
Vorlesung: Introduction to homotopy theory

Ulrich Bunke

Contents

1 Covering theory 3
1.1 Paths and path components . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Lifting properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 The fundamental groupoid . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 The fundamental group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Coverings and representations of the fundamental groupoid . . . . . . . . . 11
1.6 Specialization to the fundamental group . . . . . . . . . . . . . . . . . . . 14
1.7 Properties of coverings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.8 The analogy with Galois theory . . . . . . . . . . . . . . . . . . . . . . . . 20
1.9 Van Kampen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.10 Flat vector bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.11 Lifting of maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2 Die Homotopiekategorie 30
2.1 Basic constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2 Pairs and pointed spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3 Suspension and loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4 The homotopy category . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.5 H and co-H-spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Cofibre sequences 45
3.1 The mapping cone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 The mapping cone sequence . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3 Functoriality properties of the mapping cone . . . . . . . . . . . . . . . . . 50
3.4 The long mapping cone sequence . . . . . . . . . . . . . . . . . . . . . . . 53

4 Cohomology 56
4.1 Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 CW-complexes and the AHSS . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3 Calculations of cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . 65

1



5 Fibre sequences 67
5.1 The homotopy fibre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.2 The fibre sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3 The long exact homotopy sequence . . . . . . . . . . . . . . . . . . . . . . 73

6 Homotopy groups 74
6.1 Calculation of homotopy groups . . . . . . . . . . . . . . . . . . . . . . . . 74
6.2 The Blakers-Massey theorem and applications . . . . . . . . . . . . . . . . 77
6.3 Homotopy of classical groups . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.4 Quotients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.5 Proof of the Blakers-Massey theorem . . . . . . . . . . . . . . . . . . . . . 83

7 Diverse Constructions 87
7.1 The Ω∞Σ∞-construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.2 Simplicial sets, singular complex and geometric realization . . . . . . . . . 89
7.3 Simplicial spaces and classifying spaces of topological groups . . . . . . . . 94
7.4 Classification of principal bundles . . . . . . . . . . . . . . . . . . . . . . . 101
7.5 Topological abelian groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.6 Homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.7 Hurewicz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8 Aufgaben 120

2



1 Covering theory

1.1 Paths and path components

We let I := [0, 1] ⊂ R denote the standard interval with its induced topology.

Let Y be a topological space and y0, y1 ∈ Y be two points. A path in Y from y0 to y1 is
a map γ : I → Y such that γ(0) = y0 and γ(1) = y1.

We consider three points y0, y1, y2 ∈ Y . If γ is a path from y0 to y1 and µ is a path from
y1 to y2, then we can define a new path µ ◦ γ from y0 to y1 called the concatenation of
γ and µ. It is given by

(µ ◦ γ)(t) :=

{
γ(2t) t ∈ [0, 1/2)

µ(2t− 1) t ∈ [1/2, 1]
.

We say that y0 and y1 belong to the same path component of Y if there exists a path
from y0 to y1. The relation between points y0 and y1 of Y

y0 and y1 belong to the same path component of Y

is an equivalence relation on Y .

Problem 1.1. Show this assertion.

The equivalence classes with respect to this equivalence relation are called the path
components of Y . The set of path components will be denoted by π0(Y ). The symbol [y]
denotes the path component of Y which contains y. A space Y is called path-connected,
if π0(Y ) has at most one element.

Example 1.2. The standard interval I is path-connected.

Example 1.3. The space Rn is path connected.

Example 1.4. More generally, a manifold M is path connected if and only if the following
cohomological condition is satisfied:

dimRH
0
dR(M) ≤ 1 .

Problem 1.5. Show this assertion.

Problem 1.6. Show that for general topological spaces the condition of being path con-
nected is strictly stronger than the condition of being connected.
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Example 1.7. The subset Q ⊂ R with the induced topology is not path-connected.
Every path in Q is constant. In fact, Q 3 q 7→ [q] ∈ π0(Q) is a bijection.

Example 1.8. Let p ∈ N be a prime. Then the space of p-adic numbers Zp is not
path-connected. Again, every path in Zp is constant and Zp 3 x 7→ [x] ∈ π0(Zp) is a
bijection.

Example 1.9. If G is a topological group, then π0(G) is a group with operations defined
on representatives by

[g][h] := [gh] , g, h ∈ G .

For example,
π0(GL(n,R)) ∼= Z/2Z ,

where the isomorphism is given by the sign of the determinant.

Problem 1.10. Show this assertion

1.2 Lifting properties

We consider the following diagram of topological spaces:

A //

i
��

X

f

��
B

>>

// Y

.

We understand the bold part as given data.

If the dotted arrow exists for all choices of horizontal arrows, then we say that f has the
right lifting property (RLP) with respect to i or, equivalently, i has the left lifting
property (RLP) with respect to f . We add the adjective unique if the dotted arrow is
unique and abbreviate this by ULLP or URRP, respectively.

We now consider the lifting of paths.

Definition 1.11. A map of spaces f : X → Y has the (unique) path lifting property,
if it has the RLP (URLP) with respect to the inclusion of the beginning {0} → I of the
interval.

We spell this out. We consider the diagram

{0} x0 //

��

X

f

��
I

γ //

γ̃
==

Y

.
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In this situation the path γ̃ is called a lift of γ with beginning in x0 ∈ X.

The map f : X → Y has the (unique) path lifting property, if for every datum (γ, x0) as
above a (unique) lift γ̃ exists.

Example 1.12. Let X → Y be a real vector bundle over a smooth manifold Y . Then
X → Y has the path lifting property.

If the path is smooth, then a lift can be found using differential geometry. Indeed, one
can choose a connection and define γ̃ using the parallel transport along γ.

For continuous path we use Lemma 1.14.

Example 1.13. If f : X → Y is a smooth proper submersion between manifolds, then f
has the path lifting property.

For smooth paths the argument is similar as in Example 1.12 using a (non-linear) con-
nection. In order to lift continuous paths we observe that f : X → Y is a locally trivial
fibre bundle and apply Lemma 1.14.

The condition that f is proper can not be dropped. As a counterexample let f :
(−1, 1/2) → (−1, 2) be the inclusion. The path γ : I → (−1, 2) given by the obvious
inclusion has no lift with beginning in 0.

Lemma 1.14. A locally trivial fibre bundle f : X → Y has the path lifting property.

Proof. Let a diagram

{0} x0 //

��

X

f

��
I

γ //

γ̃
==

Y

be given. Then the image γ can be covered by a finite number of open subsets over which
the bundle is trivial. We can write the path γ as a multiple concatenation of paths which
are contained in such open subsets. Since we can concatenate the lifts as well, we can
reduce the problem to the case of a trivial bundle. We assume that X = Y ×F and write
x0 = (γ(0), f0). Then can define a lift by t 7→ γ̃(t) := (γ(t), f0). 2

If φ is a path in F starting in f0, then we can consider the lift t 7→ (γ(t), φ(t)). This
accounts for the non-uniqueness of the lift.

Definition 1.15. A locally trivial fibre bundle with discrete fibres is called a covering.

Example 1.16. Let X be a topological space an G be a group which acts freely and
properly on X. Then the projection X → X/G is a covering. More concrete examples of
coverings are
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1. Rn → T n ∼= Rn/Zn

2. S3 → L(p, q) ∼= S2/Zp (L(p, q) is the lense space)

3. Sn → RPn ∼= Sn/(Z/2Z)

Lemma 1.17. If f : X → Y is a covering, then f has the unique path lifting property.

Proof.

{0} x0 //

��

X

f

��
I

γ //

γ̃
==

Y

be given. As in the proof of Lemma 1.14 we can reduce to the case where the cover-
ing is trivial X = Y × F → Y for a discrete space F . The only way to lift γ is as
γ̃(t) := (γ(t), f0). 2

Remark 1.18. Note that the argument works if the fibre of f just has the property that
every path in it is necessarily constant. An example is Y × Zp → Y . Hence the unique
path lifting property does not imply that our map is a covering.

For a space A we consider URLP for the inclusion i0 : A → I × A induced by 0 ∈ I. A
map f : X → Y which has the URLP with respect to this map is said to have the unique
homotopy lifting property for A.

Lemma 1.19. A covering has the unique homotopy lifting property for all spaces.

Proof. We consider a diagram

A
h̃0 //

i0
��

X

f

��
I × A

h̃
;;

h // Y

.

For every a ∈ A we can define h̃|I×{a} using the unique path lifting property. It remains

to check that h̃ is continuous. This can be done locally. Using concatenation we reduce
to the case that f : Y × F → Y is the projection. But then h̃(t, a) = (h(t, a), prF h̃0(a)).
This map is obviously continuous. 2
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1.3 The fundamental groupoid

We consider a space X and a pair of points x0, x1 ∈ X. By Px0,x1(X) we denote the set
of all paths from x0 to x1. We say that two paths γ0, γ1 ∈ Px0,x1(X) are homotopic if
there exists a homotopy h filling the diagram

{0, 1} × I ∪ I × {0, 1}

��

(γ0tγ1)∪(x0tx1) // X

I × I

h

33hhhhhhhhhhhhhhhhhhhhhhhhhhh

.

Here the right vertical map is the inclusion of the boundary of the square ∂(I×I)→ I×I
and the upper arrow fixes the restriction of h at the boundary as indicated. In other words,
we have

h(i, t) = γi(t) , h(s, i) = xi

for i ∈ {0, 1} and s, t ∈ I.

Being homotopic is an equivalence relation on Px0,x1(X).

Problem 1.20. Show this assertion.

We let Πx0,x1(X) denote the set of equivalence classes [γ] of paths γ ∈ Px0,x1(X).

Given paths γ ∈ Px0,x1(X) and µ ∈ Px1,x2(X) we have the concatenation µ◦γ ∈ Px0,x2(X).
This path is obtained by running first through γ and then through µ, in double speed.
The concatenation induces a well-defined operation

◦ : Πx1,x2 × Πx0,x1 → Πx0,x2 .

Problem 1.21. Show this assertion.

Let ν ∈ Px2,x3(X) be a third path. The concatenation is not associative since in general

ν ◦ (µ ◦ γ) 6= (ν ◦ µ) ◦ γ .

Indeed, on the left γ is run through in fourfold speed, while on the right it is run through in
double speed. But the parametrizations of the sides are homotopic. Hence concatenation
is associative on the level of homotopy classes:

[ν ◦ (µ ◦ γ)] = [(ν ◦ µ) ◦ γ] .

Problem 1.22. Show this assertion.
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If γ−1 ∈ Px1,x0(X) denotes the path γ run in the opposite direction, and cx ∈ Px(X)
denotes the constant path at x, then we have the relations

[γ−1] ◦ [γ] = [cx0 ] , [γ] ◦ [γ−1] = [cx1 ] , [γ] ◦ [cx0 ] = [γ] = [cx1 ] ◦ [γ] .

Problem 1.23. Verify these equalities.

Recall that a groupoid is a small category in which all morphisms are invertible. The
upshot of the discussion above is that we have a groupoid, denoted by Π(X), whose
objects are the points of X, with set morphisms Πx0,x1(X) from x0 to x1, and with the
composition and identities given by concatenation of paths and the classes of constant
paths [cx].

Problem 1.24. Show this assertion.

Definition 1.25. The groupoid Π(X) is called the fundamental groupoid of X.

We have a category Groupoids whose objects are groupoids, and whose morphisms are
functors between groupoids. A map f : X → Y between topological spaces induces a
morphism of groupoids as follows:

Π(f) : Π(X)→ Π(Y ) , Π(f)(x) := f(x) , Π(f)([γ]) := [f ◦ γ] .

Problem 1.26. Show this assertion.

Let Top denote the category of topological spaces and continuous maps. We thus get a
functor

Π : Top→ Groupoids , X 7→ Π(X) .

Problem 1.27. Show this assertion.

Remark 1.28. The set of isomorphism classes of Π(X) can naturally be identified with
π0(X). We thus get a functor

π0 : Top→ Set .
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The category of groupoids is actually a 2-category. Namely, if C,D are groupoids,
then the set Fun(C,D) is the set of objects of the category of functors from C to D. The
morphisms in this category are natural isomorphism between functors. Besides the notion
of isomorphism of groupoids (a categorical concept of the 1-category of groupoids) we have
the 2-categorical concept of an equivalence between groupoids. A functor f : C → D is
an equivalence, if there exists a functor g : D → C such that f ◦ g is isomorphic to idD
in Fun(D,D), and g ◦ f is isomorphic to idC in Fun(C,C).

Let f0, f1 : X → Y be maps and H : I ×X → Y be a homotopy, i.e. a map fitting in the
diagram

{0, 1} ×X f0tf1 //

��

X

��
I ×X H // Y

.

Then H induces a natural isomorphism Π(H) : Π(f0)→ Π(f1) by

Π(H)(x) := [H|I×{x}] : Π(f0)(x)→ Π(f1)(x) , x ∈ Π(X) .

