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1 Basic de Rham cohomology

1.1 Recap on manifolds

In this course we study topological invariants of smooth manifolds. We assume
that the underlying topological space of a smooth manifold is Hausdorff, second
countable and paracompact.

Remark 1.1. The underlying topological space of a manifold is therefore a metriz-
able space. Paracompactness is important for the existence of smooth partitions
of unity subordiated to an open covering. Second countability implies that a man-
ifold admits an exhaustion by a sequence of compact subsets. O

We admit manifolds with boundary, and more generally, manifolds with corners. A
manifold with corners is locally modeled on the subspaces [0,00)" C R™. A smooth
map U — V between open subsets U and V' of [0,00)™ or [0, 00)™, respectively, is a
continuous map which extends to a smooth map between open neighbourhoods of U
or V in R™ or R™, respectively. This fixes our convention for the notion a smooth
map between manifolds with corners in general, and for the coordinate transitions
in particular.

By Mf we denote the category of smooth manifolds and smooth maps.

The basic examples of manifolds are R™ and its open subsets.

Example 1.2. 1. From the point of view of topology a simple example is the disc
D" :={x e R"|||z]| < 1}.

2. A topologically more interesting example is the complement of a finite set of
points in R™.

3. Much more interesting is already a so-called knot complement, R? \ ¢(S'),
where ¢ : S — R? is an embedding.

4. The previous example can be generalized to complements of compact subman-
ifolds in R"™.

O



The basic examples of manifolds with corners of codimension k for 0 < k£ < n are
open subsets of [0,00)* x R"* which contain a point (0,z) for some x € R**. In
these cases n € N is the dimension of the manifold.

A manifold with corners of codimension at most one is a manifold with boundary
(possibly empty). For example, the unit interval I := [0,1] is a manifold with
boundary dI = {0,1}. More generally, the product I* x R"* is a manifold with
corners of codimension k.

The category Mf has coproducts and products. In the category of manifolds certain
fibre products exists. For example, a limit of a diagram

A

|+

B—2-C
in Mf of manifolds without boundary exists and and is usually denoted by A x¢ B,
if the maps f and g are transverse: for every pair (a,b) € A x B with f(a) = g(b)
we have

df (a)(T,A) + dg(b)(T,B) = T.C',

where ¢ := f(a). There are corresponding conditions for diagrams involving mani-
folds with corners which we will not spell out in detail.

A typical class of manifolds which are defined by fibre products are submanifolds.
Solet f: A— C beamap and g : {*} — C be the inclusion of an interior point
c. We assume that f is transverse to g. This means in this case that for every point
a € A with f(a) = c the differential df(a) : T,A — T.C is surjective. If A has
corners, then we must require that the restriction of f to all faces is transversal, too.
Then we can define a submanifold f~1(c) as the fibre product {*} x¢o A.

Example 1.3. 1. Typical examples of manifolds naturally defined as submani-
folds are the spheres

S"i={z e R"™|||z]? =1} .
2. Another family of examples are Lie groups

O(n) .= {A € Mat(n,n,R) | AA' =1}, n>1

Note that we must consider here AA! as an element in the symmetric matrices
in order to ensure regularity of the defining equation.
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3. Let U C R* be open and f : U — R™ be a smooth map. Then the graph of f
defined by
Graph(f) = {(u, /() € R*" | u € U}

can be presented as a fibre product:

Graph(f)

*
0

()= f=y i

UxR™

A closed codimension-zero submanifold N C M (with boundary) can be defined
by an inequality N := {f > 0}, where f : M — R is regular on the boundary
ON = {f =0}. We obtain N as a limit of

N—M .
Y
[0,00) — =R

The condition on f is exactly the transversality condition for this diagram. The
function f is often called a boundary defining function. One can find local
coordinates for NV near ON such that f|y is one of the coordinate functions.

More generally, a closed codimension-zero submanifold with corners of codimen-
sion at most £ can locally be defined by a collection of inequalities N := ﬂle{ fi >
0}, or equivalently, as a limit of

L j(fl 7777 fk)

[07 oo)k - Rk
We again must require an appropriate transversality condition.

In certain cases manifolds can be glued along open submanifolds. We consider a
push-out diagram of manifolds

ll]

w

—V .



where both maps are open embeddings. Then we can form the colimit in Mf denoted
by V Uy W if the colimit of the underlying topological spaces is Hausdorff.

Example 1.4. Consider the examples

(—1,1)—>(—1,00) ) (_171)_>R

<_007 1) R

where all maps are the canonical inclusions. In the first case the colimit exists and is
isomorphic to R. In the second case the colimit of the underlying topological spaces
is not Hausdorff. For example, the point represented by 1 in the lower left copy of R
can not be separated from the (different) point represented by 1 in the upper right
copy of R.

Let (Uy)aca be a countable open covering of a manifold M. Then we can represent
M as a push-out

U(a,6)6A2 Ua NUpg — weaUa

| |
|_|,6’GA Uﬁ M

where ¢; and i are induced by the two inclusions U,NUz — U, and U,NUg — Ug. O

Manifolds naturally appear as parametrizing objects for geometric structures.

Example 1.5. Typical examples are the Grassmann manifolds Gr(k,R™) and
Gr(k,C™) of k-dimensional subspaces in R™ or C", respectively, for k,n € N, 0 <
k < n. We describe the manifold structure of Gr(k,R™) in greater detail. Given a
decomposition R" = V & W with dim(V') = k we obtain a chart ¢y, : Hom(V, W) —
Gr(k,R") of a neighbourhood of V/

by
dpvw(h) ={v+h()|veV}.

Of course Hom(V, W) = R*=k) after choosing bases in V and W.

The Grassmann manifolds are the receptables of the Gauss-maps of submanifolds.
If M — R™ is k-dimensional submanifold, then the Gauss map v : M — Gr(k,R")
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maps a point m € M to the subspace T,,M € Gr(k,R"). O

Group objects in the category Mf are called Lie groups.

Example 1.6. Typical examples are the general linear groups GL(n,R) and GL(n, C)
for n € N, n > 1. As manifolds they are open submanifolds of Mat(n,n,R) = R™ or
Mat(n,n,C) =2 R?" defined by the condition det(A) # 0.

Further examples of Lie groups are the orthogonal groups O(n) and their connected
components SO(n) for n € N, n > 1. The group O(n) consist of those elements
A of GL(n,R) which preserve the standard scalar product on R". This can be
expressed by the equation A’A = 1. The manifold structure on O(n) is defined by
its presentation as a submanifold of GL(n,R).

Similarly, the unitary group U(n) is defined as the subgroup of elements A of
GL(n,C) which preserve the standard hermitean scalar product on C". This can
be expressed by the equation A*A = 1. The special unitary groups SU(n) is the
subgroup of U(n) defined by the additional condition that det(A) = 1.

In a similar way one can define other Lie groups as subgroups of GL(n,R) or GL(n,C)
preserving natural geometric structures on R™ or C™.

Examples of abelian Lie groups are R" or the tori 7" := (S)". O

One defines the notion of an action of a Lie group on a manifold using the language
of the category Mf.

Example 1.7. Examples of actions are
1. the action of a Lie group G on itself by right or left multiplication,
2. the linear action of O(n) on R™ and the induced action S"~! or Gr(k, R"),
3. the linear action of U(n) on C™ and the induced action on CP"~! or Gr(k,C").
O

An action a : G x M — M is proper if the map (a,pr,,) : G x M — M x M
is a proper map of the underlying topological spaces, i.e. it has the property that
preimages of compact subsets are compact.



An action is called free, if for every ¢ € G with g # 1 the subset of fixed points
M9 :={m € M | gm = m} is empty.

Example 1.8. These examples illustrate the notions of proper and freeness of an
action and demonstrate their independence.

1. Any action of a compact group is always proper. The action of a closed sub-
group H C G of a Lie group GG on G by left- or right-multiplication is free. It
is proper if and only if H is closed.

2. We consider the vector field on the torus 72 given by 9; + 60, in the natural
coordinates, where 6 € R. Its flow is an action of R. It is given by (¢, [z,y]) —
[z +t,y + 0t], where we write the points in T2 as classes [r,y] € R?/Z?. If 0 is
irrational, then the action is free, but not proper.

3. The trivial action of a non-trivial finite group on a manifold M is proper, but
not free.

4. The action of R on S* given by (¢,u) + exp(2mit)u is neither free nor proper.

O

An action of a Lie group G on a manifold M induces an equivalence relation encoded
in the equalizer diagram
GxM=M,

where the two arrows are the projection and the action. If the equalizer exists, then
it is called the quotient of M by the action of G and usually denoted by M/G.

Theorem 1.9. If a Lie group G acts properly and freely on a manifold M, then the
quotient M /G exists in Mf.

In general we know that a surjective submersion M — X presents X as a quotient of
M with respect to the equivalence relation M X x M = M. So if we have a candidate
M — X for the quotient of a proper free action, then we must only verify that this
map is a surjective submersion and that the natural map

MxG—MxxM, (m,g)— (m,a(g,m))

induces an isomorphism of equalizer diagrams.



Example 1.10. Examples of manifolds defined by forming quotients are T"
R"/Z" or CP™ = S?"+1/U(1).

O IR

Example 1.11. Let n € N. If M is a manifold, then we can consider the space of
ordered n-tuples of pairwise distinct points in n. It is an open submanifold

Confor (M) C M*™ :=M x --- x M
~—_——

nx

defined as the complement of the closed subset
{(x1,...xp) e M*" | (Fi,j € {1,....,n} |z, =xjand i # j)} .
The permutation group ¥, acts freely on Conf°"¢(M) by
(@1, .., 2n) = (To1(1) - To-1(n)) , O € Xy .
The configuration space of n-points in M is defined by

Confn,(M) := Confr(M)/%, .

It is a interesting and in general complicated problem to understand the topology of
the configuration spaces of manifolds.

We have Confi(R") = R”. We now analyse the next case Confy(R™). We have a
diffeomorphism Con f§"*(R™) = R"x (R™\{0}) which maps (21, z2) to (2422, z—1).
The first entry is called the center of mass of the configuration. The map is Y-
equivariant, if we define the action of the non-trivial element in ¥ on the target by

(a,b) — (a,—b). Hence

Confy(R™) 2 R" x (R"/(Z/2Z)) ,

where Z /27 acts by reflection at the origin. This space is homotopy equivalent to
RP" 1. O

Example 1.12. Many interesting manifolds parametrizing geometric objects arise
as quotients of Lie groups by the action of subgroups.

1. For example, for k,n € N, 1 < k < n—1 the Grassmann manifold Gr(k, R")
of k-dimensional subspaces in R™ can be presented as O(n)/O(k) x O(n — k).
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To this end we observe that every k-dimensional subspace can be written in the
form ARF for some A € O(n). This gives a surjective map O(n) — Gr(k,R").
The block-diagonally embedded subgroup O(k) x O(n — k) is the stabiliser of
the subspace R¥ C R™. One checks that O(n) — Gr(k,R") has the universal
properties of the quotient.

2. Another example is the manifold of all complex structures on R?>" which can
be presented as GL(2n,R)/GL(n,C). To this end we fix the standard complex
structure .Jy on R?" given by the standard identification R*" = C. Every other
complex structure can be written in the form A=1JyA for some A € GL(2n,R).
The subgroup GL(n,C) C GL(2n,R) is the stabilizer of .Jp.

3. The manifold of symmetric bilinear forms of index (p,q) on RPF? is pre-
sented as SL(n,R)/SO(p, q), while the manifold of all orthogonal splittings of
such a form into a positive and negative definite part is O(p, q)/O(p) x O(q).

4. The sphere S™! can be identified with the manifold of rays in R” and presented
as SO(n)/SO(n —1).

O

Many of these examples are related by locally trivial fibre bundles. In general,
for a free and proper action of a Lie group G on M we have a bundle M — M /G with
fibre GG. The importance of recognizing manifolds as total spaces of fibre bundles is
that many aspects of their topology can be understood in terms of the topology of
base and fibre which have smaller dimensions and are often simpler.

In many cases we can apply the following theorem in order to detect fibre bun-
dles.

Theorem 1.13. A proper submersion is a locally trivial fibre bundle.

Example 1.14. Here are examples of fibre bundles
1. SO(n) — S™ 1 with fibre SO(n — 1)
2. §#+l 5 CP™ with fibre U(1)
3. R® = T" with fibre Z"
4. U(n+ 1) — CP™ with fibre U(n) x U(1).
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Let M be a manifold with boundary N. Then we can choose an embedding
c:(—L0]xN—-M

which identifies {0} x N with N. It is called a collar. If such a collar is chosen, then
we say that N is (presented as) a right boundary. Similarly, if the collar is given by
¢:[0,1) x N — N, then we say that N is a left boundary. The projection from the
collar to [0,1) gives a boundary defining function which is ofter called the normal
coordinate.

Assume that N is a right boundary of M. Let now M’ be a second manifold with left
boundary N’ and collar ¢ : [0,1) x N — M" and f: N — N’ be a diffeomorphism.
Then we can form a new manifold M Uy M’ (often denoted by M Uy M’') called
the connected sum of M and M’ along the boundary N. Its underlying
topological space is the quotient of M LI M’ by the relation ¢(0,n) ~ ¢/(0, f(n)). The
smooth structure is defined such that the union of the two collars is diffeomorphic
to (—1,1) x N via ¢(t,n) — (t,n) for t <0 and (¢, f(n)) — (¢,n) otherwise.

Let M be a manifold with boundary N. Then we present N as a right boundary
by choosing a collar c. It induces a presentation of N as a left boundary by setting
d(t,n) := c(—t,n). We can now form a manifold without boundary M U4, M called
the double of M along N.

The construction of the connected sum along the boundary involves the choice of
the collars. By the following theorem these choices do not influence the resulting
diffeomorphism type.

Theorem 1.15. In the constructions above the isomorphism classes of M Uy M’ or
the double M Uiq,, M do not depend on the choice of the collars

Example 1.16. 1. We can present the sphere S™ as a double of a disc D" so that
the two copies of the disc correspond to the lower and upper hemispheres, and
the boundary gives rise to the equator.

2. We can present torus 7™ as a double of I x Tm 1.

11



Assume that we are given an embedding i : S¥ x D" — M as a codimension zero
submanifold with boundary. Then M \i(S* x int(D"~*)) is a manifold with boundary
diffeomorphic to S* x S"7*=1. We can form

M/ =M UstSn—k—l DkJrl X Snikil .
We say that M’ is obtained from M by a surgery in codimension n — k along
i

For example, assume that M has two connected components M, and M;. Then,
using charts, we can find embedded discs D™ < M; for ¢ = 0,1. We consider this
data as an embedding S° x D* — M. If we do surgery on this datum, then we get a
connected manifold M’ usually called the connected sum MyfM;. One can check
that up to diffeomorphism it does not depend on the choices.

Example 1.17. For g € N, g > 1 we can form a connected sum ¢ of g copies of
T?%. We set ¥0 := S2. We have the following classification of surfaces.

Theorem 1.18. Let ¥ be a compact connected surface. Then there exists a unique
g € N called the genus of ¥ such that X is 1somorphic to:

1. X9 of ¥ is orientable,
2. Y9ERIP? if is ¥ is not orientable.

The following theorem is one starting point for the classification of closed mani-
folds.

Theorem 1.19. FEvery closed manifold of dimension n can be obtained from S™ by
a sequence of surgeries.

1.2 Recap of the basic definitions of de Rham cohomol-
ogy

Let M be a smooth manifold. By

QM)+ 0— QM) 5 QY (M) 5 Q2(M) S ..
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we denote the de Rham complex of M consisting of real-valued smooth differential
forms. A form w € QF(M) is called closed, if dw = 0, and it is called exact, if there
exists a € QF1(M) such that w = da.

Example 1.20. 1. The 1-form w := xdy + ydz on R? is closed. Indeed,
dw = d(xdy + ydx) =dx ANdy +dy Ndez =0 .
It is in fact exact: d(zy) = w.

2. The form w := dt on S' (we parametrize S* by t — €*™) is closed, but not
exact. If it would be, say w = df, then

1:/d1t5ti“es f=0.
St 0S5t

Note that the parameter ¢ does not give a smooth function on all of S! since
it jumps at 1.

3. If f is a complex valued function defined on some open subset of C, then fdz
is a (complex valued) form. The function f is holomorphic exactly if fdz is
closed. Indeed, we have

d(fdz) = (0. fdz + 0. fdz) = O.f 02 A D= .

Since dod = 0, an exact form is closed. The converse is not true in general. In order
to formalize this effect one introduces the R-vector spaces

Hap(M) := H* (M)
called the de Rham cohomology of M. In detail, for £ € Z de k’th de Rham
cohomology is the R-vector space
ker(d : Q¥ (M) — QFL(M)
H(IER(M) = ; k7(1 ) A () .
im(d : QF1(M) — QF(M))

A closed k-form w is exact iff its class [w] € HYz(M) vanishes.

The number
V(M) := dimg HE,(M) € NU {c0}

is called the k’th Betti number of M. The Betti numbers are the most basic
invariants of M defined through de Rham cohomology.
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Example 1.21. We have
HO (M) = {f e C®(M,R)| f is locally constant} .
Let mo(M) denote the set of connected components of M. Then
Hip(M) = RO
The zeroth Betti number b°(M) is equal to the number of connected components of
M. O
Example 1.22. In this example we list calculations of Betti numbers of various
manifolds. One goal of this course is to develop the methods to do these calculations.
1. For n > 1 we have

b(S") :{ 1 i=0,n

0 else

2. For n > 1, we have

1 i=0,2n+1
0 else

b'(RP*" ) = {

3. For n > 1, we have

0 else

b(T™) = ( 7;) .

g . 1 1=0,2,...,2n
b(CP):{O else

4. For n > 1 and 7 € Z we have

5. For n > 1 we have

6. For a connected orientable surface ¥ of genus g we have

1 i=0,2
V(X)=<¢ 29 i=1
0 else
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7. For a connected non-orientable surface X of genus g we have

’ 1 =0
V(E)=4q 29 i=1
0 else

A smooth map f : M — N induces a map of complexes f* : Q(N) — Q(M) and
therefore a map between cohomology groups Hyr(f) : Hjr(N) — Hjp(M). It is
given by application of f* to representatives

Har(f)([w]) = [f*w] .

From now one we write f* instead of Hyr(f). These constructions are functorial,
i.e. we have the rule (g o f)* = f* o g* for composeable smooth maps f and g. The
Rham cohomology group thus constitutes a functor Hj, from Mf® to the category
of Z-graded real vector spaces.

The A-product turns (M) into a commutative differential graded algebra.
Consequently, the de Rham cohomology H},(M) is a graded commutative algebra
whose product will be denoted by U. The product in cohomology is given in terms
of representatives by

(o] U [w] =[aAw] .

The pull-back operations f* on the level forms and cohomology are compatible with
the products. So the functor Hj, actually takes values in graded commutative R-
algebras

Example 1.23. In the following we present the structure of de Rham cohomology
as a ring in a number of examples.

1. H;p(S™) 2 R[z]/(2?), where z is a generator in degree n.

2. H;‘R(R]P’Z”“) R[z]/(2?), where z is a generator in degree n.

3. Hip(RP™) =~ R

4. Hip(CP") 2 R[z ]/(z”“), where z is a generator in degree 2.

5. The product S? x S* has the same Betti numbers as CP3. So the de Rham

cohomology groups are isomorphic. But the ring structures are different: We
have H}p(S? x S*) = R[z,y]/(2?, y?) with |z| = 2 and |y| = 4.

15



6. Hyp(T") = A" HYp(T7).

Let f: I x M — N be a smooth map and f; : M — N, i = 0,1 be the restrictions of
f to the boundary faces of the interval. The map f is called a homotopy from f
to fi. If we are given fy and f;, then we say that these maps are homotopic if such
a map f as above exists. We have the homotopy formula

fi—fi=dh+hd:QN)— QM) , (1)

where h : Q(N) — Q(M) is given by the degree —1-map

h(w) ;:/ o, () exany dt -
[0,1]
The homotopy formula implies that

fi =15 Hip(N) — Hgp(M)

i.e. the de Rham cohomology functor is homotopy invariant. Indeed, if dw = 0,
then
fiw— fow = dhw .

A map f : M — N is called a homotopy equivalence if there exists a map
g: N — M called inverse up to homoptopy such that f o g is homotopic to idy,
and g o f is homotopic to idy. In this case ¢* : Hjz(M) — H;z(N) is inverse to
f* i Hjp(N) — Hjp(M). In particular, f* is an isomorphism.

Example 1.24. The inclusion f : x — R" of the origin is a homotopy equivalence.
In fact, the inverse up to homoptopy ¢g : R® — x is the unique map. We have
go f =1id, and h(t,z) := tx is a homotopy from f o g to idg». Consequently

R = Hjp(*) = Hgp(R") ,
where we consider R as a graded commutative algebra in the natural way. O

Example 1.25. The inclusion f : S™ — R""!\ {0} is a homotopy equivalence. An
inverse up to homoptopy is given by g : R*™\ {0} — S", g(x) := - We have
go f=idgn and h(t,z) ==tz + (1 — t)”i—n is a homotopy from f o g to idgn+1\fop O
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Example 1.26. One can use de Rham cohomology in order to show fixed point
theorems, for example the Brouwer fixed point theorem.

Theorem 1.27. If f : D™ — D" is a smooth map, then it has a fixed point.

Proof. We argue by contraction. Assume that f has no fixed point. Then we con-
struct F': D™ — S™~! such that F'(z) is the intersection of the ray with S"~! starting
in f(z) and going through x.

In order to see that F'is smooth we argue as follows. We consider the pull-back

I

D" x [0,00) —=R

I

where the lower horizontal map is (z,t) — || f(x) +t(x — f(x)||*>. We check transver-
sality: The derivative of the lower horizontal map with respect to t is

2(f(x), 2 = f(2)) + 2tz — f(2)]* . (2)

If | f(z) + t(x — f(z)||> = 1, then this is non-zero. If it would be zero, then (for the
first transition we multiply by ¢ and add and substract || f(x)]?)

0 = 2t(f(x),x — f(2)) +2t°lz — f ()|
= [If@) + (@ = f@)I* = If @I + ]z — f(2)]
= (=@ + )z — f)]* .

Since [|f(z)]|* < 1 we conclude that both summand must vanish separately, and
therefore that ¢ = 0 and || f(z)|| = 1. But then from (2)) we would have

(f(@),2) = f(@)]* =1,
and since x and f(z) belong to D", also f(x) = z, a contradiction.

The map U — S"! given by the projection to D™ x [0,00) and application of
f(x) 4+ t(x — f(z)) is the required map F.

The composition S"~! % D" £ §7=1 {5 the identity. Hence
F*i* =id: Hj' (S ) — HR (5"
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is an isomorphism of a non-trivial R-vector space. But H}n'(D") = 0 and thus
i = 0. O

Remark 1.28. In the theorem it suffices to assume that f is continuous. But then
the proof must be modified.

Example 1.29. We have seen in Example that
Confo(R") 2 R" x (R"\ {0})/Z/2Z .

This space is homotopy equivalent to RP"~!. To see this we represent RP"! as
quotient S"~'/Z/27. Then we define the map f : Con fo(R™) — RP" ! by f(a, [b]) :=
[b/|b]]]. An inverse up to homotopy is given by g([u]) := (0, [u]). Note that fog=
idgpn-1. A homotopy from g o f to idconf,®n) is given by

h(t,a,[b]) := (ta, [tb+ (1 —£)b/]b]]]) -

We conclude that (using the still unproven calculation of the cohomology of RP™"™1)

R[2]/(2%) ,]z] =n —1 n even

Hjr(Confy(R™)) = H:;R(RPWI) = { R n odd

If M is an oriented manifold and A C M is a precompact Borel measurable subset,
then we have an integration

/A:Q(M)—>R.

In particular, if A C M is a compact codimension zero submanifold with boundary
0A, then we have Stokes’ theorem

/dw:/ w .
A A

Here 0 A has the induced orientation. We represent orientations by nowhere vanishing
forms of maximal degree. If v € Q¥™M) represents the orientation of M, then

(tn)jpa € QI A)
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represents the orientation of 0A, where n is some outward pointing normal vector
field on 0A.

Example 1.30. In this example we illustrate the induced orientation on a boundary.
We consider the sphere S"' C R". We equip R” with the standard orientation
represented by volge. = dzt A---Adz™. We consider the chart of the upper hemisphere
{z" > 0} N S"! — R""! given by the projection along the last coordinate. We ask
when this chart is compatible with the orientation.

The outward pointing unit normal vector at the north pole N := (0,...,0,1) € S*~!
is 0,. Therefore (ig,volg:)(N) € A"71(T5%S"1) represents the orientation in this
point. In the chart it is sent to (—1)""'da' A --- A dz""!. Hence this chart is
compatible with the orientation exactly if n is odd.

If M is a closed oriented manifold, then the integral induces a homomorphism

/ CHED (M) SR [W]H/w.
[M] M

Example 1.31. Let v € QM) () represent the orientation of a closed manifold
M. Then we have [v] # 0 in Hon* ™) (M). In fact, Junlv] > 0. For example, we have

H7.(S™) % 0. Using the module structure of H/(M) over H),(M) one can show
that for a compact oriented M we have b™(M) > b°(M).

For example, the volume form of the sphere volg. represents a non-trivial class in

HZZR(Sn)- O

Example 1.32. Consider r,n € N such that 0 < r < n. We consider the index set
Joo=A{(i1,...,i) €{l,...n}" |1 <idp < <. <n}.

For i := (i1,...,i,) € J, we define dt' := dt"* A --- A dt'r. We show that the set of
forms

{at' € Q"(T™) |i € J,.}
represents a linearly independent subset of H,(T™) (in fact a basis, but this can not
be shown here).

To this end for j € J, we consider the map f; : 7" — T™ given by sending (s1, ..., s;)
to (1,...,81,...,8,...,1), where s; is put in place j;.
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Then f;dti = volyr if the indices match, and zero else. We get for all i, j € J, that

filde'] =00 .

(7]

1.3 Recap on basic homological algebra

Let C* be a cohomological chain complex of abelian groups. In detail
Ciom ot hon ot S
It can equivalently be considered as a homological chain complex
Ao, b0, 50,5
by setting C'_,, := C" for all n € N.

Example 1.33. 1. The de Rham complex (M) of a smooth manifold M is an
example.

2. For n € Z and an abelian group A we can form the chain complex S™(A) whose
only non-trivial entry is A in degree n.

O

A morphism of chain complexes C' — D is a commutative diagram

d

oot L

|

4 prn_d _pnrtr_d

If f is a symbol for the morphism, then we let f,, be the symbol for its component
in degree n.

We get a category of chain complexes Ch and morphisms of chain complexes.
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For n € Z the degree n-cohomology of a chain complex C' is the abelian group
defined by

ker(d: C" — C"T1)
H"(C) = .

() im(d : Cn=1 — Cn)

A standard notation for cohomology classes is [x] € H"(C), where z € C" is a cycle,
i.e. dr =0 and [—] denotes the class in the quotient by the image of d. If f : C' — D
is a morphism of chain complexes, then we define a map

H(f): H"(C) = H"(F),  H(f)lx] := [fu(z)] -

It is well-defined and functorial. Hence we can consider H™ as a functor Ch — Ab.
We often write f, := H(f).

A morphism between chain complexes is called a quasi isomorphism if it induces
an isomorphism in cohomology groups.

Example 1.34. 1. We have a quasi-isomorphism
f:8%2) = (Q— Q/z)
such that fy: Z — Q is the inclusion.
2. We have a quasi-isomorphism
id

0~(Z—=7Z).

Example 1.35. If A is an abelian group and (C, d) is a chain complex, then we can
form new chain complexes

C®A, Hom(C,A), Hom(A,C).

In the first case for c® a € (C® A)' := C"® A we set d(c ® a) := dc ® a. In
the second case, Hom(C, A)" := Hom(C'~*, A) and d¢ := (—1)'¢ o d. Finally, for
¢ € Hom(A, C)" := Hom(A, C?) we define d¢ := d o ¢.

The starting point of homological algebra is the observation that in general these
operations do not preserve quasi-isomorphisms.

We consider A := Z/3Z and the quasi-isomorphism f : S°(Z) — (Q — Q/Z)). Then

f®A=SYZ/3Z) — 0
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which is not a quasi-isomorphism. The morphism
Hom(Z/3Z, f) =20 — (0 — Z/3Z) ,

again not a quasi-isomorphism.

The idea of derived functors is to improve this situation and to define versions of
these operations which preserve quasi-isomorphisms.

O

A homotopy between morphisms fy, fi : C' — D of chain complexes as a map
h: C — D of degree —1 such that

In this case
fox=fin: H(C) — H*(D) .
In particular, if f = dh + hd, then f, = 0, and if f — id = dh + hd, then f is a

quasi-isomorphism.

Remark 1.36. Note that the operations discussed in preserve homotopy equiv-
alences. This shows that homotopy equivalence is a strictly stronger notion of equiv-
alence than quasi-isomorphism. O

Example 1.37. If f: M — N is a morphism of manifolds, then f*: Q(N) — Q(M)
is a morphism of chain complexes. If f is a homotopy equivalence, then f* is a quasi
isomorphism, in fact a homotopy equivalence. A homotopy f : I x M — M between
fo and f; induces a homotopy between f; and f;. See (|1)). O

An exact sequence of chain complexes

0ALBSCc S0

is a sequence of morphisms of chain complexes such that for every n € Z the sequence
of abelian groups

0— A" I Br 9y on s g
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is exact. In this case we have the long exact sequence in cohomology
oo HYA) D HY(B) S HYO) S HYYA) > L
The map 0 is called the boundary operator. Explicitly, it is given by
Olc] = [db] , (3)
where b € B" is a lift of ¢ and we observe that db € A”.

The boundary operator depends naturally on the exact sequence. A morphism be-
tween short exact sequences is a diagram

0 A B C 0.

ol b

0 A B’ C’ 0

Let 0 and @' be the associated boundary operators. Then we have the relation

doh,=f,00.

A map of short exact sequences induces a morphism between long exact sequence.
Example 1.38. We consider the chain complex
A 0=Z 2370,
We form the exact sequence of chain complexes
0 — Hom(A,Z) — Hom(A,R) — Hom(A,R/Z) — 0 .
The boundary operator induces an isomorphism
H'(Hom(A,R/Z)) %5 H°(Hom(A,Z)) .

This can be verified by an explicit calculation. Let [¢] € H~*(Hom(A, R/Z)) be rep-
resented by ¢ : Z — R/Z. The condition d¢ = 0 says that ¢ has values in 1Z/Z.
We choose a lift ¢ : Z — R of ¢. Such a lift is fixed by the choice of ¢(1) € R.
Then 9[¢] = [5¢]. The homomorphism 5¢ has values in Z. Its class is zero if
56(1) € 5Z. This is exactly the case when ¢ = 0. In the other direction, given a
class [k] € H°(Hom(A,Z)) we can take ¢ := [Lk] as a preimage. This shows surjec-

5
tivity of 0. O
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If C'is a chain complex, then we define the shift C[n] by

Cn)* := C™™* | with differential (—1)"d (4)
Example 1.39. We have S"(A) = S%(A)[—n]. O

A basic tool of homological algebra is the Five Lemma:
Lemma 1.40. Let

A B C D E

N O N T

A B’ C’ D’ £’
be a morphism between exact sequences of abelian groups. If a,b,d,e are isomor-
phisms, then c is an isomorphism, too.

Example 1.41. If f : A — B is a morphism of chain complexes, then we can form
a new chain complex Cone(f) := A[l] @ B called the cone of f. Its differential is
given by

d(a,b) = (—da,—f(a) + db) .

We define H*(f) := H*(Cone(f)). We have an obvious exact sequence
0 — B — Cone(f) — A[l] = 0
and a long exact sequence
o= HY(B) — H™(f) — H""™ (A) &5 HY(B) > ... .
If f is injective, then we have a quasi isomorphism coker(f) ~ Cone(f) given by
Cone(f) — B/A, (a,b) — [b] .

This follows from the Five Lemma [1.40, A similar statement holds for surjective
maps. See Example [3.1] O

Further aspects of homological algebra will be developed in Section [2.3]
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1.4 The Mayer-Vietoris sequence

Let UUV = M be a decomposition of a manifold into two open submanifolds.

Lemma 1.42. The following sequence of complexes is exact:

) y=Muv) (Oéﬂ)'—)a\Unv*ﬁ\Umv\

0 QM QU @ Q) L, QUNV) 0. (5)

Proof. The only non-trivial place is the surjectivity of the second map. To see this
we choose a partition of unity {xu, xv} subordinated to the covering {U,V'} of M.
If we QUNV), then yyw is defined on UNV and vanishes identically near U NV
Therefore it can be extended by zero to V. We will denote the extension still by
xuw. Similarly, xyyw can be extended by zero to U. Therefore the second map in
the sequence maps (yyw, —xyw) to w. O

The long exact sequence associated to the short exact sequence of de Rham
complexes is called the Mayer-Vietoris sequence:

o= HIZNUNV) S Hig(M) — Hip(U)OH)R(V) — Hip(UNV) S HIFH (M) — ...

Here is a explicit formula for the boundary operator. It uses the explicit formula
for the preimage of w obtained in the proof of Lemma and ([3). We let § be the
form given by

By =dxy ANw, By =—dxvAw. (6)
Then

Example 1.43. In this example we calculate H},(S™). We can write S™ = R"UR",
where the two copies of R" are the complements of the north- and the southpoles
which intersect in a manifold diffeomorphic to R™ \ {0}. We can calculate H},(S™)
using the Mayer-Vietoris sequence and induction. We claim that for n > 1 we have

m o~ | R E=0,n
HgR(S>_{ 0 else

Note that we have a homotopy equivalence R" \ {0} ~ S™~! (Example [1.25). We
start with the case n = 1. The non-trivial segment of the MV-sequence for n =1 is

0— HI(SY) — HI(RUR) — HYL(S°) — Hip(S') — 0.

