Furthermore, let Ωc(M \ N) be the forms with
compact support in M \N . Show that Ωc(M \N) ⊂ Ω(M,N).

3. Define H∗dR(M,N) := H∗(Ω(M,N)), and let ∂ : H∗dR(N) → H∗(Ω(M,N)) be
the boundary operator for the sequence

0→ Ω(M,N)→ Ω(M)→ Ω(N)→ 0 .

Show that for x ∈ H∗dR(N) the class ∂x has a representative in Ωc(M \N).

* Show that Ωc(M \N)→ Ω(M,N) is a quasi-isomorphism.

9. Calculate the Betti numbers of the lens space L(p, q) for coprime integers p, q.

10. For 0 ≤ k < n we consider the usual embeddings Sk ⊂ Rk+1 ⊂ Rn. Calculate
the Betti numbers of Rn \ Sk.

11. Let G be a connected Lie group and H ⊆ G be a finite subgroup. Show that
π : G→ G/H induces an isomorphism π∗ : H∗dR(G/H)→ H∗dR(G).

12. Calculate the Betti numbers of a closed oriented surface Σg of genus g. Repre-
sent Σg as the sum of a 2-sphere with 2g discs removed and g copies of [0, 1] × S1.

13. Calculate all pages of the spectral sequence for the chain complex

Z x 7→2x→ Z→ Z/2Z
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with the filtration F∗C0

F∗C1

F∗C2

  0
0

Z/2Z

 ⊆
 0

2Z
Z/2Z

 ⊆
 Z

Z
Z/2Z

 .

14. Let (E∗,∗r , dr)r≥0 be a bigraded spectral sequence consisting of finite-dimensional
R-vector spaces such that {(p, q) ∈ Z2 | Ep,q

1 6= 0} is a finite set. For r ≥ 1 we define

χr :=
∑

(p,q)∈Z2

(−1)p+q dimEp,q
r ∈ Z

Show that χr = χ1 for all r ≥ 1.

15. We consider the manifold M := R2 \ Z2. Show that H1
dR(M) is infinite-

dimensional.

16. For an open covering U of M one can consider the Čech complex Č∗(U ,C∗)
of C∗-valued functions (the sums in the definition given in the course lecture are
interpreted using the group structure of C∗). Show that a cocycle c ∈ Č1(U ,C∗)
is exactly the cocyle datum (as in Analysis IV) needed to define a one-dimensional
complex vector bundle L → M . Show that L is trivializable if and only if c is a
boundary.

17. Let
0→ A→ B → C → 0

be a short exact sequence of chain complexes. Consider the filtration of B given by
F0B := B, F1B := A and F2B := 0. Find the precise relation between the spectral
sequence of (B,F) and the long exact cohomology sequence associated to the short
exact sequence above.

18. Let U := {U, V } be a covering of a manifold M by two open subsets. Find the
precise relation between the Čech-de Rham spectral sequence and the Mayer-Vietoris
sequence.

19. Show that the cohomology of the Stiefel manifolds H∗dR(V (k,Rn)) is finite-
dimensional.
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20. Let k be a ring. Let C,D be chain complexes of k-modules. We assume that
H∗(D), H∗(C) and C∗ are free. Show that

H∗(C)⊗H∗(D) ∼= H∗(C ⊗D) .

21. A knot is an embedding of S1 as a closed submanifold K ⊂ S3. Calculate the
Betti numbers bi(S3 \K), i ∈ Z, of the knot complement.

22. Let M and M ′ be compact manifolds with boundaries N and N ′, respectively.
Furthermore, let f : N → N ′ be a diffeomorphism. Show that χ(M ∪f M ′) =
χ(M) + χ(M ′)− χ(N).

23. Let M an M ′ be closed oriented manifolds of dimensions 4m and 4m′. Show
that sign(M ×M ′) = sign(M)sign(M ′).

Show further that this formula holds in general if we just assume that dim(M) +
dim(M ′) ≡ 0(4) and we define the signature of a manifold of dimension not divisible
by 4 to be zero.

24. Let M be an oriented, connected, and non-compact manifold of dimension n.
Show that Hn

dR(M) ∼= 0.

25. We consider a vector bundle V → M . Let Tr : Ω(M, End(V )) → Ω(M) be
given on elementary tensors by Tr(ω ⊗ Φ) := ωTr(Φ). Show that for a connection
on V the form Tr(R∇) ∈ Ω2(M) is closed.