If f : X → X is homotopic to the identity, then Π(f) is isomorphic to the identity.
Consequently, Π maps homotopy equivalences between topological spaces to equivalences
between groupoids.

Proposition 1.29. Fill in the missing arguments.

Remark 1.30. In fact, one can refine the category Top to a 2-category where the objects
of the category of morphismsX → Y are continuous maps, and morphisms in this category
are homotopies. Then Π refines to a functor between 2-categories.

1.4 The fundamental group

Let X be a space and x ∈ X. We call the pair (X, x) a pointed space.

Definition 1.31. The fundamental group of (X, x) is the group of automorphisms of
x in Π(X), i.e.

π1(X, x) := Πx,x(X) .

A map of pointed spaces f : (X, x) → (Y, y) is a map of spaces such that f(x) = y. It
induces a homomorphism of groups

π1(f) : π1(X, x)→ π1(Y, y)
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by restriction of Π. Let Top∗ denote the category of pointed spaces and maps between
pointed spaces. We thus get a functor

π1 : Top∗ → Groups , (X, x) 7→ π1(X, x) .

Problem 1.32. Let i : Xx ⊂ X be the inclusion of the path component of x. Show that

π1(i) : π1(Xx, x)→ π1(X, x)

is an isomorphism.

The conjugation by a class [µ] ∈ Πx0,x1(X) induces an isomorphism of groups

π1(X, x0)→ π1(X, x1) , [γ] 7→ [µ][γ][µ−1] .

Therefore, if x0 and x1 belong to the same path component of X, then π1(X, x0) and
π1(X, x1) are isomorphic as groups, but the isomorphism may depend on the choice of a
homotopy class paths from x0 to x1. The isomorphism is unqiue up to an inner automor-
phism.

Corollary 1.33. If X is path-connected, then the group π1(X, x) is independent of the
choice of the base point x up to an inner automorphism.

A path connected space X is called simply connected, if π1(X, x) = 0 for one, and
hence for every choice of a base point x ∈ X.

Remark 1.34. In terms of the fundamental groupoid one can say that a space X is
connected iff Π(X) is empty or has only one isomorphism class of objects. In the latter
case we also say that Π(X) is connected. Furthermore, the space X is simply connected,
iff Π(X) is equivalent to the empty groupid or the final groupoid.

A space is called contractible, if there exists a point x ∈ X and a homotopy of maps
X → X from idX to the constant map with value x.

Problem 1.35. Show that a contractible space is simply connected.

Example 1.36. The space Rn is contractible and hence simply connected.
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Example 1.37. We consider the manifold S1. We observe that any class [γ] can be
represented by a smooth path γ, and that any two smooth representatives are homotopic
via a smooth homotopy. This is shown by smoothing the continuous paths or homotopies.

Let α ∈ Ω1(S1) be the normalized volume form and [α] ∈ H1
dR(S1) be its de Rham

cohomology class. Since de Rham cohomology is homotopy invariant, the following ho-
momorphism is well-defined:

π1(S1, 1)→ Z , [γ] 7→
∫
S1

γ∗[α] .

The integral yields an integer, since it computes the mapping degree of γ : S1 → S1. This
map is actually an isomorphism. We will show this fact later.

1.5 Coverings and representations of the fundamental groupoid

For a space Y we let Cov(Y ) denote the category of coverings of Y . The objects of
Cov(Y ) are coverings (f : X → Y ). A morphism of coverings

(f : X → Y )→ (f ′ : X ′ → Y )

is given by a map g : X → X ′ which preserves fibres, i.e. the diagram

X

f   @
@@

@@
@@

@
g // X ′

f ′~~}}
}}

}}
}}

Y

commutes. The goal of this subsection is to construct a functor

Φ : Cov(Y )→ Fun(Π(Y ),Set)

and to analyze when it is an equivalence of categories. We will call Fun(Π(Y ),Set) the
category of representations of the groupoid Π(Y ).

We start with the construction of the functor Φ. Let f : X → Y be a covering. Then
Φ(f) : Π(Y ) → Set is the representation which sends the object y ∈ Π(Y ) (i.e. a point
y ∈ Y ) to the set Φ(f)(y) := f−1(y), i.e. the fibre of f at y. Let now [γ] ∈ Πy0,y1(Y )
be a morphism. Then Π([γ]) : f−1(y0) → f−1(y1) sends the point x0 ∈ f−1(y0) to the
endpoint of the unique lift of γ with beginning in x0. Since a covering has the unique
homotopy lifting property, this endpoint is well-defined independently of the choice of the
representative of the homotopy class [γ].

Problem 1.38. Check that Φ(f) is a representation. Further check, that Φ is a functor.
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Under certain conditions we can reconstruct the covering f : X → Y . We assume that
Y is locally simply connected. This means, that every point y ∈ Y has a basis of
simply-connected neighborhoods. Under this assumption we construct a functor

Ψ : Fun(Π(Y ),Set)→ Cov(Y ) .

Let C ∈ Fun(Π(Y ),Set) be a representation of Π(Y ). Then we define the set

X :=
⊔
y∈Y

C(y) .

This is the candidate for the total space of the covering. It has a natural map f : X → Y .
It remains to define an appropriate topology on X so that this map becomes a covering.

For y ∈ Y let Uy be a simply-connected neighborhood. For every y′ ∈ Uy we have a
canonical isomorphism C(y′)→ C(y) induced by a the unique homotopy class paths from
y′ to y in Uy. We get a bijection

f−1(Uy) ∼= Uy × C(y) .

We equip X with the minimal topology such that the bijections f−1(Uy)→ Uy×C(y) are
continuous for all choices of y ∈ Y and Uy ⊆ Y as above. In order to show that X → Y is
a covering we must show that these bijections are homeomorphisms. They are continuous
by definition. We must check that the inverses are continuous as well. To this end we
show that the transition maps are given by a locally constant cocycle. For two points
y0, y1 we get a transition map

(Uy0 ∩ Uy1)× C(y0) ∼= f−1(Uy0 ∩ Uy1) ∼= (Uy0 ∩ Uy1)× C(y1)

of the form
(y, a) 7→ (y, φ(y, a)) .

Observe that φ = C([µ−1] ◦ [γ]), where [γ] is the unique homotopy class of paths from y0

to y in Uy0 and [µ] is the unique homotopy class of paths from y1 to y in Uy1 . It is easy
to check that this homotopy class [µ−1] ◦ [γ] ∈ Π(Y )y0,y1 is locally constant in y.

Problem 1.39. Give the details.

Consequently we get a locally trivial fibre bundle with discrete fibres.

We let Ψ(C) be the covering constructed above.

Problem 1.40. Extend the construction of Ψ to morphisms.

Problem 1.41. Show that Φ and Ψ are inverse to each other equivalences of categories.
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The upshot of this discussion is:

Proposition 1.42. If Y is a locally simply-connected space, then Φ induces an equivalence
of categories

Cov(Y ) ' Fun(Π(Y ),Set) .

Problem 1.43. Show that a map f : Y ′ → Y induces a functor

Cov(f) : Cov(Y )→ Cov(Y ′) , (X → Y ) 7→ (Y ′ ×Y X → Y ′) .

If f is a homotopy equivalence between locally simply-connected spaces, then Cov(f) is an
equivalence.

Example 1.44. The identity map Y → Y is a covering. The corresponding functor
Π(Y ) → Set is the constant functor which sends every point of Y to a point and every
morphism to the identity.

More generally, let F be a set and consider the trivial covering Y × F → Y . The
corresponding functor Π(Y )→ Set is the constant functor which sends every point of Y
to F and every morphism to the identity of F .

Assume that Y is locally simply-connected. Given a representation C ∈ Fun(Π(Y ),Set)
we consider a covering Ψ(C) ∈ Cov(Y ). It is then a natural problem to describe the
fundamental groupoid Π(Ψ(C)) in terms of C.

To this end we introduce the transport category T (C) of a representation C : G→ Set
of a groupoid G. The set of objects of T (C) is given by

⊔
g∈GC(g). Let g0, g1 ∈ G and

xi ∈ C(gi) for i = 0, 1. Then x0, x1 are objects of T (C). The sets of morphisms from x0

to x1 is defined by

HomT (C)(x0, x1) := {φ ∈ HomG(g0, g1) | C(φ)(x0) = x1} .

The composition is induced by the composition in G.

Problem 1.45. Show that T (C) is a well-defined groupoid.

Proposition 1.46. Assume that Y is locally simply-connected. For C ∈ Fun(Π(Y ),Set)
there is a natural isomorphism of groupoids

Π(Ψ(C)) ∼= T (C)) .
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Proof. By construction of Ψ we have a canonical bijection between the sets of objects of
T (C) and the points of Ψ(C). We extend this bijection to a functor A : T (C)→ Π(Ψ(C)).
So we must define the action of this functor on morphisms. For i = 0, 1 we consider
points yi ∈ Y and xi ∈ C(yi) ⊆ X. Let [γ] : x0 → x1 be a morphism in T (C). Then
[γ] ∈ Πy0,y1(Y ) is such that C([γ])(x0) = x1. Since Φ inverts Ψ we see that unique lift γ̃ of
γ to Ψ(C) with beginning in x0 has the end-point x1. Therefore we have [γ̃] ∈ Πx0,x1(X).
We set A([γ]) := [γ̃].

This construction is compatible with the composition.

The inverse functor B : Π(Ψ(C)) → T (C) maps [γ̃] ∈ Πx0,x1(X) to [γ] ∈ Πy0,y1(Y ). To
this end we observe that the path γ obtained by projecting γ̃ to Y really belongs to
HomT (C)(x0, x1).

Problem 1.47. Verify this.

2

1.6 Specialization to the fundamental group

If G is a groupoid, then we write π0(G) for the set of isomorphism classes of G. Note

that an equivalence H
∼→ G of groupoids induces a bijection π0(H)

∼=→ π0(G) between the
sets of their isomorphism classes. A groupoid G is called connected if for every pair of
objects g, g′ ∈ G the set HomG(g, g′) is not empty. Equivalently, the set π0(G) has at most
one element.

Example 1.48. The fundamental groupoid Π(Y ) of a space Y is connected if and only
if the space Y is path-connected. More generally we have a canonical bijection π0(Y ) ∼=
π0(Π(Y )).

We assume that G is a groupoid and g ∈ G is an object. Then we can consider the group
AutG(g) as a groupoid with one object g.

Lemma 1.49. If G is connected, then the natural morphism i : AutG(g) → G is an
equivalence of groupoids.

Proof. For every h ∈ G we choose a morphism uh : g → h in G such that ug = idg.
These choices provide a functor j : G → AutG(g) which sends every object of G to the
unique object g of AutG(g), and every morphism φ : h → h′ between objects of G to
uh′ ◦ φ ◦ u−1

h ∈ AutG(g). Then we have the equality j ◦ i = idAutG(g). Furthermore, an
isomorphism idG → i ◦ j is given by h 7→ (u−1

h : h→ g). 2
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For a group G we let GSet denote the category of sets with a (left)-action of G and
G-equivariant maps. The objects of GSet will be called G-sets. Viewing G as a groupoid
with one object we have canonical isomorphism of categories

GSet ' Fun(G,Set) .

Problem 1.50. Show this assertion.

We shall now use the following fact. If a : H → G is an equivalence of groupoids, then
the restriction map

a∗ : Fun(G,Set)→ Fun(H,Set)

is an equivalence of categories, too.

Problem 1.51. Show this assertion.

Assume that a : H → G is a morphism between groupoids. If C ∈ Fun(H,Set) is a
representation of H, then we shall define a functor between the transport categories

ã : T (a∗C)→ T (C) .

An object of T (a∗C) is given by an element x ∈ C(a(h)) for some h ∈ H. The functor
ã maps this object to the same element x which is now considered as an object of T (C)
over a(h). Let now xi ∈ C(a(hi)) for i = 0, 1 be two objects of T (a∗C) and φ : x0 → x1

be a morphism in T (a∗C). Then by definition φ : h0 → h1 is a morphism in H is such
that C(a(φ))(x0) = x1. The functor ã maps φ to a(φ).

Problem 1.52. Show that ã is a functor. Further show that for a second morphism
b : K → H between groupoids we have an isomorphism ã◦ b̃ ∼= ã ◦ b : T ((a◦b)∗C)→ T (C).

Let a, b : H → G be two morphisms and ρ : a→ b be a natural transformation. Note that
ρ associates to every h ∈ H a morphism ρ(h) : a(h)→ b(h) in G. Then we get a natural
isomorphism ρ̃ : T (a∗C) → T (b∗C) as follows. This transformation maps the object
x ∈ C(a(h)) of T (a∗C) to the object C(ρ(h))(x) ∈ C(b(h)) of T (b∗C). On morphisms ρ̃
is given by the identity.

Problem 1.53. Check details.

Problem 1.54. Conclude that an equivalence of groupoids a : H → G induces an equiv-
alence of transport categories ã : T (a∗C)→ T (C).
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From now on we consider a path-connected and locally simply-connected space Y with
basepoint y. In order to save notation we write π := π1(Y, y).