25



The middle map is, after natural identifications, given by (x,y) — (x —y,z —y) and
has rank one. This implies the claim for n = 1. The beginning of the MV-sequence
for n > 2 has the form

0— Hc(l)R(Sn) - HgR(Rn) D HgR(Rn) - HgR(Rn) - H(;R(S”) —0.

The second map is (z,y) — = — y, hence surjective. We conclude HJ5(S") = R
as expected since S™ is connected, and H},(S™) = 0. In higher degree the only
non-trivial segment of the MV-sequence is

0— HIZ'(S"™) = HJp(S") = 0.

This gives H}5(S™) = R by induction.

Example 1.44. In this example we illustrate the explicit formula for the boundary
operator @ We consider the circle which we cover as before by the two hemispheres
U, V. The intersection U NV is the disjoint union of two intervals,

vnvertul =(—mr)U(—mm) +7

in the natural parametrization. The boundary operator maps the class [(1,0)] €
HY(ITUT7) to [8] € Hip(S'), where 8 € Q'(S') is given by

5\Um1+ =dxy , 5|Uml— =0, 5|le+ = —dxv , 5|Vm1— =0.

/Slﬂz/ﬁdXVZ—l-

Therefore, [8] = 9[(0,1)] indeed represents the generator of Hj,(S')

Example 1.45. This is a higher-dimensional generalization of Example [[.44 We
consider a codimension-one submanifold N C M such that M \ N has two connected
components M.. We can extend the embedding of N to an embedding of a collar
(=1,1) x N — M such that M_nN(—1,1) x N = (—=1,0) x N and define the open
subsets My := My U (=1,1) x N € M. The inclusion My — M, is a homotopy
equivalence. Moreover, the inclusion N — M+ NM_ = (=1,1) x N is a homotopy
equivalence. We consider the covering {M+, M _} of M. The Mayer-Vietoris sequence
reads after the obvious identifications

We have

o HEY(N) S HE(M) — HYp(My) @ HEg(M_) — HEg(N) = ...
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If [w] € HYY(N), then Olw] € HE,(M) is represented by the form a which is
supported in (—1,1) x N and characterized by
O)(~1,1)xN = dXM+ APryw .

Let us now assume that M is closed and oriented, and that NV is closed and has the
orientation induced as the boundary of [0,1) x N. Assume that k = dim(M). Then
we have

- Olw] = /Moz = /(—1,1)xN dX 7, NPryw = <_1)k/Nw — (1) /[N][w] o

Consequently, the boundary operator 9 : Hor™(N) — HIMM (A1) has at least
rank one.

Actually, it has rank one since bgim, M)(M ) = 1, but we have not shown this at this
moment. O

Example 1.46. Let n > 2. We consider an embedding rD" := | | D" — S™ of
r pairwise disjoint discs into the sphere and let S be the manifold with boundary
oSt = | [;_, 8™t =: rS™! obtained by removing the interior of the image of this
embedding. We calculate the cohomology of S using the Mayer-Vietoris sequence.
Its beginning is

0 — Hip(S") = Hip(S7) & D Hin(D") — D Hin(s" ) %
i=1 i=1
By counting connected components we see that 0 = 0.
For k ¢ {0,n — 1,n} we get
02 Hyp(S") = Hyp(S)') -
The remaining piece of the sequence is
n—1/gony\ ¢ : n—17an—1y O, n n n n
0— Hyp (S7) — @Hm (S"77) = Hyp(S") = Hgr(S)) = 0.
i=1

Since b,(S™) = 1 we see from Example that O has rank one. This gives
H7.(S!) = 0 and b,-1(S?) = r — 1. For later calculations we must understand
the kernel of 0, i.e. the image of i. We equip all boundary components with the
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induced orientation from S™. The choices of orientations induces via integration an

isomorphism
,

P (S =R,
=1

In view of (7)) we have 0z =0 iff Y., z; = 0.

Example 1.47. We now calculate the cohomology of the manifold M, obtained from
S™ by attaching r handles of dimension 0 (r surgeries of codimension n).

We can write M, as a boundary sum along 2rS™~! of S7 with r(D! x S"~1). We get
the Mayer-Vietoris sequence

r r 2r
o= @ HE ST S HE(M,) — H (S5 )OED Hin(S") = €@ Hia(S" 1) 5 ... .

i=1 =1 =1

Note that we identify the degree n — 1-cohomology of every component of 053 with
R using some orientation orientation. For k& = n — 1 the second component of the
map ! maps (z1,Ts,...) € R" to (£zy, Fry, 29, Fxo,...) € R?". All these elements
belong to the image of the first component Hjy '(S3) — R? of !. In order to see
this note that the canonical identification of S"~! with the boundary components
of [0,1] x S™! induces orientations on these boundary components. One of them
is compatible with the orientation induced from viewing the S" ! as a boundary
component of S3,, and the other is not. We conclude that for k¥ = n — 1 the marked

map has rank 2r — 1.

We can now evaluate the Betti numbers. Assume first that n > 3.

R *x=0

. o) R x=1n-1
HdR(MT) = R x=n
0 else

Similarly we get in the case n = 2 with M, = X, the surface of genus r:

R x=0

. o) R x=1
HdR(ZT) = R =2
0 else
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1.5 Coverings by a finite group

Let G be a finite group acting freely on a manifold M. Then we consider the quotient
M/G. In this subsection we want to calculate the de Rham cohomology of M /G using
the knowledge of the de Rham cohomology of M. Here is a list of examples:

1. For n > 1 we can represent the real projective spaces as RP™ = S™/7Z /27,
where Z /27 acts on the sphere by the antipodal map.

2. For coprime integers p, ¢ we define the action of Z/pZ on C? by

[n](z0, 21) (627”%20, eZﬂi%zl) .

This action preserves the unit sphere S C C? and has no fixed points there.
The quotient

L(p.q) == S°/Z/pL (8)
is called a lense space of type (p,q).

3. The configuration space of k pairwise distinct points in a manifold M can be
written as a quotient

Confi(M) := Confi™ (M) /% .

As a preparation consider an action (g,v) +— gv of a finite group G on a real vector
space V' by linear transformations. We define the subspace of G-invariant vectors

Ve ={veV|(VgeG|gu=1)}.

We further define the linear endomorphism

1
P:V =V, P(U>2:@ng.

geG

Lemma 1.48. The endomorphism P of V is a projection onto V©.
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Proof. We calculate for v € V and h € G that

1
]G|ng ‘G’Zthv ng—Pv
ge

geG geG

in particular we get P(v) € VC. If v € VY, then

P(v) ]G’]ng Zv—v

gelG gEG

This implies P(P(v)) = v. Therefore P is a projection whose image is exactly V. O

We now come back to 7 : M — M/G. The group G acts on the complex Q(M).

Lemma 1.49. The pull-back by 7 induces an isomorphism of complezes Q(M/G) =
Q(M)©C.

Proof. Since m is a surjective submersion the pull-back 7* : Q(M) — Q(M/G) is
injective.

If we QM/G) and g € G, then the equality m o g = 7 implies that ¢*7*w = 71w,
hence m*w € Q*(M)°.

Vice-versa, if 8 € Q*(M)Y, then there exists w € Q(M/G) such that 7*w = 3. In
order to define § near a point z € M/G we choose a neighbourhood U of x such
that 7=1(U) ® U x G. Fixing a point g € G we get a section s : U — U x G — M.
We set wy := s*3. The result is independent of the choice of g or the trivialization.

Indeed, if " is defined with a second choice then in a neighbourhood of = we have
s’ = hs for some h € G. Then "5 = s*h*[ = s*f. O

By functoriality of the de Rham cohomology the group G acts on the real vector
space H}p(M).

Proposition 1.50. The pull-back 7 : Hyr(M/G) — H}r(M) induces an isomor-
phism H}n(M/G) = Hjp(M)C.
Proof. By Lemma it is clear that the image of 7 is contained in Hp(M)Y.

We first show injectivity of 7*. Note that g* : Q(M) — Q(M) and hence P preserve
the differential. Let [w] € HY;(M/G) be such that 7*[w] = 0. Then there exists
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a € QF (M) such that da = n*w. Then dPa = Pda = Pr*w = 7*w. We now use
Lemma [1.49, Let 8 € Q(G/M) be such that 7*f = Pa. Then df = w and therefore
[w] = 0.

We now show surjectivity of 7*. Let [y] € H5,(M)C. For every g € G there exists
ay € Q7 1(M) such that g*w — w = day,. This gives

1
w=Pw—d— a, .
a7 2%

geG
Hence [w] = [Pw]. By Lemma there exists 3 € Q¥(M/G) with 8 = Puw.
Moreover, df = 0. Hence [w] = [Pw] = 7*[5]. O

The upshot of this proof is that if a finite group G acts on a chain complex of rational
vector spaces C, then H*(CY) = H*(C)Y. The assumptions are needed in order to
be able to divide by the order |G| of G.

Example 1.51. In this example we calculate the cohomology of RP™ = S™/Z/27.
We first observe that the antipodal map on R™*! preserves the orientation if and
only if n is odd. Since it also preserves the outer normal field on S™ = D" we see
that it preserves the orientation of S™ iff n is odd.

The non-trivial element of Z/27Z acts trivially on H°(S™). This implies
HO(RP") = HOy(S")2/% = R

For odd n it acts trivially on HJ},(S™) so that
Hjp(RP") = HQR(STL)Z/QZ =R.

For even n it acts by —1 so that
Hijp(RP") = HgR(Sn)Z/QZ =0.

The de Rham cohomology of RP™ in all other degrees vanishes since the cohomology
of the sphere vanishes. The result of our calculation is:

1. For n > 1, we have

1 i=0,2n+1
0 else

b'(RP*") = {
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2. For n > 1, we have

1 =0
0 else

Example 1.52. In this example we demonstrate that the assumption of finiteness
of G in Proposition is essential. We consider the usual action of Z" (which is
not finite) on R with 7™ = R"/Z".
Then
) n\Z" ~v
Hap(R")™ = { 0 else

In the other hand .
Hi () =R() | jeN.

2 Spectral sequence for filtered complexes and first
applications

2.1 Spectral sequence of a filtered chain complex

A decreasing filtration F of an abelian group A is a decreasing family of subgroups
L CFPHIAC FPAC .- CA

indexed by p € Z. In the following we introduce some properties which a filtration
can have.

1. We say that F is separated if ﬂpGZ FPA =0.
2. We say that it is exhaustive if | J ., FP?A = A.

3. We say that the filtration is bounded below, if FPA = FP~1A for all suf-
ficiently small p and bounded above if FPA = FPT!A for sufficiently large

p.
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4. We say that the filtration is finite if it is bounded below and above.

For a filtered abelian group (A, F) and p € Z we define the pth graded component
by

GrPA = FPA/FPTTA .
A morphism of filtered abelian groups (A, ) — (B, F) is a morphism f : A —
B of abelian groups such that f(F?A) C FPB for all p € Z.
Lemma 2.1. Let f : (A, Fa) — (B, Fg) be a morphism of filtered abelian groups
such that Gr?(f) : Gr? A — G1P B is an isomorphism for all p € Z. If both filtrations

are erhaustive, separating and bounded above, then f: A — B is an isomorphism of
abelian groups.

Proof. We consider the map of exact sequences

0——FPHA FPA GrrA 0.

N

0——=Fr'B—=FrB Gr’B 0

Both filtrations as separating and bounded above. Consequently there exists some
po € Z such that FPt'A = 0 and FPot'B = 0. We can start a downward induction
at p = po and use the Five Lemma in order to conclude that FPA — FPB is an
isomorphism for all p € Z. Since both filtrations are exhaustive we can conclude
that f: A — B is an isomorphism. O

A filtration of a chain complex of abelian groups is a chain complex C' = (C, d)
together with filtrations (FPCY),cz for all ¢ € Z such that the differential is a mor-
phism of filtered groups. A filtered chain complex induces a sequence of chain com-
plexes (FPC'),ez. We have natural morphisms of chain complexes

S PP O PO — . O
We define an induced filtration on the cohomology H*(X) by

FPHI(C) = in(H(F?C) — HI(C)) .

Note that we can not commute the operations of taking the graded components and
cohomology.
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Example 2.2. We consider the filtered chain complex C given in the form
FCCF'CCFC

by
0=0C(0—=082)C(Z52a2), de:=0dz.

The filtration of the cohomology

is given by

(0)<(0)=(z)

The associated graded groups given in the form Gr' @ Gr° are
Gr'H(C) \ o [ 0®0
Gr*HY (C) )~ \0®Z ) -

The graded chain complex is given by

Gri(C)=(08Z) > (ZaZ) .

< 510(<grr:(<(%>) ) - ( 2oz ) |

Its cohomology is

Our goal in the following is to calculate the groups Gr’ HY(C) starting from the
groups H9(GrPC). The tool is called a spectral sequence.

For every p € Z we have an exact sequence of chain complexes
0 — FPHC — FPC — Gr’C — 0 .

It gives rise to a long exact sequence

o HY(FPO) S HY(FPO) B HYGPO) S HIY(FPC) -
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We form the following triangle (called exact couple)

D, H(F7C) i D, H(F7C) (9)

®,, H(Cr’C)

Spectral sequences are derived from exact couples. In the following we explain this
construction in general. We consider two abelian groups £ and W which are con-
nected by a triangle of homomorphisms

: 144
E

w

such that the sequence

S WAWBESW ..

is exact. This datum is called an exact couple. Given an exact couple we define
the derived exact couple

!

w’ : w’
XE/ pr’
as follows:

1. E' :=Xker(d)/im(d), where d :==prod: E — FE
2. W= im(i)
3. 7 = dw
4. pr’ : W' — FE’ is given by w — [pr(w)], where w € W is chosen such that

i(w) = w.
5. d'[e] = Oe.

Lemma 2.3. The derived exact couple is well-defined.
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Proof. We first must show that the maps are well-defined. Then we must verify
exactness of the derived couple.

1. A priory the map i" maps W’ to W. But it is clear from the construction that
it takes values in the subspace W' C W.

2. Given w € W' we can find w € W such that i(w) = w. We can therefore try to
define pr’(w) := [pr(w)], where [e] denotes the equivalence class modulo im(d)
of an element e € E with de = 0. It is clear that &' [pr(w)] = [Opr(w)] = 0 and
hence [pr(w)] € E'. We must check that [pr(w)] is independent of the choice
of w. A different choice can be written in the form w + de for some e € E. But
then [pr(w + de)] = [pr(w)] + [pr(9(é))] = [pr(w)] + [de] = [pr(w)] in view of
the definition of E'.

3. If de = 0, then pr(de) = 0, hence de € im(:) = W’. Hence the definition of pr’
produces elements in the correct target. We must show that ¢’ is well-defined.

A different representative of [e] can be written in the form e+dé = e+pr(9(€)).
But then d(e + pr(d(e))) = Je.

4. We show exactness for i/ 0 0'. Let w € W’. Assume that ¢'(w) = 0. Then there
exists w € W such that i(w) = w and i(w) = 0. We have w = Oe for some
e € E. But then de = pr(9de) = pr(w) = pr(i(w)) = 0. Hence w = '[e].

On the other hand if [e] € E’, the i'(0'([e])) = i(0(e)) = 0.

5. We show exactness for pr’ o4'. Let w € W’ be such that pr'(w) = 0. Let us
write w = i(w). Then pr(w) = de = pr(de) and hence pr(w — de) = 0. We
can replace w by w — Je and thus assume that @ = i(w). We conclude that
w € W' and therefore w € im(7).

On the other hand, if w € W', then we can write w = i(w). We have #'(w) =
i(i(w)) and hence pr'(i'(w)) = pr(i(w)) = 0.

6. Finally we show exactness at E. Let [e] € E’ be such that 0'[e] = 0. Then we
have de = 0 and hence e = pr(w) for some w € W. We thus have e = pr’(i(w)).

On the other hand, if [e] = pr/(w), then we find w € W such that i(w) = w
and e = pr(w) + d(é) for some é € E. Then &'[e] = de = 0.
O

We can interate the formation of the derived couple. The r — 1’th derivation will be
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denoted by

E,

In particular we get a sequence of groups (E,),>1 and maps d, : E, — E, such that
d.od, =0 and E,; | = ker(dr) g sequence (E,,d,),>; is called the spectral

im(d,
sequence associated to the exact couple.

W,

W, .

We say that the spectral sequence degenerates at the rth page if d,, = 0 for
all ¥ > r. This is e.g. the case if the rth derived couple is stable under further
derivation. In this case 7, is surjective and we have an exact sequence

0= E 23w Hw 0.

We now come back to the exact couple defined by a filtered chain complex. In this
case the groups F and W are bigraded as follows:

WPt = HY(FPC) | BP9 := HTP(Gr"C) .

We further set

W= wr, E:=pE.

p.9E€L p,q€Z

The arrows have the following bidegrees:
1. 4 : Wptha — Wypa
2.9 EPa — Jyrtlatptl
3. pr: Wri — Epa-p

We now analyse the derivation of @ We first calculate the bidegrees of the mor-
phisms by induction.

;- WPt P,
L4, : WPHhe — P9,
2. 0,: BP9 — Wptlat+ptl
° * T s
3. pr, : WP — Eptr=la=p=r+l _ This is shown by induction on 7.
4

. Pq p+r,q—r+1
. dy  EPT — EF
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The case r = 1 is discussed above. Assume now that we have shown the case r — 1.
Then:

1. i, : WPTh4 — WP is the restriction of 4,_; : WPT19 — WP into the image of

. 2 1 . . .
Gy : WPTP? — WP Therefore i, has the same bidgree as i,_;.

2. 0, : EP? — TWpPtLatrtl ig induced by the application of 9, : EPY —
ijll’ﬁp 1 to representatives. It has the same bidegree as 9,_;.

3. The value of pr, : WP — EPTr=La—p=r+l on oy € WP is given by pr,_,(0),
where @ € W”" is such that i,_1 (@) = w. Then by induction assumption

- +r—1,g—p—r+1

pr, y(w) € ExZ

Here is a picture of a part of an E,-term, where we have indicated the only differen-
tials which act between groups in this piece.

0,4 1,4 2,4 3,4 4,4 5,4
4 £y £, Ey Ey E, By

5,3
Eh

Consider p,q € Z. We have a sequence of subquotients (EP?),~; of E?. We can
define increasing (resp. decreasing) sequences of subgroups

"'ng’qCBfflg...folng’qg...

such that EPY := ZP4/BP for all r > 1. We define

20

21— P,q 21— p.q P9 . — o8
Bro =B, Znii= (2P0, ERS = 257

[o¢]

r>1 r>1
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Lemma 2.4. We assume that for each q the filtration of (FPCY),ez is finite, exhaus-
tive and separating. Then for every p,q € 7 there exists ro (possibly depending on
D, q) such that for all v > ry the differentials starting or ending at EP? are trivial.
Furthermore, for r > ry we have

Pd o~ P94
£t = g

and an isomorphism
GrPHPTI((C) = EPT .

Proof. We get by inspection
WP = im(HY(FPT10) — HI(FPO)) . (10)
We set p:=p' —r+ 1 and get

WPt = i (HI(FYC) — HY(FP10)) .

T

The assumption implies that for every ¢ € Z there are p*(q) € Z such that we have
FPC?1=C?for p<p_(q) and FPC? =0 for p > p*(q) . Then for r > p' +2 —p~(q)
we have

WPt & g (HY(FYC) — HY(C)) = FP HY(C) .

Moreover, i, : Wfl””’q — Wf/*’"ﬂ’q is the injective and we have an exact sequence
0 — FPHHIC) i, FPHUC) — Ef’,q—p _> Wf/ﬂ’q“ ‘
If p +r > pt(qg+ 1), then in view of we have WP 414+l = 0 and we get the
exact sequence
0— FFHHYC) - FPHI(C) — EF7P -0,

1.e.
CrP HY(C) = EFa P
if > max{p'+2—p(q),p"(¢+1) —p'}.

The assumption thus implies that for every p’,q € Z there exists rq € N such
that for r > ry we have

EPa — prla : Grp/Hq(C) o~ ppla-p
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A morphism between exact couples
(e,w) : (Ey, Wy,i1,pry,01) — (L2, Wa, 12, pry, 02)

is a pair of morphisms of abelian groups e : F; — F5 and w : Wy — W5 which are
compatible with the structure maps, i.e. the following relations hold:

woiy =igow, eopr;=pryow, wod=0oce.

The construction of the derived exact couple is functorial, i.e. we get an induced
morphism
(e w') == (B}, W], i, pr], 01) = (Ey, Wa, iy, pry, 05) .

We refrain from writing out the details.

The construction of the spectral sequence associated to an exact couple is therefore
also functorial. We get an induced morphism of spectral sequences (Ej ., dy,)r>1 —
(Es,,da,)r>1. In detail this morphism is given by the collection (e, ),>; of derivations
of e. Note that

€r O dl,r = d2,r o€ .

If the couples are bigraded as above, then these morphisms are compatible with the
induced bigradings.

If (Ev,,dig)r>1 — (Eay,day)r>1 is a morphism of spectral sequences such that for
some 79 € N the map e,, : Fy,, — L2, is an isomorphism, then by induction we see
that e, : By, — E5, is an isomorphism for all r > ry.

It
f:(C,Fe) = (D, Fp)

is a morphism of filtered chain complexes, then we get a morphism of exact couples
and therefore a morphism of spectral sequences

E(f): (E(C),dy) = (Ex(D),dy) .

Lemma 2.5. Assume that the filtrations of CY and DY are erhaustive, separating
and finite for all q. If for some r € N the induced morphism E.(C) — E.(D) is an
isomorphism, then H*(f) : H*(C) — H*(D) is an isomorphism.
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Proof. By Lemma the map Gr*(H*(f)) : Gr"H*(C') — Gr*H*(C) is an isomor-
phism. We check by inspection that the filtrations on H?(C') and H?(D) are finite,
exhaustive and separating. We now use Lemma[2.1]in order to transfer the statement
about the isomorphism from the graded groups to the cohomology groups themselfes.

|

The case r = 1 is of particular interest.

Corollary 2.6. If
f:(C, Fo)— (D, Fp)

is a morphism of filtered chain complezes such that
Gr(f): Gr(C) — Gr(D)
is a quasi-isomorphism and assume that the filtrations of C? and D? are erhaustive,

separating and finite for all q. Then f:C — D is a quasi-isomorphism.

Proof. Note that Ei(f) : E1(C) — FEi(D) is the map Gr(f) : Gr(C) — Gr(D).
Apply Lemma [2.5] O

Example 2.7. A double complex is a given by a family of abelian groups (C?9),, sz
together with homomorphisms d; : CP¢ — CP*Y4 and dy : OP7 — CP9*! for all
p,q € Z which turn (C*9,d;) and (CP*,dy) into chain complexes for all p € Z or
q € 7, and which satisfy didy 4+ dad; = 0.

Given a double complex C' := ((C?9),,,d1,d2) we can form its total complex
tot(C). Its is given by

tot(C)":= @ €, d:=di+d;.

p+g=n
Indeed,
d: tOt(C)n — tOt(C)n+1 , dd = (d1+d2)(d1+d2) = d1d1+(d1d2+d2d1)+d2d2 =0.
The total complex of a double complex has two natural filtrations ' F* and /F*
given by
LFk tot(C)" = @ crt . HFFgot(C) = @ cPa

pt+g=n,p>k p+q=n,q>k
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We thus get two spectral sequences (‘E,,d,) and ("' E,, ' d,). We have
IGrP(tot(C),d) =2 (CP*,dy) , "GrP(tot(C),d) = (C*,d,)

and hence
TEPY S H(CPdy), TEDY 2 HY(CH, dy)

For given n € Z the filtrations ~F* tot(C)" are exhaustive and separating. They
are finite if C"~%9 = ( for sufficiently large or small q.

If this is the case, then we can apply Lemma [2.4] and get
Hpra = HGrP P (4ot (C)) .

Observe that the finiteness assumption is satisfied if the double complex is supported
in the right upper quadrant, i.e. if C?% = 0 if one of the indices p, q is negative.

A typical application goes as follows. Let C** — D** be a morphism of double
complexes such that C*? — D*P is a quasi-isomorphism for all p. Assume that
for all n € Z we have C" %9 = (0 and D" %9 = 0 for sufficiently large or small q.
Then tot C' — tot D is a quasi isomorphism. Indeed, for all p,q € Z we get an
isomorphism
"EP(C) S TBY(D)

We now apply Lemma [2.5]

O

Example 2.8. If (A,d4) and (B, dg) are chain complexes, then we define the double
complex C' by

CP9 = APQBY | dy = ds®id: CP? — CP*M | dy = (—1)Pid®dp : CP — CPIH!

The total complex of C'is called the tensor product of the chain complexes A
and B
A® B :=tot(C) .

This construction defines a symmetric monoidal structure on the category of chain
complexes.

We have a canonical map H*(A) ® H*(B) — H*(A ® B) which sends [a] ® [b] to
[a ® b]. Under certain assumptions it is an isomorphism. See Lemma [2.30} O
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2.2 Good coverings, Cech complex and finiteness of de Rham
cohomology

In this section we construct and analyse the Cech complex of sections of a vector
bundle V' — M associated to an open covering U = (U, )aca of M. We apply this to
the bundle of alternating forms. Our main result in this subsection shows that the
de Rham cohomology of a compact manifold is finite dimensional.

The natural home for these constructions is sheaf theory. The construction of the
Cech complex works for arbitrary sheaves of abelian groups. The proof of Lemma
2.11] apples equally well if one replaces the sheaf of sections of the vector bundle by
an arbitrary sheaf which admits the multiplication by a partition of unity, i.e. a fine
sheaf. We refrain from developing the sheaf language at this point.

Forn € Nand a € (g, ..., a,) € A" we define the open subset
Uy i= Upy (-0 Un,

of M. We further define the vector space

C'u, V)= [] T, V).

OéEAn+1

Our notation for elements in this vector space is

¢ = (¢a)a€A”+1 ) ¢a € F(Uau V) )

and we call ¢, a component of ¢. For every i € {0,...,n+1} and a € A" we have

Ua C Ulap,...61,msr), Where (g, ..., &, ... 1) € A" s the tuple derived from

« by omission of the i’th entry. We define homomorphisms
di : C™(U, V) — C"™ U, V)
given on the components by
(di®)a = (D(ap,...61mstn 1)) |Ua -

We further define the Cech differential by

d:C"U,V)—C™ U, V), d:= %(—1)% : (11)

1=0
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Lemma 2.9. For every n € N the composition
CN U, V) S Cru, vy S Ot U, V)
15 trivial.

Proof. We use the relations (called cosimplicial relations)

' L djodi_l ]<Z
dZOdﬂ“{deodi jzz‘} ‘

We calculate

didf) = dy (-1)d,

n+1 n n+l n

= > (=Y (~1Yd; =) (~1)Mdid
1=0 j=0 1=0 j=0
n+1l i—1 n+l n

= D> D) (D) did; + > ) (-1 dd;
1=0 j=0 1=0 j=1i
n n+l n+l n

= Z Z (=)™ did; + ZZ<_1)i+jdj+ldi
Jj=0i=j+1 i=0 j=i
n  n+l n+1l n+l1

= D ) (1)Hdidi+ Y > (—1) T dyd;
1=0 j=i+1 =0 j=i+1
n  n+l n  n+l

= D2 (C)Tddi+ Y0 Y (-1,
1=0 j=i+1 =0 j=i+1

= 0.

O

Definition 2.10. The complex (C*(U, V'), d) is called the Cech complex of sections
of V.

We have a natural map of complexes
i:T(M,V) = CMU, V), T(M,V)3 ¢ (du.)aca € C'U, F) ,
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where we view ['(M,V) as a chain complex concentrated in degree zero. If w €
['(M,V), then dw = 0 in the complex I'(M, V') and one must check that di(w) = 0.
Indeed, we have
(d(iw))a07a1 = (wan1)|Ua0,a1 - (w‘Uao)‘Uao,al = O N

Lemma 2.11. The map i : T(M,V) — C(U,V) is a quasi-isomorphism.
Proof. Let (x,) be a partition of unity for &. We define a map of complexes

o 3, Xawa we U, V)

r:CU,V)—=T(MV), ’r’(w)._{ 0 we CUUVY g > 1

The compatibility with differentials is trivially satisfied. Note that o ¢ = idp(as,v).
It therefore suffices to show that ¢ o r ~ id¢, 1) by construction a homotopy h. For

q > 1 we define the component h : C9(U, V) — CY(U, V) of the homotopy by

..........
-----

-----

=0 e’
q
—|—< 1)q+1 Z( ]->Z Z Xawag ..... (e 7 g, + Z XOéwCYO ,Qg
=0 e’ «

and for ¢ = 0

= M(Ws)1vas) — Wa)lUias))@6)
= Z XpWa — Z XBWps

B B
= ((id—(ior))(w))a -
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O

We now consider the Cech complex of the de Rham complex. In this case we Writevd
for the Cech differential. For every ¢ € N we have a chain complex (C(U, AYT* M), d).
For every p € N the de Rham differential d;z induces homomorphism

dpar : CP(U, N T*M) — CP(U, N T*M) .

Since d is defined using restriction along smooth maps it commutes with the de Rham
differential. If we set dy := d and dy := (—1)Pd, 4r, then we get a double complex
(CP(U,NT*M, dy,dy).

We can consider the de Rham complex of M as a double complex with

QM) p=0
p,q __
QM) = { 0 else

Note that tot(Q(M)**) = Q(M). We have a natural map of double complexes
i QM) = C(U,ANT*M) .
Lemma 2.12. The induced map of total complexes
Q(M) — tot(C(U,AT*M))
1S a quasi-isomorphism.
Proof. We consider the induced map of spectral sequences
TE(QM)) = "TE.(tot(CU, AT*M))) .
The first page is given by the cohomology of d;. We clearly have

. ~ | (M) p=20
HE{L (M) { (0 ) else
By Lemma we also have

QM) p=0

"EP (tot(C(U,AT*M))) = { 0 else

Under these identifications the map induced by ¢ on the first page is the identity,
hence an isomorphism.
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We can now apply Lemma [2.5] Note that the spectral sequence is supported in the
right upper quadrant. Therefore the assumptions of the Lemma are satisfied. O

We now study the spectral sequence (! E,(tot(C'(U,AT*M)))),>1. It is called the
Cech-de Rham spectral sequence. Note that

"EPI(tot(CU AT M) = [ Hig(Ua) -

aeAP+1

The Cech-de Rham spectral is a useful tool if the cohomology appearing on the right-
hand side of this isomorphism is simpler then the cohomology of M itself. In the
best situation the manifolds U, are contractible.

Definition 2.13. A covering U is called good, if for every g € N and o € A+ the
open subset U, is either empty or contractible.

We define
no={a € A" U, #£ 0}

If U is good, then we have

acAl R ¢=0
0 else

TEPI(tot(C(U,AT*M)),) = { 11

If U is finite and good, then  EP:9 is finite-dimensional for every p and gq.

Corollary 2.14. If M admits a finite good coverings, then H}}5(M) is finite-dimensional
for every n € N.

Proof. For every p,q the R-vector space TE}? is finite-dimensional. Hence the R-
vector space D, o p 40 TEPa is finite-dimensional for every n € N. Therefore
GrH},(M) is finite-dimensional, and so is H}p(M). O

Proposition 2.15. Every manifold admits a good covering. If M is compact, then
M admits a finite good covering.

Proof. The second assertion follows easily from the first. A proof of the first using
some basic Riemann geometry goes as follows: We choose a Riemannain metric on
M. If M has a boundary we take care that the metric has a product structure near
the boundary.
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Recall that a subset U C M is called geodesically convex if for every two points
x,y € U there exists a unique minimizing geodesic from z to y in U. The intersection
of a finite number of geodecsically convex subsets is again geodesically convex. A
geodesically convex subset is star shaped with respect to each of its points and is
thus contractible.

We now use the fact that small balls in Riemannian manifold are geodesically convex.
We therefore can fine a good covering of M by sufficiently small balls. O

Corollary 2.16. If M is compact, then H}n(M) is finite-dimensional for every
n € N.

Example 2.17. The de Rham cohomology H},(Gr(k,R™)) of the Grassmann man-
ifolds is finite-dimensional. To see this we observe that Gr(k,R™) is compact. To
this end we use the presentation

O(n)

Grik R = S < om =1

and the fact that the orthogonal groups are compact. O

Example 2.18. Let M be a compact manifold and p : V' — M be a vector bundle.
We identify M with the zero section in V. We claim that H},(V) and H}L(V \ M)
are finite-dimensional. For the first we argue that p is a homotopy equivalence, hence
p* Hjp(M) — Hjp(V) is an isomorphism, and Hj,(M) is finite-dimensional since
M is compact.

For the second we choose a metric || — || on V' and form the sphere bundle
S(V)={veV||v|]|=1}.

This is a closed submanifold of V'\ M. The inclusion S(V) — V' \ M is a homotopy
equivalence with inverse given by v + |[v||~'v and homotopy (t,v) — tv + (1 —
t)v||v]|~. The fibre of pg) : S(V) — M is diffeomorphic to the sphere S4m()=1
and hence compact. Therefore S(V') is compact and H;,(S(V)) = H;r(V \ M) is
finite-dimensional.

O
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Definition 2.19. For a compact manifold M we define its Euler characteristic
by

The Euler characteristic is a numerical invariant of a manifold which is often easy to
calculate.

Example 2.20.
1. x(8**t1) =0, n e N.
2. x(8*)=2,neN.

3. x(2,) =2 — 2g, where ¥, is a compact oriented surface of genus g.

2.3 Filtered colimits, cohomology and tensor products

Let I be some small category. For an auxiliary category C we can consider the functor
category C!. We define the functor

const : C — (!

which maps an object C' € C to the constant functor const(C) € C! with value
C. The limit and colimit are functors C! — C defined as right- or left-adjoints of
const (if they exist):

colim;: C' &= C:const, const:CSCl:limg .