26. We consider the standard inclusion f : S2 → R3. We have a trivial vector bundle
f ∗TR3 with a metric and a trivial connection. We consider TS2 as a subbundle via
df : TS2 ↪→ f ∗TR3. Let P : f ∗TR3 → TS2 be the orthogonal projection. Show that
∇ := P∇triv

|Γ(S2,TS2) is a connection on TS2. Calculate
∫
S2 Tr(R∇).

27. We consider a closed oriented surface Σg of genus g. Describe explicitly a
basis (α1, . . . , αg, β1, . . . , βg) of H1

dR(Σg) such that 〈αi, αj〉 = 0, 〈β1, βj〉 = 0 and
〈αi, βj〉 = δi,j for all i, j ∈ {1, . . . , g}.
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28. A link with k components is an embedding

S1 t · · · t S1︸ ︷︷ ︸
k copies

→ S3 .

Let U be an open tubular neighbourhood of the link and M := S3 \U . Determine an
explicit basis of HdR(M) and HdR(M,∂M) and calculate the corresponding matrix
of the pairing HdR(M)⊗HdR(M,∂M)→ R.

29. Let E → B be a locally trivial fibre bundle and ω ∈ Ωp(E) be a closed form.
Then we consider the section

[ω]E/B ∈ Γ(B,Hp(E/B)) , [ω]E/B(b) := [ω|Eb ] ∈ H
p
dR(Eb) = Hp(E/B)b .

Show that ∇[ω]E/B = 0, where ∇ is the Gauss-Manin connection of Hp(E/B).

30. Let A ∈ SL(2,Z). We consider the trivial two-dimensional bundle V :=
R × R2 → R with its trivial connection ∇triv. We define the action of Z on this
bundle by

n(t, v) := (t+ n,Av) , n ∈ Z , (t, v) ∈ R× R2 .

1. First show that this action preserves the connection.

2. Show that there exists a flat bundle W = (W,∇) on S1 such that Ω(S1,W ) ∼=
Ω(R, V )Z (the space of Z-invariant elements) so that ∇ is the restriction of
∇triv.

3. Calculate H∗dR(S1,W) explicitly.

Hint: Complexify first and then use the Jordan decomposition of A)

31. Let M,N be manifolds and V be a flat vector bundle on M . Show the Künneth
formula

HdR(N ×M, pr∗MV) ∼= HdR(N)⊗HdR(M,V)

under the condition that at least one of M or N is compact.

32. Let V and W be flat bundles on a manifold M and V → W be an injective
bundle map which preserves connections. Show that the quotient bundle W/V has
an induced flat connection and that there is a long exact sequence

. . . Hp−1
dR (M,W/V)→ Hp

dR(M,V)→ Hp
dR(M,W)→ Hp

dR(M,W/V)→ . . . .
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33. Let (V,∇) be a flat vector bundle over a closed manifold E. Show that
Hq
dR(E,V) is finite dimensional for every q ∈ Z. Let f : E → B be a surjective

submersion. Show further, that

Hq(E/B,V) :=
⊔
b∈B

Hq
dR(Eb,V|Eb)

has a natural structure of a flat vector bundle over B.

34. Let A ∈ SL(2,Z) and fA : T 2 → T 2 be the corresponding automorphism.
Calculate the de Rham cohomology of the mapping torus TfA .

35. Let G be a compact Lie group with multiplication µ : G×G→ G. We consider
the map

∆ : HdR(G)
µ∗→ HdR(G×G)

Künneth∼= HdR(G)⊗HdR(G) .

An element x ∈ HdR(G) is called primitive if ∆(x) = x⊗ 1 + 1⊗ x and group-like if
∆(x) = x⊗ x.

Determine the primitive and group-like elements in the de Rham cohomology of T 2

and SU(2).

36. Let M be a manifold with boundary N and ∂ : H∗dR(N)→ H∗+1
dR (M,N) be the

boundary operator of the long exact sequence of the pair (M,N). Show the following
identities for x ∈ HdR(N) and y ∈ HdR(M):

1. ∂(x ∪ y|N) = ∂(x) ∪ y for x ∈ HdR(N) and y ∈ HdR(M).

2.
∫
M
∂(x) ∪ y =

∫
N
x ∪ y|N (if M is compact and oriented).

37. Let E → B be a trivial fibre bundle with compact fibres. Calculate the LSSS
and relate it with the Künneth-formula.

38. Calculate the LSSS of the mapping torus TfA → S1, where fA : T 2 → T 2 is
associated to A ∈ SL(2,Z). Compare with Aufgabe 2., Blatt 9.
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39. Let E → B be a fibre bundle with fibre S1 and simply connected and connected
base B. A normalized fibrewise volume form is an element ω ∈ Ω1(E) such that ω|Eb
is a volume form and

∫
Eb
ω = 1 for all b ∈ B. Show:

1. There exists a normalized fibrewise volume form.

2. If there exists a normalized fibrewise volume form which is in addition closed,
then the differential d2 : E0,1

2 → E2,0
2 of the LSSS vanishes.