Corollary 1.55. If Y is a path-connected and locally simply-connected space, then we
have an equivalence

Φy : Cov(Y )
'→ πSet .

Proof. We compose the equivalences

Cov(Y )
'→ Fun(Π(Y ),Set)

'→ Fun(π,Set) ∼= πSet

given by Φ, restriction along π → Π(Y ) and the canonical identification. 2

We explain the functor
Φy : Cov(Y )→ πSet

explicitly. It sends the covering f : X → Y to the set Φy(f) := f−1(y). The action of
[γ] ∈ π1(Y, y) on this set sends x ∈ f−1(y) to the endpoint of the lift of γ with beginning
in x. On morphism this functor is defined in the obvious way.

1.7 Properties of coverings

In this subsection we translate properties of coverings to algebraic properties of the cor-
responding G-sets. Our standing hypothesis is that Y is a path-connected, locally-simply
connected space and y ∈ Y is a base-point. We abbreviate π := π1(Y, y).

Let S ∈ πSet and f : X → Y be the corresponding covering. By Problem 1.54 the
path groupoid of X is equivalent the transport category of the representation π → Set
corresponding to the π-set S. The objects of the latter transport category are just the
elements of S. The morphisms s → s′ are the elements g ∈ π such that gs = s′. Note
that we can identify f−1(y) ∼= S. We write πs ⊆ π for the stabilizer subgroup of s. We
immediately conclude:

Corollary 1.56. Assume that f : X → Y is a covering associated to the π-set S.

1. We have a natural bijection π\S ∼= π0(X) which sends the orbit of s ∈ S to the
path-component of the point s ∈ X.

2. We have an isomorphism π1(X, s) ∼= πs.

Proof. Indeed, π0(X) is in bijection with the connected components of the translation
groupoid of the representation S of π. This is just the set of π-orbits.

The fundamental group of X at the base point s is the automorphism of the point s con-
sidered as an object of the fundamental groupoid of X, hence of the translation groupoid
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of the representation S of π. The latter is exactly the stabilizer of the point s. 2

Note that π with the left-multiplication is a free and transitive π-set. Up to isomorphism
there is a unique transitive and free π-set. Such a π-set is also called a (left) π-torsor.
Indeed, if S is a π-torsor, then we fix a point s ∈ S and obtain an isomorphism of π-sets
π ∼= S by π 3 g 7→ gs ∈ S. The group of automorphisms of the π-set π is isomorphic to
π acting via right-multiplication.

Corollary 1.57. Up to isomorphism there is a unique connected and simply-connected
covering of Y . Its group of automorphisms is isomorphic to π.

We will call such a covering a universal covering of Y . The action of the automorphisms
of the universal covering will be conidered as a right-action of π.

We choose a universal covering Ỹ → Y . We can then construct a functor

ΨỸ : πSet→ Cov(X)

which associates to a π-set S the covering

Ỹ ×π S → Y .

On morphisms the functor is defined in the obvious way.

Lemma 1.58. The functor ΨỸ : πSet→ Cov(Y ) realizes an inverse equivalence to Φy.

Proof. Let S be a π-set. We consider the π-set π × S on which π acts only on the left
factor by left-multiplication. The group π then also acts on this π-set by automorphisms
via the right-action on π and the left-action on S. There is a natural isomorphism of
π-sets π ×π S → S given by [g, s] 7→ gs.

By Example 1.44 the covering associated to the π-set π × S is the covering Ỹ × S → Y
given by the projection to the first factor composed with the map Ỹ → Y . The group π
then acts on this covering by automorphisms via the right-action on Ỹ and the left action
on S. Since an equivalence of categories preserves quotients by actions by automorphisms
it is clear that the covering Ỹ ×π S → Y corresponds to the π-set π ×π S. 2

Let G be a group acting freely and properly from the right on a simply-connected and
locally simply-connected space X. We set Y := X/G. Then the natural projection
X → Y is a covering. Note that Y is connected, since it the image of a connected space.
Furthermore, since X is locally simply-connected and X → Y is a local homeomorphism,
Y is locally simply-connected, too.

Let y ∈ Y .

Corollary 1.59. The choice of a base-point x ∈ X over y determines an isomorphism
π1(Y, y) ∼= G.
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Proof. Let f : X → Y be the projection and note that this is a universal covering of Y .
The fibre f−1(y) is a torsor over the groups G and π1(Y, y). The choice of a base-point
x ∈ f−1(y) provides a trivialization of torsors and hence a bijection G ∼= f−1(y) ∼= π1(Y, y)
which maps g ∈ G to [γ] ∈ π1(Y, y) such that xg = x[γ]. One can check that this is a
homomorphism.

Problem 1.60. Fill in the details.

2

Corollary 1.59 allows to calculate the fundamental groups of some spaces.

Example 1.61. Note that Rn is simply-connected and locally simply-connected. The
group Zn acts freely and properly by translations and the quotient T n ∼= Rn/Zn is the
n-dimensional torus. Hence π1(T n, 0) ∼= Zn.

Example 1.62. We will see later (Example 1.71), that the n-dimensional sphere Sn is
simply connected for n ≥ 2. The group Z/2Z acts freely on Sn by the antipodal reflection.
The quotient RPn ∼= Sn/(Z/2Z) is the real projective space. Hence π1(RPn, x0) ∼= Z/2Z.

Example 1.63. We fix two two integers p, q such that (p, q) = 1. The group Z/pZ acts
on C2 by

[n](z1, z2) 7→ (e2πin
p z1, e

2πinq
p z2) .

This restricts to a free action on the unit sphere S3 ⊆ C2. The quotient L(p, q) ∼=
S3/(Z/pZ) is called a lens space. Hence π1(L(p, q)) ∼= Z/pZ.

Example 1.64. Let G be a semi-simple Lie group of non-compact type, e.g. SO(p, q)
for p, q ≥ 1 and K ⊂ G be a maximal compact subgroup. The quotient X := G/K is
called the symmetric space of G. It is a left G-manifold. Let g = k ⊕ p be the Cartan
decomposition of the Lie algebra of g. Then it is known that the exponential map of G
induces a diffeomorphism

p ∼= X , p 7→ exp(p)K .

If Γ ⊂ G is a torsion-free discrete subgroup, then Γ acts properly and freely on X. The
quotient Y := Γ\X is a locally symmetric space. We have π1(Y, y) ∼= Γ.

Problem 1.65. Let M be a connected smooth manifold. Show that M admits a universal
covering M̃ →M and that M̃ has a unique smooth manifold structure such that M̃ →M
is smooth.
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Assume that X → Y is a covering on which a group G acts by automorphisms from the
right such that X/G ∼= Y . Such a covering is called a Galois covering for the group G.

Example 1.66. The universal covering of Y is a Galois covering for the group π.

Under the equivalence Cov(Y ) ' πSet Galois coverings for G correspond to right G-
torsors S with a left action of π. An obvious example is given by a homomorphism
π → G where π acts on G via left-multiplication and the homomorphism, and G acts on
the right via right-multiplication.

Problem 1.67. Show that every G-torsor with an action π is isomorphic to one of this
form.

Connected Galois coverings correspond to right G-torsors on which π acts transitively.
Note that transitive π-sets are of the form π/H for the subgroup H ⊆ π. Let us calculate
the group of automorphisms of this π-set.

Let G be a group and H ⊆ G be a subgroup. Let NG(H) denote the normalizer of H in
G.

Lemma 1.68. We have an isomorphism AutGSet(G/H) ∼= H\NG(H).

Proof. An automorphism φ of the G-set G/H is fixed by the image φ(H) of the class
H. So there exists g ∈ G such that φ(H) = gH. Since φ is a map of G-sets we have
gH = φ(H) = φ(kH) = kφ(H)) = kgH for all k ∈ H. We get gH = HgH and hence
g ∈ NG(H). Note that the class gH = Hg is uniquely determined by φ. The action of φ
on G/H is best viewed as given by right-multiplication by the class Hg. 2

It is now clear that H\NG(H) acts transitively on G/H if and only if NG(H) = G, i.e.
H is normal.

Corollary 1.69. Assume that Z → Y is a connected Galois covering. Then it is of the
form Z ∼= Ỹ /H for a normal subgroup H ⊂ π and a universal covering Ỹ → Y . In this
case H ∼= π1(Z, z) and the Galois group of the covering Z → Y is the quotient H\π.

Proof. The connected Galois covering corresponds to a π-set π/H with H ∼= π1(Z, z) and
where H is normal. Then AutπSet(π/H) ∼= H\π is the Galois group. 2
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1.8 The analogy with Galois theory

In order to avoid the discussion of topological Galois groups we consider a field k whose
separable closure k̄ is a finite extension of k.
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Covering theory Galois theory

connected and locally simply connected space Y field k

connected covering X → Y separable field extension k → K

universal covering Ỹ → Y separable closure k → k̄

fundamental group π1(Y, y) Galois group Gal(k̄|k)

non-connected covering⊔
j

Xj → Y

for a collection of connected coverings Xj →
X

ring extension of the form

k →
∏
j

Kj

for a collection of field extensions k → Kj

correspondence between subgroups H ⊆
π1(Y, y) and intermediate coverings

Ỹ → X := Ỹ /H → Y

with π1(X) ∼= H

correspondence between subgroups H ⊆
Gal(k̄|k) and intermediate fields

k → K = k̄H → k̄

with Gal(k̄|K) ∼= H
correspondence between normal subgroups
H ⊆ π1(Y, y) and Galois coverings

X := Ỹ /H → Y

with

AutCov(Y )(X → Y ) ∼= π1(Y, y)/H

correspondence between normal subgroups
H ⊆ Gal(k̄|k) and field extensions

k → K = k̄H

with
Gal(K|k) ∼= H
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1.9 Van Kampen

The van Kampen theorem calculates the fundamental group of a pointed space in terms
of fundamental groups of the pieces of a decomposition into open subsets. It uses the
notion of a free product of a collection (Gα)α∈I of groups . The free product

G := ∗α∈IGα

is the coproduct of this collection of groups in the category Groups of groups. Therefore
it is a group together with homomorphisms Gα → G for all α ∈ I such that the restrictions
along these homomorphisms induce a bijection

HomGroups(G,H) ∼=
∏
α∈I

HomGroups(Gα, H)

for every group H. The free product has the following explicit description in terms of
generators and relations. An element in G can be represented as a word gr . . . g1 for some
r ∈ N, where gi ∈ Gαi for a collection α1, . . . , αr ∈ I. If αi = αi+1, then gr . . . (gi+1gi) . . . g1

represents the same element of G. Moreover, if gi = 1, then gr . . . gi+1gi−1 . . . g1 = gr . . . g1.
The group G can be considered as generated by the words as above subject to this type
of relations.

Let X be a topological space and x ∈ X be a base point. We consider a decomposition
X =

⋃
α∈I Uα into open subsets such that the multiple intersections Uα, Uα ∩ Uβ, and

Uα ∩ Uβ ∩ Uγ are path-connected for all α ∈ I, (α, β) ∈ I2, (α, β, γ) ∈ I3, respectively.
For the base point we assume x ∈

⋂
α∈I Uα.

Theorem 1.70 (van Kampen). The fundamental group π1(X, x) is given as the quotient
of the free product ∗α∈Iπ1(Uα, x) by the normal subgroup N generated by the elements
f−1
α (g)fβ(g) for all pairs (α, β) ∈ I2 and g ∈ π1(Uα ∩ Uβ, x), where fα : π1(Uα ∩ Uβ, x)→
π1(Uα, x) denotes the map induced by the inclusion Uα ∩ Uβ ↪→ Uα.

Proof. By the universal property of the free product the collection of homomorphisms
π1(Uα, x)→ π1(X, x) for all α ∈ I induces a homomorphism

φ̃ : ∗α∈Iπ1(Uα, x)→ π1(X, x) .

It is clear that
φ̃(f−1

α (g)fβ(g)) = φ̃(f−1
α (g))−1φ̃(fβ(g)) = 1

since g ∈ π1(Uα ∩ Uβ, x) is mapped to the same element under the two maps

Uα ∩ Uβ → Uα → X , Uα ∩ Uβ → Uβ → X .

Hence φ̃ factorizes through the quotient by N :

∗α∈Iπ1(Uα, x)
φ̃ //

��

π1(X, x)

∗α∈Iπ1(Uα, x)/N

φ
66

.
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We show that φ is surjective. Let [γ] ∈ π1(X, x). Then we can write the path γ as a finite
concatenation γr ◦ · · · ◦ γ1 of paths such that γi is a path in Uαi . We choose paths σi from
x to the endpoint of γi for i = 1, . . . , r − 1. We let σ0 and σr be the constant paths at x.
We get loops κi := σ−1

i ◦ γi ◦ σi−1 in Uαi . Then γ is homotopic to κr ◦ · · · ◦ κ1. Here we
use that the loop σi ◦ σ−1

i is homotopic to the constant path at the endpoint of γi. Hence
[γ] = φ̃([κr]) ◦ · · · ◦ φ̃([κ1]).

It remains to show that φ is injective.