We call C complete (cocomplete) if the limit (colimit) exists for every small index
category I.

Example 2.21. Pull-backs, fibre products or equalizers are examples of limits. Push-
outs, quotients and coequalizers are examples of colimits.

O

By an evaluation of the definition of limits and colimits we have the following natural
isomorphisms for X,Y € C and X,) € C:

Hom(colim;X,Y) = limpepHom(X,Y) , Hom(X,1lim;)) = lim;Hom(X,)) ,
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where the limits or colimits on the right-hand sides are taken in the category Set.

Let k be a commutative ring and consider the category Mod(k) of k-modules.

Fact 2.22. The category of k-modules is complete and cocomplete.

In the following we analyze the compatibility of colimits in Mod(k) with tensor
products. The basic ingredient from algebra is the natural isomorphism

Hom(A ® B, C) = Hom(A, hom(B, () ,

where hom(B, (') € Mod(k) denotes the k-module of homomorphisms from B to
C.

Let W be a k-module and V € Mod(k)! be a diagram. Then we can define a diagram
V@ W € Mod(k)" in the natural way.

Lemma 2.23. There is a natural isomorphism
colim/(V @ W) = (colim/V) @ W .
Proof. 1t suffices to define for every k-module 7" an isomorphism
Hom(colim;(V ® W), T) = Hom((colim;V) @ W, T)

which is natural in 7". Indeed, such an isomorphism is given by

Hom(colim/(V @ W),T) = limsHom(V ® W,T)
=~ 1im[opHom(V7hom(M/7 T))
=~ Hom(colim;V, hom(W,T))

I

Hom(colim;V @ W,T) .

Next we study the compatibility of cohomology with filtered colimits. We simplify
the discussion and restrict our attention to a special class of filtered index categories.
Let P be a filtered partially order set, i.e. a partially ordered set such that for
all p,q € P there exists r € P with p < r and ¢ < r. We consider P as a category

such that
* >
{3 122
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Example 2.24. Consider a module V' over some ring k. Let P be the partially
ordered set of finitely generated submodules of V. For p € P let V, C V be the
corresponding submodule. Then the natural morphism is an isomorphism

colimyepV, =V .

In order to see this we argue as follows: Let T" be some k-module. Then we have a
natural map
Hom(V,T') — limye porHom(V,, T')

given by ¢ — (¢, )pepor. We check that it is an isomorphism.

1. Injectivity: Let ¢, ¢ € Hom(V,T) be mapped to the same element in the limit.
Then for every v € V they coincide on the k-module generated by v. Hence

P(v) = ¢/(v).

2. Surjectivity: Let (¢,)pepor € limyeporHom(V,,T). For v € V choose p € P
such that v € V. Then we define ¢(v) := ¢,(v). One easily checks that ¢ is
well-defined. Furthermore it is the required preimage of (¢, )pepor.

O

In the following we make the structure of objects in C¥ more explicit. For brevity
we take the example C := Ch, the category of chain complexes.

An object of Ch” is called a P-indexed family of chain complexes. In detail this
datum associates to every p € P a chain complex C),. Furthermore, for every ¢ € P
with ¢ > p we are given a map 4! : C, — C, such that for every additional r € P
with 7 > ¢ we have the relation i) = 721

In a similar manner we define P-indexed families of objects in any category, e.g.
abelian groups or chain complexes. Let us continue with chain complexes.

We have a very simple description of the chain complex colim,cpC), as a quotient

-q
p

69(p,q)eP,qu Cy @pep Cp —colimyepC, .

id

For every p € P we have the canonical map ¢, : C;, = colim,cpC,. For ¢ € P with
q = p we have the relation i,2] = i,.
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Every element in colim,epC), is of the form i,(c,) for some p € P and ¢, € P.
Furthermore, i,(c,) = 0 if and only if there exists ¢ € P with ¢ > p such that
i(c,) = 0.

p\-P

We now show that cohomology commutes with filtered colimits.

Lemma 2.25. Let P be a filtered partially ordered set and C' be a P-indexed family
of chain complexes. Then we have a natural isomorphism

colimy,epH*(C,) = H*(colim,C)) .

Proof. The family of maps of complexes 7, : C, — colim,C, for p € P induces a
map colim,epH*(C,) - H*(colim,C},). We must show that it is an isomorphism.

We first show surjectivity. Let [¢] € H*(colim,C,). Then there exists p € P and
¢, € C, such that i,(c,) = c. Since dc = 0 there exists ¢ € P with ¢ > p such that
difc, = 0. Then iy[il(c,)] = [c].

Next we show injectivity. Let [¢,] € H*(C,) be such that [i,c,] = 0. Then there
exists ¢ € P with ¢ > p and e € C, such that ii,(c,) = de. But then il[c,] =

[i1c,] = [de] = 0 so that i,[c,] = 0 in colim,epH*(Cp). 0

Example 2.26. The following example shows that in Lemma one can not omit
the condition that the index category is filtered. Recall that a coequalizer is a
special case of a colimit. Its index category is not filtered. We consider the exact
chain complex

C: 05Z372—7)27—0.
Then we form the diagram
D: (C C

~_ 7
0

where the first copy of Z is in degree 0. Its colimit is given by
colimD: 0— Z/2Z > 7/22. 3 72/27. — 0 .
We have

7)27 k=0

colim H*(D) =20, H"(colim D)= { 0 else
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We consider a field k£ and chain complexes of k-vector spaces. In this case coho-
mology commutes with tensor products. We start with a first result in this
direction.

Lemma 2.27. If C is a complex of k-vector spaces and V' a k-vector space, then we
have a canonical isomorphism

H*(C)@p VS H(C @, V), [@ve[c®].

Proof. For every n € Z we choose a basis of H"(C') and cycles in C™ representing
the basis elements. Mapping the basis elements to the cycles we define a chain map
c¢: H(C) — C, where we consider H(C') as a chain complex with trivial differentials.
This map is in fact a quasi-isomorphism. We now define

H (C)orV = H(C®,V), [z]®v—[c(z)®0]. (12)

This map is independent of the choices made in the construction of ¢. Indeed, if ¢ is
a different choice, then for [z] € H"(C) we have c(x) — ¢ (z) = dy for some y € C"~1.
Hence

c(r)@v—dx)v=dy®uv) .

We must show that is an isomorphism. This is obvious if dim(V') = 1. The
map is functorial in V' and therefore compatible with direct sums. It follows that it
is an isomorphism for finite-dimensional V. Since cohomology and tensor products
are compatible with filtered colimits and every vector space is a filtered colimit of
finite-dimensional ones, the map is an isomorphism in general. O

Remark 2.28. Note that the argument would work for abelian groups instead of
k-vector spaces if we assume that H*(C') and V are free.

If k is a ring and we consider chain complexes of k-modules, then Lemma holds
(with a different argument) if one assumes that V' is flat, i.e. if the functor (=) ® V'
preserves short exact sequences. O

Example 2.29. The assertion of Lemma does not hold in general if one replaces
vector spaces over a field by modules over a ring k. Here is an example for Z-modules.
We consider the exact complex

C: 05237 —7)27—0
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and V := Z/2Z. Then we have
CoV: 0222 % 7)228 7)27 — 0 .

We have

7)27. k=0

H*(C)®Z/2Z.=0 , H’“(C®Z/QZ)%J{ 0 else

This example can also be considered as a counter example to a corresponding gen-
eralization of Lemma [2.301 O

Lemma 2.30. We assume that C' and D are complexes of k-vector spaces. Then we
have a canonical isomorphism H*(C'® D) = H*(C) @ H*(D).

Proof. We construct quasi-isomorphisms ¢ : H(C) — C and d : H(D) — D as in
Lemma [2.27, They induce a map of double complexes

c®d: HC)®@ HD) - C®D .

We now study the induced map of spectral sequences ' E(H(C) ® H(D)) — 'E(C ®
D). On the level of Ef"-terms it is given by

Lemmd2.27
¢® idyp) : HP(C) ® HY(D) — HU(CP® D) =" 0r & H(D) .

The differential on the target is induced by the differential of C' so that the induced
map on Fy-terms is an isomorphism, again by Lemma [2.27]

Let us first assume that the complexes are lower bounded. Then we can apply Lemma
2.5|in order to conclude that ¢ ® d is a quasi-isomorphism. The assumption that the
complexes are lower bounded ensures the finiteness of the relevant filtrations.

In order to treat the general case note that every chain complex can be written as a
filtered colimit of lower bounded chain complexes

C = colim(---CC2PCCPCC=1C...),

where
CZP:. .. 0—>CP -t 5 .

is the subcomplex of C' of chains of degree > p. We now use that cohomology and
tensor products commute with filtered colimits. O
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Remark 2.31. The argument for Lemma [2.30| generalizes to the case of chain com-
plexes of modules over an arbitrary ring & if we assume that the k-modules C* and
H*(C), H*(D) are free. O

Lemma 2.32. We consider chain complexes of k-vector spaces C, D, D’ over a field
k. If g : D — D' is a quasi isomorphism, then idc ® g : C ® D — C® D' is a
quasi-isomorphism.

Proof. The map " EY*(C'® D) — "EY*(C @ D') is the map idpr(c)® g : H?(C) ®
D — HP(C)® D'. In cohomology it induces the map

2.2 ~ 2.271
A ~

HY(HP(C)® D) = HP(C)® HY(D) = H?(C) ® HI(D') HY(HP(C)® D),

hence an isomorphism. We now apply Lemma [2.5(in order to conclude that id¢ ® g
is a quasi-isomorphism. Here again we first consider the case of lower bounded chain
complexes and then extend the result to all as at the end of the proof of Lemma

2,001 O

Remark 2.33. The argument of Lemma [2.32] generalizes to the case of k-modules
over a ring k if we assume that H*(C') and D, D’ are flat. O

2.4 The Kiinneth formula

We now consider two manifolds M, N. We have a natural morphism of complexes
X:QM)@QN) = QM xN), w®a— prywAprya .

If both manifolds are not zero dimensional, then this map is far from being an
isomorphism.

Proposition 2.34 (Kiinneth formula). If N admits a finite good covering, then the
map X induces an isomorphism

x : Hip(M) @ Hin(N) = Hip(M x N) | (13)
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Proof. We fix a finite good covering & of N. Then we have a diagram
QM) ® Q(N) Q(M x N)

- -

Q(M) @ tot(C(U, N*T*M)) 2 tot(C(M x U, A\*T*M))

The right vertical map is a quasi-isomorphism by Lemma|2.12] The left vertical map
is the product of idgo(y) and a quasi-isomorphism (again by Lemma [2.12)), hence
itself a quasi-isomorphism by Lemma [2.32]

We now consider the lgwer horizontal map. We filter both complexes such that F?
is the subcomplex of Cech degree > p. For fixed p the map of E"*(v) is a finite

product of maps
QM) @ QUU,) = QUM x U,)

for v € AP, This map fits into the square

o)

QM) @ Q(x) QM)
LidQ(M)@)Pri jprf\/[

QM) ®@ QU,) —= QUM x U,)

where the vertical maps are quasi-isomorphisms since U, is contractible (and for the
left map we also use Lemma [2.32). We conclude that E*(v) is a quasi-isomorphism.
We apply Lemma in order to conclude that is an isomorphism. O

Note that the Kiinneth isomorphism is induced by a morphism of rings.

Example 2.35. We can calculate the de Rham cohomology of tori using the Kiinneth
isomorphism and the presentation 7" := S x - .- x S with n factors. We have an
isomorphism of rings H}(S') = R[z] with |z| = 1. Tt follows that

Hip(T") = R[] @ - - @ Rz, ] 2 Rlzy, ...,z ,

where all generators are of degree 1. For the Betti numbers we get

b(T™) = (”) . (14)

7
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Example 2.36. Let M be any manifold and n € N. Then for £ € Z we have an
isomorphism
HZ}E"(M) @ Hyp(M) = Hjg(S" x M)

given by
(a,w) = 1 X o+ [volgn] X w .
O
Lemma 2.37. If M and N are compact manifolds, then we have
X(M x N) = x(M)x(N) .
Proof. We have
WM x N) = S(=1) dim(Hg(M x N))
= Z -1)" Z dim(Hjp(M) ® Hjp(N))
i+j=n
= Z Z )™ dim(H (M) dim(H)p(N))
n i+j=n
= > (—1) dim(Hip(M)) Y (1) dim(Hjp(N))
i J
= X(M)x(N)
O
Example 2.38. For a compact manifold M we have x(S*x M) = 0 and x(S?*x M) =
2x(M). Observe that x(T™) = 0. Using the formula this gives the identity
n (n
Z(—1) (Z) =0.
=0
O
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3 Poincaré duality

3.1 Relative de Rham cohomology

The cone construction (Example provides a functorial extension of a map be-
tween chain complexes to a short exact sequence of chain complexes. This allows us
to define functorally the relative cohomology of a morphism which fits into a long
exact sequence. In detail, let

f : (CadC) — (DadD)

be a map of chain complexes. Then we form the short exact sequence of chain

complexes
0 — D — Cone(f) —» C[1] — 0,

where

Cone(f) :=C[1]® D, deone(s)(c,d) := (=dcc, —f(c) + dpd)

and the maps are the obvious inclusion and projection. We define the relative
cohomology of f by

H'(f) = H*(Cone(f)[~1]) .

It fits into the long exact sequence in cohomology
o= HY(f) = H"(C) — H"(D) = H" ' (f) — ... . (15)
Note that
Cone(f)[-1]" =C" @ D" | deone(p)i-1)(¢, d) = (dec, f(c) — dpd) .

Example 3.1. If f is a surjection, then we have a smaller model for the relative
cohomology. In this case we consider the map of chain complexes

ker(f) — Cone(f)[—1], c+ (c,0).
The following diagram commutes

. —— H" V(D) — H"(ker(f)) —= H"(C) — ... ,

| | |

.. —— H" (D) H'(f) H'(C) —— ...
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and consequenty, by the Five Lemma, we have an isomorphism

H"(ker(f)) = H"(f) .

Let f : N — M be a smooth map between manifolds. Then we apply the above
construction to the morphism of chain complexes f* : Q(M) — Q(N) and get the
relative de Rham cohomology H.(f) of f.

Let N — M is the inclusion of a closed submanifold. If M has boundaries, then this
assumption includes additional conditions as follows. We assume that there is a face
M' C M such that the embedding factorizes as N — M’ — M, and that N — M’ is
transversal to all boundary faces of M’. In fact, all what we need is that N admits
an open neighbourhood in M which has the structure of a bundle over V.

In this case we write

Hap(M, N) := Hip(f) -

Example 3.2. Let M := [—1,1]> C R% The following examples are admitted.
1. St — M, f(exp®™) = (1 sin(27t), § cos(2nt)).

2. {*} — M the inclusion of the point (0, 1). It is contained in the face [-1, 1] x
{1} and transversal to the boundary faces of that face.

3. [-1,1] = {—1} x [—1,1], the inclusion of the boundary face.
The following examples are not admitted:

1. St — M, f(exp®™) = (sin(27t), cos(t)). This is not transversal to the bound-
ary faces.

2. (0,1) — {—1} x (0,1), the inclusion of the open boundary face. This is not
closed.

3. [-1,1] = M, t — (t,t), a diagonal. This is not considered to be transversal to
the boundary.

O
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We must understand the topology of M near N. In the discussion below we assume
for simplicity that N is a closed submanifold of the interior of M. But if N inter-
sects boundary faces, then the constructions are similar. For example, if it is the
embedding of a boundary face, then we must consider the half sided normal bundle
pointing into interior of M. The conclusions hold in general.

Since f is an immersion we have an inclusion of vector bundles
df : TN — f*TM .

The quotient N := f*T'M/df (TN) is called the normal bundle of f. Let 2 : N —
N denote the zero section. The following differential geometric fact generalizes the
existence of a collar for a codimension one submanifold:

Fact 3.3. There exists a smooth map F : N' — M which is a diffeomorphism onto
an open neighbourhood of N such that f = F o z.

Proof. We sketch the idea. We choose a Riemannian metric on M and identify N
with the orthogonal complement of df(T'N) C f*I'M. The exponential map of M
provides a diffeomorphism of a neighborhood of the zero section of N with a neigh-
borhood of N in M. We now precompose with a scaling diffeomorphism which maps
N into a suitable neighborhood of its zero section. O

From now on we identify A/ with its image under F'.
Lemma 3.4. If N — M is the inclusion of a closed submanifold, then f*: Q(M) —
Q(N) is surjective.

Proof. We consider the open covering {U, N'} of M with U := M\ N and let {xy, xn'}
be an associated partition of unity. For w € Q(N) we define @ € (M) as the exten-
sion by zero of xypr*w, where pr : N'— N is the bundle projection. Then @y = w.

O

Since f* is surjective, by Example [3.1] we have Hyr(M, N) = H*(Q(M, N)), where
Q(M,N) :=ker(f*). The sequence

oo HYN) S HY(M,N) — H"(M) — H*(N) — ...

is called the long exact sequence of the pair. Using the notation introduced in
the proof of Lemma the boundary operator can be calculated as follows. If
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[w] € H"}(N), then we have
Olw] = [dxn A priw] . (16)

Assume that M is compact and oriented of dimension n and N is the boundary of
M. Then the integration

/ Q" (M) —-R
M
induces a homomorphism
/ cHin(M,N) - R.
M

Indeed, for w € Q""1(M, N) we have by Stoke’s theorem

/dw:/wzo.
M N

Example 3.5. We calculate H}p(D", S™"!) using the long exact sequence. The
beginning is

0 — HYp(D", 5" ) = Hp(D™) = HIp(S"") = Hjp(D", 5" ) — 0.
The second map is injective. We conclude that Hy, (D™, S™) = 0 and

R n=1

o5 = {8

We further have the segment
0— Hi (5" — Hip(D", 8" 1) =0
showing that
Hip(D", 8" ) =R

We get
R n=k

0 else (17)

Hi(0 577 = {

Let x € C°(D™\ S" ') be such that [, x(x)dz = 1. Then yvolg» € Q"(D", 5" ')
is a closed from. Its cohomology class generates Hn(D™, S"!) since

/ [xvola] =1

61



Let f: M — N be a morphism between manifolds. If Hj,(M) and H,(N) are
finite-dimensional, then so is H,(f) by the long exact sequence (3.1). In this case

we define ' .
X(f) =) (=) dim H'(f).
i€Z
We have the relation
X(M) = x(N) + x(f)

which immediately follows from the long exact sequence (3.1). If f is the inclusion
of a closed submanifold N < M, then we write x(M, N) := x(f).

Example 3.6. For n € N we consider S"~! — D". We have the relation x(D") =
xX(S™ 1) + x (D", S™7 ). We get

X(Dn7 Sn—l) — (_1)n
as expected by (17). 0

3.2 Compactly supported cohomology

For a manifold M let Q.(M) denote the complex of forms with compact support.
The de Rham cohomology of M with compact support is defined by

Hig (M) = H*(Qe(M)) .

If M is oriented of dimension n and without boundary, then the integration over M
induces a homomorphism

/ CHY (M) >R
M K

In the following we discuss the functoriality of the cohomology with compact support.
If M — N is a proper map, then f* : Q.(N) — Q.(M). Therefore Hjp  is a
contravariant functor defined on the category of manifolds and proper maps.

If iV : U — M is the inclusion of an open submanifold, then we have a map
iV Q(U) — Q(M)
given by extension by zero. We get an induced map

i Hypo(U) — Hypo(M) .
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Lemma 3.7. Let M = U UV be a covering of M by open subsets. Then we have
the following Mayer-Vietoris sequence

c o Hig (M) 5 Hi (UNV) = i (U) & Hi (V) = Hj (M) = ... (18)
Proof. The Mayer-Vietoris sequence is the long exact sequence associated to the

short exact sequence of complexes

(,L'UﬁV 7Z‘U/I’WV)

AN (aw)=if (@) +i) (w)

0= QUNV) Q(U) @ Q.(V) (M) =0 .

In order verify the surjectivity of the second map let w € Q.(M). Using a partition
of unity {xu, xv} we get a preimage (xyw, xyw). In order to show exactness in the
middle assume that i (o) +!" (w) = 0. Then wyiny = 0 and app = 0. In particular,
both forms are supported in U NV and therefore coincide up to sign. The injectivity
of the first map is clear. O

Consider an inclusion f : N — M of a closed submanifold into a compact manifold.
Then we have an inclusion

i i Qu(M\ N) = Q(M,N) .

Proposition 3.8. Let f : N — M the inclusion of a closed submanifold into a
compact manifold. Then the map i induces an isomorphism in cohomology

H;R,C(M \ N) - H§R<M7 N) :

Proof. We again assume for simplicity that N is a submanifold in the interior of M,
but the general case is similar using a modified notion of a normal bundle (e.g. half
sided for the inclusion of a boundary face).

We use embedding of the normal bundle N into M as a neighborhood of N. We
choose a metric on N. For r € (0,7) we let

N,={veV]||| <r}cN
be the subbundle of discs of radius r. We define the complex

Q. (M) = {w € QM) | wy, =0} .
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Note that for ' < r we have N1 C N»-1 and hence Qn-1(M) C Q-1 (M). We
thus get an incresing family of chain complexes (€,-1(M)),c(0,0)- Note that for all
€ (0,00) we have
0,(M) € 0, (M\ N) .

and

QM\N)= | (19)

r€(0,00)
Lemma implies in view of that
H*(Q(M \ N)) = colime(g0)H*(2:(M)) . (20)

The projection p : N, — N is a homotopy equivalence with inverse the zero section z.
Indeed, poz = idy. The homotopy zop ~ idy, is given by I XN, 3 (t,v) — tv € N,..
It follows that z* : H;5(N,) — H;p(N) is an isomorphism.

We have an exact sequence
0— Q. (M) = QM) = QN,) —0.

We argue that the second map is surjective. Let w € Q(N,). Then there exists an
open neighbourhood U of N, and @ € Q(U) such that @)y, = w. We choose a cut-off
function x € C2°(M) such that x|n, =1 (note that {x,1— x} is a partition of unity
for the covering (N \ N,.,U) of M). Then x@ extends to all of M and is a preimage
of w.

For all r € (0,00) we get a map of long exact sequences

e HI Noe1) =5 H Q1 (M) —— Hjp (M) —— Hjp(N — . (21)

n— a n n n
—>HdR1(N) —>HdR(M» N) —>HdR(M) —>HdR(N) —

The two right squares obviously commute. In order to show that the left square
commutes we start with [w] € Hj'(N) and show that ,0'p*[w] = dw. Indeed, on
the one hand, using the notation from above and @ := pr*w, we have i,0'p*[w] =
[d(x®)] = [dx Apr*w], where x € C*°(M) is such that x|, _, =1 and xaw, _, =0,
and pr : N — N is the bundle projection. On the other hand, dw] = [dx A pr*w]

by (16)
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Applying the Five Lemma to (21) we see that
ip: H"(2,-1(M)) — Hjr(M,N)

is an isomorphism for all r € (0,00). We conclude that

(219))
Hjp M\ N) = colim,.c(o,c0)H"(-1(M)) = Hjpr(M,N)
O
Example 3.9. Since D"\ S"! is diffeomorphic to R™ we have
R n=k
k ny ~v
Hinmy = { T "0
We can use the integral
: H;R,C(Rn) —R
Rn”
in order to detect the cohomology. O

3.3 Poincaré duality

If C' is a chain complex over some ring k, then we define the dual chain complex
C* = hom(C,n) by

(C*)" := hom(C~™ k), d:C*" — C*"*t  d(¢):=(—1)"¢pod.
Let M be an oriented manifold M of dimension n. We define maps

O (M) = QMM we (a— (—1)("+1)k/ wA )
M

for all k € Z. Note that QU= F(M)* = (Q.(M)[n]*)*.

Lemma 3.10. If M has no boundary, then the collection of homomorphims ¢ =
(¢r)r induces a morphism of complexes

¢ : QM) — Q.(M)[n]* .
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Proof. The proof is a calculation using Stoke’s theorem. For this reason we must
exclude the presence of a boundary. We are careful and distinguish the de Rham
differential dyg from the differential (—1)"dyr = d of the shifted complex Q.(M)[n].
For a € Q.(M)[n] %1 = Q=k~1(M) and w € Q¥(M) we have

(dop(w)) (@) = (=1)*¢p(w)(da)
= (—D)""¢p(w)(darar)

= (—1)k+n+(n+1)k/ w A dqpa
M

= (_1)n+(n+1)k/ ddR(w A Oz) - (_1)n+(n+1)k/ dde Ay’
M M

= (—1)”_1+("+1)k/ dgpw N o
M
_ (_1)n—1+(n+1)kz—(n+1)(k+1)¢k+1(dw)(a)

= Orpi(dw)(a) .

In this section we analyze conditions under which the morphism ¢ in Lemma [3.10|is
a quasi-isomorphism.

Let C again be a complex of k-modules over some ring. We have an evalution pairing

CRC* =k

which is a morphism of complexes if we consider the target as a complex concentrated
in degree zero. It induces the second morphism in the composition

H(C)® H(C") —» H(C®C") = k

and hence a morphism

H(C*) = H(C)*
Applying this to C' = Q.(M)[n] we get the second map in the composition
Par - Hap(M) % H(Qu(M)[n]") = Har(M)[n]* .

This map is natural in the sense that for an inclusion ¥ : U — M we have the
equality
Pu (@) (i (@) = Pu(i™w)(a) . (22)
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Example 3.11. If M = R", then
Prn : Hjp(R") — Hjp 5 (R")

is an isomorphism for all £ € Z. Indeed we must consider the case k = 0, since
for k& # 0 the target and domain both vanish. Let [1] € HJ5(R™) be the generator.
A generator of Hjp (R") is given by [yvolgs], where xy € Cg°(R") is such that
Jgn #(x)dz = 1. Note that

Pan([1])([volaa]) = (—1)@+n / 1A yvolan = 1.

n

We generalize the Example from R”™ to star shaped open subsets G C R" and
geodesically convex subsets of a Riemannian manifold.

Lemma 3.12. If G C R" is open and star shaped with respect to 0 € R™, then the
Poincaré duality map
P : Hin(G) = Hih(G)'

15 an isomorphism for all k € 7Z.

Proof. Note that by the Poincaré Lemma
0 k#0
k ~
e ={ L 370
It is clear by a similar argument as in Lemma that Pg is injective. It suffices

to show that y
-] 0 n
HgR,c<G):{R kin} :

For simplicity we assume that G is bounded. In the following, our notation for an
inclusion of an open subset is ix : X — Y. Let B be an open ball at zero such that
B C @. It suffices to show that

Z'g’! : HdR,c(B) — HdR,c(G)

is an isomorphism. Since G is bounded there exists r € (0,1) such that rG C B.
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Let f. : B — B be the multiplication with ». We have an obvious homotopy
H:|r,1] x B— B, H(s,z) := sz , from f, to idg. We get a chain homotopy

h:Q(B) — Q(B)
such that dh + hd = id — f*. Recall that

1
h(w) ::/ (to, H*w)|(s}xmds .

From the formula we deduce that if w € i/ ,(Q(rB)), then h(w) € Q.(B).

If we precompose the identity dh + hd = id — f with igﬁ we get a chain homotopy
hoify: Qe(rB) — Q.(B)

from fF o4} to . The first map is an isomorphism since it is just the pull-back
with the diffeomorphism f, : B — rB. Hence %} : Haro(rB) — Hare(B) is an
isomorphism.

In a similar manner we show that if$) : Hyr.(rG) — Har(G) is an isomorphism.
We now have factorizations

rB G -rB G -B G
By =1p1%hqgys gy =1Gg1°p) -

The first shows that i:g’! is injective. Consequently, the equivalent map
ig) : Higo(B) = Hyp(G)

is injective, too. The second implies that
ig) : Higo(B) = Hyp o (G)

is surjective.

If G is not bounded, then we must modify the rescaling map f, appropriately and
argue similarly. O

Corollary 3.13. If M is an n-dimensional Riemannian manifold without boundary
and G C M is a geodesically convex subset, then

P : Hin(G) — Hjzk(G)"

s an isomorphism for all k € 7.
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Proof. We use the exponential map in order to reduce to the case considered in

Lemma [3.12 O

Proposition 3.14. If M is a manifold without boundary which admits a Riemannian
metric and a finite good covering by geodesically convex subsets, then

PM : HdR<M) — HdR’c(M)[TL]*
1S an isomorphism.

Proof. We argue by induction on the number of elements of the covering. The case
of one element is done by Corollary

Let us now assume that the case of at most n — 1 element is settled. Let U :=
{Uy,...,U,} be a good covering of M by geodesically convex subsets for some metric.
We define U := U?;ll U,, and consider the following map of long exact sequences. The
upper sequence is the Mayer-Vietoris sequence associated to the covering {U, U, } of
M.

HY(UNU,) —2— HE,(M)
Punvn, L jPA{ jPU ®Pu, Punvn, L

HiH U N U 5 Hig (M) — HiHU) & HyH(U,) —— Hi R (U N U,)?

Hip(U) © Hip(Un) Hip(UNUy)

The lower sequence is the dual of the sequence . The right two squares commute
by the naturality of P_. We must verify that the square involving the boundary
operators commutes. For our purpose it suffices that it commutes up to sign. Let
we QN UNU,) and a € Q¥ *1(M) be closed. Then we have d[w] = dxy, A w,
where (xu, X, ) is a partition of unity. We get

PruOw)) (o] = i/M(dXUn/\W)/\Oé

= :I:/ w A (dxu, N )
M

+Punu, (W> (8[0&])
= +Pyrv, (0"w)([a]) ,

where the signs only depend on k and n. Now note that {U;NU,, ...,U,_1NU,} and
{Uy,...,U,_1} are a good coverings of U N U,, and {Uy,...,U,_1} by geodesically
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convex subsets, respectively, by n — 1 open subsets. Consequently, Py, Py, and
Pu,~v are isomorphisms. We use the Five Lemma in order to conclude that Py, is
an isomorphism. O

Corollary 3.15 (Poincaré duality). If M is a closed oriented n-dimensional mani-
fold, then for all k € Z we have an isomorphism

Par  Hip(M) = HygH(M)* .
In particular, we have the identity of Betti numbers

VH(M) = b"F (M) .

Proof. We choose a Riemannian metric g on M. If M is compact, then the proof of
Proposition [2.15| produces a finite good covering of M by geodesically convex subsets.
We also use compactness of M for the isomorphism Hyg (M) = Hqp(M). O

Corollary 3.16. If M is a closed oriented and connected n-dimensional manifold,
then we have b" (M) = 1.

Proof. We have b"(M) = °(M) = 1 since M is connected. O

Corollary 3.17 (Alexander duality). If M is a compact oriented n-dimensional
manifold and N — M is a closed submanifold such that M \ N has no boundary,
then for all k € Z we have an isomorphism

Par : Hig(M\ N) = Hjp*(M,N)" .
In particular, we have the identity of Betti numbers
V'(M\ N)=b""0M,N) .
Proof. We use the Poincaré duality isomorphism
Par + Hi(M\ N) = Hjt(M\ N)*
and Proposition [3.8 which states that Hyr (M \ N) = Har(M, N). O

Note that the condition on the pair (M, N) in says that either M is closed and
N is a closed submanifold in M or N < M is the inclusion of the boundary of M.
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Corollary 3.18 (Intersection form). Let M is a closed oriented 2m-dimensional
manifold. Then we have a non-degenerated bilinear form

(=, =) H™(M)® H™(M) =R , (], [a]) ;:/Mwm,

It is symmetric for even m and antisymmetric for odd m. This form is called the
intersection form of M.

Proof. The form is nondegenerated since it induces the Poincaré duality isomorphism
Par s HP(M) = H7L(M)* up to sign. 0

Corollary 3.19. Let M be a closed oriented 4k + 2-dimensional manifold. Then
VR+L(M) is even.

Proof. The antisymmetric intersection form is non-degenerated. Hence it lives on an
even-dimensional vector space. O

We consider a closed oriented manifold M of dimension 4k. Its intersection form is
a non-degenerated symmetric bilinear form on H2%(M).

Definition 3.20. The signature of the intersection form of a 4m-dimensional man-
ifold is called the signature of M and denoted by sign(M).
If M°P denotes M with the opposite orientation, then sign(M) = —sign(M).

Example 3.21. We consider the manifold S? x S?. Then by the Kiinneth formula
H2.(S? x S?) = H2,(5?) @ HI5(S?) @ HI5(S?) ® H3,(S?) is spanned by privolg:
and prjvolgz. In this basis the intersection form is given by the matrix

01
10/
In particular, its signature is 0. O

Corollary 3.22. If M is a closed oriented manifold of dimension n, then

27 + sign(M) n=0(4)
X(M) € 27 n=2(4)
{0} n=1(2)
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Proof. 1f n = 2k, then

X(M) = Z(—l)ibi(M) = bk(M)+Z(—1)i(bi(M)+b2’“‘i(M)) = VM (M)+2 Z(—l)ibi(M)

and note that b*(M) is even for odd k by Corollary and b*(M) = sign(M) mod
2 for even k. If n = 2k + 1, then

X(M) = Z(—l)ibi(M) = Z(—l)i(b"(M) — (M) =0

Let (., .) be a bilinear form on a vector space V. A subspace L C V is called isotropic
if the restriction of (.,.) vanishes. Is is called maximally isotropic if it is isotropic
and maximal with this property. If the form is non-degenerated, then L is called
Lagrangian if it is isotropic of dimension dim(L) = dim(V")/2. A non-degenerated
symmetric bilinear form on a real vector space admits a lagrangian subspace if and
only if its signature vanishes.

Example 3.23. Let M be closed oriented of dimension n and consider the non-
degenerated form

() Han(M) @ Hap(M) > R , ([w],[aD:/Mw/\a.