* Show the converse of 2.

40. Is S3 diffeomorphic to a mapping torus Tf of an automorphism f : Σ→ Σ for
some closed surface Σ?

41. We consider the map

f : CP1 → CP2 , [z0 : z1] 7→ [z2
0 : z0z1 : z2

1 ] .

Calculate the number
∫
CP1 f

∗c1.

42. Use the Künneth formula in order to identify

H∗dR(CPn × CPm) ∼= R[a, b]/(an+1, bm+1) .

Consider the map
p : CPn × CPm → CP(m+1)(n+1)−1 ,

([x0 : · · · : xn], [y0 : · · · : ym]) 7→ [x1y1 : x1y2 : · · · : x1ym : x2y1 : · · · : xnym] .

Calculate p∗ck ∈ R[a, b]/(an+1, bm+1) explicitly.

43. Let V →M be a real vector bundle. Show that c1(V ⊗ C) = 0.

44. Show that there is no non-trivial characteristic class of degree 1 for complex
vector bundles.

45. Calculate the de Rham cohomology of SO(n) for n = 2, 3, 4 using the LSSS
for the bundles SO(n + 1) → Sn with fibre SO(n). Discuss also the case n = 5, if
possible.

46. We have found an isomorphism HdR(U(n)) ∼= R[u1, . . . , u2n−1], where u2k−1

primitive and of degree 2k−1. Calculate the action of the inversion map I : U(n)→
U(n), I(g) := g−1 explicitly.
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47. Calculate the first Chern class of Λk
CT
∗CPn. Note that we take the alternating

power in the sense of complex vector bundles.

48. Let M be a manifold with a free action of U(n). We consider the LSSS of
the bundle M → M/G with fibre U(n). Show that the element u2k−1 ∈ E0,2k−1

2
∼=

H2k−1
dR (U(n)) is 2k − 1-transgressive, i.e. belongs to the kernel of the differentials d`

of the LSSS for all ` = 2, . . . , 2k − 1.

Hint: Use the sequence of sphere bundles

M
S1

→M/U(1)
S2

→ · · · S
2n−2

→ M/U(n− 1)
S2n−1

→ M/U(n)

and the explicit description of u2k−1 given in the course.

49. Let E → B be a complex vector bundle. Show that ci(E
∗) = (−1)ici(E) for

every i ∈ N. Deduce that for a real vector bundle V → B we have ci(V ⊗C) = 0 for
odd i ∈ N.

50. Calculate c(TGr(2,C4)) explicitly as a polynomial in c1(L) and c2(L), where
L→ Gr(2,C4) is the tautological bundle.

51. Let k, n ∈ N, k ≤ n. Find for every i ∈ N, 1 ≤ i ≤ k a closed oriented manifold
M of dimension 2i and a map f : M → Gr(k,Cn) such that

∫
M
f ∗ci(L) 6= 0.

52. Let L → Gr(3,C20) be the tautological bundle which is considered as a sub-
bundle of the n-dimensional trivial bundle. Let L⊥ → Gr(3,C20) be its orthogonal
complement. Calculate c3(L⊥) explicitly as a polynomial in c1(L), c2(L), c3(L).

53. Let f : M → N be a map between closed connected oriented manifolds of
the same dimension. Show that f ∗ : HdR(N) → HdR(M) is injective if and only if
deg(f) 6= 0.

54. Let p ∈ C[z1, . . . , zn] be a polynomial of degree k such that p(0) = 1. Calculate
the degree of

f : CPn → CPn , [z0 : · · · : zn] 7→ [zk0p(
z1

z0

, . . . ,
zn
z0

) : zk1 · · · : zkn] .
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55. We consider an iterated bundle E → G → B with closed fibres. Show that
the choice of fibrewise orientations for two of the three bundles E → G, G→ B and
E → B induces an orientation on the third such that∫

E/B

=

∫
G/B

◦
∫
E/G

holds.

56. We consider the manifold F(Cn) of complete flags (V1 ⊂ · · · ⊂ Vn) in Cn.
For i = 1, . . . , n let xi ∈ H2

dR(F(Cn)) be the first Chern class of the quotient of
tautological bundles Vi/Vi−1 → F(Cn), where we set V0 := 0. Calculate the real
number ∫

F(Cn)

xn−1
n ∪ xn−2

n−1 ∪ · · · ∪ x2
3 ∪ x2 .
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