An general element g in ∗α∈Iπ1(Uα, x)/N is represented by a word gr ◦ · · · ◦ g1 with
gi ∈ π1(Uαi , x) for a given sequence α1, . . . , αr. We call this a factorization of g. We call
another factorization of g related, if one of the following holds:

1. There is an index i such that αi = αi+1 and the other factorization is given by

gr ◦ · · · ◦ (gi+1gi) ◦ · · · ◦ g1 ,

2. There is an index i and h ∈ π1(Uαi ∩ Uβ, x) such that gi = fαi(h) and the other
factorization is obtained by replacing gi by fβ(h) and αi by β.

We consider the equivalence relation on factorizations generated by the relation related.
One easily checks that the first sort of relation accounts for the relation of factorizations
in the free product, and the second sort accounts for the quotient by N . In other words,
∗α∈Iπ1(Uα, x)/N is in bijection with the set of equivalence classes of factorizations.

We now consider two factorizations [γ] = [γr] ◦ . . . [γ1] and [γ′] = [γ′r′ ] ◦ . . . [γ′1] such that
φ([γ]) = φ([γ′]). Then there exists a homotopy h : I × I → X such that h(0, t) = γ(t),
h(1, t) = γ′. We can choose a partition 0 = s0 < s1 · · · < sm = 1 of I, for every
j = 0, . . . ,m− 1 a partition 0 = tj0 < tj1 · · · < tjrj = 1, and αji ∈ I such that the rectangle

Rji with corners (sj, t
j
i ), (sj, t

j
i+1), (sj+1, t

j
i+1), (sj+1, t

j
i ) is mapped to Uαji , and such that

the induced factorization of h|{0}×I is the factorization of γ, and the factorization of h|{1}×I
is the factorization of γ′. We can further arrange by shifting the tji slightly that every
corner belongs to at most three rectangles. For every corner (sj, t

j
i ) we choose a path

from h(sj, t
j
i ) to x inside the intersection of the at most three of sets Uαj′i′ which contain

the rectangles containing the corner. We use these paths to extend the restriction of h to
boundary faces of the rectangles to loops.

We count the rectangles lexicographically. We let uk be the factorized path in I2 from
(0, 0) to (1, 1) which separates the first k rectangles R1, . . . , Rk from the remaining. Then
h|u0 gives (after completing the interior pieces to loops) the factorization of γ, and h|uk
for sufficiently large k is the factorization of γ′. The path uk presents a factorization of
[γ] which depends on the choice of a suitable α ∈ I for every segment.

The transition from uk to uk+1 is given by sliding over Rk+1 On can check that this
transition replaces the factorizations by an equivalent one. First one replaces the choices
open subsets Uα for the boundary segments of the rectangle by an β ∈ I such that
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h(Rk+1) ⊂ Uβ. Using the second type of generators of the relation twice (for the horizon-
tal and the vertical boundary component) we check that we stay in the equivalence class
of factorization. Then we use the first type of generators relation in order to check that
sliding over fixes the equivalence class. 2

Example 1.71. We assume that n ≥ 2. We cover Sn by the complements U and V of the
north- and south pole. We pick a base point in the equator Sn−1. Then U∩V is homotopy
equivalent to Sn−1, and U and V are contractible. Since Sn−1 is path-connected we can
apply van Kampen’s Theorem. We conclude that π1(Sn) ∼= {1} ∗π1(Sn−1) {1} ∼= {∗}. In
other words, Sn is simply connected for n ≥ 2.

Example 1.72. For g, ` ∈ N we let Σg,` be an oriented surface of genus g and ` boundary
circles. In particular, Σ1,1 is the complement of a closed disc in the two-torus T 2, i.e.
Σ1,1
∼= T 2 \D2. If we represent T 2 as a square with sides identified appropriately and the

disc in the interior of the square, then we easily see that T 2 \D2 is homotopy equivalent
to the space obtained by removing the whole interior of the square. This is a wedge
of two circles S1 ∨1 S

1. They contribute generators a, b to the fundamental group. By
van Kampen π1(S1 ∨1 S

1, 1) ∼= π1(Σ1,1, ∗) is the free group in these two generators. The
boundary circle of Σg,` is the commutator [a, b] := aba−1b−1.

The free group in n generators will be denoted by Fn. Furthermore we use the notation

〈a1, . . . , as |R1, . . . , Rr〉

for the group generated by a1, . . . , as with the relations R1, . . . , Rr, where Ri are words
in the generators.

Example 1.73. For example

F2
∼= 〈a, b, c | [a, b]c〉 , Z2 ∼= 〈a, b | [a, b]〉

Example 1.74. We now calculate the fundamental groups of Σg,` for all g, ` ∈ N. We
start with Σ0,`. This is a closed disc with `− 1 small open discs removed. It is obviously
homotopy equivalent to a wedge of the ` − 1 boundary circles of the interior discs. We
let ci for i = 2, . . . , ` be the interior boundary circles run counter-clockwise, and c1 be the
exterior circle run clockwise. It follows that π1(Σ0,`) is generated by c1, . . . , c` with the
relation c` . . . c1 = 1. We claim that by induction that

π1(Σg,`) ∼= 〈a1, . . . , ag, b1, . . . , bg, c1 . . . , c` | [a1, b1] . . . [ag, bg]c` . . . c1〉 .
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As long as ` ≥ 1, this group is free in ai, bi and c2, . . . , c`−1. Indeed if we glue in Σ1,1 to Σg,`

along the `’th boundary circle, then we get Σg+1,`−1. In this process we add generators
ag+1, bg+1 and the relation c` = [ag+1, bg+1].

If ` = 0, then
π1(Σg,0) ∼= 〈a1, . . . , ag, b1, . . . , bg | [a1, b1] . . . [ag, bg]〉 .

This group is not free.

The fundamental groupoid and the fundamental groups behave well with respect to prod-
ucts. The isomorphisms below are induced by the the projection to the functors.

Problem 1.75. We have an isomorphism Π(X × Y ) ∼= Π(X)× Π(Y ).

Problem 1.76. We have an isomorphism π1(X × Y, (x, y)) ∼= π1(X, x)× π1(Y, y).

Example 1.77. For `, `′ ∈ N \ {0} we have

π1(Σ0,` × Σ0,`′) ∼= F` × F`′ .

This group is not free.

1.10 Flat vector bundles

We first recall some facts from the theory of vector bundles and connections. We consider
a smooth manifold M and a real vector bundle V →M . Let us fix a connection ∇ on V .
If γ is a smooth path, then we have a parallel transport along γ, a linear isomorphism

Pγ : Vγ(0) → Vγ(1)

from the fibre of V over γ(0) to the fibre of V over γ(1). Assume that µ is a second
smooth path starting in γ(1) which is such that the concatenation µ ◦ γ is smooth. Then
we have the identity

Pµ◦γ = Pµ ◦ Pγ .

If the connection is flat (i.e. its curvature R∇ := ∇2 vanishes), then the parallel transport
Pγ only depends on the smooth homotopy class of γ.

We let Π∞(M) be the version of the fundamental groupoid based on smooth paths which
are constant near the endpoints in order to have a smooth concatenation and smooth
homotopies. Then there is a natural morphism

Π∞(M)→ Π(M) .
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Fact 1.78. This morphism is an isomorphism.

Proof. To this end we must show that every continuous path is homotopic to a smooth
path which is constant near the endpoints, and that every continuous homotopy between
smooth paths can be replaced by a smooth homotopy. The arguments belong to the field
of differential topology and will not be given here. 2

In the following we will always assume that γ is a smooth representative of the morphism
[γ] ∈ Π(M)

A vector bundle with a flat connection will be called a flat vector bundle and denoted
by (V,∇). A morphism of flat vector bundles (V,∇V )→ (W,∇W ) is a morphism of vector
bundles φ : V → W which preserves the connections. Note that the two connections ∇V

and ∇W induce a connection ∇Hom(V,W ) on the bundle Hom(V,W ) → M . The condition
that φ preserves the connections is equivalent to ∇Hom(V,W )φ = 0. We form the category
BunflatR (M) of flat vector bundles on M and connection preserving bundle morphisms.

Let VectfinR be the category of finite-dimensional real vector spaces.

Corollary 1.79. A flat vector bundle induces a representation

Φ(V,∇V ) : Π(M)→ VectfinR , m 7→ Vm , [γ] 7→ Pγ .

This construction provides a functor

Φ : BunflatR (M)→ Fun(Π(M),VectfinR ) .

Problem 1.80. Verify the details.

Problem 1.81. If N →M is a smooth map, then we have a functor

f ∗ : BunflatR (M)→ BunflatR (N) .

Show that there is a natural equivalence between the two compositions in

BunflatR (M)
f∗ //

ΦM
��

BunflatR (N)

ΦN
��

Fun(Π(M),VectfinR )
Π(f)∗ // Fun(Π(N),VectfinR )

.
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Lemma 1.82. The functor

Φ : BunflatR (M)→ Fun(Π(M),VectfinR ) .

is an equivalence of categories.

Proof. We construct the inverse equivalence Ψ. It is similar to the construction of Ψ in
Subsection 1.5. Let C : Π(M)→ VectfinR be given. Then the underlying set of the total
space of the bundle Ψ(C) → M is

⊔
m∈M C(m). This set has a projection to M whose

fibres are real vector spaces C(m), m ∈ M . In order to define the manifold structure
we use the local trivializations as in Subsection 1.5. They are compatible with the R-
vector space structures on the fibres. The transition functions (y, a) 7→ φ(y, a) are locally
constant, and (a 7→ φ(y, a)) ∈ AutVectfinR

(C(y)). Hence we get a real vector bundle. It

has a unique connection which becomes the trivial connection in the trivializations used
in the constructions.

Problem 1.83. Complete the construction of Ψ and show that it can be used as an inverse
equivalence to Φ.

Let G be a group. Then RepfinR (G) denotes the category of representations of G on
finite-dimensional real vector spaces. We have an isomorphism of categories

RepfinR (G) ∼= Fun(G,VectfinR ) .

We now assume that M is connected and that m ∈ M is a base point. Then we get the
chain of equivalences

BunflatR (M) ' Fun(Π(M),VectfinR ) ' Fun(π1(M,m),VectfinR ) ∼= RepfinR (π1(M,m)) .

Corollary 1.84. If M is a connected manifold and m ∈M is a base point, then we have
an equivalence

Φy : BunflatR (M)
∼→ RepfinR (π1(M,m))

which associates to a flat vector bundle (V,∇) the representation of π1(M,m) on the fibre
Vm induced by the parallel transport called the holonomy representation.

We now describe the inverse equivalence ΨM̃ which depends on the choice of a universal
covering M̃ → M . Note that the universal covering is a manifold by Problem 1.65.
Let (ρ, U) be a representation of π := π1(M,m) on a finite-dimensional vector space U .
Then we define the vector bundle V := M̃ ×π U → M . The trivial connection on the
bundle M̃ ×U → M̃ is π-invariant and descends to the flat connection ∇V on V . We set
ΨM̃(ρ, U) := (V,∇V ).
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Problem 1.85. Fill in the missing details to show that ΨM̃ is an inverse equivalence to
Φy.

Example 1.86. We get a classification of flat vector bundles on S1. Note that π1(S1, 1) ∼=
Z. A representation ρ on a vector space U is uniquely determined by ρ(1). A representa-
tion ρ′ on the same vector space is isomorphic to ρ, if there exists g ∈ Aut

Vect
fin
R

(U) such

that gρ(1)g−1 = ρ′(1).

For a group G we let C(G) denote the set of conjugacy classes in G. We conclude that
there is a bijection

Bun
flat
R (S1)/iso ∼=

⊔
n∈N

C(GL(n,R)) .

For example, one-dimensional flat bundles are classified by the set R∗ ∼= C(Gl(1,R)).

Example 1.87. Note that for ` ≥ 1 we have

π1(Σg,`) ∼= F2g+`−1 .

Therefore flat n-dimensional vector bundles on a surface Σg,` are classified by the set

Gl(n,R)2g+`−1/Gl(n,R) ,

where Gl(n,R) acts diagonally by conjugation.

The set of flat n-dimensional vector bundles on Σg,0 is classified by

{(a1, . . . , ag, b1, . . . , bg) ∈ Gl(n,R)2g | [a1, b1] . . . [ag, bg] = 1}/Gl(n,R) ,

where Gl(n,R) again acts by conjugation on all factors.

For g = 1 this is the set of conjugacy class of pairs of commuting elements in Gl(n,R).

These sets have additional structures (topological spaces, singular varieties) and are very
interesting mathematical objects.

Problem 1.88. Let GL(n,R)δ be the group GL(n,R) equipped with the discrete topology.
Show that flat n-dimensional real vector bundles on M correspond to Galois coverings of
M for the group GL(n,R)δ.
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1.11 Lifting of maps

In this subsection we consider the following problem. Assume that we are given bold part
of the diagram

{z} x //

��

X

f

��
Z

g̃
==

g // Y

where X, Y, Z are path-connected and f is a covering. We are interested whether a lift g̃
exists.