For example, the subspace

P Hip(M) C Har(M)

is isotropic. It is Lagrangian if n is odd.

Assume now that the closed manifold M is the boundary of a compact oriented
manifold W. We consider the restriction r : Hgp(W) — Har(M).

Lemma 3.24. The subspace im(r) C Hyr(M) is Lagrangian.

Proof. We first show that im(r) is isotropic. We have by Stoke’s theorem for [w], [a] €
Hir(W)

<r<[w]>7r<[a]>>=/M<wAa>M=/Wd<wAa>:o.
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The pairing induces a map « : im(r) — (Hgzr(M)/im(r))*. We show that this map
is an isomorphism.

We first show surjectivity of k. Let [w] € Hyp(W), [8] € Har(M) and 3 € Q(W) be
some extension of 5. Then we have

(), [8]) = /M Wt A B = /W dwnf) = + /W w A df = =P (W])(@[3) .

We now fix [] € H(M) and assume that (r(w]),[5]) = 0 for all [w] € H(W). Since
Pw : Hir(W) — Har(W, N)[n]* is an isomorphism we conclude that 9[3] = 0 and
hence [f] € r(Har(W)) so that [5] represents zero in the quotient (Hyr(M)/im(r))*.

In order to show injectivity of kK we now fix [w] € H(W) and assume that (r([w]), [5]) =
0 for all [8] € Hyr(M). Then we conclude that r([w]) = 0 since the pairing is non-
degenerated.

The fact that s is an isomorphism implies that im(r) is maximally isotropic of di-
mension dim H(M)/2. O

Assume now that n = 4m. Then the intersection im(r) N H7(M) is Lagragian for
the intersection form.

Corollary 3.25. If a closed oriented manifold M of dimension 4m is a boundary of
a compact oriented manifold, then sign(M) = 0. The signature is an obstruction
against being an oriented boundary.

At the moment we do not have an example of non-trivial signature but we will see
some later in the course.

O
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4 De Rham cohomology with coefficients in a flat
bundle

4.1 Connections, curvature, flatness, cohomology

In this section we consider some elements of the local geometry of vector bundles.
We discuss connections and its curvature. We are in particular interested in flat
connections.

Definition 4.1. A connection V on a vector bundle V-— M is a R-linear map
V:I'(M,V) > T(M,T"M @ V)
which satisfies the Leitbniz rule

V(fo)=[Vo+df@eo, [feCT(X),pel(MV).

Usually one writes for a vector field X € I'(M,TM) and a section ¢ € I'(M, V)
Vx¢:=1xVo.
In this notation, for f € C*°(M), we have the relations
Vix¢=fVxd, Vxfo=[fVxo+df@4¢.

Lemma 4.2. A vector bundle V. — M admits connections.

Proof. Assume that V = M x RF. Such an isomorphism of vector bundles is called
a trivialization and induces an isomorphism of section spaces

(M, V)= C®(M)®R".
We define the associated trivial connection on V by V% := d ® idgs.

In the general case we fix an open covering (U, )aca of M by domains of trivializations
Vi, = Uqy X R* and a subordinated partition of unity (Xa)aca- The trivializations
induce trivial connections VZ™ on Vjy, for all a € A. For ¢ € I'(M,V) we can
consider V7™ (xo@u,) as a section in I'(M, V') be extension by zero. We define

Vo= VI'(xadp,) -

«
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One checks by calculations that V is R-linear and satisfies the Leibniz rule. O

For p € Z we consider the p-forms on M with coefficients in V'
P(M, V) =T (M,N’T"M V) .
The A-product
WA (a®v)=wAa)@v, waecQM),vel'(MV)
turns the sum

QM, V) =P (M, V)

peEZ

into a Z-graded (M) module. Note that a connection is an R-linear map
V: QUM V)= QY (M, V) .
Lemma 4.3. A connection V on V' has a unique extension
V' QM V) — Q(M, V)
as an R-linear degree one-map satisfying the Leibniz rule
VwAg)= (=1 PwAV'd+dwN o
forallp e N, we QP(M) and ¢ € Q(M,V).

Proof. We first show uniqueness. If V/, V) are two extensions of V, then the Leibniz
rule implies that their difference 0 := V)| — VJ, satisfies

0w A ) = (=1)'wAd(9)
for w € QP(M) and ¢ € Q(M, V). Furthermore, since both extend V we have
o(¢) =0

for ¢ € Q°(M, V).

Let w € QP(M, V). In order to show that 6(w) = 0 it suffices to show that yd(w) =0
for every smooth function y supported in a chart domain of M.
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Assume that (2°) are coordinates on an open subset U C M and x € C(U). We
can choose y; € C2°(U) such that xx; = x. We have

wy =Y da' @ ¢;
I

for a uniquely determined collection of sections (¢;); in Q°(U, V), where the sum
runs over the set of multi-indices I = (i; < --- < i,). We have

xw=x>_dxaz') Axi¢r
I

where y12! € C*(M) and x1¢; € Q°(M, V) are understod by extension by zero. We
have

Xo(w) = (xw)
= 5(de(X1$I)/\X1¢1)

= (=1"x D dlaz") As(adn)
- 0.

The argument for the existence is similar. We choose an open covering U = (Uy)aca
by chart domains, a subordinated partition of unity (ya)aca, a collection of smooth
functions (xa.1)aca With xa1 € C2°(Us), XaXes = Xa, and local coordinates (z%)aca.
Given w € Q(M,V), then wyy, = >.;dzl A ¢q for uniquely determined sections
ba,1 € LUy, V). We define

Viw:= (—1)”2)@ Zdﬂﬁé AV (Xa,101) -
acA I

One checks by a calculation that V' has the required properties. O
From now on we write V := V' also for the extension.

We consider a vector field X € I'(M,TM) on M. We define the operation of inser-
tion of X
ix : QM,V)— QM,V)

of degree —1 such that on elementary tensors it is given by ix(w ® ¢) :=ixw A ¢.

We further define a version of the Lie derivative

LY :=Vix +ixV: QM V)= QM,V) .
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Note that LY is given on elementary tensors by
LY (wR¢)=Lxw@d+wAVxo.
Indeed,

LY(w®¢) = (Vixk+ixV)(we o)
= V(ixw® ¢) +ix(dw® ¢+ (1) A Vo)
= dixw® ¢+ (—1)%8) 3w AV +ixdw ® ¢
+(=1)%8@)ixyw AV 4+ w® Vxo
= ((dix +ixd)w)® ¢+ w®Vxo
= Lxw®o+w®Vxo

Lemma 4.4. For vector fields X, Y € T(M,TM) and ) € Q' (M, V') we have
[iv, LX) = —zipx 10 -
Proof. We calculate for w € Q'(M) and ¢ € T'(M, V) and using
2dw(X,Y) = X (w(Y)) = Y (w(X)) - w([X,Y])
that

liv, LY (w ® ¢) = ivLY(w® ) — LYiv(w® 0)
= iyLxw® ¢+ w(Y)Vxg — Vx(w(Y))
= (iydix +iyixd)w ® ¢ + w(Y)Vxe — Vx(w(Y)9)
= Y(w(X))+2dw(X,Y)® ¢ — X(w(Y))e
—w([X,Y])® ¢

In general, the composition
P YM, V) S QP (M, V) S QP (M, V)

does not vanish.

Definition 4.5. We define the curvature of a connection as the degree 2-map
RV :=VoV.

Lemma 4.6. The R-vector space QP(M,End(V')) can be identified with the degree
p-homomorphisms of Q(M)-modules Q(M, V') — Q(M, V).
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Proof. The result of the action of a ® ® € QP(M,End(V)) on w ® ¢ € Q(M,V) is
given by a A w ® ®(¢). Here o, € Q(M), & € I'(M,End(V)) and ¢ € T'(M, V).
Clearly, « ® ® acts as a degree p-homomorphism of (M )-modules.

Given a degree p-homomorphism of Q(M)-modules Q(M,V) — Q(M, V) one first
uses the C°°(M)-linearity in order to see that it is given by a uniquely determined
section of the bundle End(AT*M ® V) = End(AT*M) ® End(V). Since AR” is a
graded commutative unital algebra a degree p-homomorphism AR* — ARF of ARF-
modules is given by multiplication by an element of APR¥. Applying this fibrewise
we conclude that a degree p-homomorphism of Q(M)-modules Q(M, V) — Q(M,V)
must be given by a uniquely determined section of APT*M ® End(V'). O

Lemma 4.7. We have RV € Q*(M,End(V)).

Proof. We must show that RV is a morphism of Q(M)-modules Q(M, V) — Q(M,V)
of degree 2. By definition RV increases the degree by two. Let a € QP(M). Then
applying the Leibniz rule twice we get

RVoa=VoVoa = (-1VoaoV +Voda
=(-1)*aoVoV+ (-1YdaoV + (=1)’"daoV + dda
aoRY

O

Lemma 4.8. For vector fields X, Y € I'(M,TM) and a section ¢ € T'(M,V) we
have the following formula:

R(X,Y)¢ == (Vx(Vyo) — Vy(Vx6) — Vixyid) -

N | —

Proof. We have

2R(X,Y)¢ = iyix(VoV)o

iy(=Vix Vo + LYV)

—iyVVxd + iy LIV
~VyVx¢+ LYVy¢ + [iv, LYV
~VyVx¢+ VxVy¢ + [iy, LYV

VxVy¢ —VyVx¢—Vixyo .

Lemr_no{ﬂ]
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Definition 4.9. A connection V on a bundle V — M is called flat if RV = 0.

If V is flat, then V turns Q(M,V) into a complex. We let V := (V,V) be the
notation of a bundle with a (flat) connection.

Definition 4.10. We call
HdR(M, V) = H(Q(M, V), V)

the de Rham cohomology of M with coefficients in the flat bundle V.

Remark 4.11. It follows from the Leibniz rule that the difference between two
connections on V' is a homomorphism Q(M,V) — Q(M,V) of degree one, i.e by
Lemma [4.6| an element of Q' (M, End(V)). If we fix a connection V, then every other
connection on V' can uniquely be written in the form V + « for a € Q'(M, End(V)).

If V is a connection on V', then we get an induced connection V' on End(V') by

VO=Vod+doV:0(MEnd(V)) — Q' (M,End(V)) .

One checks the Leibniz rule by a calculation. From now one we will write V' := V.
We get

RVt =RY +V(a)+aoa. (23)

O

Example 4.12. On a trivial bundle V' := M x R™ we have a trivial connection
Vi If we identify Q°(M, V) = C~(M)® V using the trivialization, then V"¢ =
d¢p. We have Q(M,V) = Q(M) ® V as complexes and Hqp(M,V) = Hap(M) @ V
by Lemma

If « € QY(M,End(V)) 2 Q' (M) ® Mat(n,R), then by we have
thriv+a — da+aoa .

So V"™ + « is flat if and only if

do+aoa=0.
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Let us write the term a o @ in local coordinates. Write a = dz® ® A;. Then
. ) 1 . )
aoa=dr' Ndr?! @ Ajo Aj = del/\dx] ® [Ai, Ay .

If dim(V) = 1, then this term vanishes and flatness is equivalent to daw = 0. If
dim(V') > 1, then flatness is a nonlinear partial differential equation for «. O

Example 4.13. In order to get a more interesting result we admit complex coeffi-
cients. We consider the trivial bundle S x C — S'. Let a = Adt for A € C*°(S*,C)
and V := V"™ — \dt. Note that V is flat (as every connection on a bundle over a
one-dimensional manifold).

We set V := (V, V) and calculate the cohomology Hur(M, V) explicity. First of all
ker(V) = {f € C*(S") [ df = \f}.

We get f(t) = f(0) exp(fg A(s)ds). We call

1
holy := exp(/ A(s)ds) € C*
0

the holonomy of V. If the holonomy is trivial (i.e. = 1), then f is determined by
its value f(0) € C. Otherwise the solution does not close to a periodic function. We

thus get
0 1 ~ 0 hOl(V) 7£ 1
Han(57 V) —{ C hol(V) = 1

Let now wdt € Q'(S', V). We try to solve V f = wdt. This is the ordinary differential
equation f' — \f = w. We first consider the equation on R and discuss periodicity
afterwards. The method of variation of constants gives the ansatz f = C'® where

d(t) = exp( [, \(s)ds). We get the equation C'(t) = ®(t)"'w(t) and hence

£(t) = F(0)B(t) + (1) / B(s) Lw(s)ds

Periodicity requires that

80



If hol(V) # 1, then this equation has a unique solution for f(0). If hol(V) = 1, then
we can solve this equation if and only if fol O(t) " 'w(t)dt = 0. We get an isomorphism

HL(SY, V)5S C, |wdt] — / 1<I>(t)‘1w(t)dt.

We conclude that
0 hol(V)#1

1 /ol ~
Har(57, V) —{ C hol(V) =1

4.2 Geometry of flat vector bundles

In this section we discuss some elements of the global geometry of vector bundles
equipped with a connection. We consider the parallel transport. We are in particular
interested in consequences of the flatness of the connection.

Let V be a vector bundle with connection V.

Definition 4.14. A section ¢ € I'(M, V) is called parallel if it satisfies the equation
V.

Lemma 4.15. Let U C R be an wnterval, to € U and V — U be a vector bundle
with connection V. Then every vector v € Vi, (the fibre of V at to) has a unique
extension to a parallel section ¢ € T'(U, V).

Proof. We first assume that V' is trivial of dimension n. Then there exists a unique
a € C*(U,Mat(n,n,R)) such that V = V" + adt. The section ¢ is obtained by
solving the differential equation

¢ =—-ad, oto)=v.

This differential equation is linear with non-constant coefficients smoothly depending
on t and therefore has a unique global solution.

For a general V' this construction produces the section ¢ in the domain of a local
trivialization of V. Because of the uniqueness these local solutions can be patched
together. O

Lemma 4.16. A vector bundle on an interval is trivial.
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Proof. Let V' — U be a vector bundle on an interval. We fix a point t, € U. By
Lemma[4.2] we can choose a connection. If we fix a basis (v;) of Vj,, then the parallel
extensions (¢;) of the basis vectors will give a trivialization of V.

We claim that these sections are linearly independent at each point of U. We consider
a subinterval U’ C U which is a domain of a local trivialization of V' and assume that
t1 € U’ is such that (¢;(t1)); is linearly independent in V;,. We consider the matrix
®(t) formed by these sections defined using the local trivialization. We further write

V|U/ = vtriv + adt. Then
det(®(1)) = det(®(¢))Tr((t) @' () = — det(@(£))Tr(D(£) " a(t)D(t)) .

This differential equation implies

det(®(t)) = det(@(tl))exp(—/ Tr(®(s) a(s)®(s))ds)

t1

for all t € U'. Now det(P(t1)) # 0 expresses the fact that (¢;(t1)); is a basis. We
conclude that det(®(t)) # 0 on U’.

We obtain the global statement by patching. O

In the following we show that a connection on a vector bundle gives rise to local
trivializations by radial parallel transport. We consider a ball U C R™ and a
vector bundle V' — U with a connection V. Given v € V; we can define a section
¢ € I'(U,V) such that for z € U the value ¢(z) is the value of a parallel extension
of v along the path [0,1]x N U. The smooth dependence of solutions of ordinary
differential equations on parameters shows that ¢ is smooth. Again, if (v;) is a basis
of Vp, then the corresponding basis (¢;) is a trivialization of V.

Let v € Vy and ¢ € T'(U, V') be the section obtained by radial parallel transport.
Lemma 4.17. If V is flat, then V¢ = 0.

Proof. We calculate for vectors X,Y € R™ such that X € U (which we also consider
as constant vector fields so that [X,tY] = 0)

(VaVird)(tX) 283 (7, V) (tX) + (2RY (X, 1Y)9) (tX)
= 0.

Here the first term vanishes since ¢ is parallel along the ray RT X, and the second
term vanishes since RV = 0. The section tX + V;y¢(tX) on the ray RT X is thus
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parallel. Since it vanishes for ¢ = 0 it vanishes identically. Therefore, setting ¢t = 1,

we get (Vyo)(X) = 0. 0

Corollary 4.18. Let V. — M be a vector bundle with a connection V. Then the
following assertions are equivalent:

1. The connection V 1is flat.

2. The bundle V- — M admits local trivializations by parallel sections.

Proof. If V is flat, then by Lemma the bundle V' — M admits local trivial-
izations by parallel sections obtained by radial parallel transport. Vice versa, if V
admits local trivializations by parallel sections, then locally in such a trivialization
V = Vi@ In particular it is flat. O

Remark 4.19. In this long remark we recall the relation between vector bundles
and cocycles.

Let us assume that we have two local trivializations (¢;); and (¢); of V' by families
of sections. Then we consider the matrix valued function (g;’) defined by

9705 =i .

If the sections are parallel with respect to a connection V, then we get

0= Vg’o; = dg’ ¢,

for all 7. Since (¢;); is a basis we see that dg;7 = 0 for all i, j. Hence the matrix-valued
function (g;7) is locally constant.

Let V' — M be a k-dimensional real vector bundle, i = (U,)qca be an open covering,
(faj), J €41,..., k}, a € A, families of sections in I'(U,, V') which trivialize Vjy,. We
then consider the associated cocycle, i.e. the family of Mat(k, k, R)-valued functions

(gaﬁ)aﬁeA2 sy YGap - U, N Uﬁ — Mat(k, k,R)

characterized by
9api' D55 = Pai -
We have the cocycle relations
9aB98y = Yap (24)
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on U, NUz N U, for all affy € A3,

Vice versa, given an open covering U = (U,)aeca and a collection of Mat(k, k, R)-
valued functions

(9ap)apeaz »  Gap : U NUs — Mat(k, k,R)

as above satisfying the cocycle relations , then we can define a vector bundle as
the quotient

Wo=| |Us xRE/ ~

Here (u,r) € U, x R* and (v,z) € Uz x R* are related with respect to the relation
~if u = v (in M) and y = (gap)'x. The cocycle relation ensures that ~ is an
equivalence relation.

The canonical maps U, x R¥ — W are local trivializations of . The associated
cocycle is exactly the one we started with.

Assume that the cocycle came from a collection of local trivializations of a vector
bundle V as above. Then we can define an isomorphism W — V which sends the
class of (u,z) € U, x R* to 2'd, ;(u) € V.

If V is a flat bundle, then we can find local trivializations Vjy, := U, x R" such that
the associated cocycle (g, ) consists of locally constant Mat(k, k, R)-valued functions.

Conversely, if we are given a cocycle (gas)ap consisting of locally constant func-
tions, then the associated vector bundle W is equipped with a flat connection V.
It is characterized by the property that for every + € R¥ and o« € A the section
Uy 2 u s [u,x] € W is parallel. 0

4.3 Properties of the de Rham cohomology with coefficients
in a flat bundle

Let (V, V) be a vector bundle with connection on M and f: N — M be a smooth
map. We have induced maps f*: Q(M,V) — Q(N, f*V). First of all, the pull-back
of b € Q(M, V) =T(M,A(T*M) ® V) is naturally a section ¢ € T(N, f*A(T*M) ®
f*V). We now apply the bundle map

A(df)* ® idgey : AT M) @ fV — AMT*N) ® f*V
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in order to get the section
ffYe(N,A(T*N)® V) =Q(N, f*V) .

Note that f*: Q(M,V) — Q(N, f*V) is a homomorphism of (M )-modules, where
the action of (M) on the target is induced from the action of Q(N) via f*: Q(M) —
Q(N).

Lemma 4.20. The bundle f*V — N has an induced connection f*V which is
uniquely characterized by the property that for ¢ € T'(M,V) we have

(fV)(fo) = 1" (Vo) .
The extension of f*V to Q(N, f*V') satisfies a similar relation

f1(Vw) = (f*V)(f'w) (25)
for every w € Q(M,V).

Proof. Given z € N we can find a trivializing family of sections (¢;); of V in a
neighborhood U, of f(x). Then (f*¢;) is a trivializing family of sections of f*V
on f~1(U,). The condition V.(f*¢;) = f*(V¢;) for all i uniquely determines a
connection V, on f*V|y-1y,). One easily checks using the Leibnitz rule that it is
independent of the choice of the trivializing family. Indeed, let (¢}); be a second
trivializing family with induced connection V’. Then there exists a matrix valued
function (g;7) such that ¢; = g;/ ;. We have

V(9 = Va9 ([ 05)
= d(f'97)® f*¢; + [ (97)F (Vy)
= f*(dgi @ ¢; + 97V ;)
= ["(Vgi9;)
= f(V¢;)
= Vu(f'¢) .

We can perform this construction for each point x € N, and for z,y € N the result-
ing connections V, and V, coincide on the intersections f~1(U,) N f~*(U,) by the
uniqueness statement. Hence we get a globally defined connection f*V. Technically
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one chooses a partition of unity (x,)zen subordinated to the open covering (U, )zen

and sets f*V =3 _yXaVa.
Hfw=a®¢forae Q(M)and ¢ € I'(M,V), then f*w= f*a® f*¢. We have
(fV)(fw) = dffax ffo+ (-1 f'ax (fV)(f)
= flda® ffo+ (=1)ffa® [*(Ve)
= [f(Vw).
This implies . O

Lemma 4.21. Let f: N — M be a smooth map and (V,V) be a vector bundle with
connection on M. Then we have RV = f*RV.

Proof. We have for every ¢ € T'(M, V)

(f*R)(f*¢) = [f'(Re)
= [1(VV9)
= (' (Ve))
= ('Y 9)
= R"Y(f"9)
This implies the assertion. O

If V is flat, then f*V is flat, too. We define the pull-back of a flat bundle by
V= (f*V, f*V). The relation expresses the fact that

QM V) = Q(N, f*V)
is a morphism of complexes. Hence we get an induced morphism in cohomology
f* : HdR(M, V) — HdR(N, f*V) .

Lemma 4.22. 1. If fy and fi are homotopic, then we have an isomorphism Wy :
oV = fiV which only depends on the homotopy.

2. The following diagram commutes

f*
- Har(M, f5V)

f1
Wy

HdR(N7 ffv)

Har(M, V)
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i.e. the de Rham cohomology with coefficients in a flat bundle is homotopy
mnvariant.

Proof. Let h: I x N — M be a homotopy from f, to f;. Given
v e (WV)om = (f5V)n

we define U(t,n)(v) € (h*V)un) to be the parallel transport of v long the path
s+ (st,n). We get a bundle map

U foV =0V, (fgV)e2ve= Y(tn)(v) € (W'V)un -

Evaluating at ¢ = 1 we get a bundle map V¥, : f;V — fiV.
We observe that for ¢ € I'({ x N, h*V') we have

0Ty i) = W (L5,70) (26)
where n, : N — I x N, ny(n) := (t,n).
We show that W, ' (h;V)¥, = f;V. To this we show that the family of connections
te V=0, (hV)T,
on fiV is constant. For a section ¢ € I'(N, fiV') we define a section
Y el(IxN,RV), ¥(t,n):=V(t,n)on).

Then we have
Vip = \Ifflnf(h*V)w )

We calculate the derivative with respect to ¢. Let X € I'(N,T'N). Then

8tVt,ng5 3t[\11t_1n;‘(h*V)X@/}]

U LY (WY x ¢

= U, ' (V) (h*V) x1

= U 'ny [(R*V)x(R*V)a, 00 4+ 2R" Y (8;, X )]
p— 0’

IS

since (h*V)g,1» = 0 and R"Y = 0. Tt follows that
U (b V)8, =V, =V = 3V .
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In particular, we get an isomorphism V¥ : fiV — f;'V of flat bundles.
We now claim that the maps of chain complexes

fo - UM, V) = Q(N, f5V)

and
-1

QM V) B (N, £1v) s QN V)

are chain homotopic. To this end we define the degree —1-map

H:Q(M, V) = Q(N, fV)

by
1
W)= [ 0 i ah)dr.
0
We have
(foV)H + HV )Y
1 1
— (VY >/ 2 (touh dt+/ U (1o, (V) dt
0
1 1
= /(f{{V)\If nt(1a,h dt+/ U g (1a,h* (V) dt
0 0
1
= /\Ilt_lnf(h* (Lo, h* dt—l—/ U, g (1g,h* (V) dt
0
1
_ / Wyt LS e — / U0 (1, (V) (W40)) it + / U (1, (V) ) dt
0 0 0
1 1 1
= /\If{lnfﬁgvh*wdt—/ \If,flnf(Lath*(Vw))dt~l—/ U, nd (1g,h* (V) dt
0 0 0
1
= /xp sl Y h*pdt
0
@ [

Oy, it et
0
= Ui — [y
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4.4 Global structure and further examples of flat vector bun-
dles

Definition 4.23. A manifold M is called stimply connected if every two paths
with the same endpoints are homotopic through paths with these endpoints.

Note that this differs from the usual definition of this notion. We do not assume that
M is connected on the one hand. On the other hand, our definition involves smooth
paths and homotopies instead of continuous ones.

Theorem 4.24. If M is connected and simply connected, then every flat vector
bundle V on M 1is trivial.

Proof. Let V = (V, V). We choose a point mo € M. We are going to construct an
isomorphism
U:MxVy, =V

such that UV = V. Let m € M. We choose a path v from mg to m. We define
vy Vo — V,, by parallel transport along the path v. We must verify that ¥
does not depend on the choice of the path 7. Since any two paths are homotopic we
will consider a homotopy & : [0, 1] x [0, 1] of paths from mg to m. We can trivialize
h*V =10,1] x [0,1] x V,,, using the connection h*V and the parallel transport along
rays starting in (0,0). The restriction of this trivialization to {i} x {1} is ¥% for
i = 0,1. Since h(—, 1) is constant with value m the parallel transport from V(o ;) to
V(1,41) is the identity if one identifies nbthe fibres h*V(, ;) for all s € [0,1] with V.
We conclude that Who = pht,

We now show that W is smooth and preserves the connection. Let m; € M. We fix
a path ~; from mgy to my; and a coordinate neighbourhood of m; diffeomorphic to a
ball in R"™. For m € U let 7, be the straight path (this uses the local coordinates)
from m; to m and W)™ be the corresponding parallel transport. Then

W7, (v) = Wi (W, (v)

where « is a smooth concatenation of ,, and ;. The section m > W) (U7 (v)) is
smooth and parallel by Lemma [4.17] The last property is equivalent to the equality
UV = V. =
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Example 4.25. The manifold R" is simply connected. If vy and v, are two paths
with the same endpoints, then h(s,t) := sv;(t) + (1 — s)70(t) is a homotopy between
them.

We now show that S™ is simply connected for n > 2. We use the following general
fact which is a consequence of Sard’s theorem.

Fact 4.26. If f : M — N is a map between smooth manifolds and dim(N) <
dim(M), then f(N) is a Lebesque zero set in M.

If 79 and v, are paths in S™ and n > 2, then their joint image is a Lebesgue zero set.
Hence there exists a point o € S™ which does not belong to the union of the images
of the paths. Therefore the two paths are contained in S™ \ {o} = R™ and can be
connected by a homotopy with constant endpoints as in the first example.

O

Example 4.27. The manifold S* is not simply connected. In Example we have
seen that the de Rham cohomology of S! with coefficients in a flat bundle depends
non-trivially on the bundle. Hence these flat bundles can not all be isomorphic.

Example 4.28. In this example we show that the fibre wise de Rham cohomol-
ogy of a locally trivial fibre bundle £ — B is a vector bundle which has a natural
flat connection. It is called the Gauss-Manin connection.

Let E — B be a locally trivial fibre bundle bundle. For b € B let Ej, be the fibre at
b. We fix an integer p and consider the set

H'(E/B) = | | Hiu(E) . (27)

beB

We assume that HY,(E}) is finite-dimensional for all b € B. In this case we equip
HP(E/B) with the structure of a vector bundle over B as follows. By definition,
the bundle projection H?(E/B) — B maps the component HY,(E}) to the point b.
The fibres of this projection are vector spaces. The manifold structure on H?(E/B)
is defined in terms of local trivializations. It suffices to check that the associated
cocycles are given by smooth functions. In the present case they turn out to by
locally constant.
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Let ¢ : U x F 5 Ejy be a local trivialization of £ — B. For u € U we write
¢u : ' — E, for the inclusion of the fibre over u. Then we define an associated local
trivialization of HP(E/B) by

HP(E/B)jy = U x HY,(F)

by HP(E/B), 2 x — (u,¢lx), u € U. Given another trivialization ¢ we consider
the transition function

g:UXF—=F ., (uf)=glu f) =" 0o (f) -

We have

Gr 0y = (Ut 0 9u)” = glu, —)" € Aut(Hyp(F)) .
By homotopy invariance of the de Rham cohomology this function with values in
Aut(HY,(F)) is locally constant.

By the constructions in Example it follows that H?(E/B) has the structure of
a locally trivial vector bundle with a flat connection V*(Z/B) This connection is
called the Gauss-Manin connection. O

More generally we have:

Lemma 4.29. Let E — B be a locally trivial fibre bundle and V be a flat bundle on
E. Then the fibrewise de Rham cohomology H*(E /B, V) (if it is finite dimensional)
is a vector bundle on B with a flat Gauss-Manin connection V' (E/BV),

O

Example 4.30. We consider a torus 77 := R?/Z* Let A = (A";) € SL(2,Z).
This matrix acts as a linear transformation on R? and preserves the lattice Z2.
Consequently it descends to a diffeomorphism f4 : T? — T2 such that

R? - R?

T2 fa T2

commutes. We now consider the action of Z on R x T? given by (n, (t,z)) = (t +
n, f4(z)) and let Ty, := R x T?/Z be the quotient. This is the mapping torus of
the automorphism f4 of T2.
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A similar construction works for arbitrary pair of a manifold M and automorphism
f: M — M. We consider the induced cation of Z on R x M and define the mapping
torus of f by Ty := (R x M)/Z. The projection to the first factor induces a map

p: Ty - R/Z=S" | [t,x]—[t] .

This is a locally trivial fibre bundle with fibre M.

We now determine the bundle #*(7T}, /S*) — S* explicitly. It will again be a mapping
torus. The cohomology H}n(T?) has a basis 2 = [a'], i = 1,2, where o € Q'(T?)
is characterized by 7*a’ = dt' and (¢',t?) are the coordinates on R?*. We have
A*tt = A7, This implies H'(fa)(z") = A';2?. We start with the trivial bundle
R x H}n(T?) — R. The group Z acts on the total space by

(n, (t, 7)) = (t +n, H'(fa) " () .

The quotient is the vector bundle Tx1(s,)-1 — S1, again a mapping torus. We have
a canonical identification of bundles

T (pa)—1 = H(TfA/Sl> :
On the fibre over [t] € [S'] this identification is given by the map
(Tr gy = Hap(T%) = Hap({t} x T%) = H (11, /Sy -

This is independent of the choice of the representative t of the class [t]. Indeed, we
have

(T (pay-1 )i — Hgr(T?) Hip({t} x T?)]
LHl(fA)l THl((---+n)XfA)

(Trr(ay-1)n) — Hap(T?) — Hap({t + n} X T%) —=H (T3, /5" t4m)

/Hl(TfA/Sl)[t]

where the left square commutes by the definition of Tx1(s,)-1 and the right square
by the definition of T},.

The trivial connection V7 on R x H},(T?) — R is Z-invariant. In descends to the
Gauss-Manin connection on the bundle H!(T},/S') — S*. It is not trivial. Indeed,

the parallel transport for VH (T14/5Y) along the loop s — [s] in S' is given by

H'(fa) € Mut(H'(Ty, /S ) ) = Hap(T?) .
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Indeed, if [0, z] € H'(Ty,/S")(, then the parallel transport is [1, 2] = [0, H'(fa)(z)] €
H (T, /SN0

In the basis (x!, 2?) the linear map H'(f4) is the multiplication by the matrix A. O

Example 4.31. Let I' be a finite group which acts freely on a connected manifold
E. We set B := E/I". The fibres of f : E — B are zero-dimensional. In this case
HY(E/B) =0 for ¢ > 1. The bundle H°(E/B) — B is non-trivial. Let R[T"] be the
real vector space generated by I'. The right multiplication of I' on itself induces a
linear action of I on R[I']:

VO re9) =D gy =D 19 -
ger ger ger
For a point e € E we get an identification
LS Epey, v e.

The pull-back along this map gives an identification

H(E/B) je) = Hyn(Ef) = R[] .
We now define an isomorphism

(ExR[T))/T S HYE/B), [e,) nggl = > nylge] .
geG ger

In order to see that this is well-defined we calculate

[ve.r Y nggl > nglgy'vel =Y nglge]

geG gel’ gel

This flat bundle H°(FE/B) is not trivial. Let o be a path from e to ve. In B we have
f(e) = f(ve) and foo is aloop. The parallel transport of [e, x| € HO(E/B) f(e) along
this loop is [ye,z] = [e,y 'z]. After identification H°(E/B)) = R[y| the parallel
transport H°(E/B) along this loop is given by the action of 7*1 on R[I].

O

In order to apply Theorem we must be able to decide whether manifolds are sim-
ply connected. We now state a theorem which we will show later after the discussion
of the fundamental group.
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Theorem 4.32. Let E — B is a locally trivial fibre bundle with typical fibre F.

1. If F and B are connected and simply connected, then E is connected and simply
connected.

2. If F' is connected and E is connected and simply connected, then B is simply
connected.

Proof. (Sketch) This is a consequence of the long exact homotopy sequence
= ma(B, fe)) = m(F,e) = m(E,e) = m(B, f(e)) = mo(F) = mo(E) — mo(B) .

This sequence will be introduced in homotopy theory. O

Example 4.33. We can use Theorem in order to show the following statements:

1. CP" is simply connected. Indeed we have a fibre bundle S?"*! — CP" with
simply connected total space and connected fibre S*.

2. SU(n) is simply connected. We have a fibre bundle SU(n + 1) — S?"*! with
fibre SU(n). The base is simply connected for n > 1. We now argue by
induction. We start with the observation that SU(2) = S is simply connected.

3. The Grassmann manifold Gr(k,C") is simply connected. We have a fibre
bundle SU(n)/S(U(k) x U(n — k)) — Gr(k,C™) with simply connected total
space and connected fibre.

5 The Leray-Serre spectral sequence and applica-
tions

5.1 Construction of the Leray-Serre spectral sequence

We consider a local trivial fibre bundle f : E — B. In this section we construct a
spectral sequence which converges against a graded version of Hyg(FE) and determine
its second page FEs. It is called the Leray-Serre spectral sequence.

The spectral sequence is associated by the construction in Subsection to a de-
creasing filtration (FPQ(FE))ez of the de Rham complex of the total space E of the
bundle.

94



We start with a technical result which can be interpreted as the determination of
the Ej-term of the spectral sequence for a trivial bundle. For two vector bundles
Vi = M;, i = 0,1, we define the vector bundle

Vo ®Vy == pry, Vo ® pry, Vi
over My x M. For example, the A-product induces a canonical isomorphism
AT* Mo AT My = AT*(My x M) .
This bundle has a bigrading given by
AT (My x M) == N°T*My R A'T* M, .

The bigrading of the bundle induces a bigrading of its space of sections

Q% (Mo x My) :=T(My x My, N**"T*(My x My)) . (28)
We can decompose the de Rham differential on Q(My x M;) as d = dMo 4 @M1 where

d™i differentiate in the M;-directions for ¢ = 0, 1. Then (Q2**(My x M), dM dM2) is
a double complex whose total complex is (Q2(My x M), d).

The exterior product
X Q(Mo) @ Q(My) — QMo x My), a®@w:=pry apry,w

induces a map of double complexes. We stress that on the left-hand side we consider
the algebraic tensor product of complexes. Hence, if My and M; are both are not
zero-dimensional, then x is not an isomorphism of complexes. Nevertheless, under
suitable finiteness assumption, it is a quasi-isomorphism by the Kiinneth theorem
2.34] In the following we show a partial Kiinneth theorem.

Lemma 5.1. If My admits a finite good covering, then for every p € Z
x 1 (M) ® QP(My),d™ @ idasan) — (P (Mo x M), d™)
1S a quasi-isomorphism. In particular,

Hi(My) @ QP(My) = HY(Q"(My x My),d™) .
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Proof. We choose a finite good covering V := (V3)gep of My. We get an induced
covering V x M; = (V3 x My )gep of My x M;. We have a commutative square

X

Q(M()) & Qp<M1> Q*’p<M0 X M1> . (29)
lLMO®id lLMOle

tot(C(V, AT* My)) @ QP(M;) —= tot(C(V x My, AT* My K APT*M;))

We know by Lemma that ¢y, is a quasi-isomorphism. The same argument also
shows that tp,xa, 18 @ quasi-isomorphisms. By Lemma the left vertical map
Ly, ® id is a quasi-isomorphism.

We now use the finiteness of the covering in order to commute the tensor product by
QP(M,) with the products involved in the construction of the Cech complex in the
left lower corner. After this identification the lower horizontal map is induced by the
exterior product maps

Q(V) @ QP (M) — QP(Vg x M) (30)

for all 5 € B¥! and k € N.

In order to show that x is a quasi-isomorphism it suffices to show that x is a quasi-
isomorphism. To this end we compare the induced map of spectral sequences

(Er(%))ps1: (B9, d3") o0 — ("B dy )i

T T

associated to the filtration by Cech degree. In particular, E"* — EF* is the map
induced in cohomology by the product of the maps .

Let 8 € B*! v € Vzand i, : v — V3 be the inclusion. Then we have a commutative
diagram

Q(V3) @ QP(M,) == Q*» (V3 x M)
Lﬁ@idnp(mfl) l(ivxidMl)*
QP (M) =——="(M))

Since V3 is contractible to v, the map 4; and hence the left vertical map are quasi-
isomorphisms. The right vertical map is a quasi-isomorphism, too. Indeed, a homo-
topy inverse is given by

pI'T/B : QP<M1) — Q*’p(VB X Ml) .
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We have
(tv X iday )" 0 pry, = idar(uy)

and the usual homotopy h : Q(Vz x M;) — Q(Vs x M;) (associated to the product
of the contraction of Vs with idyy,) from pry, o (i, X idar,)* to ida(v,xan) restricts
to the complex Q*P(Vs x My).

We conclude that x in is a quasi-isomorphism.

The second assertion of the Lemma follows from the first and Lemma 2.27] O

We now turn back to a locally trivial fibre bundle f : E — B. Let F' denote the
typical fibre. We first describe the filtration of Q(FE) leading to the Leray-Serre
spectral sequence. The vertical tangent bundle of f is defined by

T°f:=%ker(df : TE — f*TB) .

Since f is a submersion, df is a surjective vector bundle map and its kernel TV f is
indeed a vector subbundle of TE. Its sections are called vertical vector fields. We
have an inclusion of bundles of algebras of multi vector fields

AT f — ATE |
and we define an decreasing filtration of AT E by subbundles

FPATE = in(APT* f AATE — ATE) .

For an inclusion of vector spaces W — V' let
Wh={ e V* |y, =0} CV*
be the annihilator of W. If W/ C W, then we have W+ C WL,
We have a canonical isomorphism
AT*E = (ATE)*

given by evaluation of a differential forms on multi vector fields. For every n € Z we
define the decreasing filtration of A"T™*FE by subbundles by

FPA'T*E = (F"PHA"TE): C A"T*E .
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Finally we set

FPQ(E) = I'(E, FPAT*E) C Q(E) . (31)

It is obvious that these subspaces form a decreasing filtration of the Z-graded vector
space (E). Special cases are

QuE) p<0

P’Q"(E):{ 0 p>nil (32)

Example 5.2. If E — B is trivialized, i.e. £ = F x B, then we have
FPQ(E) = @ Q™ (F x B) .
s$>p

In this case it is clear that the filtration is compatible with the de Rham differential.
We shall see next, this is true in general. O

Lemma 5.3. The filtration of Q(E) is compatible with the differential.
Proof. We could refer to Example and the fact that E is locally trivial. But we
give an alternative proof which better explains the reason why the Lemma holds.

We start with giving an alternative description of the filtration. The lowest non-
trivial step of the filtration of Q"(E) is F"Q"(E) and contains all n-forms pulled
back from B and their products with functions. Indeed, these forms are exactly
those annihilated by insertion of a vertical vector field. The next step is the space of
forms which are annihilated by the insertion of two vertical fields, and so on.

Explicitly, we have all p € Z

FPQU(E) = {w e QUE) | V(X)) e DB, T f)" 7 |ix, .. ix, ,,w=0)}.

)

Next we observe that I'(E,TVf) is closed under the commutator of vector fields.
Indeed, a vector field X € I'(E,TF) is vertical exactly if X(f*¢) = 0 for all ¢ €
C*(B). But for two vertical vector fields X,Y and any ¢ we have

[X,Y](f70) = X(Y(f7¢)) = Y(X(f"¢)) =0

Hence the commutator [X, Y] is vertical, too.
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Let w € FPQ"(E). We use the formula

n+1
(TL + 1)dw(Zla T ZTL+1> = Z(_l)ZZZW(ZIJ te Zia R Zn+1)

i=1
+Z(—1)Z+JW([ZZ, ZJ], Z17 ceey Z\ia c. ,Z, ceey Zn+1) .

i<j

If n+1—p+ 1 of the vector fields Z; are vertical, then every term contains an
insertion of at least n — p + 1 vertical vector fields and hence vanishes. O

Definition 5.4. The Leray-Serre spectral sequence (LSSS) (E,,d,),>1 of the
locally trivial fibre bundle f : E — B is the spectral sequence associated to the

filtration (FPQUE))pez defined in (31)).

For every n € N the filtration F*Q"(E) is finite, exhaustive and separating. Conse-
quently we have a finite exhaustive and separating filtration on H"(FE) (called the
LSS-filtration) and

EPP = GrPH™(E) .

In fact, by the group EP"7 stabilizes at the n + 1 page, i.e. we have E'/ " =
Epnp,

We assume that the typical fibre F' of the bundle admits a finite good covering. Then
by Example for every ¢ € Z we have the bundles HY(E/B) — B of fibrewise de
Rham cohomology of degree ¢ which has a flat Gauss-Manin connection V#*(£/B),

Proposition 5.5. For every q € Z we have an isomorphism of complexes
(EY, di) = ((B, HU(B/B)), (1)1 vV E),
In particular, we have isomorphisms
EY?* >~ H?(B,HY(E/B)) .
Proof. We fix a good covering U := (U, )aca of the base B and trivializations
U, Uy x FSE

of the fibre bundle. Then f~'U := (f~*(U,))aca is an open covering of E. Recall
that H(F/B) — B is described by the family of local trivializations

Vo : HY(E/B), = Uy x Hjp(F) (33)
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and the locally constant transition maps
Uag D U = gap(u) = oy 0ty = W 0 U5 € End(Hip(F)) (34)

where W, , is the restriction of the trivialization to the fibre over u € U,3. Then we
have a natural isomorphism

Q<B7HQ(E/B)) = {(wa)aeA S H HgR(F) ® Q<Ua) | (Vaﬁ € A2 ’gaﬁwﬁ = Wa)} .
acA
The differential of w = (wWq)aca is given by
(VHUEIB) ), = dw,, . (36)
We will see that (E}?,d;) has the same description.
We define a filtration of the Cech complex

FPeot(C(f U AT*E))" = P C*(f U, FPA"*T*E) .
The associacted spectral sequence with be denoted by (E., d.). Note that the Cech
differential preserves the filtration. The natural map
i: Q(E) — tot(C(f'U,AT*E))

is compatible with the filtrations.

Lemma 5.6. The induced map of spectral sequences E(i) : (E,,d,)r>1 — (El,d.)>1
1 an isomorphism.

Proof. By the arguments of Lemma and Lemma (the main observation is
that the filtration F*Q(F) is induced by a filtration of the bundle AT*FE), for all
p € Z we have a quasi-isomorphisms

FPi: FPQ(E) — FPtot(C(f~'U,AT*E)) . (37)
Hence for all p € Z we have quasi-isomorphisms
GrPi : GrPQ(E) — GrP tot(C(f U, AT E)) .

The induced map in cohomology is an isomorphism of F;(i) : £y — Ef. It follows
that E(i) is an isomorphism of spectral sequences.
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Consequently we must calculate Ey™? and d). Let s € N and a = (ag, a1, ..., a,) €
ATl Using ¥,, we get an isomorphism of filtered chain complexes,

QUf UL 2 QF x U,)
where the filtration on the right-hand side is defined by

FPQ(F x Uy) = @ QUF x Ug)" ",

t>p

see Example The total complex of the Cech complex is a sum of products of
these pieces. Consequently we get an isomorphism of complexes

Gr?(tot(C(f'UAT*E)) = ] Q(F xUa) (38)

st acAstl

with differential d = d + (—1)*d" on the summand with index (s, t). This complex
is again a total complex associated to a double complex with differentials d and
(—=1)*d" on the summand ], o1 Q7 PP(F x U,).

By definition, E;™" is the cohomology of . In order to compute it we will use
again a spectral sequence. We consider its filtration by the Cech degree and the

associated spectral sequence (E! d!),>1. Its first term is the cohomology of the

differential d*'. By Lemma [5.1] we get

gt I Hi (F) o 0r(U,) .

aeAs+1

Now d/ is induced by the d. We shall give an explicit formula of d; : E}"*" — E»*TH
We have d} = 35 (—1)'d;, where

di: | HZ(F) o) — [ Hi(F) @ U,)
ae A aeAst?
is given by
(diw)a = Wag,....q,..., asi2|U,
for : > 1 and
(dow)a = (gocoocl ® id)wm ----- As42|U,
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see (34). The distinction between the cases i = 0 and i > 1 encounters the fact that
in the case 7 = 0 we must change the trivialization from ¥,, to U,,.

The complex (E}*",d;) is canonically isomorphic to the complex
C(U,N’T*B® H'P(E/B)) .

To this end we again use the trivialization v,, (see (33)) in order to define the
isomorphism
(U, H'P(E/B)) = Hyp (F) @ 0 (Ua)
for all « € A*™! and s € N. Then
C'UNT*BRH ™(E/B) = [[ Hi(F)@Q(U,) .

acAstl

The differential d is given by the same formulas as d” above. To this end we must
observe that gaga, = Va, © g, -

By Lemma [2.11] we get

E//st QP(B Ht p(E/B)) s=0
2 0 s#0

Consequently
PP & B & G (sor(CL/~ U, AT*E))) & L7 = QP(B, HI"(E/B))
It remains to identify the differential d; with V*(#/5) To this end we use the picture
(35)) which we compare with
E//,O,t ~ ker(d// . E//,O,t N E//,l,t)
2 = 1 1 .
Under this isomorphism we indeed have in view of

(dw)aﬁ = WalU,s — 9aBYB|0,,

A {m wen € [] Hin(F) © Q(UL) | (Yab € 47| gupuos = wa>} -

acA
The differential d; is induced by d+d!!, where d'! is the product of (—1)***?(id Hep ()@

dU») on [[,caser Hy? (F) @ QP(U,,). If we apply this to s = 0 and elements in ker(d
we see that (diw), = (—1)"Pdw, as required in view of (36).

O
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5.2 Gysin sequence for S"-bundles
We consider the Leray-Serre spectral sequence for a locally trivial fibre bundle f :
E — B with fibre F = S*.

Since the diffeomorphisms of S! act as identity on H°(S') the bundle H(E/B) is
trivial and one-dimensional as a flat bundle. The constant function 1 € Q°(E) gives
a global parallel section which we use to trivialize H(E/B).

The bundle #!'(F/B) may be non-trivial. Since H(E/B) = 0 for i ¢ {0,1} the
second page of the LLSSSs has only two lines.

1, HYB,H'(E/B)) H\B,H(E/B)) HB,HE/B)) H3(B,H(E/B))

0 H°(B) HY(B) H*(B) H3(B)

' 0 1 2 3

where we have only indicated the non-trivial differentials in the range pictured.

Therefore the LSSS degenerates at the third page and by Lemma [2.4] we have short

exact sequences
0— By — Hip(E) = Ey* =0

for all ¢ € Z. If we express the third page in terms of the data of the second page,
then we obtain a long exact sequence which is called the Gysin sequence of the
bundle ¥ — B

oo HL(B) D HIL(B) S HEN(B,HY(E/B)) 3 HENB) — .. .

Example 5.7. In this example we use the Gysin sequence in order to calculate the de
Rham cohomology of CP". We use the bundle $?"*! — CP" with fibre S1. We know
by Theorem that CP" is simply connected and therefore H'(S*" ! /CP") — CP"
is a trivial one-dimensional flat bundle. If we fix a trivialization (the choice will be
discussed later), then the LSSS has the form (with B := CP")
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In the case of CIP? is the complete picture. Since H%,(S?"1) =0 for 1 < k < 2n we
see that all indicated differentials must be isomorphisms. We inductively conclude:

HY(CP") = R
H}(CP") 20
H3,(CP") = R

® N S ook W=
=
ek
(]

for k > 2n + 1.

2, i€{0,1,...,n}

else

m o~ | Rk

We further note that the map
HE3H(S2) 5 B = H3(CP)

is an isomorphism. The isomorphisms depend on the choice of the trivialization of
H (5?1 /CP™). We discuss this in more detail when we analyze the multiplicative
structure. O

There is a Gysin sequence for bundles f : EF — B with fibre S™ for all n > 1. To
this end we consider the structure of the LSSS. It again has only two non-trivial
rows. The only possible non-trivial differential after the Fs-term is d,,1. So we have
Ey=FE,.;and E,,» = E,. We write out the E;-term the case n = 3 for simplicity
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0,0 1,0 2,0 3,0 4,0 5,0
0| EY EMN E* B EM E

0 1 2 3 4 D

where EY, = H?(B) and E27, = H?(B,H"(E/B)).
Hence we get a long exact Gysin sequence

coo = HE (B HY(E/B)) 5" HE(B) L gAY & HYY(B HY(E/B)) — ... .

Example 5.8. Let n > 1. The group of unit quaternions Sp(1) = S acts on H"™! by
left multiplication. It preserves the quaternionic scalar product (x,y) := Z?Ill iy

Indeed, we have
n+1 n+1

(qr.qu) = @iq"qyi =Y _ ajyi = (z.y)
=1 =1

since ¢*q = 1 for a unit quaternion ¢ € Sp(1). The real part of the scalar product
is the usual euclidean scalar product on H**! =2 R*"+1  Consequenty the action of
Sp(1) restricts to an action on the unit sphere S~!. The quotient

HP" := S*"*3/Sp(1)
is called the quaternionic projective space. We therefore have a fibre bundle

Sint3 s HP™ with fibre Sp(1) = S3.

Since S$%"*3 is simply connected and S® is connected the manifold HP" is simply
connected by Theorem [£.32] We again conclude that differentials of the Es-term of
the LSSS between non-zero groups are isomorphisms. As in the case of the complex
projective space we obtain

o~ | R kE=4i, i€{0,1,...,n
HC]?R(HP)_{ 0 elsi }
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5.3 Functoriality of the Leray-Serre spectral sequence

In general it is very difficult to calculate higher differentials of the LSSS. Most calcu-
lations start from simple cases and then use the functoriality and the multiplicativity
of the spectral sequence. In this subsection we discuss functoriality.

A map from a fibre bundle f’ : E/ — B’ to a fibre bundle f : E — B is a commutative
diagram
EF—2-E . (39)
Pl
B —1-B
Note that g is determined by g.

Lemma 5.9. The map g* : Q(E) — Q(E’) s filtration perserving. Consequently it
induces a map of LSSS’es

E(g") : (Erydp)r>1 — (B, d))r>1

T

Proof. Note that for ¢/ € E' and X € Ty E' we have dg(df'(X)) = df (dg(X)). If X
is vertical, then df’(X) = 0 and hence df (dg(X)) = 0. Consequently, if X is vertical,
then dg(X) is vertical, too.

Fix n,p € Z and w € FPQ"(E). Let (X;)1
vectors at €. Then we have

n—p+1 be a collection of vertical tangent

-----

ixy - 0xp e (97W)(€) = ldg(xy) - - - Tdg(x0_pr)W(9(€) =0 .

We conclude that g*w € FPQ™(E"). O

Lemma 5.10. We have a canonical map of flat vector bundles
¢ gH(E/B) — H(E'/B') .

Proof. The map g induces for every b’ € B’ a smooth map gy : Ej, — Egpy. We get
amap gy : Har(Egw)) — Har(E} ). The collection of these maps give a map

¢ §H(E/B) = H(E'/B')

if we consider both sides as disjoint unions of real vector spaces, see . We must
verify that this map is smooth and preserves connections.
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Let U C Band ¥ : U x F' — Ejy be a trivialization. We can assume (after shrinking
U if necessary), that there exists a trivialization ¥’ : g7'U x F' — E(g,lU. The
trivializations of the fibre bundles induce trivializations of the cohomology bundles
U H(E/B)jy — U x Hqp(F) and W™ : H(E'/B') g1y — §7'U x Hqr(F"). In these
trivializations the Gauss-Manin connections are the trivial connections. For ' € U’
let G : I — F be the composition G, : (W71 o go W)(u,—): F' — F. With
respect to the trivializations U™* and g*U* the map ¢* is represented by o' — G7, :
Hur(F) — Hqr(F"). By the homotopy invariance of de Rham cohomology this map
is locally constant. It is hence smooth and preserves the trivial connections. a

Lemma 5.11. The following diagram commutes:

Eg’q Ea(g)

o -

Ho(B, HY(E/B)) —L= HE,(B', g"HY(E/B)) ~S— HZo(B' H(E'| B'))

Proof. We show that the corresponding diagram on the level of Ej-terms commute.

Eq(9) /
P,q Psq
El El

- -

(B, HU(E/B)) —L~ Qr(B, " H(E/ B)) ~L~ (B, HU(E'/ B))

We use the presentation and the identification of the £;-terms with the Ej-terms
given in Lemma [5.0}

We are reduced to the case of trivial bundles and a map
G:UXxF —-UxF, W, f)—(GW),Gsf)),

where G : U" — U is the underlying map of base spaces. This map can be decomposed
as

UXxF U XxF—=UxF, W f)= 0 Gsf))— (GW),Gu(f))
The map FE;(G) is induced by the map of complexes
(Gr QU x F),d") % (Gr QU x F),d") S (Gr QU x F'), dF) .
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In cohomology we get

(U, Han(F)) S QU Hyn(F)) S QU Hyp(F")) .

Example 5.12. We can use the LSSS in order to study the kernel of the map

[ Hip(B) = Hjp(E).

Let £ — B be a fibre bundle with connected fibres. Then we can consider id : B —

B as a fibre bundle and the map of fibre bundles

f

F—B
P
_B>B

We study the induced map of LSSS E(f) : (¥ E,,*¥2d,),>1 — (TE,,’d,),>

that (147 E,.,*95d,) degenerates at the second page which has the form

idp [P o~ HP(B) q=0
2 0 else

We also have

)

* else

ngﬁqg{ HP(B) q=0

and the map E(f) induced exactly the identification of the zero lines.

Let us fix p € Z. Then we have a sequence of quotients

Tpp? - TEYY — . TEP), = ERP

where / EP?, is the cokernel of /dj, : /EVF*1 — EPO.

(40)

1. Note

Corollary 5.13. A class = € H?(B) = JEP? pulls back to zero on E if an only
if its class in TEPO vanishes, i.e. if its class in fEﬁ’O is hit by Tdy, for some k €

{2,...,q—1}.
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Example 5.14. We consider the bundle f : S*"*! — CP". If z € H2%(CP") 2 R
for k € {2,...,n}, then z is in the image of /dy (Which is an isomorphism). Hence
f*r = 0. This is of course also clear since Hax(S?"1) = 0. O

Example 5.15. Let £ — B be a locally trivial fibre bundle over a connected base
and b € B. We identify the fibre F} with F'. Then we get a map fibre bundles

Jay (41)

-
p——B
Given a class x € Hj,(F) one can ask whether it extends to a class & € Hj,(E), i.c.

Y*& = x. We consider the induced map of LSSS E(v)) : (“E,,?d,),>1 — (PE,,Pd,),>1.

We have
PP o Hip(F) p=0
2 0 else

This spectral sequence degerates at the second (actually the first) page. We also

have
ng,qg{ Hip(F) p=0

* else

and F(1) induces the obvious identification of the zero column.
We fix ¢ € Z. We have a decreasing chain of subspaces
0, 0, 0, 0, 0,
fEQququ:_)fE4q2 Qquflszooq ,

where fEle1 = ker(fdk : fE,S’q N fE,’jH’q_k),

Corollary 5.16. A class x € HI(F) = IEY? extends to E if and only if it belongs
to the kernel of all differentials 'dy, for k € {2,...,q}.

O

Example 5.17. We consider again the bundle S?"*! — CP" with fibre S'. Let
ors1 € H}n(S') be the class of a normalized volume form. This class does not
extend to S?"*1 since /dyorgt # 0 (again since /dy is an isomorphism). Of course
this is also a priori clear since Hj(S?"1) = 0.

O
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5.4 The multiplicative structure of the Leray-Serre spectral
sequence

Let A be a differential graded algebra and (FPA),cz be a decreasing filtration of A
as a chain complex. We say the filtration is multiplicative if the product restricts
to maps

FPA® FIA — FPHA |

We get induced maps
Gr’A ® Gri(A) — GrPt14

so that Gr(A) is a bigraded differential algebra.

We now consider the exact couple of a multiplicatively filtered differential graded
commutative algebra. We observe that

W =P H(F"A)

is a graded commutative algebra, graded by cohomological degree. Similarly,

E = @ H"(Gr"(A))

p.q

is a graded commutative algebra graded by cohomological degree. Both algebras
are actually bigheaded with p as an additional degree. The maps 7 : W — W and
pr : W — FE are morphisms of graded algebras. Furthermore, 0 : W — FE satisfies
the Leibnitz rule, i.e. it is a derivation. Indeed, if [z] € EP9 and [y] € E* with
representatives x € FPAPTe and y € FP AP ¢ then we have

N[z Uy]) = 0([x Uy]) = [de Uy] + [(—1)P" "z Udy] = Oz] U [y] + (=1)""[z] U D[y] .

We call a bigraded exact couple (E,W, i, pr,0) multiplicative if £ and W are
graded commutative algebras, i and pr are morphisms of graded algebras, and 0
satisfies the Leibniz rule as above.

Lemma 5.18. If (W, E i ,pr,0) is a bigraded multiplicative exact couple, then the
derived exact couple is bigraded multiplicative again.

Proof. The image of a homomorphism of graded commutative algebras is again a
graded commutative algebra. Hence W’ = i(W) is a graded commutative algebra
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and 7 : W' — W' is a homomorphism of algebras since it just a restriction of a
homomorphism.

The cohomology of a derivation with square zero is an algebra with multiplication de-
fined on representatives. The composition d := pr o 0 is a derivation. Consequently
E' = H(d) is a graded commutative algebra. It is immediate from the definition
J'[e] = [Oe] that ' is again a derivation. Finally the map pr’ : W’ — E’ is induced
by the homomorphism W 2 ker(d) by factorization over quotients and hence a
homomorphism of algebras. O

Lemma 5.19. If f : E — B is a locally trivial fibre bundle, then the filtration
(FPQ(E)), is multiplicative. Consequently, the Leray-Serre spectral sequence is bi-
graded multiplicative.

Proof. Letw € FPQ™(E) and o € F1Q™(FE). We must show that wAa € FPHIQ" ™ (E).
Let X1, ..., Xntm—p—qg+1 be a collection of vertical vectors at e € . It follows from
the derivation property of the insertion operation that ix, . .., -..-ix;(WA«@)isa
sum over pairs (r, s) € N? satisfying r+s = n+m—p—q+1 of terms where r vectors
are inserted into w and s vectors are inserted into a. The conditions r < n +p —1
and s < m+q—1 together imply that r4+s < n+m —p—q—2. Hence this case does
not appear in the sum and we have for every term r >n+p—1or s >m —q+ 1.
Hence every term of the sums vanishes. O

Corollary 5.20. Let E — B be a locally trivial fibre bunds. Then for every r > 1
the r’th page E,. of the LSSS is a bigraded, graded-commutative algebra, and d, is a
derivation of total degree one and bidegree (—r,r + 1).

Example 5.21. We now determine the ring structure on Hyr(CP™) and fix a pre-
ferred basis.

Let 1 := ¢y € HY,(CP") = EJ° be the canonical generator. We consider the inclusion
of a point ¢ : ¥ — CP" and the diagram

Sl S2n+1 .
Lk
x —> CP"

Then

1

KT

1%

Tt OB = Hip(SY) = R
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is an isomorphism. We fix a generator of u € /Ey"" such that Jo1 E2(¢)(u) = 1. Then
we define the generator

Ty =1 :=dy(u) € TE? = H2,(CP") .
We now define inductively for k =1,...,n
Tof+2 ‘= fdg(u U ZL’Qk) = C U o — C]f .

We claim that the multiplication v : 7 E2® — /EP! is an isomorphism. Note that we
have a multiplicative isomorphism

(VEY?, dy) = (0(CP") © Hip(S"), d @ idgs (s1))

and that the multiplication u U --- : HI5(S') — H}5(S') is an isomorphism. Since
the differentials 7d, : fE§’1 — fESH’l are isomorphisms for £ = 0,...,n — 1 we
conclude that zg, = & # 0 as long as k < n. Hence {z;} is a basis of the one-
dimensional R-vector space H2%(CP") for k = 0,...,n. We thus have determined
the ring structure:

Corollary 5.22. We have an isomorphism of graded rings

Hur(CP") = Rle)/(6)

For 1 < k < n the inclusion C**! < C"*! induces a diagram

52k+1 9 g2n+1

lfk Lfn

CPt ——CP»
We get an induced morphism of LSSS’es E(g) : (" E,,"d,),>1 — ("*E,,*d,),>1.
In particular, /* E%! — /k E%! is an isomorphism and compatible with the choices

of u. Using the functoriality of the LSSS we conclude that i*cicpn = ¢ cpr (With
selfexplaining notation).

Corollary 5.23. The restriction map i* : Hj(CP") — Hj,(CP*) is just the canon-
ical quotient map Rlc,]/(cF™) — Rley] /(8.
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6 Chern classes

6.1 The first Chern class

A complex line bundle is a one-dimensional complex vector bundle. Let L — M
be a complex line bundle. Then by Lemma [4.2) we can choose a connection V. The
section id;, € I'(M,End(L)) gives a canonical identification of End(L) with the trivial
line bundle. The curvature (see Definition of V (which as a priori an element
RY € Q%*(M,End(L))) can therefore be interpreted as an element of Q?(M,C). We
define the first Chern form

(V) = —%RV € O*(M,C) . (42)

Lemma 6.1. 1. The first Chern form c¢1(V) is closed.

2. The cohomology class ¢1(L) = [c1(V)] € Hip(M,C) does not depend on the
choice of V (This justifies the notation!).

3. For line bundles L, L' on M we have ¢;(L & L') = ¢1(L) + ¢1(L).
4. If L is trivial, then ¢,(L) = 0.

5. We have ¢, (L*) = —c1(L), where L* is the dual bundle.

6. For a map f: M — M we have c1(f*L) = f*c1(L).

Proof. 1. In general, the curvature of a connection V on a vector bundle L satisfies
the Bianchi-identity

VEnd(L)RV:[V7VoV]ZVOVOV—VOVOVZO'

Since VE()id; = 0 our trivialization of End(L) identifies the connection on
End(L) with the trivial connection. Consequently, for a line bundle, we have

dRY = 0.

2. Let V, V' be two connections. We consider the bundle L:=priy,L - IxM
and the connection V := pr},V + t(pr;,V' — pr}, V), where ¢ : I — R is the
coordinate.

Note that @\{o}xM = V and 6|{1}><M = V'. This implies REO}XM = RY and
Rgl}x M= RY'. Using the the homotopy invariance of de Rham cohomology
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at the marked equality we get

~ | ~

[e1(V)] = [ex(W)jopnr = [er (V)] ayoenr = [ea (V)] -

3. We have for homogeneous ¢ € Q(M, L) and ¢’ € Q(M, L’) that
VI (G A ¢) = Vo NG + (-1) ") A V'Y
and hence
RV (6A¢) =RV +dARY¢ = (RV+ RV)(6 A &) .

(the two mixed terms cancel each other).

4. TIf L is trivial, then we can take the trivial connection V%, We have RV = 0
and hence ¢, (L) = 0.

5. The tensor product L ® L* is trivialized by the evaluation. Hence ¢;(L) +
01<L*) = 0.
6. We use the identity
FRY = RV

O

Definition 6.2. The cohomology class ¢;(L) € H3n(M;C) is called the first Chern
class of the line bundle L.

We consider the functor
Vectc : Mf? — Set

which associates to every manifold M the set of isomorphism classes of complex vector
bundles on M, and to f : M" — M the pull-back f*: Vectc(M) — Vectc(M').

Definition 6.3. A characteristic class of degree p for complex vector bundles is
a natural transformation
Vecte — Hig(....F),

where F € {R, C}.

Lemma 6.4. Let ¢ : Vectc — HY,(...;F) be a characteristic class of degree p for
vector bundles and p > 1. Then we have ¢(E) = 0 if E is trivializable.
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Proof. If E — M is trivializable, then we have an isomorphism E = f*E’, where
E' € Vecte(x) and f : M — . Then ¢(F) = f*c¢(E') = 0 since already c(F') €
HY (% F) = 0. O

Example 6.5. The transformation
Vectc(M) 3 E — dim(E) € HJR(M)

is a characteristic class of degree zero.

For every vector bundle E — M we can define the line bundle det(E) := A™* E. If
E is one-dimensional, then det(E) = E. The transformation

Vecte(M) > E v+ ¢(det(E)) € H3,(M;C)

is a characteristic class of degree one.

Characteristic classes can be used to distinguish vector bundles or to descide wether
they are trivializable.

O

Example 6.6. One CP" we have the tautological line bundle L' — CP". It is a
subbundle of the trivial bundle CP"* x C**! — CP". We consider the chart

C'oz=(21,...,2p) > [Lizg -1 2, €CP"

of CP". On this chart we can trivialize L'“ using the section s(z) := (1, 21, ..., 2,)-
We let P be the orthogonal projection from the trivial n+ 1-dimensional bundle onto
L' and define the connection V on L' by

V¢ :=PV'"™¢, ¢ cT(CP" L)

On the right-hand side of this formula ¢ is considered as a section of the trivial
bundle CP" x C**! — CP" in the natural way. We have

VS:PdS:Z—f®S.
1+ 2tz
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For the curvature we get

Ztdz
RY = d—=
1+ zt2
_dZAdr (dE'z+2ldz) N Zd2
1+ 2] (1+[]z]]?)?
(L4 []2]P)dzt ANdz — dZtz N Fdz
(1 + |=]*)?
We first assume that n = 1. Then
1+ |2|*)dz Adz — |z]2dz N dz 1 _ 2i
RY — ( = dZ N\ dz = ——=vol
(1+ 222 T+ PR T e

where r = |z|. We calculate

< 2rd < d
/ Rv:27m'/ #:2m’/ Y o
P! o (1+7?)° o (1+s)°
This implies:

Corollary 6.7.
/ Cl(me) =—1.
CP!

We now consider the higher-dimensional case. Note that (dz'zAz'dz)* = 0. Therefore

w (L+]2]P)M(dz Adz)” —n(1+ || 2)*)" 1 (dZ" Adz)" ! A (dZPz A Zdz)

() (R

We have the identities
(dz' Adz)" = (2i)"n!volen ,  (dZ' Ad2)" ' A (dZ'z A Zldz) = (2i)™(n — 1)!]|z]|*volcn .