Let x ∈ X be the image of the point z in X, and y := f(x) = g(z). If a lift exists, then
we have

π1(g) = π1(f) ◦ π1(g̃) : π1(Z, z)→ π1(Y, y) .

Hence a necessary condition for the existence of a lift g̃ is that

π1(g)(π1(Z, z)) ⊆ π1(f)(π1(X, x)) . (1)

Proposition 1.89. We assume that Z is locally path-connected. Then the lift g̃ exists if
and only if the condition (1) is satisfied. Furthermore, it is unique.

Proof. Let z1 ∈ Z. Since Z is path-connected we can choose a path γ in Z from z to z1.
We are forced to define x1 := g̃(z1) as the endpoint of the unique lift of the path f ◦ γ
with beginning in x. So uniqueness is clear. We must check that g̃(z1) is well-defined. We
choose a second path γ′ and obtain the endpoint x′1. Then σ := γ′,−1 ◦ γ is a loop at z
and x′1 = [g ◦ σ](x1). By assumption [g ◦ σ] ∈ im(π1(f)). But then the unique lift of g ◦ σ
with beginning in x is closed, hence x1 = x′1.

We now must show that the map g̃ is continuous. It suffices to show continuity near
each point of Z. Because of uniqueness of the lift we can thus assume that we consider
the point z. Since f is a covering we can find a neighborhood Uy ⊆ Y of y such that
f−1(Uy) ∼= Uy × F for a discrete set F . We let f ∈ F be such that x = (y, f) under this
homeomorphism. Since Z is locally path-connected we can now find a path-connected
neighourhood Uz ⊆ Z of z such that g(Uz) ⊂ Uy. Then the restriction of g̃ to Uz is given
by g̃(z′) = (g(z′), f) for all z′ ∈ Uz. This map is obviously continuous. 2

Example 1.90. If Z is a path-connected and locally simply-connected space, then the
lifting problem has a unique solution. For example, for n ≥ 2 the lifting problem

{N} x //

��

X

f

��
Sn

g̃
==

g // Y

has a unique solution for every covering f .
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Problem 1.91. Show that if the data of the lifting problem consists of smooth manifolds
and smooth maps, then the lift is smooth as well.

Example 1.92. We consider a path-connected and locally simply-connected topological
group G, e.g. a connected Lie group. Then the total space of its universal covering G̃→ G
is a group. To this end we fix a base point e ∈ G̃ over 1 ∈ G. This will be the identity of
the group structure. In order to define the multiplication we consider the diagram

{(e, e)} e //

��

G̃

f

��
G̃× G̃

g̃

55

// G×G mult // G

.

Since the product G̃×G̃ is path-connected and locally simply-connected, the map g̃ exists
and is unique.

Problem 1.93. Show that g̃ defines a group multiplication (verify associativity and the
existence of inverses).

If we apply this construction to the group SO(n) for n ≥ 3, then we obtain the spin group
Spin(n). It is known that π1(SO(n)) ∼= Z/2Z for n ≥ 3. Consequently, Spin(n)→ SO(n)
is a two-sheeted covering. Using Problem 1.91 and Problem 1.65 we see that Spin(n) is
a Lie group in a natural way.

2 Die Homotopiekategorie

2.1 Basic constructions

We let Top denote the category of topological spaces. Its objects are topological spaces.
The morphisms in Top are continuous maps.

The category Top has a cartesian product. The cartesian product of two topological
spaces X, Y ∈ Top is usually represented by the space X × Y whose underlying set is
the cartesian product of the underlying sets of X and Y , and the topology is the smallest
topology such that the projections to the factors are continuous.

The coproduct of two topological spaces X and Y is the disjoint union X t Y of topo-
logical spaces.

Problem 2.1. Check that these descriptions of products and coproducts are correct.
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The cartesian product and the coproduct are symmetric monoidal structures on Top.

We now assume that Y is a locally compact and Hausdorff topological space.

Remark 2.2. By definition, a space Y is locally compact, if every point y ∈ Y has a
compact neighborhood. If Y is in addition Hausdorff, then every point has a basis of
compact neighborhoods.

For a second topological space Z we can define a mapping space

Map(Y, Z) ∈ Top .

Its underlying set is the set HomTop(Y, Z) of continuous maps from Y to Z. Its topology is
the compact-open topology. A sub-basis {V (K,U)}(K,U) for compact-open topology
is indexed by pairs (K,U) of compact subsets K ⊆ Y and open subsets U ⊆ Z. The
corresponding subset of HomTop(Y, Z) is given by

V (K,U) := {φ ∈ HomTop(Y, Z) | φ(K) ⊆ U} .

Remark 2.3. We must convince ourselves that the subsets V (K,U) cover HomTop(Y, Z).
Thus let g ∈ HomTop(Y, Z), y ∈ Y and U ⊆ Z be an open neighborhood of g(y). Then
g−1(U) is an open neighborhood of y. Since we assume that Y is locally compact and
Hausdorff, there exists a compact neighborhood K of y such that K ⊆ g−1(U). Then
g ∈ V (K,U).

Lemma 2.4 (Exponential law). For topological spaces X, Y, Z such that Y is locally
compact and Hausdorff we have a natural bijection

HomTop(X × Y, Z) ∼= HomTop(X, Map(Y, Z)) .

More precisely, we have an adjunction of functors

· · · × Y : Top � Top : Map(Y, . . . ) (2)

which is in addition natural in Y .

Proof. Just considering the underlying sets we have a bijection between the sets ZX×Y

and (ZY )X which sends f : X × Y → Z to the map

g : X 3 x 7→ (Y 3 y 7→ f(x, y) ∈ Z) .

We must show that f is continuous if and only if g takes values in the set of continuous
maps from Y to Z and is continuous as a map from X this mapping space.
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Let us first assume that f is continuous. Then g(x) = f(x, . . . ) : Y → Z is continuous
for every x ∈ X. We fix a compact K ⊆ Y and an open U ⊆ Z. Then we must show that
g−1(V (K,U)) ⊆ X is open. Now

g−1(V (K,U)) = {x ∈ X | f({x} ×K) ⊆ U} .

Let x ∈ g−1(V (K,U)). We must show that there exists an open neighborhood Q ⊆ X
of x such that Q ⊆ g−1(V (K,U)). Since f is continuous, for every k ∈ K we find open
neighborhoods Wk ⊆ Y of k and Qk ⊆ X of x such that f(Qk ×Wk) ⊆ U . Since K is
compact, there is a finite subset I ⊆ K such that K ⊆

⋃
k∈IWk. Then Q :=

⋂
k∈I Qk is

an open neighbourhood of x and f(Q×K) ⊆ U . Hence Q ⊆ g−1(V (K,U)). We conclude
that g−1(V (K,U)) is open.

Let us now assume that g takes values in continuous maps and is continuous. We must
show that f is continuous. We fix an open U ⊆ Z. We fix (x, y) ∈ X × Y such that
f(x, y) ∈ U . We must find an open neighborhood Q × R ⊆ X × Y of (x, y) such
that f(Q × R) ⊆ U . We can choose a compact neighborhood K ⊆ Y of y such that
g(x) ∈ V (K,U), see Remark 2.3. Since g is continuous, there exists an open neighour-
hood Q ⊆ X of x such that g(Q) ⊆ V (K,U), in other words, f(Q × K) ⊆ U . We can
now choose an open neighborhood R ⊆ K of y. 2

Remark 2.5. In the proof above we have used that Y is locally compact and Hausdorff
in an essential way. Because of this restriction we can not say that Top is a closed
symmetric monoidal category. It is no solution to restrict the considerations to locally
compact Hausdorff spaces since e.g. the mapping space Map(I, I) between two compact
spaces is not locally compact. The solution is to consider the so-called convenient
category of compactly generated Hausdorff topological spaces Topc.

Problem 2.6. Assume that X and Y are Hausdorff and locally compact. Show that we
have a natural (in X, Y, Z) homeomorphism

Map(X, Map(Y, Z)) ∼= Map(X × Y, Z) . (3)

This uses the associativity of the cartesian product.

Problem 2.7. If Y is a locally compact Hausdorff space and Z is a topological space,
then the evaluation map

ev : Y × Map(Y, Z)→ Z

is continuous. Again deduce this from the exponential law formally.
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Problem 2.8. If X and Y are locally compact Hausdorff spaces and Z is a topological
space, then the composition

Map(Y, Z)× Map(X, Y )→ Map(X,Z)

is continuous.

Example 2.9. The free loop space LX of a space X is defined by

LX := Map(S1, X) .

Every collection of points t := (tα)α∈I in S1 gives an evaluation evt : LX → XI . The
group S1 acts on LX by

S1 × LX → X , (s, γ) 7→ (t 7→ γ(t− s) .

In order to see that this is continuous it is useful to write the action using the formal
properties of the mapping space. We start with the action of S1 on itself

a : S1 × S1 → S1 , (s, t) 7→ t− s .

It induces the action map via

S1×Map(S1, X)
idS1×a

∗

−−−−−→ S1×Map(S1×S1, X)
(3)∼= S1×Map(S1, Map(S1, X))

ev−→ Map(S1, X)

We have an inclusion i : X → LX which sends a point x ∈ X to the constant loop at x.
Its image is the set of fixed points of the action of S1.

The free loop space is an important object of study. In string theory for example, it
models the configurations of a string in X. The movement of a string in X is a path in
LX.

2.2 Pairs and pointed spaces

A pair of topological spaces (X,A) is a pair of a space X and a subspace A ⊆ X. A
morphism between pairs (X,A) → (Y,B) is a continuous map f : X → Y such that
f(A) ⊆ B. We let Top2 denote the category of pairs of topological spaces.

In particular, if A is just a point {x}, then we call (X, {x}) a pointed space and write
(X, x), or sometimes X, if the base point is understood implicitly. We let Top∗ denote
the category of pointed spaces. We have a functor

Top2 → Top∗ , (X,A) 7→ X/A ,
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where X/A is defined as the colimit of the diagram

A //

��

X

{∗}

.

Its base point is the image of ∗.

In the following we concentrate on the pointed case.

The cartesian product in the pointed case can be represented by

(X, x)× (Y, y) ∼= (X × Y, (x, y)) .

The coproduct of pointed spaces (X, x) and (Y, y) is given by the wedge product. It is
the space

(X, x) ∨ (Y, y) :=
X t Y
x t y

.

obtained from the disjoint union of X and Y by identifying the two base points x and y
to the new base point.

Problem 2.10. Check these assertions.

We consider pointed spaces. We discuss the process of taking quotients in stages. For
a morphism f : X → Y we use the notation Y/f(X) for the colimit of the push-out
diagram

X
f //

��

Y

{∗}

.

The following is an example. We will encounter similar situations occasionally. Let
i : A → X and j : B → X be morphisms between pointed spaces. Then we get a map
i ∨ j : A ∨B → X and an induced map p : X → X/i(A).

Lemma 2.11. We have an isomorphism

X

(i ∨ j)(A ∨B)
∼=

X/i(A)

(p ◦ j)(B)
.
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Proof. We consider the diagram

∗

��

// B

��
A //

��

A ∨B

��

i∨j // X

q

��
∗ // B

��

k // Z

��
∗ // Z/k(B)

.

We define Z by the condition that the middle right square is a push-out square. We ob-
serve that the middle left square is a push-out square, too. For this it is helpful to consider
the composition with the upper left square. The composition of the two middle push-out
squares is again a push-out square. Hence we can identify Z ∼= X/i(A) and q with the
projection map p. With this identification, k = p ◦ j and the lower right corner is isomor-
phic to (X/i(A))/(p◦j)(B). The composition of the two right push-out squares is again a
push-out square. Hence we can identify the lower right corner also with X/(i∨j)(A∨B). 2

We now assume that Y is locally compact and Hausdorff. We define

Map((Y, y), (Z, z)) ∈ Top∗

to be the subspace of Map(Y, Z) of maps which preserve the base point. The base point
of the mapping space is the constant map with value z.

We want that for locally compact and Hausdorff spaces Y the mapping space functor
Map((Y, y), . . . ) has a left-adjoint similarly as in the unpointed case (2). To this end
we observe that if g ∈ HomTop∗((X, x), Map((Y, y), (Z, z)), then g(x′)(y′) = z provided
(x′, y′) ∈ X × {y} ∪ {x} × Y . We are led to define the smash product between pointed
spaces by

(X, x) ∧ (Y, y) :=
X × Y

X × {y} ∪ {x} × Y
.

Lemma 2.12. If Y is locally compact and Hausdorff, then we have an adjunction

· · · ∧ (Y, y) : Top∗ � Top∗ : Map((Y, y), . . . )

which is natural in Y .

Proof. Exercise. 2
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Problem 2.13. Let (X,A) and (Z,C) be pairs of topological spaces. Assume that Z
is Hausdorff and locally compact and that C is a closed subspace. Then we have an
isomorphism

(X × Z)/(A× Z ∪X × C) ∼= (X/A) ∧ (Z/C)

in Top∗. This can formally be deduced from Lemma 2.12.

Lemma 2.14. The smash product induces a symmetric monoidal structure on Top∗.

Proof. Exercise. 2

Remark 2.15. The symmetric monoidal structure ∧ on Top∗ should not be confused
with the cartesian symmetric monoidal structure.

We have an adjunction
(. . . )+ : Top � Top∗ : F ,

where the functor (. . . )+ adds a disjoint base point, while the right adjoint F just forgets
the base point. The left adjoint functor is symmetric monoidal:

X+ ∧ Y+
∼= (X × Y )+ .

The right-adjoint is only lax-symmetric monoidal (where we take ∧ on the target):
There is a natural map

F(X, x)×F(Y, y)→ F((X, x) ∧ (Y, y)) .

In general, it is not an isomorphism.

Of course, as a right-adjoint, the functor F preserves the cartesian products, i.e. it is
symmetric monoidal if we take the cartesian structure on the target.

Example 2.16. For every n ∈ N we consider the sphere Sn∗ as based space by distin-
guishing the north pole. It is actually not important which point we choose as a base
point.

Problem 2.17. Show that for every two points x, y ∈ Sn there exists an isomorphism
(Sn, x) ∼= (Sn, y) in Top∗.

For every n ≥ 1 we have an isomorphism

In/∂In ∼= Sn∗ (4)

in Top∗.

Problem 2.18. Write down such an isomorphism explicitly.
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2.3 Suspension and loops

Let S1
∗ be the circle with base point {1} ∈ S1 ⊆ C. We define the suspension functor

Σ : Top∗ → Top∗ by
X 7→ ΣX := S1

∗ ∧X .

We further define the loop space functor

Ω : Top∗ → Top∗

by
ΩX := Map(S1

∗ , X) .

Lemma 2.12 implies:

Corollary 2.19. We have an adjunction

Σ : Top∗ � Top∗ : Ω .

Lemma 2.20. For every n ≥ 1 we have an isomorphism

Sn∗
∼= ΣSn−1

∗

in Top∗.

Proof. In this proof we use the isomorphisms (4).

Using S1
∗
∼= I/∂I we can represent the underlying space of ΣX as

ΣX =
I ×X

∂I ×X ∪ I × {x}
. (5)

Remark 2.21. Using the presentation (5) we can present points in ΣX by pairs (t, x′),
with t ∈ I and x′ ∈ X.

We now observe, again using Problem 2.13, that by induction

Σ(In−1/∂In−1) ∼= I/∂I ∧ In−1/∂In−1 ∼=
I × In−1

∂I × In−1 ∪ I × ∂In−1
∼= In/∂In .

Indeed,
∂In ∼= ∂I × In−1 ∪ I × ∂In−1 .

2

Problem 2.22. If G is a locally compact topological group, then we have a homeomor-
phism

LX ∼= ΩG×G .
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2.4 The homotopy category

For spaces X, Y ∈ Top we consider the following equivalence relation between morphisms
f, g ∈ HomTop(X, Y ):

f ∼ g - f und g are homotopic.

In detail, f and g are homotopic, if there exists a map H : I × X → Y such that
H|{0}×X = f and H|{1}×X = g.

Lemma 2.23. Homotopy is an equivalence relation.

Proof. Exercise. 2

Remark 2.24. If X is locally compact and Hausdorff, then we can consider f, g as points
in Map(X, Y ). In this case f ∼ g if an only if f and g can be connected by a path of maps.2

We write [X, Y ] for the set of equivalence classes of maps from X → Y . The composition
of maps preserves the equivalence relation so that we get a well-defined composition

[Y, Z]× [X, Y ]→ [X,Z] .

We form the homotopy category hTop whose objects are the objects of Top, and
whose morphism sets are given by HomhTop(X, Y ) := [X, Y ]. We have a natural functor

Top→ hTop , X 7→ X , HomTop(X, Y ) 3 f 7→ [f ] ∈ [X, Y ] = HomhTop(X, Y ) .

Problem 2.25. Verify this assertion.

The homotopy category has a cartesian product. In fact the cartesian product of spaces
X, Y ∈ hTop is represented by the product in Top. In particular, the functor Top →
hTop preserves cartesian products. A similar assertion holds true for coproducts.

Problem 2.26. Check these assertions.

A map X → Y is called a homotopy equivalence, if it represents an isomorphism in
hTop. If there exists a homotopy equivalence between X and Y , then X and Y are called
homotopy equivalent. We write X ' Y for the relation of being homotopy equivalence.
A homotopy type is an isomorphism class in hTop.
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We adopt similar notions for pointed spaces. A homotopy between maps f, g : (X, x) →
(Y, y) is a map

H : I+ ∧X → Y ,

which restricts to f and g at the endpoints of I, respectively.

Let C be any category. A functor F : Top → C is called homotopy invariant if
for any two morphisms f, g : X → Y in Top the relation f ∼ g implies that F (f) =
F (g) ∈ HomC(F (X), F (Y )). If F is a homotopy invariant functor, then it has a canonical
factorization

Top

��

F // C

hTop

<< ,

which will usually also denoted by F .

A similar remark applies to the pointed case.

Example 2.27. The functor π0 : Top→ Set is homotopy invariant and hence factorizes
as

Top

��

π0 // Set

hTop

;; .

Similarly, the functor π1 : Top∗ → Groups is homotopy invariant and hence factorizes
as

Top∗

��

π1 //Groups

hTop∗

99 .

Lemma 2.28. If Y is a space, then the functor · · · ∧ Y descends to a functor

· · · ∧ Y : hTop∗ → hTop∗ .

Similarly, if Y is locally compact and Hausdorff, then the functor Map(Y, . . . ) descends to
a functor

Map(Y, . . . ) : hTop∗ → hTop∗ .

Proof. We show that the functors

Top∗
···∧Y→ Top∗ → hTop∗ , Top∗

Map(Y,... )→ Top∗ → hTop∗

are homotopy invariant. We then get the required descended functors as canonical fac-
torizations.
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To this end it suffices to show that for homotopic maps f, g : X → Z we have f∧Y ∼ g∧Y
and Map(Y, f) ∼ Map(Y, g), respectively. Let H : I+ ∧X → Z be a homotopy. Then for
the first case H ∧ Y : I+ ∧X ∧ Y → Z ∧ Y is the required homotopy. For the second case
we use the homotopy

I+ ∧ Map(Y,X)→ Map(Y, I+ ∧X)
H∗→ Map(Y, Z) .

Here the first map in this composition sends (t, φ) to the map y 7→ (t, φ(y)). 2

Lemma 2.29. If the pointed space Y is locally compact Hausdorff, then we have an
adjunction

· · · ∧ Y : hTop∗ � hTop∗ : Map(Y, . . . ) .

Proof. For pointed spaces X,Z we have a bijection

HomTop∗(X ∧ Y, Z) ∼= HomTop∗(X, Map(Y, Z)) .

We must show that this bijection preserves the coondition of being homotopic. In-
deed, a homotopy H ∈ HomTop∗(I+ ∧ X ∧ Y, Z) corresponds bijectively to a homotopy

H̃ ∈ HomTop∗(I+ ∧ X, Map(Y, Z)). Therefore we have a natural bijection [X × Y, Z] ∼=
[X, Map(Y, Z)]. 2

Note that similar statements hold true for the unpointed case.

Corollary 2.30. We have an adjunction

Σ : hTop∗ � hTop∗ : Ω .

2.5 H and co-H-spaces

The main problem of homotopy theory is the calculation of the set [X, Y ] for spaces
X, Y ∈ Top, or the similar problem in the pointed case. In general, these sets are
extremely difficult to describe and the presence of some algebraic structures is very helpful.
In this subsection we discuss structures onX or Y which induce group structures on [X, Y ].

Example 2.31. If H is a topological group, then the set [X,H] has the structure of a
group with multiplication induced by pointwise multiplication of representatives. In order
to define a group structure on [X,H] we do not really need a topological group structure
on H, but a much weaker structure which we will discuss next.

Definition 2.32. An H-space is a pointed space (H, ∗) together with a multiplication map
µ : H ×H → H which turns ((H, ∗), [µ]) into a monoid object in hTop∗.
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Remark 2.33. In detail, this means that we have the associativity relation

µ(id× µ) ∼ µ(µ× id)

and the unit relation
µ(∗, . . . ) ∼ idH ∼ µ(. . . , ∗) .

A pointed space H represents a functor

[. . . , H] : hTopop∗ → Set , X 7→ [X,H] .

Similarly, an H-space H represents a functor

[. . . , H] : hTopop∗ →Monoids .

The underlying set-valued functor is defined as above. The multiplication is given by

[X,H]× [X,H] ∼= [X,H ×H]
µ∗→ [XH] .

Finally, the unit of the monoid structure on [X,H] is induced by the base point ∗ =
[X, ∗]→ [X,H] of the H-space.

An H-space is called group like if the functor [. . . , H] takes values in groups. It is called
commutative, if [. . . , H] takes values in commutative monoids.

Example 2.34. A topological group is naturally a group-like H-space.

A morphism between H-spaces is a map between pointed spaces which induces a natural
transformation of monoid-valued functors. We get a category of H-spaces. In partic-
ular we have a notion of an isomorphism of H-spaces. We say that two H-spaces a
equivalent if the are isomorphic monoid objects in hTop.

Problem 2.35. Verify the following assertions: Up to isomorphism, to give an H-space
structure on a space H is the same as to give a group structure on the functor [. . . , H].

Lemma 2.36. For X ∈ Top∗ the loop space ΩX is a group-like H-space with the operation
given by concatenation of loops.
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Proof. Exercise. 2

For a pointed space X we can consider the double loop space Ω2X. It has two H-space
structures + and ∗. The first one is the structure on the loop space Ω(ΩX). The second
one is given by

Ω2(X)× Ω2(X) ∼= Ω(Ω(X))× Ω(Ω(X))
Ωµ→ Ω2(X) .

For the first equivalence we use that Ω commutes with products since it is a right-adjoint.

Lemma 2.37. The two H-space structures are isomorphic. Furthermore, they are both
abelian.

Proof. We use the identification Ω2X = Map(I2/∂I2, X) and represents elements in Ω2X
by maps I2 → X mapping the boundary to the base point. Given elements a, b, c, d ∈ Ω2X
we can define a map I2/∂I2 → X described by

b d
a c

.

The two H-spaces structures + and ∗ are the horizontal and vertical composition. We
immediately read off:

(a ∗ b) + (c ∗ d) = (a+ c) ∗ (b+ d) . (6)

The Eckmann-Hilton argument gives + = ∗, and that both structures a commutative.
2

Remark 2.38. On could ask if every group-like H-space is equivalent to a loop space.
This is not the case. The H-space structure of a loop space is not just associative up to
homotopy, but these homotopies satisfy an infinite chain of higher coherence conditions.

If H is an H-space with these additional higher homotopies given, then we can construct
a so-called a classifying space BH together with a map of H-spaces H → ΩBH. If H is
group-like then this morphism is an equivalence of H-spaces. 2

Let X, Y be a pointed spaces. By Corollary 2.30 we have the natural bijection

[ΣX, Y ] ∼= [X,ΩY ] .

Therefore the suspension ΣX represents a functor

[ΣX, . . . ] : Top∗ → Groups .
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The multiplication must be (see Problem 2.35 for the dual statement) corepresented by a
comultiplication map

δ : ΣX → ΣX ∨ ΣX .

Indeed, we have a map

[ΣX ∨ ΣX,ΣX ∨ ΣX] ∼= [ΣX,ΣX ∨ ΣX]× [ΣX,ΣX ∨ ΣX]→ [ΣX,ΣX ∨ ΣX] ,

where the first given by the universal property of the coproduct ∨ in pointed spaces, and
the second is the multiplication. The comultiplication map δ is the image of idΣX∨ΣX

under this composition. This is a co-H-space structure.

Definition 2.39. A co-H-space is a pointed space (H, ∗) together with a comultiplication
map δ : H → H ∨H which turns ((H, ∗), [δ]) into a comonoid object in Top∗.

Remark 2.40. In detail, this means that we have the associativity relation

(id ∨ δ)δ ∼ (δ ∨ id)δ ,

the unit relation
pr0 ◦ δ ∼ idH ∼ pr2 ◦ δ .

A pointed space H corepresents a functor

[H, . . . ] : hTop∗ → Set∗ , X 7→ [H,X] .

Similarly, a co-H-space corepresents a functor

[H, . . . ] : hTop∗ →Monoids .

The operation on [H,X] is given by

[H,X]× [H,X] ∼= [H ∨H,X]
δ∗→ [H,X] .