We get
(2i)"n!volcn
(1+ r2)ntl -

Using that volge = volgzn—172""1dr we get

(RV)" =

TQn—ldT

/«: BTy = iy atvol(5) /0 =g
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We simplify the integral to

1 [>* 2 1 [~ st 1 T'(n) 1

- ————2rdr = = ds = ———"— = — .

2 ), (1+r2)ntt o), A+s T 2T(m+1)  2n
Here we use the general formula (for p,q,r > 0)

/°° sP~ds L(p)T(r)
o (

14gs)rtr — @T(p+r)

We further have

27" 27"
2n—1\ __ —
vol(S*" ™) = T~ =)
So -
V) = (20) ]~ = (2mi)" .
/(c]pn(R ) (20)"n (n—1)!2n (2mi)
We get:

Corollary 6.8.
/ Cl(Ltaut)n — (_1>n )
cpr

In particular, we conclude using Lemma that for every n > 1 the bundle L —
CP™ is not trivializable.

O

For every manifold M we have a natural inclusion Hyp(M) — Har(M;C), where we
consider the target as a real vector space by restriction of structure. It induces an

isomorphism Hyr(M) ®g C = Hir(M;C).

Recall that Hypr(CP") = Rley]/(c}t!) for the generator ¢; € H2,(CP") fixed in
Example [5.21l We get an induced isomorphism Hyp(CP"; C) = Cley] /().

Lemma 6.9. We have ¢; = —ci (L"), In particular, the first Chern class of the
tautological bundle is real, i.e. c1(L'*") € Hyr(CP™).

Proof. In view of Corollary it suffices to show this on CP!. We consider the
LSSS (E,,d,),>1 for the bundle f : S3 — CP'. On S® we consider the form

0 := (Lz dz)iss € Q(S?) (43)

271
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defined by restricting a form defined on all of C2. We parametrize a fibre of f through
z € S by R/Z > t — exp(2mit)z € C% The push-forward of 9, at the point ¢ is
2mi exp(2mit)z. The pull-back of 6 is thus given by dt, i.e. the normalized volume
form of the fibres. The class [f] € Gr°Q'(S?) is closed and represents a class v € E;"'.
We now calculate

40 = (——dz* A dz)yg0 € 3(SY) .

2T

If we insert the vertical vector iz at the point z € S3, then we get —%détz. If we
insert in this the tangent vector X € 7,52, then we get

1 =t 1 vl
%dz (X)z = %X z2=0
since the tangent space 7,S® is the orthogonal complement of the line through z.
Consequently, df € F'Q?(S?). This means that dju = 0. Hence u € Ey' is ex-
actly the normalized generator fixed in Example [5.21] It follows that df repre-
sents dou. To this end we must consider dfl as a representative for a section of
Q?(CP', HO(S3/CP!,C)). A local section s of the bundle S* — CP! induces a local
trivialization of H°(S3/CP!; C) — CP'. We consider the section given by

CPIB[lzz]Hs(z)::&GS?’.

V14|22
We must calculate the pull-back
s*df = ds*q ) ) , ,
z z
BV S E A e P TV e e e
1 _

z z
—d ANd :
2mi 1+ |22 1+ |z

We have
dz 2(Zdz + dzz)  (2+ |2[*)dz — 2*dz

z
d 7 2 3 3
VIHP VIR 2 /T4 2P 2\/1+ |22
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Hence
1 (2+ |22)dz — Z%dz A (2 + |2|?)dz — 22dz

s'df = , 3 3
2mi 9 /T4 |22 2:/1+ |z]?
(AP + |2NdE A dz — |2|'dZ A dz
B 8mi(1 + |z[?)3
B dz N\ dz
271+ |2]?)2
. VOI(C
R (ENEDE
We have
/ ¢ = / *de—/ vole | (44)
cp? c m(1+|z[%)
Since [opi c1(L'**) = —1 we see that ¢; = —¢ (L'*). O

Lemma 6.10. Let L — M be a line bundle over a compact manifold M. Then there
exists n € N and a map s : M — CP"™ such that (s*L'*)* = L. Consequently we
have

(L) = s

and c1(L) is real.

Proof. For every m € M we choose a section s, € I'(M, L) such that s,,(m) # 0.
Then we find a finite sequence of points {mq, ..., m,} C M such that

U fsm, #0} =M .
k=0

We define the map
S:=[Smg " " Sm,| : M — CP" .

We obtain the isomorphism of line bundles L = (s*L'“*)* such that for every m € M
the vector = 3, a;Sm,(m) € Ly, is mapped to the element of (s*L“)* given by

ST S (m, (bo, - b)) Y aib;
=0

Note that this is well-defined independently of the choice of the representation of x
since (b, .-, bn) ~ (Smg(M), ..., Sm, (M)). 0
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Remark 6.11. The last conclusion of Lemmal6.10|that ¢; (L) is real is true in general
without any assumption on the compactness of M. Here is an argument. There exists
an increasing sequence of compact submanifolds (with boundary) M; C M, C .
such that M = J, M;. We have Hyp(M) = Limjener Har(M;). A class in Hqp(M) is
real iff its restriction to M; is real for all ¢ € N. Since ¢;(L)a, = c1(Ljay,)is real by
Lemma we conclude that ¢;(L) is real, too.

O

Example 6.12. We continue to use the notation of Lemma We can use the
isomorphism s* L% = [* in order to induce a metric on L*. Let 7 : E — M be the
unit-sphere bundle of L*. We get the map of fibre bundles

E r 52n+1

b

M —>=CP"
which induces diffeomorphisms on fibres. We get an induced map of LSSS’es E(r) :
(VB 7d)y>1 — ("E., d,),>1. We trivialize HY(E/M) = s*H(S?1/CP") by

pulling back the trivialization of H!(S5?"*1/CP"). Hence the spectral sequence has
the form

1| HYM) HYM) H?*(M) H3(M) HYM) HB) HYM)

\\,\\;\,

0| H(M HS(M)

l 0 1 2 3 4 5 6

where the differential is given by multiplication by ¢;(L) and H*(M) is a shorthand
for H},(M).

Example 6.13. In this example we calculate ¢; (TCP") := ¢; (det(T'CP™)). We define
a map of complex vector bundles over CIP"

a: TCP" — Hom(L,C"™ /L)

as follows. Let X € T,,CP" and ¢ € L,. Then we choose a local holomorphic section
¢ of L such that ¢(x) = (. We define

a(X)(0) = [VX"¢] .
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Holomorphy of the section is necessary in order to get a complex linear map in X.
The right-hand side is independent of the choice of the extension ¢. This follows
from the Leibnitz rule. Namely, any other extension can be written in the form f¢,
where f is holomorphic and f(1) = 1. Then we have

[VE"(fo)l = [VX"o + X ()] = [VK™9] .

We now show that a is an isomorphism. It suffices to show injectivity. Using the
local section s in Example we can choose ¢ = As for a suitable constant A. We
get

T3V ti
a(X)(0) = Al = P)VE"s] = A0, X) = 7———5(1,2)] -
+ [I=]]
If X — 1+” H2Z =0 and 1+H ”2 =0, then X = 0.
In other words, we have an exact sequence
0=-C—->L'® --dL"=TCP"—0. (45)
—_—

n+1x

This implies
det(TCP") = (L*)"* .

We conclude:

Corollary 6.14. ¢;(CP") = (n+ 1)¢;

Example 6.15. We consider an oriented surface ¥, of genus g. If we choose a
Riemannian metric on X, then we can define a complex structure on 7’3, such that
multiplication by ¢ in 7, %, is the positive 7/2-turn, i.e. for X € T,%, we have
(X,iX) = 0 and the family (X,:X) is an oriented basis. We let S(X,) — X, be the
unit-sphere bundle. We are interested in the topology of this bundle.

Let ¢i(TY,) € H3p(3,) be the first Chern class of TS, (considered as a complex
vector bundle). The number

d(TS,) = / e (TS,)

g

is called the degree of the T%,.
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We start with Xy = S% = CP!. In this case we get

d(TS,) = / ¢ (TCp') BT / 92¢, @ o .
CP?1 CP?

In the case g = 1 we have ¥; = T2, Since T'Y); is trivializable we have

d(TEl):/ c(TS1) =0.

Recall that we can obtain X, from S? by attaching g handles. Further recall that

d(TS,) = /E (V)

g
for any connection V on T'%,.

We can arrange the connection V on 7’3, such that the situation near every handle
looks the same. The attachment of one handle changes the integral by H — D = —2,
where H is the contribution of the handle and D is the contribution of the two discs
removed. Therefore attaching g handles gives a change of the integral by —2g. We
conclude that the degree of the tangent bundle of a genus g-surface is

d(TEg) =2-29= X(Zg) .

Corollary 6.16 (Gauss-Bonnet). We have
[ers) =)

We can now calculate the cohomology of the unit sphere bundle S(X,). Since the
base ¥, and the fibre S of S(3,) are connected the manifold S(3,) is connected,
too. Thus H°(S(3,)) = R. For the higher degree cohomology we use the Gysin
sequence

—dvolgg 9

0— H;R(Zg) — HéR(S(Eg)) % HgR(Eg) — " Hjp(3y) — HgR(S(Eg)) % HéR(Zg) — 0.

and

HiR(S(5,)) & H2(S,) .
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If d # 0, then o induces isomorphisms

Hyp(S(5y)) = Hap(Xy) = Hip(S(5,)) -

We have
R k=0
L) R¥Y k=12
H];R(S(Zg)) = R k=3
0 else
If d =0, then g =1 and
R £=0
o) R k=12
HQR(S(ZQ) = R E=3
0 else

6.2 Cohomology of bundles over spheres

In this subsection we consider a locally trivial fibre bundle £ — S™. The LSSS has
only two non-trivial columns. Its only non-trivial differential after the Es-term is d,.
Therefore Fy = E, and F, 1 = F.

We assume that n > 2. In this case S™ is simply connected and we can trivialize the
bundles H?(FE/S™). This trivialization induces the first isomorphism in

Hip(S", HI(E/S")) = Hip(S") @ HI(F) = HI(F)

where the second uses the choice of a generator volgn € HJJ5(S™) which we normalize
such that f gn VOlgn = 1. We therefore get

HY(F) k=0,n
0 else

HH (S HI(E/S™)) = {

Here we write out the the E4-term for n = 4.
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We get a long exact sequence
Hyg"(F) = Hip(E) % Hjp(F) % Hyg"" (F) = ...

Example 6.17. Let G be a Lie group and recall that a class x € Hyr(G) is called
primitive if p*r = x® 1+ 1 ® z, where 4 : G x G — G is the group multiplication
and we use the Kiinneth formula Hyr(G X G) = Hyr(G) @ Har(G).

For n > 3 will show inductively:

Lemma 6.18. We have an isomorphism
Hap(SU(n)) = Rlug, us, . . ., uzp—1] ,

where the generators u; of degree i are primitive.

The case n = 2 is clear since
SU12) = 8%, Hyr(SU(2)) = Rlus] ,

where u3 corresponds to the orientation class of S which we normalize such that
fS3 Uz = 1.

For the induction step from n to n + 1 we consider the bundle SU(n + 1) — S2**!
with fibre SU(n). By induction assumption we get

Eoni1 = Rlws, ws, . .., Wap—1, Wap11]
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as rings, where the elements wq,_1 generate ngfl_ Yfor k = 2,...,n, and the last

0,2n+1 : .
element wo, 1 generates EQn}:f . Here is the picture for n = 3.

8 W3Ws W3WsWy
7
6
5 ws wswy
4
3 w3 w3wy
2
1
0 1 wy

0 1 2 3 4 ) 6 7

We have
don1wop—y € E5t T2 =0 k=2,....n.

Therefore also all differentials of the products of the generators vanish. Consequently
By Eypiy & B .
We choose classes
Usp—1 € Hip H(SU(n+ 1)), k=2,....n

and
Ugp i1 € FP TV HIETH(SU(n + 1))

which are detected by the classes wy. We define a multiplicative filtration (actually
a grading) of Rlus, ..., us,y1] such that ug,_1 € FO for all k =2,...,n and ug,41 €
F2+1 Then we get a map of filtered rings

R[Ug, . ,U2n+1] — HdR(SU(TL + 1))
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which induces is an isomorphism of associated graded rings. Consequently it is an
isomorphism.

We also get an explicit understanding of the classes. For k < n the classes
Ugk—1 € H(?}’%il(SU(n —+ 1))

are characterized by the property that they restrict to classes with the same name
in 7%~ *(SU(n)) under the inclusion SU(n) < SU(n + 1). Furthermore, the class
Ugy, 11 is the pull-back of the normalized generator volgzn+1 € Hop'(S?"+1) under the
projection SU(n + 1) — S**+1,

It remains to show that ug,_; is primitive. Note that the inclusion SU(n) — SU(n+
1) is a group homomorphism. For k = 2,..., n the generator ug,—1 € Hqr(SU(n+1))
is primitive if and only if its restriction to SU(n) is primitive. So by induction it
suffices to show that usg, 1 is primitive.

Let a: SU(n+ 1) x §?"*1 — §2"*1 be the action. The associativity relation is

ao(id x a) =ao (ux id): SU(n+1) x SU(n + 1) x S — g2+l
By definition we have

a*volgzn+1 = Ugp11 ® 14+ 1 ® volgzntr .

We now compare the identities
(1 x id)*a*volgzn+1 = (* @ id)(ugns1 @ 1+ 1@ volgzn+1) = puops1 @ 14+ 1@ volgenta
and
(idxa)*a*volgzn+1 = (1d®a™)(U2n4+1@14+1@Volg2n+1) = U911 ®1R1+1® Uy 1@ 1+1R1@VO0lg2n+1
in order to conclude that

W U1 = Uop1 @ 141 @ Ugpqr -

Example 6.19.
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Lemma 6.20. We have an isomorphism
HdR<U(n)) = R[ula us, ... 7“271—1]

where the generators u; of degree i are primitive. Furthermore, the inclusion SU(n) —
U(n) induces a map in cohomology which sends uy to zero and otherwise identifies
the generators with the same names.

Proof. We argue as in the proof of Lemma|6.18, We use the bundles U(n+1) — S?**!
with fibre U(n) and induction. We start with U(1) = S.

In order to get the restriction map to SU(n) we use the comparison of spectral
sequences for the bundle map

SUn+1)—=U(n+1) .

| |

SQn—I—l S2n+1

This calculation is compatible with the fact that we have a diffeomorphism (not a
group homomorphism)

U(1) x SU(n) = U(n) .
It maps a pair (), g) to the product of diag(A, 1,...,1) and g.

6.3 The Leray-Hirsch theorem and higher Chern classes

We consider a fibre bundle f : F — B. Then the cohomology of the total space
Har(E) becomes a graded commutative algebra over the graded commutative ring
Har(B) such that z € Hyr(B) acts on Hyr(E) by left multiplication with f*z.

Let us now assume that the bundle has a connected base B. We choose a base point
in B and consider the fibre F':= f~!({b}) as the concrete model of the fibres of the
bundle. We assume that F'is compact.

Proposition 6.21 (Leray-Hirsch Theorem). If the restriction Hqr(FE) — Har(F)
is surjective, then we have an isomorphism Hyr(E) = Hyr(F) ® Har(B) as graded
Hyr(B)-modules.
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Proof. We first observe that the LSSS is a spectral sequence of differential graded
Hyr(B)-algebras. We can choose a split s : Hyr(F') — Hgr(E) of the restriction map
as graded vector spaces. This induces a trivialization of the fibrewise cohomology
bundle H(F/B) — B by

B x Hyp(F) > (b,z) > s(z) 5, € H(E/B), C H(E/B)

We further have the isomorphism
FEy = Hyp(F) ® Hyr(B)

of Hyr(B)-algebras. By assumption and Corollary the classes in Hygp(F)®1 are
annihilated by all differentials. Consequently the LSSS degenerates at the second
term. We get a morphism

HdR(F) & HdR(B) — HdR(E) R f QKb S(f) Uub

of filtered Hyr(B)-modules, where we set

FP(Har(F) ® Har(B)) = @HdR(F) ® Hap(B) .

t>p

This map induces an isomorphism of graded groups and is therefore an isomorphism.
O

Remark 6.22. If one works with other multiplicative cohomology theories, then for
the Leray-Hirsch theorem one must assume that the restriction map from the coho-
mology of the total space to the cohomology of the fibre is split surjective. Since in
our case the cohomology takes values in real vector spaces, every surjection is split. O

Let E — B be a complex vector bundle over a connected base space B. We set n :=
dim(F). Then we define the projective bundle f : P(E) — B with fibre CP"!.
By definition, point in P(£) is a line in £. We furthermore have a tautological
bundle L — P(E). A point in L is a pair of a line in F and a point in this line. A
local trivialization of E' — B induces a local trivialization of P(E) — B naturally.
In this way we can define the manifold structure on the projective bundle.

We set = := ¢1(L) € H2,(P(F)). By Example the restriction to the fibre of
the collection of classes (1,z,22,...,2,_1) generates the cohomology of the fibre
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P(E) — B as a vector space. So the assumption of the Leray-Hirsch theorem is
satisfied. We take the split

s Hqp(CP" ') — Hup(P(E)) (46)
of the restriction to the fibre given by s(cf) := 2* for k = 0,...,n — 1 in order to

define the isomorphism of graded Hyr(B)-modules
Rlc)/(c}) ® Hyp(B) = Hyp(P(E)) . (47)

In general, this is not an isomorphism of rings since x™ does not necessarily
vanish in Hj,(P(£)). This observation is the starting point for the definition of
Chern classes. Note that ™ can be expressed as a unique linear combination of the
ak for k =0,...,n—1 with coefficients in Hyr(B). More precisely, there are uniquely
determined classes ¢;(F) € H*(B), i =1,...,n such that

n

> (1) freni(E)a’ =0, (48)

i=0
where we set ¢g(E) := 1.

Definition 6.23. Fori=1,...,n = dim(F) the class ¢;(E) € H¥5(B) is called the
i’th Chern class of the bundle E. For i > n we set ¢;(E) := 0.

Remark 6.24. The Chern classes measures the deviation of the map from a
homomorphism of algebras, i.e. the deviation of the split from being a morphism
of graded rings. Indeed, s is a ring homomorphism if and only if ¢;(F) = 0 for all
1=1,...,n.

The following is easy to check:

Corollary 6.25. The association E — ¢;(E) is a characteristic class of degree 2i
for complez vector bundles (see Definition .

Example 6.26. Let us check that the first Chern class ¢; coincides with our previous
construction (Definition of the first Chern class for line bundles. If £ — B is
a line bundle, then P(E) = B and L = E. The defining relation for the new Chern
classes is ¢1(E) — ¢o(E)z = 0. In view of ¢o(E) = 1 and = = ¢;(L) (old definition)
we conclude that the new definition reproduces the old one. O
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The projective bundle P(E) — B is the bundle of flags of length one of E. More
generally we can define the bundle Fy(E) — E of flags of length k. A point in
Fir(F) is an increasing sequence of subspaces Vi C --- C Vj of a fibre of FE such
that the quotient Vj,1/V; of two consecutive ones is one-dimensional. The manifold
F(E) :=TF,_1(E) is the manifold of complete flags.

For k = 1,...,n we have fibre bundles Fj(E) — Fj_;(E) with fibre CP"*. Note
that on Fy_1(E) we have a bundle V;_; (E) — F;_;(FE) such that the fibre of V_; (E)
over the flag V) C --- C Vj_1 in Ej is V1. To give an extension Vi C --- C V; of this
flag is equivalent to give a line in FE}/Vj_;. Hence we have a canonical isomorphism
Fi(FE) 2 P(E/Vi_1(E)) of bundles over Fy_;(E).

The bundle Fy(E) — Fx_1(FE) satisfies the assumption of the Leray-Hirsch theorem.
forall k = 1,...,n. Consequently, this theorem can be applied to the bundle F(E) —
B as well.

On F(E) we have line bundles L, — F(E) for k = 1,...,n such that the fibre of Ly
on the flag (V4 C --- C V) € F(FE) is Vi/Vi—1. We define classes

zp=c1(Ly) € Hip(F(E)), k=1,...,n.
We know that Hr(F(E)) is a free Hyr(B)-module generated by the monomials

x?Ux?U---Uxin 0<iy<n—%k, k=1,...,n.

Let f : F(E) — B be the projection. If we choose a metric on E, then we get a
natural map py : F(F) — P(FE) which sends the flag (V3 C --- C V,) to the line
Vi NV . We have a natural isomorphism p} L = L; and hence pjz = x;. From (48)

we get
n

S (i) =0, k=1....n.

i=0
This implies the identity of polynomials in ¢

n n

Z(_lytif*cn—i(E) = H(J?k - t) .

=0 k=1

In other words, we can express the pull-back of the Chern classes through the ele-
mentary symmetric functions in the x. We have

f*Cl(E) = O'i(l'l, c. ,$k) = 0'1(37) .
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For example

o1(z1,...,x) = 1+ +x,,
ag(xl,...,a:k)

03(331, s ,.Tk) = T1T2T3+ -+ Tp2Tp-1Ty .

T1Xo+ -+ Ty 1Ty,

Corollary 6.27. We have an isomorphism

Rlzy, ..., z,)
(o1(x),...,0n0(x))

Hyr(F(C") =

We define the total Chern class

such that

freB) =T +) . (49)

k=1
Lemma 6.28. For bundles E — B and E' — B we have the identity

¢((E®FE)=c(E)Uc(E) .

Proof. The method of the proof of this Lemma is called the splitting principle.

We define a map
d:F(E)xgF(E')—>FE®E)

such that
d(hc---cVy), W Cc---CcWy)=WcC---CV,CV,dW; C--- CV,dW,).
Then

* . Yk ]{5:1,...,71
d(l‘k)—{ Ypon k=n+1,...,n+n" ~’

where y, y;, are the classes on F(E) xp F(E') pulled back from the corresponding
classes on F(F) and F(E’) using the projections pr : F(E) xp F(E') — F(E) and
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pr’ : F(E) xp F(F') — F(F'). Let g : F(E) — B and ¢’ : F(E) — B be the
projections. Then we get
(pr,pr')"(9.9) c(E®E") = d'f'c(E&®E)

n+n’

= & [+

/

(L+y) U]+ )
1 k=1

I
—=

k
— pr*g*c E) U pr/*gl*c(El)
= (pr,pr)*(g9,¢) c(E) Uc(E)

For example, if £ = L @& L' is a sums of two line bundles, then we have
c(E)=1+c (L) +ci (L) +er(L)er (L)

i.e. in particular

CQ(E) = Cl(L)Cl(L/) .
Example 6.29. We calculate the higher Chern classes of TCP". The exact sequence

gives

nt1
c(TCP") = ¢((n+ 1)L*) = ¢(L*)"™ = (1 4+ ¢;)"™ = Z <n _]: 1) .
k=0

We read off that

fork=1,...,n. a
Example 6.30. We consider a complex vector bundle £ — B of dimension n.
Lemma 6.31. If £ admits a nowhere vanishing section then c,(E) = 0.

Proof. If E admits such a section, then we get a decomposition £ = C & E’, where
the trivial summand C is generated by the section. Since ¢;(C) = 0 we get

¢(E)=c(C)c(E)=c(E")=1+--+c,_1(E) .
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O
For example, in view of Example the bundle TCP" — CP™ does not admit any
nowhere vanishing section. O

Example 6.32. In this example we provide a formula for the Chern classes of a tensor
product £ ® F' of two complex vector bundles of dimensions e and f over B. We
work in the polynomial ring Z[xy, ..., Zc, y1,...,yf]. We let o,(z) = o;(z1,...,x¢)
and o;(y) := 0;(Y1, - .., ys), where o; are the elementary symmetric functions. These
polynomials generate a polynomial subring

Zio1(x),...,00(x),01(y),...,00(y)] C Zz1, ..., Ze, Y1, -, Ys] -

We now observe that

e f
TRES H H(l +x; +y;) € Loy (z),...,0.(x),01(y),...,0¢(y)] .
i=1 j=1
More precisely we write v = u(o1(z),...,0.(x),01(y), ..., 0¢(y)).

Lemma 6.33. We have
C(ERF)=u(ci(E),...,co(E),c1(F),...,ci(F)) .
Proof. We use the splitting principle. We consider the pull-back diagram

F(E) x5 F(F) —"~TF(F) .

The Leray-Hirsch theorem holds for all maps in this diagram. In particular, the
pull-back
h*: HdR(B) — HdR(F(E) X B F(F))

is injective.
We have decompositions in to sums of line bundles

pPE=L1®---®L, ¢F=H & --®Hf.
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This gives

(E®F)= @@sL@r*H

=1 j5=1

We let z; := s*c1(L;) and y; := r*c;(H;). Then

(E®F)= HH 1+ a4 y;) = Ru(cr(E), ..., c(E),ci(F), ... ci(F)) .
7j=14=1
Since h* is injective the assertion of the Lemma follows. O

Let us make the formula explicit for two 2-dimensional bundles.
(E®F)
= 1+ (201(B) +201(F))

+(3c(B)r (F) + 1 (B) + e1(F)? + 263(E) + 265(F))

+ (26 (B)ea(F) + 263(B)er (F) + 1 (E)*e (F) + 1 () (F)?
201 (B)ea(E) + 201 (F)ea(F)

(2B + 2 F)? + c1(E)ea(F) + ca(B)ey(F)?
+er(B)ea(B)er(F) + er(E)er (F)ea(F) — ex(E)ea(F))

Similar formulas exists in general, but they are not easy. In order to deal with
tensor products of bundles a better adapted choice of characteristic classes are the
components of the Chern character, see Subsection [8.3]

O

6.4 Grassmannians

In this section we calculate the de Rham cohomology of the Grassmann manifold
Gr(k,C"). Let L — Gr(k,C") be the k-dimensional tautological bundle. It is a
subbundle of the n-dimensional trivial bundle C* x Gr(k,C") — Gr(k,C") and we
let L+ — Gr(k,C") be the orthogonal complement of L.
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We define cohomology classes of Gr(k,C") by ¢; := ¢;(L), i = 1,...,k and d; =

¢j(L*) for j=1,...,n — k. Since L & L* is trivial we have the relations
ch-dj:(), kzl,...,n,
i+j=Fk

where we set ¢; := 0 for ¢ > k and d; := 0 for j > n —k. In the following Proposition
we show that Hyr(Gr(k,C")) is generated as a ring by these characteristic classes ¢;
and d; with exactly these relations.

Proposition 6.34. We have an isomorphism

R[Cl, . 7Ck;d1; . ,dn,k]

HdR(Gr(k’C )) - (ZiJrj:k Cidj =0 7k = 17 s 7n) ‘

Proof. We consider the bundles of complete flags F(L) — Gr(k,C") and F(L*) —
Gr(k,C") and denote the Chern classes of the canonical bundles by z; € H3,(F(L)),
i=1,...,k and by y; € Hjr(F(L*)), 5 =1,...,n — k. We now observe that

F(L) X ge(rcny F(LT) 2 F(C)

and we use the same notation x; and y; for the pull-back of these characteristic
classes along the projection from the fibre product to its factors. We write o;(x,y)
for the ith elementary symmetric function on the variables x; and y;. Then we have

the relations
or(x,y) = Z oi(x)oj(y), k=1,....,n.
i+j=k

We now use that by Corollary

Rlzy, .. i, Y1y o Ynk]

(Ul(xvy)v v ,Un(l’,y))

The Leray-Hirsch theorem for the bundle

Hyr(F(C")) =

F(C") 2 F(L) X eren F(LY) — Gr(k, C") (50)

induces an isomorphism

Hqr(Gr(k, (C’”))[xl, e Ty YLy s Yn—k) = Rlzy, .. Tk, Y1y oy Ynk)
i =

(( = UZ( ) L,. k) ’(dj = aj(y)>j =1...,n— k)) (Ol(mvy>7"'7an<x>y))
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If we restrict to the subspace of Hyr(Gr(k,C")) generated by the classes ¢; and d;,
then we get a map

NS Cld1,..., dn—1]
(Zi-}—;:k cikdj;O,k::L.]i,n) [.Th e Ty Yl - 7yn—k] o R[g}l’ e Tl YLy e e ’yn_k]
(¢ =0i(x),i=1,...,k),(dj =0;(y),j=1,...,n—k)) (o1(x,y), ... on(z,9))

which sends ¢; to o;(z) and d; to o;(y). By inspection we see that it is an isomor-
phism. It follows that

R[Cl, vooy Cky dl, PN adn—k]
(Zi—l—j:kcidj =0 ,k’ = 1,...,71)
Example 6.35. In this example we consider the Stiefel manifold V'(k, C™) of k-tuples

of orthonormal vectors.

Lemma 6.36. We have

HdR<GI'(k’, Cn)) =

Hyy(V(E,C) =0, (=1...,2(n—k).
Proof. We have a presentation of the Stiefel manifold as a homogeneous space
V(kE,C*")=U(n)/U(n—k) .

Indeed, U(n) acts transitively on k-tuples of orthonormal vectors in C", and the
stabilizer of the tuple (ej,...,ex) (the beginning of the standard basis) is the sub-
group U(n — k) € U(n) embedded as lower right block. We consider the LSSS
spectral sequence for the bundle U(n) — V' (k,C") with fibre U(n — k). Note that
the polynomial generators (see Lemma

Uy € BY* T2 HAW UM — k), i=1,....n—k

extend to U(n) and are therefore (Corollary permanent cycles (i.e. they are
annihilated by all higher differentials). The polynomials of their extension to U(n)
generate the cohomology of U(n) in degrees < 2(n — k). For ¢ € {1,...,2(n — k)}
the restriction Hip(U(n)) — HS55(U(n — k)) is injective

Assume that ¢ € {1,...,2(n — k)} is minimal such that there is a non-trivial class
x € Hip(V(k,C") = EY*. Then this class can not be hit by any differential and
therefore survives to the E-page. In other words, it lifts non-trivially to U(n). But
then its restriction to the fibre U(n — k) would be non-trivial. This is contradicts
the observation made in the previous paragraph. O
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Example 6.37. Here we generalize Example to higher-dimensional bundles.

Let V' — B be a k-dimensional vector bundle. We say that V' is globally generated
if there exists a family of sections (s;)"_; of V such that for every b € B the collection
of values (s;(b))i=1,.n generates the fibre Vj, as a complex vector space. If B is
compact, then V is globally generated. Indeed, one can choose for every point b € B
a collection of sections (s;)i=1 x generate

V,. Then

77777777

U, .= {bl €eB ‘ Vi = <817b(b/), ey Sk’b(b/»}
is an open neighborhood of b. By the compactness of B there is a finite subset

.....

globally generates V.

Note that one can show more generally, that a vector bundle over a connected man-
ifold B is always globally generated, independently of compactness of B.

Assume now that (s;)?_; generates the bundle V' — B globally. Such a collection of
sections gives rise to a map s : B — Gr(k,C") as follows. For b € B we define a
surjective map

fO) :C*"™ =V, x+— Zmisi(b) :
i=1

Its adjoint is the injective map
fo) vy —=C",

and we set

s(b) := im(f(b)) C C" .
We have a pull-back diagram

ve—2 1

|

B—=%Gr(k,C")

or equivalently, an isomorphism V = s*L*. We conclude that

ci(V)=(=1)'s*c;(L), i=1,....k.
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Example 6.38. We consider isomorphism of complex bundles
TGr(k,C") — Hom(L,C"/L) , T,Gr(k,C") 3 X ([gb] - [vggivé(x)]) ,

where ¢ is a section of L such that ¢(z) = ¢, or
TGr(k,C") 2 Hom(L,C"/L) = L* @ C"/L .

This allows to calculate, but the answer is complicated.

7 Geometric applications of cohomology - degree
and intersection numbers

7.1 The mapping degree

We consider two closed connected oriented manifolds M and N of the same di-
mension & and a smooth map f : M — N. Note that H¥,(M) and H},(N) are
one-dimensional real vector spaces. We fix basis vectors by choosing the normalized
volume classes [voly] € HYp(M) and [voly] € Hj(N) such that [, [voly] =1 and

fN [VOIN] =1.
Definition 7.1. The mapping degree deg(f) € R of f is defined such that

frvoly] = deg(f)[volu] ,
or equivalently, by

deg(f) ::/Mf*[volN] .

It is clear that deg(f) only depends on the homotopy classes of f. Moreover, it
changes its sign if the orientation of exactly one of M or N is flipped.

Example 7.2. We consider a closed curve f : S' — C\ {0}. Such a map has a
winding number ns. It can be calculated by

[ odf
ne = —— — .
! 21 S1
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By normalizing we get a map fi := f/|f] : S* — S*. We claim that deg(f,) =

We parametrize S* by t € [0,1] using t — e*™. Then dt is the normalized volume
form in this chart. We have

1
deg(f1) = /Offdt

1 1 . Flery
= 2m'/o T
(

= L g - wiey) a
2mi Jo 2

B 1 1 f/ (627rzt) r/ (627th)

-3 (f(e2“”) fie)

B 1 /<€2mt

o 0 f(e27rzt

1 df

N 271'2 517

= ny

Recall that a point m € M is called regular if df (m) : T, M — Ty, N is surjective
(i.e. an isomorphism in our case since both manifolds have the same dimension).

Definition 7.3. We define the sign of f at a reqular point m € M of f by

s/(m) i= 1 df (m) preserves the orientation
f | =1 df(m) does not preserve the orientation

A point n € N is called a regular value of f, if every point m € f~1({n}) is
a regular point of f. It is good to know the following theorem from differential

topology:

Theorem 7.4 (Sard). The set of reqular values of a smooth map has full Lebesgue
measure. In particular it is dense.

139



Theorem 7.5. If n € N is a regular value of f, then

deg(f) = Z s¢(m) .

mef=t({n})

Proof. Every m € f~'({n}) admits an open neighbourhood U, such that f,, :
Un — f(U,) is a diffeomorphism of U,, onto an open neighbourhood f(U,,) of n.
In particular, for m € f~!'({n}) we have f~*({n}) N U,,) = {m}. Consequently, the
preimage f~'({n}) of the regular point n € N is discrete. Since f is continuous, this
preimage is also closed. Since M is compact we see that f~'({n}) is finite. Therefore
we can find a closed neighbourhood B C N of n which is diffeomorphic to a ball with
smooth boundary S := 9B such that B C f(U,,) for all m € f~*({n}). We consider
the end of the long exact sequence of the pair (N \ Int(B), S).

coo o HY1(S) S HEL(N \ Int(B), S) — Hb,(N \ Int(B)) — 0 .

By Example we know that 9 is surjective and therefore H5,(N \ Int(B)) = 0.
We can find a form o € QF1(N \ Int(B)) such that do = volyn\mi(s). By Stoke’s
theorem we have

1:/V01N:/ V01N+/V01N:/ da+/v01N:/a+/volN.
N N\Int(B) B N\Int(B) B s B

(51)
Here we orient S as the boundary of N \ Int(B).

We have
/ frvoly —/ f*V01N+/ fvoly .
M M\f~1(Int(B)) f~4(B)

By Stoke’s theorem

/ f*volN:/ f*da:/ fra= Y / fa.
M\f~1(Int(B)) M\f~1(Int(B)) 8f~1(Int(B)) F1(S)NUm

mef~1({n})

[ o= Y [ s
f~4(B) mef-1({n}) J~Y(B)NUn

Furthermore,
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We thus have

deg(f) = /Mf*volN

= Z </ fra +/ f*volN)
f=HS)NUm f~Y(B)NUpm

mef1({n})

— Z s¢(m) (/a+/ v01N>
mef~1({n}) S B

@ Z sp(m) .
mef1({n})

Observe that Theorem implies that the mapping degree deg(f) is an integer.

Example 7.6. Let G be a finite group acting on an oriented closed connected
manifold in an orientation preserving way. Then we can consider the projection
f: M — M/G. In this case every point m € M is regular and s;(m) = 1 if we equip
M /G with the induced orientation. We get deg(f) = tG.

Let L C L' be two lattices of full rank in R". Then we have a map of tori R"/L —
R™/L" which has degree [L': L] = #(L'/L).

The mapping degree of the projection S**~! — L(p, q) is p, see for notation.

Example 7.7. Every closed oriented manifold M of dimension n admits a map
f M — S™ of degree 1. Let m € M and ¢ : U — R™ be an orientation preserving
chart at m. Let x € C2°(U) be such that x(m) = 1 near m and 0 < x < 1 otherwise.
We identify S™ = R™ U {oo} using the coordinate W in a neighbourhood of co. We
define f by

o(m) meU

flm) = { Xc(>o) m & U
deed: fm)  é(m)x(m)
m)  ¢(m)x(m
"R T TP
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extends smoothly by zero from U \ {m} to M \ {m}. Note that f~'({0}) = {m} is
a regular point and s;(m) = 1. Hence deg(f) = 1.

Let k € Z. Then we can perform this construction near a collection of k£ points of M
and also use orientation reversing charts if £ < 0. Consequently, there exists maps
of degree k from M to S™ for every k € Z.

O

Example 7.8. Here is a typical application of the mapping degree as a tool for
showing that an equation has a solutions. Let f : R™ — R" be a smooth map which
is the identity near oco.

Corollary 7.9. For every b € R" the equation
fx)y=>b, zeR"
has a solution.

Proof. We identify R™ with S™ \ {N} (the complement of the north pole) as usual.
Then f uniquely extends to a smooth map f : S™ — S™ which is regular at N. Since
FY{N}) = {N} we see that | deg(f)| = 1.

Assume by contradiction that b € R" is such that f~'({b}) = 0. Since S™ is compact
the image of f is closed. Hence f~!({t'}) = 0 for all ¥’ in a neighbourhood of b. In
particular, by Sard’s theorem we can find a regular value b’ with empty preimage
and conclude that deg(f) = 0. A contradiction.

O

Example 7.10. Let again M be a closed oriented and connected manifold of dimen-
sion n. In general there is no map of non-vanishing degree from S™ to M.

Assume that there is £ € {1,...,n — 1} such that Hiz(M) # 0. Let x € Hix(M) be
a non-vanishing element. By Poincaré duality there exists y € H7»*(M) such that
[yyxUy =1. Hence 2 Uy = [voly]. Let f:S™ — M be any map. It follows

deg(f) = [ folvolu = | frzufy=0

since f*x € Hip(S™) = 0.
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For example, for n > 2 the degree of every map S™ — T or S** — CP" vanishes.

O

Example 7.11. Let n € N, n > 2 and f : $* — HP" a smooth map. Then for
every regular value z € HP" the number £f~!({z}) is even. O

Example 7.12. Let f: M — N be a map between closed connected oriented man-
ifolds of the same dimension. Thenf* : H},(N) — Hjz(M) is injective if and only

if deg(f) # 0. O

Example 7.13. For a product of maps we have deg(g x f) = deg(g) deg(f). O

Example 7.14. Let p € C|z] be a polynomial of degree n. We can form the homo-
geneous polynomial z5p(2) € C[zg, z1] of degree n. The latter can be considered as
a map

f:CP' = CP', [z0:21] = [20: ng(ﬂ)] :

20

We first calculate the degree of this map.

We consider L' as a subbundle of the trivial 2-dimensional bundle CP! x C2. In

particular, for [z : 21] € CP' we have (20, 21) € L™ .

We define sections sg, s; € T'(CP!, Li*) given by s;([20 : 21])(20, 21) = 2; fori = 0, 1.
Then we define the sections sg and sgp(3t) of (L**“*)". These sections do not

vanish simultaneously. By Lemma this pair of sections gives rise to the map f
and we have f*L!ut* = (Ltoub*)n e conclude that f*c¢; = nc; and consequently

deg(f) = n.

We consider a point € C such that z — p(z) —x has only simple zeros. If y is such a
zero, then df([1 : y]) = dp(y) is an isomorphism. We have f~'({[1: z]}) & {p = x}.
Since f is holomorphic df preserves the orientation at every regular point m € CP!.
Consequently, s¢(m) = 1. We conclude that

Hp=a}=8{f =[1:2]} =deg(f) =n

as expected since the polynomial p(z) — z € C|z] of degree n has exactly n zeros if
they are all simple.
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7.2 Integration over the fibre and the edge homomorphism

We consider a locally trivial fibre bundle f : E — B with closed fibre F' of dimension
n which is fibrewise oriented. By definition, a fibrewise orientation is an orien-
tation of the vertical tangent bundle TV f = ker(df). For every b € B we therefore
have T" fig, = T'E, and an induced orientation of the fibre Ej, of the bundle over b.
In this subsection we construct a natural map

| Hp(E) > )
E/B
called integration over the fibre. It generalizes the integration map

/F:HQR(F)—>R.

In fact, if F'is a closed oriented manifold, then we can consider the bundle F' — x
which has a fibrewise orientation. With the identification R & HY,(x) we will have

the equality fF/* = [p

Integration over the fibre is induced by an integration map on the level of de Rham
complexes which we describe first. The integral over the fibre of a form w € QF(E)

is the form
/ w € QF"(B)
E/B

defined as follows. Let b € B and X;,..., X,_, be vectors in T, B. We choose lifts
X; € T'(Ey, TE) such that df(e)(X;(e)) = X; for alli = 1,...,k —n and ¢ € Ej,.
Then

Z'inn c inw‘Eb S Qn(Eb) .

Note that this form does not depend on the choice of the lifts X;. We define the
evaluation of fE/B w at b and on the vectors Xi,..., X;_, by

(/ DY) (Xrs o Xn) = / iz ..ipwm, .
E/B
In order to define the integral we use the orientation of Fj induced by the fibrewise

orientation. Using local trivializations one can check that this construction produces
a smooth form. More details follow below. We get a map

/ L ON(E) = OF(B) .
E/B
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We now show compatibility with the differential.

In order to incorporate the homotopy formula and a fibrewise Stokes theorem into
the story we consider generally a bundle of compact manifolds with boundary. The
typical fibre F'is then compact, oriented, and has a boundary 0F. We let OF — B
be the corresponding bundle with fibre 0F and induced fibrewise orientation.

Lemma 7.15. For w € Q(FE) we have the identity

(=1 /E/Bw * /313/3 “T /E/B - (52)

Proof. Since this equality can be checked locally in B we can assume that E =
F xR and B = R We have w = 7 wP with wP? € QPI(F x RY) (see
for notation), and we can write w?? = Y, 5% A dz’, where I := {(1 <
iy < -o» < iy, <€)} is the index set for the standard basis of AZR®* and wh? is
a section of pri, APT*F — F x R’ considered as a subbundle of APT*(F x RY), i.e
wh? € QPO(F x RY) in the notation of (28). Then

/ w = Z /w?’k_"dx‘] )
E/B Jere—n VI
We calculate

d/ w = d /w”’k_ndx‘]
E/B Z P

Jerk—n

L
= >0 > /F T N

i=1  Jjefk-—n

¢
— Z Z /@w?’k_”dwi/\dm‘]
F

i=1 Jerk—n
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On the other hand,

/ dw = / (d¥ + dP)w
E/B E/B
= (=" Z /@w?’k”dxi/\dx‘]
F

Jeln—Fk
ken g g
+ E / dF W Ty
Je['nfk+1 E/B
o
= (=1 E /&-w? "dat A dz?
Jerm—k /L
+ E / W "dx’
Jern—k+1 Y OF

= (_1)”d/E/Bw—|—/aFw.

O

Example 7.16. The formula can be considered as a generalization of the ho-
motopy formula . In fact, if w € Q([0,1] x M), then by specializing to the
bundle [0,1] x M — M we get

W|{1}xM — W|{o}xM = / dw+d/ w .
IxM/M IxM/M

Here we have used that fa([o,l}xM)/M W= W|{1}xM — W|{0}x M- a
Corollary 7.17. If F is closed, then we have a map of complezes

/ cQ(E) = Q(B)[n] .

E/B
We get an induced integration map in cohomology
| Hi(E) > Hi )

E/B

forall k € 7.
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Proof. Note that the sign (—1)" in the formula takes care of the same sign in
the definition of the differential of the shifted complex Q(B)[n], see ({4]). O

Lemma 7.18 (Naturality of integration). For a pull-back diagram

E-hoE

!

B Y. F

ol
E/B '/ B

of maps on forms as well as in cohomology.

we have the identity

Proof. Immediate from the definitions. O

Lemma 7.19 (Projection formula). We consider a fibre bundle f : E — B with
closed oriented n-dimensional fibres. For x € Hyr(E) and y € Hyr(B) we have

/E/B(xuf*y)z([E/Bx)Uy-

Proof. This follows immediately from the corresponding identity on the level of
forms. O

Example 7.20. We consider an iterated bundle £ — G — B with closed fibres.
The choice of fibrewise orientations for two of the three bundles £ — G, G — B and
E — B induces an orientation on the third such that

Lo L.
E/B G¢/B JE/G

holds. O

Note that [, , annihilates "' Hyr(E) and therefore induces a map
Gr’Hjp(E) — Hj"(B) -
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We consider the LSSS of E — B. The orientation of the fibres induces a trivialization
of H"(E/B). We get
" = 1,(B)

Here is a picture for n = 3.

3| Higr(B) Hip(B) Hijg(B) Hyp(B) Hjp(B)
) EY? E3? Ey? E3?
| B BX B

0| Hgp(B) Hip(B) Hip(B) Hip(B) Hap(B) Hap(B)

The line marks the entries contributing to Hix(FE).

A class = € Gi°(Hk,(E)) is detected by an element & € EE™" C E; ™" (the
encircled entry in the picture above). Under the identification Ey ™" = H7-*(B)
we have £ = | BB T In order to see this let w be a representative for x. This

form represents a section & € QF(B, H"(E/B)) = E¥™". Under the trivialization
QF"(B,H"(E/B)) = Q" *(B) it corresponds to fE/Bw.

Example 7.21. We consider the Hopf bundle h : $?*~! — CP"!. We know that
the normalized volume class [volgzn—1] € HiE '(S?"71) is detected by the element
MU € E5" %! for a suitable non-vanishing A € R. We determine the factor .
The form (compare with (43))

1
9 = (—,EtdZ>|52nfl - QI(S%Z_I)

2m
0,1
represents u € F,'.

We can choose the representative w € Q*(CP* 1) of ¢; € H2(CP" 1) = E3° such
that df = h*w. By assumption the product A0 A h*w"~! represents [volgzn—1]. Note
that fsgn_l/wn_l 0 = 1. Hence, by the projection formula [7.19

1:/ AQ/\h*w”_lz/ )\«9/\/ WS
SQn—l SQn—l/(C]P)n—l (C]Pm—l
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7.3 Transgression

Let f : E— B be a fibre bundle with fibre F' over a connected base B. We consider
a positive integer k and a cohomology class x € HEY,(B) such that f*x = 0. Let
z = [w] for a closed form w € QF(B). Then there exists a € Q¥ 1(E) such that
do = f*w. Since k is positve we have (da)p = (f*w)|r = 0.

Lemma 7.22. The class [ar] € Hiz'(F) only depends on = up to the image of the
restriction Hip'(E) — HEH(F).

Proof. The form « is determined by w up to closed forms in QF(E). Therefore
[ar] € HEZ'(F) is determined by w to the image of the restriction map as asserted.
If we choose a different representative w’, then w’ — w = df for some 3 € Q*~}(B).
We can take o' = a + f*B. If k > 2, then (f*f)r = 0 and therefore [ar] = [a/,] in

HiY(F). If k=1, then [BF] € im(H5"(E) — H*1(F)). Indeed, B is a constant
and can be extended as a constant to F. O

In the following definition « is as above.

Definition 7.23. Let E — B be a fibre bundle with fibre F' over a connected base
B, k a positive integer, and x € ker(f* : H%,(B) — HX,(E)). The class

HYW(F)

T(x) = [ar] € im(Hi'(E) — HiR ' (F))

15 called the transgression of x.

We now consider the LSSS for the bundle f : £ — B. The transgression inverts,
in some sense, the differential dj, : EX*™' — EF°. Indeed, if € ker(f*) and
y € T(x) C Ey " then dpy = 0 for all £ € N with 2 < ¢ <k — 1, and dyy = [2] in
Ef° where [z] denotes the class of 2 under the quotient map Ey* — E*.

The transgression annihilates decomposable elements.

Lemma 7.24. If © = a U b for classes of non-zero degree and a € ker(f*), then
0eT(x).
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Proof. We can choose o := vy U f*3, where [ represents b and dy = f*w for a repre-
sentative w of a. But (f*8)r = 0 and therefore oyp = 0. O

Example 7.25. We consider the bundle S***1 — CP". Then T(c;) = u, the nor-
malized volume form of the fibre. Since H},(S*"~!) = 0 the transgression is unique.
(I

Example 7.26. We consider the bundle f : V(k,C") — Gr(k,C") with fibre U(k)
and let L — Gr(k,C") be the tautological bundle. We assume that ¢ € N is such
that i < 2(n — k). Recall the calculation of the cohomology of U(k) in [6.20]

Lemma 7.27. The transgressive classes in Haw '(U(k)) 2 fEY* ™" are multiples of
the generator ug;_1.

Proof. In order to see this let * € Hi5 '(U(k)) be a polynomial in the generators
Uy, ..., U_3. We must show that x is not transgressive.

Assume by contradiction that x is transgressive. We consider the standard embed-
ding C*~(*=9 — C". We get a bundle map

V(i,Cn=+9) — =V (k,C")

L

Gr(i, Cr=k=0y 2o Gr(k, Cm)

where V (i, C"~*=9) — V(k, C") maps the orthonormal system (v1, . . ., v;) in C*~*~9)
to the system (vi,..., 0, €n_(k—i)+1,---,€n) in C" obtained by adding the last k& — i
basis vectors. On the level of fibres this bundle map is given by standard the em-
bedding U(i) — U(k) up to conjugation. We have an associated map of LSSS’es.
If v € Hi; '(U(k)) = TEY*~1 is a polynomial in the generators us, ..., us;,_3 and
transgressive, then its restriction E(h)(z) € 9ES* ™" = H2-1(U(i)) would be non-
trivial (by Lemma and transgressive, too. By Lemma @ it would extend to a
non-trivial class in Hi ' (V (i, C"~*=9)). Since 2i —1 < 2(n— (k—i) —i) = 2(n — k)
this is impossible in view of Lemma [6.36 O

The transgression '
T(ci(L)) € Hyp (U (k)
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is the well-defined since H:5 '(V(k,C")) = 0 by Lemma [6.36] This class is trans-
gressive. By Lemma there exists A\; € R such that

doi(Niugi—1) = [ci(L)] € ES;% ;o T(ei) = Niugi—1 -
Of course we have \; = 1. It seems to be complicated to determine the numbers \;
for ¢+ > 2 without further theory.
(Il

7.4 The Thom class of a sphere bundle and Poincaré-Hopf

We consider a fibre bundle f : E — B with fibre S"~! over a connected base B. A
trivialization of H"~!(E/B) — B is called orientation. Equivalenty one can give
an orientation as a fibrewise orientation as defined in Subsection [[.2. We refer to
Subsection for spectral sequence calculations in this case.

We have a class
we Bl = B3 H(sm)

which we normalize such that f g1 =1

Definition 7.28. We define the Euler class of the oriented sphere bundle by

X(E) :=d,(u) € E™ = E3° =~ H7.(B) .

Note that y(F) changes its sign if we switch the orientation of the sphere bundle.
Sometimes we write x(E — B) in order to indicate that the Euler class is an invariant
of the bundle.

Remark 7.29. The Euler class is a characteristic class for oriented sphere bundles.
If
g F——F

lg*f lf
B —%-pB

is a pull-back diagram of bundles with fibre S"~! and the orientation of g* f is induced
from the orientation of f, then we have the relation

gX(E) =x(g"E) .
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This immediately follows from the functoriality of the LSSS shown in Lemma [5.9,0

The Gysin sequence has the form

Ux(B)

f S - Ux(E)
- H§R<B) - HgR(E) - H[];R H(B) o

HitY(B) — ...

In particular we have f*x(E) = 0.
We have two cases with different behavour:

1. If x(E) # 0, then --- U x(F) : H)z(B) — H}(B) is injective. Hence
Hip'(E) = im(f" : Hyp ' (B) = Hig ' (E)) -
The restriction Hjp'(E) — H}5'(S"1) therefore vanishes. The transgression
T :ker(f*: Hip(B) = Hyp(E)) — Hyg ' (S")
is well-defined. We have T'(x(F)) = u.

2. If x(E) = 0, then there exists a class Th(E) € Hj;'(E) such that Th(E)|gn-1 =
u. Such a class is called a Thom class of the sphere bundle. Vice versa, if
the sphere bundle bundle admits a Thom class, then y(E) = 0. See Corollary
In this case, by the Leray-Hirsch theorem, Hyg(F) is a free module over
Har(B) with generators 1 and Th(F). Note that fE/B Th(E) = 1.

Example 7.30. We consider the S*-bundle S?"*! — CP". In this case
(S S CP) = ¢ .

This class does not vanish. Hence the S'-bundle S?"*! — CP" does not admit a
Thom class. O

Example 7.31. We consider the trivial bundle S*~! x B — B. In this case the
LSSS degenerates at the second term and x(S"! x B — B) = 0. A Thom class is
given by [volgn-1] x 1 € Hz'(S"! x B). The Leray-Hirsch theorem is equivalent to
the Kiinneth theorem.

If £ — B is a oriented bundle with fibre S"~! and x(E — B) # 0, then the bundle
is not trivial. O
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We now consider a real n-dimensional vector bundle V' — B. We choose a metric
so that we can form the unit sphere bundle S(V) — B. The vector bundle V' is
oriented if and only if the sphere S(V) — B is oriented.

Definition 7.32. We define the Euler class of the oriented vector bundle V by
X(V) == —=x(S(V)) € Hgr(B).

Exercise: Show that x (V') does not depend on the choice of the metricin V. O

Lemma 7.33. If V admits a nowhere vanishing section, then x (V') = 0.

Proof. Let f : S(V) — B be the sphere bundle. If X is a nowhere vanishing section,
then we can define the normalized section ¥ = % € I'(B,S(V)). Note that

X1l
f*x(V) =0. Since id = f o Y we have

xX(V)=Y"f"x(V)=0.

We consider a real n-dimensional vector bundle V' — B. If X € I'(B, V) is transverse
to the zero section Oy, then Z(X) := {X = 0} C B is a codimension-n submanifold.

Definition 7.34. We say that X has non-degenerated zeros if X and Oy are

transverse.

If B and V are oriented, then Z(X) has an induced orientation. If dim(B) = n, then
Z(X) is zero dimensional. In this case an orientation of Z(X) is a function

degy : Z(X) = {1,—-1} .

It associates to b € Z(X) the local degree.

Remark 7.35. In the following we describe how one can check in local coordinates
that X has non-degenerated zeros and how one can calculate the local degree. We
identify B with the zero section of V. If b € B, then we write 0, € V;, C V for the
corresponding point in the zero section. We have a natural decomposition

TV 2 TB&V .

Let us describe this decomposition at a point b € B. We have a natural inclusion

t : Vy — 1o,V which maps A € V;, to 4(A) = %u:otA € Ty,V. Moreover, the
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differential of the zero section 0y gives an inclusion d0y (b) : T,B — Ty, V. This gives
the isomorphism dOy (b) & ¢, : TyB ® V; — To, V.

Assume that b € Z(X). Then dX(b) — dOy(b) : T,B — Tp, (V) has values in ¢,(V}).
In order to see this we use local coordinates x of B centered at b and a trivialization
of V. We write points in V' as pairs (x,&) with £ € R". The section X is then given
by x — (z,&(z)). The differential of this map is (id,d¢(x)). The zero section Oy is
given by = — (z,0). So finally, dX (b) — dOy(b) is (0, d&(0)).

Corollary 7.36. We see that X and Oy are transverse at 0, of d£(0) is surjective.

Let us now assume that dim(B) = n = dim(V'). Then b € Z(X) is non-degenerated
if and only if d£(0) is an isomorphism. In this case

1y o (dX(b) — dOy (b)) : T,B — V,,

is an isomorphism.

Let us now assume that B and V are oriented. Then we get induced orientations of
the vector spaces T, B and Vj, for all b € B.

Corollary 7.37. The local degree is given by W

1 o o (dX(b) — dOy (b erserves orientations
R G

O

Example 7.38. The non-degenerated zeros of a gradient vector field £ on R? are
classified into tree types:

source: {(z,y) = (z,y). We have s¢(0) = 1.
saddle: &(z,y) := (z, —y). We have s¢(0) = —1.
sink: &(z,y) == (—z, —y). We have s¢(0) = 1.
The rotation field {(z,y) = (—y, x) has s¢(0) = 1. O

Theorem 7.39 (Poincaré-Hopf). Let V' — B be an n-dimensional real oriented
vector bundle over a closed oriented manifold B of dimension n. If the zeros of a
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section X € ['(B, V) are non-degenerated, then we have the equality

/ Z deg(b)

beZ(X)

Proof. Ldet f : S(V) — B be the sphere bundle of V' for some choice of a metric.
We choose a closed form w € Q*(B) such that x(V) = [w]. Since f*x(V) = 0 we
can choose a € Q" 1(S(V)) such that f*w = da. Note that —ayg(y;) represents the
normalized volume form for all b € B.

For every zero b € Z(X) we let U, be a small oriented coordinate ball with smooth
boundary centered at b not containing any other zero of X. For r € (0,1] we let
rU, C Uy be the scaled neighbourhood.

We calculate for every r € (0, 1]:

/B x(V) = /
beZ(X) /B\Int (rUs) /Ubw)

= Z (/ Y= £ w+/ w)
beZ(X) B\Int(rUy) Uy
(/ Y*da—i—/ w)
beZ(X) B\Int(rUy) Uy
- S () vas | ).
bGZ(X) B(T'Ub) T’Ub

The minus sign comes from the fact that we orient 9(rU,) as the boundary of rU,
and not of B\ Int(rU,). We now consider the limit » — 0. We clearly have

1imr_>0/ w=20.
rUp

We write Y, := Yjgv,). We use an orientation preserving trivialization of V' near b.
We parametrize d(rl,) by € € S"~1. Then we have Y,.(§) = (7€, %) The Taylor
expansion of X at 0 gives X (z) = dX(0)(z) + O(2?). Then we have

X)) + 06 | dX(O)(E) +O0l) |
lax©)re) ror) ~ O axoe Tom) =

dX(0)(§)

DROG] AN

Y.(§) = (¢,




The ma
! AX(0)(&)

14X 0) (O

has degree degy (b). Since —as(y;) represents the normalized volume class it follows
that

Xo. gt 9t g

limr—>0/ Yia = X% asy) = —degx (b) -
8(TUb) Sn—1

Therefore

/B W)= 3 degy(b)

beZ(X)

Example 7.40. Let M be a closed oriented n-dimensional manifold. Then we can
consider the Euler class x(T'M) € H}},(M). The following numbers are equal:

1. The Euler characteristic x(M).
2. The number [, x(T'M).

3. Thenumber ), degy(m) for every vector field X on M with non-degenerated
Zeros.

In Theorem we have shown the equality of 2. and 3. In order to relate these
numbers with the Euler characteristic 1. one usually employs Morse theory. This
goes beyond the scope of this course.

O

We now assume that V' is a complex vector bundle of complex dimension n and Vg
is the underlying real bundle.

Lemma 7.41. We have the equality

Proof. We choose a hermitean metric on V. We factorize the projection f : S(V) —

B as S(V) N P(V) % B. Note that h : S(V) — P(V) is the orthonormal frame
bundle of the tautological bundle L — P(V'). We choose a closed form w € Q?(P(V))
representing —c1(L) € Hip(P(V)). Since h*ci(L) = 0 we can choose 6 € Q'(S(V))
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such that df = h*w. We further choose closed forms w; € Q% (B) representing the
Chern classes ¢;(V) € H3b(B).

By definition of the Chern classes (see (48)) on P(V') we have the relation

n

0=> (~1)'er(L)'g"ena(V) .

=0

Hence there exists a form a € Q**~1(P(V)) such that

n
do = Zwi A G W, .

i=0
We get
ffw, =d (h*a — Z O ARWw™tA f*wn—i> . (53)
i=1
We have

i=1

<h*Oé _ Ze A h*wi—l A f*wn—i) _ (9 A h*wn_l)s@n—l )
|§2n—1

Now by Example [7.21] we have

/ OANR W =1.
S2n—1

Hence (h*a—3Y7 0 Ah*w'™ ' A f*w,_;) is an extension § A h*w" ' from the fi-
bre S*"~! to S(V). The relation now asserts that [volgen1] € JEP* ! =
H7H(S%71) is transgressive and fdy, [volgen-1] = —¢,. On the other hand, by defi-
nition of the Euler class of V, we have /dy,[volgen-1] = —x (V). O

Example 7.42. For two complex vector bundles V' and V' we have
X(Ve ® Vi) = x(V) Ux(V') .

This is because the same relation holds for the highest Chern classes. O
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Example 7.43. Let X, be a closed oriented surface of genus ¢ € N and X be a
vector field on ¥, with non-degenerated zeros. Then we have

Z degy(b) =2 —2g .

bex,

Indeed, we have
[ x@sm = [ ars,) “ER -z
Zg

g
where T3, is the tangent bundle of >, considered as a complex vector bundle. If
the vector field is holomorphic, then it has exactly 2 — 2¢g zeros since in this case
degy (b) =1 for all zeros.

For example, 0, provides a holomorphic vector field on 7?2 without zeros. This is
compatible with the calculation since 7 has genus one.

On CP! we have a vector field X given by Re(zd,) in coordinates [1 : z]. Note that
in the coordinate u = 27! near oo it is given by —Re(ud,). This vector field has
two non-degenerated zeros, namely at 0 and oo. Since it is holomorphic we have
degy(0) = degy(00) = 1. Since CP! has genus 0 we see that this is again compatible
with the Poincaré-Hopf theorem.

O

Example 7.44. We consider a holomorphic vector field with non-degenerated zeros
on CP". Then it has exactly n 4 1 zeros. Indeed, by holomorphy the degrees are all
positive and by Example [6.29 we have

X(TCP")r) = c,(TCP") = (n j; 1) =(n+1)c
and hence
2(X)= 3 degx(@) = [ MTCPIR) =) [ =ntl,

z€Z(X)

Here is an example. We let X be the vector field given by Re(} " | 2;0,) in the
coordinates [1 : z; : -+ : 2z,]. The non-degenerated zeros of this vector field are the
n + 1 points

1:0:---:0],0:1:0:---:0],... ,[0:---:0:1].
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Exercise: Calculate the number of zeros of a non-generated vector field on Gr (2, C*).
O

Exercise: Show the relation x(V & V') = x(V) U x (V") O

Example 7.45. A vector field on S?" x S$?" with non-degenerated zeros has at least
4 zeros. O

7.5 Intersection numbers

We let M be a closed oriented manifold of dimension n. Then we have a Poincaré
duality isomorphism
Pu + Hi(M) 55 Hiz (M)

It was given by

H5 (M) 5 (H;LR’“(M) Sy (—1)<"+1>k/ rUy € R) .
M

Let P C M be an oriented closed submanifold of dimension p. Then we have the
integration map

/:HgR(M)%R, x»—>/3:|p,
P P

i.e. an element [, € HY,(M)*. By Poincaré duality we get a de Rham cohomology
class

(Py=Pi([ ) € 7
called the Poincaré dual of P. Note that the degree of the Poincaré dual of P is

the codimension of P.

Let now (Q C M be a second closed oriented submanifold of complementary dimen-
sion ¢ = n —p. Then we can form the product {P}U{Q} € HJ,(M) and define the
number

/M{P}U{Q}ER.
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We assume that P and @ intersect transversely in M. Then PN Q := P X, Q) is a
zero-dimensional submanifold of M. Since M is compact, this intersection is a finite
set. It furthermore comes with an induced orientation, i.e. a function s : PN Q —
{1, —1}. Let us describe this orientation explicitly. Let x € P N Q. Then we have
an isomorphism of vector spaces T,Q ® T, P = T, M induced by the inclusions. We
define the sign s(x) € {1,—1} to be equal to 1 if this map preserves orientations,
and as —1 else. Note the order of T, P and T, in this formula. We define the
intersection number of P and () in M as

(PNQ) = Z s(z) .

zeEPNQ

Theorem 7.46. We have
Pn@)= [ (PrU(Q}.
M

Proof. First we construct an explicit de Rham representative of the Poincaré dual
{P} of P. We choose a metric on M. It induces a metric on the normal bundle
7 : N — P which we identify with a tubular neighborhood of P, see Fact [3.3

We can choose a form x € Q7!(S(N)) such that [g ) px =1 and dV = 7*a for

some form o € Q4(P). Indeed, if x(S(N)) # 0, then we can choose  such that dk =
f*a for a closed form a € QF(P) representing the Euler class x(S(N)) € HYn(P).
Else we let & be a representative of a Thom class Th(S(N)) € H2,'(S(N)) of S(N).

We identify P with the zero section of N. Using the diffeomorphism
S(N) x (0,00) > N\ P, (1)t

we extend the form x to N \ P. Furthermore we consider a function y € C*°(0, c0)
such that x(¢) = 0 for large t and x(¢) = 1 for small ¢. The closed form

d(xk) =dx Nk+x ma € QP(N \ P)

extends smoothly to the zero section P and then by zero to M. We denote this
extension by wp. We claim that this extension wp represents (—1)m+Dr—p)+1LpY
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Let x = [p] € HY4(M). Then we calculate using the projection formula

/[wp]Ux = /d(xm)/\ﬁ
M N
= / d(xr) A S
S(N)x(0,00)
= —limt_>0/ kA B
S(N)x{t}

= —1imH0/ kA T8
S(N)x{t}

[

Par(lwp])(z) = (~1)m DD /M wp] Uz

We now calculate the quantity
/ {PYU{Q} = (—1)m DR () Dna) (—)(np) ) / wp = (~1)pr! / wp
M o 0

Let x € PN Q. Then we can assume after appropriate choice of the embedding
N — M that N, C ). The contribution of the neighborhood of x to the integral
(=1)ptt [, wp is thus

—s(:v)/ d(xr) = s(x) limHo/ k=s(z) .
S(Ng)xR S(Ng)x{t}

Note that the orientation of N, is such that T,P ®& N, & T, M is orientation pre-
serving. This is exactly the case of (—1)P?s(z) = 1.

On the other hand

O

In particular, the number [, {P} U {Q} is an integer. Note that the intersection
number is only defined if P and @ are transverse. But the number [, {P}U{Q} is
always defined and can be taken as a definition of the intersection number in this case.
Furthermore, in order to define the classes { P} and {Q} and therefore [, {P}U{Q}
it is not necessary to assume that P — M is an embedding. Just a smooth map
suffices. Furthermore, theses classes, respective this number only depends on the
homotopy class of these maps.

161



Proposition 7.47. Let P and @) be two closed oriented submanifolds of M of di-
mensions p and q which intersect transversally. Then we have the relation

{Pyuf{Qt={PnQ}
in HIZP~9(M).

Proof. We can assume by choosing the embedding N — M appropriately that N N
@ — PN Q is the normal bundle of PN Q in Q. Then we can take (wp)ig = wpng-
We calculate for every [8] € H "~ %(M) that

/M (PYU{QIU[E] = (~1)mDenr-o / wp Awg A B

M
= _(_1)(n+1)(2npq)/wQ/\ﬁ
P
— (_1>(n+1)(2n—p—q) s
PNQ

— (_1>(n+1)(2npq)+(n+1)(npq)/ {PNQ} A
M

- /M{Pmczmm.