A morphism between co-H-spaces is a map of pointed spaces which induces a morphism
of comonoids in the homotopy category. We again get a category of co-H-spaces and a
corresponding notion of isomorphism. Similarly as in Problem 2.35, up to isomorphism, a
co-H-space structure on a pointed spaces H is determined by a monoid structure on the
functor [H, . . . ] : hTop∗ →Monoids.
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Example 2.41. For a pointed space we already know that ΣX has a co-h-space which
is uniquely determined up to isomorphism

We represent points in ΣX by pairs (t, x) ∈ I ×X. Explicitly, the coproduct is given by

(t, x) 7→
{

(2t, x) left copy of the wedge t ∈ [0, 1/2)
(2t− 1, x) right copy of the wedge t ∈ [1/2, 1]

A co-H-space is called cogroup like if the functor [H, . . . ] takes values in groups. It is
called cocommutative, if [H, . . . ] takes values in commutative monoids.

Example 2.42. For a pointed space X the co-H-space ΣX is cogroup like.

For a space X we can consider the double suspension Σ2X. It has two co-H-space struc-
tures.

Lemma 2.43. The two co-H-space structures are equivalent. Furthermore, they are both
abelian.

Proof. This is similar as Lemma 2.37. 2

Definition 2.44. Let (X, x) ∈ Top∗. For n ∈ N we define the set

πn(X, x) ∼= [Sn∗ , (X, x)] .

with the following structures:

1. n = 0: π0(X, x) is a pointed set with base point represented by the constant map.

2. n = 1: π1(X, x) is a group with structure induced via

[S1
∗ , X] ∼= [ΣS0

∗ , X] .

and the co-H-space structure on ΣS0
∗ .

3. n ≥ 2: πn(X, x) is an abelian group with structure induced via

[Sn∗ , X] ∼= [Σ2Sn−2
∗ , X]

and the co-H-space structure on Sn−2
∗ .

For i ≥ 2 the abelian groups πi(X, x) are called the higher homotopy groups of X.
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We get induced functors

πi : hTop∗ →


Set∗ i = 0

Groups i = 1
Ab i ≥ 2

.

Note that by Lemma 2.20 and Corollary 2.19 we have

πn(X, x) ∼= [Sn∗ , X] ∼= [ΣnS0
∗ , X] ∼= [S0

∗ ,Ω
nX]

and that we can induce the group structures from the H-space structures on ΩnX.

Definition 2.45. A map f : X → Y between spaces is called a weak equivalence if it
induces isomorphisms after applying πi(X, x)→ πi(Y, f(x)) for all i ∈ N and x ∈ X.

If X → Y is a homotopy equivalence, then clearly it is a weak equivalence.

Problem 2.46. Check this assertion.

Remark 2.47. The converse is not true. To this end we introduce a class of nice spaces
called CW -complexes. It will turn out that if we restrict to the class of CW -complexes,
then weak homotopy equivalence is a homotopy equivalence.

3 Cofibre sequences

3.1 The mapping cone

Let f : X → Y a map between spaces. We define the quotient Y/f(X) by the push-out

X
f //

��

Y

��
∗ // Y/f(X)

.

In general, the homotopy type of Y/f(X) is not an invariant of the homotopy class of the
map f .

Example 3.1. The inclusion of f0 : S0 → [0, 1] as boundary is homotopic to the constant
map f1 : S0 → [0, 1] with value {0}. But [0, 1]/f0(S0) ∼= S1 while [0, 1]/f1(S0) ∼= [0, 1]
and S1 6' [0, 1].
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The mapping cone C(f) of f is a homotopy invariant replacement of the quotient Y/f(X).
In good cases it will be homotopy equivalent to this space.

Definition 3.2. The mapping cone C(f) of f is defined as the push-out

{0} ×X t {1} ×X
ptf◦prX //

��

∗ t Y
i
��

[0, 1]×X j // C(f)

.

Here p : {0}×X → ∗ is the canonical map. The mapping cone has a base point given by
the image of ∗. It comes with an inclusion i : Y → C(f).

Remark 3.3. A description of the mapping cone of f in words is as follows. One first
attaches Y to [0, 1] × X by identifying the points (1, x), x ∈ X with f(x) ∈ Y . The
resulting space is also called the mapping cylinder Z(f) of f . Then one contracts the
subset {0} ×X ⊂ Z(f) to the base point.

In the pointed category we adopt a similar definition using the corresponding notions of
products and coproducts. Using the smash product we get a simplified formula

X
f //

1
��

Y

i
��

[0, 1] ∧X j // C(f)

.

Here 0 ∈ [0, 1] is the base point.

Example 3.4. The mapping cone of the identity C(X) := C(idX) (in the unpointed
case) is homeomorphic to [0, 1] ×X/{0} ×X. It is a contractible space called the cone
over X. A contraction to the base point is given by

[0, 1]× C(X) 3 (s, [t, x]) 7→ [(1− s)t, x] ∈ C(X) .

In terms of the cone over X we can describe the mapping cone of a map f : X → Y as
the push-out

X
f //

1
��

Y

i
��

C(X) // C(f)

.

We use this description in order to denote points in C(f) by [t, x] ∈ C(X) with t ∈ I and
x ∈ X and y ∈ Y .
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Example 3.5. In the pointed case the mapping cone of the inclusion of the base point
∗ → X is homeomorphic to X.

Remark 3.6. For a map f : X → Y between based spaces the quotient Y/f(X) is
characterized by the following universal property: For every based test space T to give a
map φ : Y/f(X)→ T is the same as to give a map φ̃ : Y → T such that the composition
h ◦ f is the constant map.

The mapping cone has a similar universal property: For every test space T to give a
map φ : C(f) → T is the same as to give a map φ̃ : Y → T together with a homotopy
h : [0, 1]×X → T from the constant map to the composition f ◦ φ̃. For an argument see
also the proof of Lemma 3.12 below. 2

Let f : X → Y be an embedding of a subspace. We consider Y/X := Y/f(X) as a based
space. Then we have a natural map of pointed spaces

p : C(f)→ Y/X ,

{
[t, x] 7→ ∗ on C(X)
y 7→ [y] on Y

(7)

We ask when this map is a homotopy equivalence.

Definition 3.7. We call a subspace f : X ↪→ Y a neighbourhood deformation re-
tract (NDR) if there exist the following data:

1. a neighbourhood f̃ : U ↪→ Y together with a retraction r : U → X (i.e. r|X = idX),

2. a homotopy H : I × U → U from f ◦ r to idU ,

3. a function χ ∈ C(Y ) such that χ|X = 0 and χ|Y/U = 1.

Lemma 3.8. If f : X ↪→ Y is a NDR , then the canonical projection p : C(f)→ Y/X is
a homotopy equivalence.

Proof. We define a homotopy inverse q : Y/X → C(f) as follows:

q([y]) :=


[2χ(y), r(y)] in C(X) y ∈ U , χ(y) < 1/2

H(2χ(y)− 1, y) in Y y ∈ U , χ(y) ≥ 1/2

y in Y y ∈ Y \ U

Then we have

p ◦ q([y]) =


[y] y ∈ Y \ U

[H(2χ(y)− 1, y)] y ∈ U, χ(y) ≥ 1/2

∗ y ∈ U , χ(y) < 1/2

.
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A homotopy from the identity to p ◦ q is given by

(s, [y]) 7→

{
[y] y ∈ Y \ U

[H(s(2χ(y)− 1) + (1− s), y)] y ∈ U ,
,

where we define H(s, y) := r(y) for s < 0.

Here is the description of the homotopy from q ◦ p to the identity. We distinguish four
types of points.

1. y for y ∈ Y \ U : The homotopy fixes these points.

2. y for y ∈ U and χ(y) ≥ 1/2: The homotopy is the path s 7→ H((1− s)(2χ(y)− 1) +
s, y) in Y .

3. y for y ∈ U and χ(y) < 1/2: The homotopy is the concatenation of the path
s 7→ [(1−s)2χ(y)+s, r(y)] in C(X) and the path s 7→ H(s, y) in Y . Here we rescale
the paths such that for the first part we need the time 2(1/2 − χ(y)) and the rest
of the time is used for the second part.

4. [t, x] in C(X): The homotopy is the path [ts, x] in C(X).

Problem 3.9. Show that this really defines the desired homotopy.

2

Example 3.10. Let X be a space and Y := X ∪Sn−1 Dn be obtained by attaching an
n-cell along the boundary. More precisely, Y is defined as the push-out

Sn−1 //

��

Dn

��
X // Y

.

Then the embedding X → Y is an NDR, see Definition 3.7.

Indeed, X is a deformation retract of the neighbourhood U := X ∪Sn−1 (Dn \ {0}). The
retraction is induced by the map

Dn−1 \ {0} → Sn−1 , u 7→ u

‖u‖
.

The homotopy is induced by [0, 1]× (Dn \ {0}) 3 (t, u) 7→ tu+ (1− t) u
‖u‖ .

The function χ : Y → [0, 1] is induced by the universal property of the push-out by the
functions u 7→ 1− ‖u‖ on Dn and 0 on X.

Note that Y/X ∼= Dn/Sn−1 ∼= Sn. So in this case C(X → Y ) ' Sn.
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3.2 The mapping cone sequence

We call
X

f→ Y
i→ C(f)

the mapping cone sequence of f .

Definition 3.11. A sequence of maps between pointed sets

(A, a)
φ→ (B, b)

ψ→ (C, c)

is called exact if ψ−1(c) = φ(A).

Let (Z, z) be a pointed space. For any space X the set [X,Z] of homotopy classes of maps
from X to Z is pointed by the constant map to the base point.

Lemma 3.12. The mapping cone sequence

X
f→ Y

i→ C(f)

induces an exact sequence of maps between pointed sets

[(C(f), ∗), (Z, z)]
i∗→ [Y, Z]

f∗→ [X,Z] .

Proof. Let [u] ∈ [Y, Z]. The condition that f ∗[u] ∈ [X,Z] is the base point is equivalent
to the existence of map H : [0, 1]×X → Z such that H|{1}×X = u ◦ f and H{0}×X is the
constant map to z. The datum of H and u together, by the universal property of the
push-out, is equivalent to a map of based spaces h : (C(f), ∗) → Z such that h ◦ i = u
and h ◦ j = H. So in particular [u] = i∗[h].

On the other hand, if [h] ∈ [(C(f), ∗), (Z, z)], then H := h ◦ j : [0, 1] × X → Z is a
homotopy from the constant map with value z to the composition h ◦ i ◦ f . This implies
that f ∗i∗[h] is the base point of [X,Z].

2

There is an analog of this Lemma in the based case. Assume that f : (X, x) → (Y, y) is
a map of based spaces.

Lemma 3.13. The mapping cone sequence

(X, x)
f→ (Y, x)

i→ (C(f), ∗)
induces an exact sequence of maps between pointed sets

[(C(f), ∗), (Z, z)]
i∗→ [(Y, y), (Z, z)]

f∗→ [(X, x), (Z, z)] .

2
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3.3 Functoriality properties of the mapping cone

We consider the category ∆1 := (• → •). For any category C we let

C∆1

:= Fun(∆1,C)

be the category of morphisms in C. In explicit terms, its objects are morphisms
f : X → Y between objects of C, and its morphisms

(φ, ψ) : (f : X → Y )→ (f ′ : X ′ → Y ′)

are commutative squares

X
f //

φ
��

Y

ψ
��

X ′
f ′ // Y ′

.

Let (f : X → Y ) ∈ Top∆1

be a morphism in Top. We consider the map i : Y → C(f) as

an object of Top∆1

.

Lemma 3.14. The mapping cone construction can be considered as a functors

C : Top∆1 → Top∆1

, C : Top∆1

∗ → Top∆1

∗ .

Proof. Exercise. 2

In the following we consider the unpointed and pointed cases simultaneously. Let Z be
a space. If f : X → Y is a morphism, then we can form Z × f : Z × X → Z × Y , or
Z ∧ f : Z ∧X → Z ∧ Y in the pointed case.

Lemma 3.15. There a natural isomorphisms

C(Z × f) ∼= Z+ ∧ C(f) , C(Z ∧ f) ∼= Z ∧ C(f) .

Proof. Exercise. 2

There is a natural notion of a homotopy between morphisms in Top∆1

or Top∆1

∗ .

Corollary 3.16. On morphisms the cone functor preserves homotopies.
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We consider again a square

X
f //

φ
��

Y

ψ
��

X ′
f ′ // Y ′

.

We say, that it commutes up to a distinguished homotopy H if we are given a
homotopy H : f ′ ◦ φ ∼ ψ ◦ f . We consider the datum (φ, ψ,H) as a sort of generalized
morphism from f to f ′.

For a commuting square we can take the constant homotopy.

Lemma 3.17. Assume

(φ, ψ,H) : X
f //

φ
��

Y

ψ
��

X ′
f ′ // Y ′

is a generalized homomorphism. Then we get a canonical commutative diagram

Y

ψ

��

i // C(f)

C(φ,ψ,H)

��
Y ′ // C(f ′)

. (8)

Proof. Let H : [0, 1]×X → Y ′ be the homotopy f ′ ◦ φ ∼ ψ ◦ f . We define a map

C(φ, ψ,H) : C(f)→ C(f ′)

by

C(X) 3 [t, x] 7→

{
[2t, φ(x)] in C(X ′) t ∈ [0, 1/2]

H(2t− 1) in Y ′ t ∈ (1/2, 1]
∈ C(f ′)

and

Y 3 y 7→ ψ(y) in Y ′ .