Example 7.48. Let V — B be a real oriented vector bundle of dimension k£ on a
closed oriented manifold B of dimension n. We choose a section s € I'(B, V') which
is transverse to the zero section and let Z = {s = 0} be the smooth submanifold of
zeros. We have dim(Z) = n — k. We define the orientation of Z such that at x € Z
the isomorphism V, & T,Z — T,M induced by ds(x) preserves orientations. Note
the order of the summands.

The following Lemma generalizes the Poincaré-Hopf theorem.

Lemma 7.49. We have the equality {Z} = x (V).

Proof. We consider the bundle V& R — B. Its sphere bundle p : S(V & R) — B
has a canonical section with image N = {(0y,1) | b € B}. Fibrewise stereographic

projection gives a diffeomorphism S(V @ R) \ N = V. We identify B with the zero
section of V' and therefore with a submanifold of S(V & R). We consider the class
{B} € Hk,(S(V ®R)) which is represented by a form (—1)"+r+Dk+1,5 constructed
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as above. The normal bundle at B is identified with p*V, and its sphere bundle
is m : p*S(V) — B Therefore wp is the extension by zero of a form d(xx) with
dr = T« where « is closed and represents x (V). We view the section s as a section
of S(V @ R). Then s*wg is a choice for (—1)*wy, i.e. we get

SN} = ()R e gy 7} (—1)n( 7]

The factor (—1)*" comes from our convention for the orientation of Z. Let z be the
zero section of V. Then we have z*wp = 2*dk so that

N} = ()R (S(V) = (1) x(V) .
Note that s and z are homotopic by (t,b) — ts(b). It follows that

x(V)={z}.

O

Example 7.50. Let L'“* — CP" be the dual of the tautological bundle. A hy-
persurface of degree d in CP™ is by definition a submanifold of the form H = Z(s)
for some holomorphic section s € I'(CP", (L!****)?). By Lemma we have that
X((Lm“t’*)ﬁR) = ci((L**)?) = de;. Therefore, we have {H} = dc;. Assume now
that n = 2. Then we can consider the intersection number of two hypersurfaces H;
and Hs of degrees d; and ds, respectively. We get

<H1 N H2> == / d101 U dgCl == dldg
CP2

provided that the intersection is transverse. Since the H; are complex submanifolds
all signs are positive and we actually have

<H1ﬂH2> == ﬂHl QHQ .

Exercise: Calculate the the number of points of H; N --- N H,,, where H; is a hy-
persurface in CP" of degree d; for i = 1,...,n. We assume that the intersection is
transverse. O
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Example 7.51. We consider the manifold S? x S2. Let N C S? be the north pole.
Then we have submanifolds S? x { N}, {N} x S? of S% x S?. The middle cohomology
of S? x 52 is generated by the Poincaré duals [volgz] X 1,1 X [volg2] € H35(S5% % 5?) of
the these submanifolds. They intersect transversally in the point (N, N) with index
1. This is compatible with [, g ([volg:] x 1) U (1 x [volg]) = 1. O

8 Interesting differential forms

8.1 (G-manifolds and invariant forms

Let G be a connected Lie group which acts on a manifold M. For g € G let a, :
M — M be the action. If M = G, then we write L, (resp. R,) for the action by left
(resp. right) multiplication. Note that R,(h) := hg™', i.e. also R is a left-action. A
form w € Q(M) is called G-invariant, if ajw = w holds for all g € G.

For every g € G we have the equality da; = ajd. If w is G-invariant, then so is
dw. Since aj preserves wedge products the wedge product of two G-invariant forms
is again G-invariant.

We can thus define differential graded subalgebra
QM) = {w e QM)|(Vge | ayw =w)} C QM)
of G-invariant forms.

Lemma 8.1. If G is compact, then there exists a right G-invariant volume form
volg € QIME(G)Y such that [, volg = 1.

Proof. We choose a non-trivial element v € A4 (Lie(G)*). Then we define a form
w € QI (@) by
w(g) =dRyv, geG.

This form is G-invariant since
(RZC«))(Q) = dR;kfﬂx)(ghil) = dR;:—ldRzkh—lg)—I/U = (Rg—lth—l)*U = szﬂ) = w(g) .

We orient GG using this form and define the normalized volume form by
1
volg i= — w .
Jow
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We now make the technical assumption that M is closed and oriented in order to
simplify the proof of the following Lemma.

Lemma 8.2. If G is compact, then then inclusion i : Q(M)% — Q(M) is a quasi-

1somorphism.

Proof. We define the averaging map

A QM) = QM)C ,  Aw) := / Gagw volg(g) -

Indeed, A produces G-invariant forms since for every for h € G we have the chain of
equalities

ay Alw) = /Ga";LaZujvolg(g)
= /azhw volg(g)
G
= /a;w (R;-1volg)(g)
e

= / ayw volg(g)
G
= A(w) )
where at the marked equality we use the diffeomorphism R,' : G — G in order to
reparameterize the domain G of integration. Since GG is compact and the integrand

is smooth we can interchange differentiation and integration over G. The map A
preserves the differential since

dA(w) = d/Ga;w volg(g) = /GdaZw volg(g) = /Ga;dw volg(g) = A(dw) .

If w is G-invariant, then A(w) = w by the normalization of volg, i.e. we have the
equality A 0@ = idge. This shows that i : H(Q(M)Y) — Hyr(M) is injective.

We now show surjectivity. Surjectivity follows immediately from the claim that
[Aw] = [w]
where [w] € Hjp(M) is the class of a closed form w € Q(M). In the proof of this

claim we use the simplifying assumptions.
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Remark 8.3. In order to drop the assumption that M is closed and oriented one
can perform a similar argument using the pairing between simplicial homology and
cohomology instead of the pairing with the cohomology in the complementary di-
mension. In the present course we have not developed this homology theory. O

By Poincaré duality the equality [Aw] = [w] holds if and only if for every class
[a] € H}z(G) we have the equality

/Ga/\w:/Ga/\A(w). (54)

We can express A(w) as a uniform limit for n — oo of a sequence A, (w), n € N, of
Riemann sums of the form ), ciay,w such that >, ci = 1. Since G is connected, we
have

[a

] = ] € Hin(G) . Vg€ O
and therefore [}, ciay w] = [w]. We get

/Ga/\w:/Ga/\An(w)

for every n and thus by taking the limit n — oo. This shows the claim. O

We now apply this to the action of the group G' x G on G by (g, h)k := gkh™*.

Lemma 8.4. For a compact connected Lie group G the evaluation at the identity
provides an isomorphism

(QUGE*Y d) — (A(Lie(G)")¢,0) .
In particular we get an isomorphism
Hyp(G) =2 A(Lie(G)*)C .
Proof. 1t is clear that the evaluation at the identity
Q@) — A(Lie(G)")

is an isomorphism of graded vector spaces since every element on the right-hand side
can be uniquely extended to an invariant form. This extension is invariant under
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G x G if and and only if it is invariant under the adjoint action of G on itself.
Consequently, the evaluation at the identity is an isomorphism

Q(G)9%¢ 5 (A(Lie(G)*)C .

It remains to identify the differential on (A(Lie(G)*)¢ induced by the de Rham
differential on Q(G)9*¢. Let w € Q*(G)%*¢. We insert n + 1 left-invariant vector
fields X7, ... X411 into dw. Then the Cartan formula expresses dw(X7,..., X,11) as
a sum of terms indexed by ¢ which vanish separately. First of all

LLJ(Xl, .. .Xi, c. 7Xn+1> € COO(G)

is invariant and hence

Xiw(Xla---Xia---an—i—l) =0.

Moreover, in the second group the terms are of the form (we write the case i = 1)

n+1

> (WX, X5), X1, Xy, X)) (e)

Jj=2

= (ad(X1>W(€))(X1, c. ,Xj, ce ,Xn+1)

0
O
Example 8.5. We can apply this to the torus 7". We have
Hjp(T") = A"Lie(T")" = A*R™ .
This reproduces the result of Example [2.35 O

Remark 8.6. The product p: G x G — G turns the algebra A(Lie(G)*) into a Hopf
algebra over R with coproduct

A =dp* : A(Lie(G)*) — A(Lie(G)*) @ A(Lie(G)*) .

Since conjugation by a fixed element is a group homomorphism the coproduct A
restricts to a Hopf algebra structure

A A(Lie(G))Y = A(Lie(G)*)Y @ A(Lie(G)")¢ .
We have the following structural result.
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Proposition 8.7 (Milnor-Moore). A finite dimensional graded Hopf algebra over R
is the graded commutative algebra R[(v;)ica] where v; are primitive generators of odd
degree and A is a finite set.

We have already observed this structure for G = U(n) (Example [6.20) and G =
SU(n) and (Example 6.17)).

O

We consider idpe(e) as an element of
0 € A'(Lie(G)*) ® Lie(G) .

This element in G-invariant under the tensor product action of G' on A'(Lie(G)*) ®
Lie(G). It is called the canonical one-form.

Let p: G — Aut(V') be a representation of G and set
0, = (1®dp)(0) € A'(Lie(G)*) @ End(V) .

This element is again G-invariant under the tensor product action of G. Finally,
since Tr : End(V') — C is G-invariant the form

Kpp = Tr(0,7) € AP(Lie(G)*)“
is G-invariant, too.
In this way we can construct cohomology classes on G.

We have A*0 =0 @ 1 +1® 6. This gives A5 =} )05 © 0%, and therefore

s+t=p (137
. p
A "ip,p = Z (5) K’p,s ® K/p,t .
s+t=p
For given representation p, if p > 1 is minimal such that x,, # 0, then &, is
primitive.
Example 8.8. We shall make this explicit in the case G = SU(2) which we identify

for the present purpose with the unit quaternions. Then Lie(SU(2)) = Im(H) =
R(I, J, K). We consider the representation p of SU(2) on H. We write

Oy =dr@I+dy®J+dz® K,
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where x,y, z are coordinates on Im(H) dual to I, J, K. Then
92 =6dr ANdy Ndz ® IJK = —6dx N dy N\ dz ® idy .

Consequently

Kpg = Tr(@i) = —24dx Ndy Ndz .
Under the identification SU(2) = S3 the invariant extension of dz A dy A dz becomes
the Euclidean volume form. Since vol(S?) = 27% we get

Rp3 = —487T2[V015U(2)] .

Exercise: We consider the case G = U(n) and the standard representation of U(n)
on C". Determine )\, € R such that x,, = \yu, forp=1,...,2n — 1. O

Example 8.9. We consider again a compact Lie group G. Then we can find an
invariant scalar product (.,.) on the Lie algebra Lie(G). Indeed, we can start with
an arbitrary scalar product and then average. We can now define the form w €
(A3Lie(G)")Y by

w(X,Y,Z) =(X,Y],Z) .

In order to see that it is alternating observe that
<[X’ Y]? Z> = _<Yv [X7 Z]> = _<[X7 Z]>Y>

by symmetry and invariance of the scalar product. If Lie(G) is not abelian, then
w # 0.

Corollary 8.10. If G is a compact Lie group with non-abelian Lie algebra, then
Hip(G) # 0.

8.2 Chern forms

We consider a complex vector bundle V' — B. In this subsection we define differential
forms representing the Chern classes ¢;(V) € Hin(B) of V for i € N. If we choose
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a connection V on V, then we can define the curvature form RV € Q?(B,End(V)).
We consider the inhomogeneus form

1
1— —RY € Q(B,End(V
5B € O(B,Ena(V))
with components in degree zero and two. We have a polynomial functor det :
Vect(B) — Vect(B) which maps a vector bundle to its maximal alternating power.
Using the action of this functor on morphisms we can define the total Chern form

c(V) = det(1 — %RV) € Q(B,End(det(V))) =2 Q(B,C) .

™

Definition 8.11. The homogeneous components of the total Chern form are denoted
by c;(V) € Q*(B,C) and called the Chern forms of (V,V).

We thus have
C(V) =1+ Cl(V) + -+ Cdim(V)(v) .

Lemma 8.12. The total Chern form c¢(V) is closed. Consequently the Chern forms
ci(V) € Q%(B) are closed for alli=1,...,dim(V).

Proof. We calculate, using the identity d det(A) = det(A)Tr(A"'dA) and the Bianchi
identity [V, RV] = 0,

de(V) = ddet(l—%Rv)

X

L v
= [V,det(l—TR )]

™

2ms

1— 2RV

21

1
= det(l — =—RY) Tr (

[V,1 - ;2 RY]
2mi

= 0.

Our goal is to show that the closed form ¢(V) represents the total Chern class of
V. This will follows from the splitting principle and the corresponding assertions
for line bundles. We prepare this argument by verifying some properties of these
cohomology classes (V') := [¢(V)]. For the moment we use the superscript ’ in
order to distinguish these classes from the previously defined ones.
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Lemma 8.13. The Chern forms have the following properties:

1. The cohomology class of ¢ (V) := [¢(V)] € Har(B,C) does not depend on the
choice of the connection.

2. For a smooth map f : B — B we have f*¢(V) = (f*V). In particular,
Vi (V) is a characteristic class of degree 2i for complex vector bundles.

3. We have (Ve V') =d(V)ud (V).

Proof. Assume that V'’ is a second connection. Let pr : [0,1] x B — B be the

projection. On pr*V — [0, 1] x B we consider the connection V := pr*V + tpr*a,
where o := V' — V € Q!(B,End(V)) and ¢ is the coordinate of [0,1]. We define the
transgression Chern form

&V, V) = / ¢(V) € Q(B,C) .
[0,1]xB/B

By Stoke’s theorem we get
de(V', V) =¢(V') — (V) .
This shows 1.

For 2. we use f*RY = RV and f* o det = detof* in order to conclude that
f*e(V) = ¢(f*V). This implies the assertion.

Finally, for 3. we use the identity
det(V @ V') 2 det(V) @ det(V")

which implies

1 / 1 / 1 1 /

s i ) i
O
Lemma 8.14. [f dim(V') = 1, then we have (V') = ¢(V).
Proof. In this case
1 1
det(1— —RY)=1——RY
et( 2mi ) 211
under the natural identifications. The assertion now follows immediately from (42)).
([

171



Lemma 8.15. We have (V') = ¢(V) in general.

Proof. Let p: F(V) — B be the bundle of total flags. Then we have

pe(v) = c(pv) & [Le(w) “" =S (L) = pe (V).

i=1

We finally use that p* is injective. O

Example 8.16. If the complex vector bundle V' — B admits a flat connection V,
then ¢;(V) =0 for all ¢ > 1. Indeed, if V is flat, then we have ¢;(V) = 0.

Corollary 8.17. If V. — B is a complex vector bundle and c(V') # 1, then V' does
not admit a flat connection.

8.3 The Chern character

We have seen in Example that Chern classes do not behave well with respect to
tensor products. In this subsection we introduce the Chern character which behaves
well under sums and tensor products.

Let V — B be a vector bundle. We choose a connection V and define the Chern
character form

ch(V) =Tr ez R

Here we consider the exponential function as a formal power series. We have

Tr (RY)? —

_ 1
ch(V) = dim(V) = o —Tr RY + L

The sum is finite since (RY)* = 0 for 2k > dim(B).
Lemma 8.18. 1. The form ch(V) is closed.

2. The class ch(V) := [ch(V)] € Hur(B) is independent of the choice of the
connection of V. It is called the Chern character of the bundle V.

3. For a map f: B'— B we have f*ch(V) = ch(f*V).
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J. We have ch(V & V') = ch(V) +ch(V'), ch(V ® V') = ch(V) U ch(V").

Proof. For 1. we calculate, using the Bianchi identity

A%

dch(V) = dTre =i
= Tr[V,eiﬁR
= 0

v

]

The arguments for 2. and 3. are the same as for corresponding assertions of Lemma

R.13l We have

ch(V & V') = Tr e~ 2 B7ORY) — ¢ <e‘%RV & e‘ﬁRvj = ch(V) + ch(V') .

Furthermore, we have

RV®1+1®V' _ RV R1+1® RV’ )

This gives
efﬁ(Rv®1+1®va) — e mk g efﬁRV/ _
Consequently,
ch(Vel+1® V') =ch(V)Ach(V).
This implies 4. O

Let us fix n € N. We define the polynomials
sk(z) = Zxk € Zlxy,...,x,] k€N
i=1

These polynomials are symmetric and therefore belong to the subring
Zloy(x),...,0n(x)] C Zlxy, ... 2] .
There are unique polynomials
pr(o1, ..., 00) € Zloy, ..., 0]

such that
sk(x) = pp(or(x),. .., on(x)) .
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We have

pi(o) = o
pa(o) = O'%—QO'Q

p3(o) = ai’ — 30901 + 303

Proposition 8.19. For a vector bundle V- — B we have
= 1
ch(V) = dim(V Z LG (V).
“— k!
Proof. Note that for n = 1 we have py(c) = ¢*. Let dim(V) = 1. Then we have by
definition
C L = 1
— =1 — V
kg A + ; k!pk<cl(

We now consider the general case. We use the splitting principle. Let p : F(V) — B
be the bundle of full flags of V. Then we have

p*ch(V) = ch(p*V) = ch( @L Z L) .

=1

The right-hand side can be rewritten with x; = ¢;(L;) as

n

=1
Soeh(t) =33 gt =3 Y et = ) = Y- e V), V).

i=1 1=1 k=0

Vice versa one can express the Chern of a bundle classes in terms of the components of
the Chern character. There are unique polynomials h; € Q[ay,...,a,]fori=1,... n
such that

oi(x) = hi(s1(x),...,sx(x)), i=1,...,n.

Then
¢ (V) = hi(llchy(V),... nlch,(V)) .
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We have

hi(a) = a
1

ho(a) = 5(6& — a)
1

hg((l) = E(CL? — 3&1@2 + 2&3)

For example,
1
c3(V) = E(Chl(V)S — 6¢hy (V)chy (V) + 12chs(V)) .

Example 8.20. We can continue Example Note that TGr(k,C") = L*®@C"/L.
Then

ch(TGr(k,C")) = ch(L*) U (n — ch(L)) .
We now use that ch;(L*) = (—1)’ch(L). We get

ch,(TGr(k,C")) = i(—l)”‘j“chnj([,) Uch,;(L)+ (n— k)ch, (L) .

j=1

9 Exercises

1. Let k,n € Nand 0 < k < n. We consider the set V(k,R") of k-tuples of linearly
independent vectors in R".

1. Equip V(k,R™) with a smooth manifold structure by representing it as an open
submanifold of (R™).

2. Show that the linear action of GL(n,R) on R"™ induces a smooth and transitive
left action on V(k,R™).

3. Show that the map V(k,R™) — Gr(k,R™), which maps the k-tuple of vectors
to its span, is a locally trivial fibre bundle.

4. Show that GL(k,R) acts freely from the right on V' (k, R™) preserving the fibres
of .

5. Show that 7 presents Gr(k,R") as the quotient V (k,R")/GL(k,R).
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6.

Give a presentation of V(k,R") as quotient GL(n,R)/GL(n — k,R).

The manifold V' (k,R") is called Stiefel manifold.

2. Consider integers n,p,q € N such that 0 < p < ¢ < n. Let F((p,q),R") denote
set of pairs of linear subspaces V,W C R™ such that V' C W and dim(V) = p,
dim(W) = q. These tuples are called flags of type (p,q).

1.

Equip F((p,q),R™) with the structure of a smooth manifold by representing
it as a submanifold of Gr(p,R") x Gr(¢q,R™). The manifold F'(p,R") is called
flag manifold of type (p, q):

Show that the linear action of GL(n,R) on R” induces a smooth action of
GL(n,R) on F((p,q),R").

Show that this action is transitive and describe the stabilizer of the standard
flag RP C RY.

Show that map F((p,q),R") — Gr(q,R™), (V,W) — W is a locally trivial fibre
bundle with fibre Gr(p, R9).

. Represent F((p,q),R") as a quotient of GL(n,R).

The goal of the following two exercises is to practise explicit calculations with forms
and the de Rham Lemma.

3.

Let n € N, n > 1 and set C"*%* := C"*! \ {0}. We have a projection

7 : Cvtb* — CP" which sends z € C"** to the subspace spanned by z. Let
a € Q%(C"1*) be given by

AN

13" d2" NdZ
o= —
2 =P

Show that there exists a uniquely determined form w € Q2(CP") such that
T'w = lker(dm)L

Show that w is real.
Show that w is invariant under the natural action of U(n + 1) on CP".
Show that dw = 0.

Show that w" is nowhere vanishing.
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6. Let CP! ¢ CP"*! be the submanifold of lines contained in C?> C C"*!. Show
that wcpr is nowhere vanishing. Orient CP! using wicpr and calculate fmﬂ w.

7. Show that w™ is nowhere vanishing. Orient CP" using w" and calculate [, w".

4. We consider the form volgn := dz' A -+ A da™ € Q(R™).
Show that [volgs] = 0 in HJ,(R™).
Show that there is a form o € Q"7 1(R") such that da = volgn.

Determine a form « in 2. explicitly.

R

Show that such a form « is unique if one requires that it is SO(n)-invariant
and determine this unique solution explicitly.

5. Show that there is no GL(n,R)- or O(n)-invariant form o € Q" }(R") such
that da = volgn. Here GL(n,R)g := {A € GL(n,R) | det(A) > 0}.

6. Show that there is no bounded (i.e. the coefficients of o with respect to the
standard basis dz' A --- A dz" ! ... are bounded) form a € Q""!(R") such
that da = volgn.

5. We fix positive numbers nq,...,n, € N and consider the manifold

T
M = H St
i=1
Construct an injective ring homomorphism

Rlxy,...,z.]/(23,... 22) = Hip(M) ,

»rr
where |z;| = n;.

6. Fix an integer n. Multiplication by n on R" induces a map f : T™ — T™ given
by f([z]) := [nx]. Show that f*: HX.(T™) — HY,(T™) is multiplication by n* (use
n

without proof that by (T") = ( I ))
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7. We consider the exact sequence of abelian groups
9 (3,1) 3
0—-(Z—-2Z) = (Z>7Z)— (Z/32Z —0) =0 .
Calculate the long exact cohomology sequence explicitly.

8. Let M be a compact manifold with boundary i : N — M.
1. Show that i* : Q(M) — Q(N) is surjective.

2. Define Q(M, N) := ker(i*). Furthermore, let Q.(M \ N) be the forms with
compact support in M \ N. Show that Q.(M \ N) C Q(M, N).

3. Define Hjp(M,N) := H*(Q(M,N)), and let 0 : H}p(N) — H*(2(M,N)) be
the boundary operator for the sequence

0—QM,N)— QM) —QN)—0.

Show that for z € H,(N) the class 0z has a representative in Q.(M \ N).
* Show that Q.(M \ N) — Q(M, N) is a quasi-isomorphism.

9. Calculate the Betti numbers of the lens space L(p, q) for coprime integers p, g.

10. For 0 < k < n we consider the usual embeddings S* ¢ R¥*! ¢ R™. Calculate
the Betti numbers of R™ \ S*.

11. Let G be a connected Lie group and H C G be a finite subgroup. Show that
7 : G — G/H induces an isomorphism 7* : H;,(G/H) — H},(G).

12. Calculate the Betti numbers of a closed oriented surface X, of genus g. Repre-
sent X, as the sum of a 2-sphere with 2¢g discs removed and g copies of [0,1] x S*.

13. Calculate all pages of the spectral sequence for the chain complex

7757 — 7./27
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with the filtration

FrCO 0 0 Z
FrC o |c| 22 |c Z
FrC? 7.)27. 7.)27. 7./27.

14. Let (EX*, d,),>0 be a bigraded spectral sequence consisting of finite-dimensional
R-vector spaces such that {(p,q) € Z*| EP? # 0} is a finite set. For r > 1 we define

Xr 1= Z (—1)PHdim EP? € Z

(p,q)€Z2

Show that x, = x; for all » > 1.

15. We consider the manifold M := R?\ Z?. Show that H}p(M) is infinite-
dimensional.

16. For an open covering U of M one can consider the Cech complex C*(U,C*)
of C*-valued functions (the sums in the definition given in the course lecture are
interpreted using the group structure of C*). Show that a cocycle ¢ € C*(U, C*)
is exactly the cocyle datum (as in Analysis IV) needed to define a one-dimensional
complex vector bundle L — M. Show that L is trivializable if and only if ¢ is a
boundary.

17. Let
0-A—-B—-C—=0

be a short exact sequence of chain complexes. Consider the filtration of B given by
F'B:= B, F'B := A and F?B := 0. Find the precise relation between the spectral
sequence of (B, F) and the long exact cohomology sequence associated to the short
exact sequence above.

18. Let U := {U,V'} be a covering of a manifold M by two open subsets. Find the
precise relation between the Cech-de Rham spectral sequence and the Mayer-Vietoris
sequence.

19. Show that the cohomology of the Stiefel manifolds H},(V (k,R™)) is finite-
dimensional.
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20. Let k be a ring. Let C, D be chain complexes of k-modules. We assume that
H*(D), H*(C) and C* are free. Show that

H*(C)® H*(D) =2 H*(C® D) .

21. A knot is an embedding of S! as a closed submanifold K C S3. Calculate the
Betti numbers b'(S® \ K), i € Z, of the knot complement.

22. Let M and M’ be compact manifolds with boundaries N and N’, respectively.
Furthermore, let f : N — N’ be a diffeomorphism. Show that x(M Uy M') =

X(M) + x(M') = x(N).

23. Let M an M’ be closed oriented manifolds of dimensions 4m and 4m’. Show
that sign(M x M’) = sign(M)sign(M’).

Show further that this formula holds in general if we just assume that dim(M) +
dim(M’) = 0(4) and we define the signature of a manifold of dimension not divisible
by 4 to be zero.

24. Let M be an oriented, connected, and non-compact manifold of dimension n.
Show that HJ5(M) = 0.

25. We consider a vector bundle V- — M. Let Tr : Q(M,End(V)) — Q(M) be
given on elementary tensors by Tr(w ® ®) := wTr(®P). Show that for a connection
on V the form Tr(RY) € Q?(M) is closed.

26. We consider the standard inclusion f : S? — R3. We have a trivial vector bundle

f*TR? with a metric and a trivial connection. We consider T'S? as a subbundle via
df : TS? — f*TR3. Let P: f*TR? — T'S? be the orthogonal projection. Show that
V= Pvfﬁ%‘%TS% is a connection on 7'S?. Calculate fSQ Tr(RY).

27. We consider a closed oriented surface ¥, of genus g. Describe explicitly a
basis (a1, ...,q4, B1,...,8,) of Hiz(3,) such that (a;,a;) = 0, (B1,5;) = 0 and
<Oéz',ﬁj> = 6i,j for all Z,] S {1, Ce ,g}
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28. A link with k£ components is an embedding
Stu---uSth— 5%
—
k copies
Let U be an open tubular neighbourhood of the link and M := S®\ U. Determine an

explicit basis of Hyr(M) and Hur(M,0M) and calculate the corresponding matrix
of the pairing Hyp(M) ® Har(M,0M) — R.

29. Let E — B be a locally trivial fibre bundle and w € QP(E) be a closed form.
Then we consider the section

[w]E/B S F(B,HP(E/B)) , [M]E/B(b) = [W|Eb] - HgR(Eb) = HP(E/B)(, .
Show that V{w]g/p = 0, where V is the Gauss-Manin connection of H?(E/B).

30. Let A € SL(2,Z). We consider the trivial two-dimensional bundle V' :=
R x R? — R with its trivial connection V*. We define the action of Z on this
bundle by

n(t,v) = (t+n,Av), ne€Z, (t,v)eERxR*.

1. First show that this action preserves the connection.

2. Show that there exists a flat bundle W = (W, V) on S! such that Q(S!, W) =
Q(R,V)Z (the space of Z-invariant elements) so that V is the restriction of
Vtriv.

3. Calculate H},(S', W) explicitly.

Hint: Complexify first and then use the Jordan decomposition of A)

31. Let M, N be manifolds and V be a flat vector bundle on M. Show the Kiinneth
formula
HdR(N X M, pI‘;/[V) = HdR(N> & HdR(Ma V)

under the condition that at least one of M or N is compact.

32. Let V and W be flat bundles on a manifold M and V' — W be an injective
bundle map which preserves connections. Show that the quotient bundle W/V has
an induced flat connection and that there is a long exact sequence

CHEN MW V) — HY (M, V) — H2.(M, W) — HE.(M,W/V) = ... .
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33. Let (V,V) be a flat vector bundle over a closed manifold E. Show that
Hj,(E, V) is finite dimensional for every ¢ € Z. Let f : E — B be a surjective
submersion. Show further, that

HYE/B,V) = |_| H3R<Eb7V\Eb)
beB

has a natural structure of a flat vector bundle over B.

34. Let A € SL(2,Z) and fa : T?> — T? be the corresponding automorphism.
Calculate the de Rham cohomology of the mapping torus 7},.

35. Let G be a compact Lie group with multiplication u : G x G — G. We consider
the map

Kiinneth

A : Hyr(G) “, Hip(G x G) = Hir(G) ® Har(G) .

An element = € Hyr(G) is called primitive if A(z) =2 ® 1+ 1 ® x and group-like if
Alr) =z ® z.

Determine the primitive and group-like elements in the de Rham cohomology of 72
and SU(2).

36. Let M be a manifold with boundary N and 9 : Hjp(N) — H}t' (M, N) be the
boundary operator of the long exact sequence of the pair (M, N). Show the following
identities for x € Hyr(N) and y € Hyr(M):

1. Oz Uyn) =0(x)Uy for x € Hyr(N) and y € Hyr(M).
2. [,,0(x)Uy = [yxUyy (if M is compact and oriented).

37. Let E — B be a trivial fibre bundle with compact fibres. Calculate the LSSS
and relate it with the Kiinneth-formula.

38. Calculate the LSSS of the mapping torus Ty, — S, where f4 : T? — T2 is
associated to A € SL(2,Z). Compare with Aufgabe 2., Blatt 9.
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39. Let £ — B be a fibre bundle with fibre S* and simply connected and connected
base B. A normalized fibrewise volume form is an element w € Q'(E) such that wyg,
is a volume form and | B W= 1 for all b € B. Show:

1. There exists a normalized fibrewise volume form.

2. If there exists a normalized fibrewise volume form which is in addition closed,
then the differential dy : EY"' — E3° of the LSSS vanishes.

* Show the converse of 2.

40. Is S? diffeomorphic to a mapping torus Ty of an automorphism f : % — % for
some closed surface 7

41. We consider the map
f:CP' = CP*, [z:21] % [25: 2021 : 2] -
Calculate the number fwl frer.
42. Use the Kiinneth formula in order to identify
Hp(CP" x CP™) = Ra, b]/(a", ™) .

Consider the map
p: CP" x CP™ — CPm+Hn+h-1
([wo =t xpl Yot ym]) = [T1y1 1yt XY  T2y1 © v T -
Calculate p*ct € R[a, b]/(a™, o™ 1) explicitly.
43. Let V' — M be a real vector bundle. Show that ¢;(V ® C) = 0.

44. Show that there is no non-trivial characteristic class of degree 1 for complex
vector bundles.

45. Calculate the de Rham cohomology of SO(n) for n = 2,3, 4 using the LSSS
for the bundles SO(n + 1) — S™ with fibre SO(n). Discuss also the case n = 5, if
possible.

46. We have found an isomorphism Hyr(U(n)) = Rlui, ..., us,—1], where ug,_;
primitive and of degree 2k — 1. Calculate the action of the inversion map I : U(n) —
U(n), I(g) :== g~ ! explicitly.
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47. Calculate the first Chern class of ALT*CP". Note that we take the alternating
power in the sense of complex vector bundles.

48. Let M be a manifold with a free action of U(n). We consider the LSSS of
the bundle M — M /G with fibre U(n). Show that the element ug,_q € ES’%_l =
H3 Y (U(n)) is 2k — 1-transgressive, i.e. belongs to the kernel of the differentials d;
of the LSSS for all £ =2,...,2k — 1.

Hint: Use the sequence of sphere bundles
Sl S2 S2n72 S2n71
M=>M/UQ1 =" M/Un-1)"— M/U(n)

and the explicit description of usx_1 given in the course.

49. Let E — B be a complex vector bundle. Show that ¢;(E*) = (—1)'c;(E) for
every i € N. Deduce that for a real vector bundle V' — B we have ¢;(V ® C) = 0 for
odd 7 € N.

50. Calculate ¢(T'Gr(2,C*)) explicitly as a polynomial in ¢;(L) and cy(L), where
L — Gr(2,C%) is the tautological bundle.

51. Let k,n € N, k <n. Find for every 7+ € N, 1 < i < k a closed oriented manifold
M of dimension 2 and a map f : M — Gr(k,C") such that [,, f*c;(L) # 0.

52. Let L — Gr(3,C*°) be the tautological bundle which is considered as a sub-
bundle of the n-dimensional trivial bundle. Let L+ — Gr(3,C?) be its orthogonal
complement. Calculate c3(L+) explicitly as a polynomial in ¢y (L), co(L), cs(L).

53. Let f: M — N be a map between closed connected oriented manifolds of
the same dimension. Show that f* : Hyr(N) — Hur(M) is injective if and only if

deg(f) # 0.

54. Let p € C|zy, ..., 2,] be a polynomial of degree k such that p(0) = 1. Calculate
the degree of
Z1 Zn

f:CP" — CP", [z0: - :zn) [ebp(=, ..., 2) b0 2M).
20 <0
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55. We consider an iterated bundle £ — G — B with closed fibres. Show that
the choice of fibrewise orientations for two of the three bundles £ — G, G — B and
FE — B induces an orientation on the third such that

Lo Lo
E/B G¢/B JE/G

holds.

56. We consider the manifold F(C™) of complete flags (V; C --- C V) in C™.
For i = 1,...,n let x; € H35(F(C")) be the first Chern class of the quotient of
tautological bundles V;/V;_; — F(C"), where we set 1 := 0. Calculate the real
number

/ g tUat iU U U .
F(Cn)
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