2

Lemma 3.18. The functor map (φ, ψ,H) 7→ C(φ, ψ,H) preserves homotopies.

Proof. Exercise. 2
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There is a natural way to compose generalized morphisms (φ, ψ,H) : f → f ′ and
(φ′, ψ′, H ′) : f ′ → f ′′ between maps by putting one square on top of the other and
concatenating (we use the symbol ]) the homotopies to the new homotopy

(H ′ ◦ φ)](ψ′ ◦H)

Lemma 3.19. The maps C(φ, ψ,H) ◦ C(φ′, ψ′, H ′) and C(φ ◦ φ′, ψ ◦ ψ′, H ◦ H ′) are
homotopic.

Proof. Exercise. 2

A generalized morphism

(φ, ψ,H) : (f : X → Y )→ (f ′ : X ′ → Y ′)

is a homotopy equivalence if there exist a morphism

(φ′, ψ′, H ′) : X ′ → Y ′)→ (f : X → Y )

such that the two obvious compositions are homotopic to the identity morphisms.

Corollary 3.20. If (φ, ψ,H) is a homotopy equivalence, then C(φ, ψ,H) is a homotopy
equivalence.

The following Lemma shows that for a generalized morphism (φ, ψ,H) the condition of
beeing a homotopy equivalence only depends on φ and ψ, but not on the homotopy H.

Lemma 3.21. Consider a square

X
f //

φ
��

Y

ψ
��

X ′
f ′ // Y ′

which commutes up to the distinguished homotopy H and assume that φ and ψ are homo-
topy equivalences. Then C(φ, ψ,H) is a homotopy equivalence.

Proof. We can choose homotopy inverses φ′ and ψ′. Then the square

X ′
f ′ //

φ′

��

Y ′

ψ′

��
X

f // Y
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commutes up to some homotopy H ′. In order to define H ′ we first choose homotopies
idY ∼ ψ′ ◦ ψ and φ ◦ φ′ ∼ idX . Then we get the desired homotopy H ′ as the following
concatenation of homotopies between maps X ′ → Y

f ◦ φ′ ∼ ψ′ ◦ ψ ◦ f ◦ φ′ H∼ ψ′ ◦ f ′ ◦ φ ◦ φ′ ∼ ψ′ ◦ f ′ .

Problem 3.22. We leave it as an exercise to check that the square (φ′, ψ′, H ′) is a ho-
motopy inverse of (φ, ψ,H).

2

3.4 The long mapping cone sequence

We now restrict to the pointed case. If we consider the mapping cone construction C as
an endofunctor of Top∆1

∗ then we can iterate it. Given a map between pointed spaces
f : X → Y we define f (k) := Ck(f). We get a sequence of pointed spaces

P(f) : X
f (0)→ Y

f (1)→ C(f (0))
f (2)→ C(f (1))

f (3)→ . . . .

It will also be called the long mapping cone sequence or Puppe sequence. For a pointed
space (Z, z) we get a long exact sequence of sets

[P(f), (Z, z)] .

At a first glance the iterated mapping cones seem to become increasingly more compli-
cated. But the opposite is the case as we shall see now.

We can extend the mapping cone sequence of f by

X
f→ Y

i→ C(f)
k→ C(i) .

There exists a natural map
q : C(f)→ ΣX

which is induced by the map of push-out diagrams

X
f //

1
��

Y

i
��

C(X) // C(f)

→ X
f //

1
��

∗
i

��
C(X)

j // ΣX

.
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Lemma 3.23. There exists a homotopy equivalence a : C(i)
∼→ ΣX such that

C(f) k // C(i)

a

��
C(f)

q // ΣX

commutes.

Proof. In order to understand C(i) we recall its definition

Y
i //

1
��

C(f)

k
��

C(Y ) // C(i)

.

A good way to imagine C(i) is as the space obtained by glueing a cone over X with a
cone over Y along their bases using the map f , i.e. C(i) ∼= C(X) ∪f :X→Y C(Y ). We call
these subspaces the left and right summands.

We write points in C(i) as [t, x] (in the left summand) or [t, y] (in the right summand)
with t ∈ [0, 1] and x ∈ X and y ∈ Y such that [1, x] = [1, f(x)].

We define the map
a : C(i)→ ΣX

such that it is the projection C(X) → ΣX on the left summand and the projection
C(Y )→ ∗ on the right summand.

An inverse map is given by

b : ΣX → C(i) , [t, x] 7→
{

[2t, x] left summand t ∈ [0, 1/2]
[2− 2t, f(x)] right summand t ∈ [1/2, 1]

. (9)

Then the composition a ◦ b : ΣX → ΣX is given by

a ◦ b : ΣX 3 [t, x] 7→
{

[2t, x] t ∈ [0, 1/2]
∗ t ∈ [1/2, 1]

.

Hence a ◦ b is homotopic to the identity. We describe how the homotopy moves the point
[t, x] ∈ ΣX. We consider two cases:

1. t ≤ 1/2: The homotopy applied to [t, x] is the path [(1− s)2t+ st, x].

2. t ≥ 1/2: The homotopy is the path [st+ (1− s), x].

We further see that the composition b ◦ a : C(i)→ C(i) is given by

[t, x]→
{

[2t, x] t ∈ [0, 1/2]
[2− 2t, f(x)] t ∈ (1/2, 1]

, [t, y] 7→ ∗ .

We now describe the homotopy to the identity
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1. [t, x] for t ≤ 1/2: The homotopy is the path [(1− s)2t+ st, x].

2. [t, x] for t ≥ 1/2: The homotopy is the concatenation of the paths s 7→ [(1− s)(2−
2t), f(x)] and s 7→ [(1− s) + st, x]. Here we rescale the path such that the first path
is run through in the time (2 − 2t) and the rest of the time is used for the second
piece.

3. [t, y]: The homotopy is the path [(1− s) + st, y].

2

We now get a natural commutative diagram

X
f (0) // Y

f (1)// C(f (0))
f (2) // C(f (1))

' a

��

f (3) // C(f (2))

'
��

' a(1)

}}

X
f // Y

i // C(f)
q // ΣX // C(q)

ΣX
? // ΣY

.

The square (4, 0) is obtained from the functoriality of C(f) applied to the square (3, 0).

For a space X we consider the involution

− : ΣX → ΣX , [t, x] 7→ [1− t, x] .

For a map f : X → Y we write −Σf for the composition of Σ with this involution.

Lemma 3.24. Up to homotopy we have ? ∼ −Σf .

Proof. We identify the map ? using the homotopy inverse b of a. In view of (9) the
composition a(1) ◦ f (3) ◦ b is given by

[t, x] 7→
{

∗ [t ∈ 0, 1/2]
[2− 2t, y] t ∈ (1/2, 1]

.

2

Corollary 3.25. We get equivalences

ΣC(f) ' C(−Σf) .

Furthermore, the long mapping cone sequence is equivalent to

X
f→ Y

i→ C(f)
q→ ΣX

−Σf→ ΣY
−Σi→ ΣC(f)

−Σq→ Σ2X
Σ2f→ Σ2Y

Σ2i→ Σ2C(f)→ . . .
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Corollary 3.26. If Z is a pointed space, then we get a long exact sequence of pointed sets

. . .

ssgggggggggggggggggggggg

[Σ2C(f), Z] // [Σ2Y ] // [Σ2X,Z]

ttiiiiiiiiiiiiiiiiii

[ΣC(f), Z] // [ΣY ] // [ΣX,Z]

ttiiiiiiiiiiiiiiiiiiii

[C(f), Z] // [Y, Z] // [X,Z]

.

From the second line on we have an exact sequence of groups which are abelian from the
third line on. The group [ΣX] acts simply-transitively on the fibre of the map [C(f), Z]→
[Y, Z].

4 Cohomology

4.1 Spectra

A spectrum E = ((Ei)i∈Z, (σi)i∈Z) is a sequence of pointed spaces (Ei)i∈Z together with
structure maps

σi : Ei → ΩEi+1

for all i ∈ Z which are assumed to be homotopy equivalences.

Remark 4.1. At the moment we do not have the means to construct an example of a
spectrum. So we shall just assume that spectra exist. As we will see shortly, a spectrum
gives rise to a cohomology theory. If one represents a cohomology theory by a spectrum,
then the basic structures follow in an easy manner. As the reader might know, there are
other ways to construct cohomology theories. Here the verification of the properties are
more involved. So by the principle of preservation of difficulty the construction of a
spectrum should be a non-trivial matter.

We fix a spectrum E. If X is a pointed space, then [X,Ei] is a pointed set. The structure
of the spectrum E provides isomorphisms of pointed sets

[X,Ei] ∼= [X,ΩEi+1] ∼= [X,Ω2Ei+2] .

Using these isomorphisms we equip the pointed set [X,Ei] with an abelian group structure.

Definition 4.2. We define the (reduced) cohomology of a pointed space X with coef-
ficients in E to be the Z-graded abelian group H∗(X; E) whose degree-i-component is

H i(X; E) := [X,Ei] .
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If X un-pointed, then define the cohomology of X with coefficients in E by

H∗(X; E) := H∗(X+; E) .

If f : X → Y is a map of spaces, then the induced map

f ∗ : H∗(Y ; E)→ H∗(X; E)

is a homomorphism of Z-graded abelian groups. The homomorphism f ∗ only depends on
the homotopy class of f , and for composeable maps we have the relation (g◦f)∗ = f ∗ ◦g∗.
We let AbZ−gr denote the category of Z-graded abelian groups.

Corollary 4.3. A spectrum E induces functors

H∗(. . . ; E) : hTopop∗ → AbZ−gr , H∗(. . . ; E) : hTopop → AbZ−gr

Lemma 4.4. For every pointed space X and integer i ∈ Z we have the natural suspen-
sion isomorphism

H i+1(ΣX; E) ∼= H i(X; E) .

Proof. The suspension isomorphism is given by the chain of natural isomorphisms

H i+1(ΣX; E) ∼= [ΣX,Ei+1] ∼= [X,ΩEi+1] ∼= [X,Ei] = H i(X; E) .

2

The cohomology with coefficients satisfies the wegde axiom:

Lemma 4.5. Assume that X ∼=
∨
α∈I Xα. Then for every i ∈ Z we have an isomorphism

H i(X; E)→
∏
α∈I

H i(Xα; E)

induced by the natural map.

Proof. The relation X '
∨
α∈I Xα holds true in the homotopy category. Mapping out

turns coproducts into products. 2

Definition 4.6. For a map f : X → Y between pointed spaces we define the cohomology
of f by

H i(f ; E) := H i(C(f); E) .

If f is the inclusion of a subspace, then one often uses the notation

H i(Y,X; E) := H i(f ; E)

and calls this the cohomology of the pair (Y,X).
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Lemma 4.7. For a map f : X → Y between pointed spaces we have a long exact
cohomology sequence

→ H i−1(X; E)
q∗→ H i(f ; E)

i∗→ H i(Y ; E)
f∗→ H i(X; E)→ . . .

Proof. By Corollary 3.26 we have an exact sequence

→ H i(ΣX,E)
q∗→ H i(C(f),E)

i∗→ H i(Y,E)
f∗→ H i(X; E)→ . . .

and now use the suspension isomorphism at the first entry. 2

The Z-graded abelian group
E∗ := H∗(S0

∗ ; E)

is called the coefficients of the cohomology theory. Note that

H i(S0
∗ ,E) ∼= H i+n(Sn∗ ; E)

for all n ∈ N.

Remark 4.8. In the axiomatic approach to reduced cohomology theories these
properties are the axioms. Here a reduced cohomology theory is a functor

h∗ : Top∗ → AbZ−gr

with the following properties and additional structures:

1. It is homotopy invariant.

2. It satisfies the wedge axiom.

3. It has the additional structure of natural suspension isomorphisms h∗+1(ΣX) ∼=
h∗(X).

4. For every f : X → Y the sequence h∗(C(f)) → h∗(Y ) → h∗(X) is exact in the
middle.

The groups h∗(S0
∗) are called the coefficients of the cohomology theory.

Example 4.9. If (Eα)α∈I is a family of spectra, then we can define their product

E :=
∏
α∈I

Eα

such that Ei :=
∏

α∈I Eα,i. The structure maps of the product specrum are given by

Ei ∼=
∏
α∈I

Eα,i
'→
∏
α∈I

ΩEα,i+1
∼= Ω

∏
α∈I

Eα,i+1 = ΩEi+1 .

Here we use that Ω is a right-adjoint and therefore preserves products. For every k ∈ Z
we have an isomorphism

Hk(X; E) ∼=
∏
α∈I

Hk(X; Eα) .
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Example 4.10. If E is a spectrum and k ∈ Z, then we can define the shift ΣkE by
(ΣkE)i := Ei+k. The structure maps of the shift are given by

(ΣkE)i = Ei+k
∼→ ΩEi+k+1 = Ω(ΣkE)i+1 .

We have a natural isomorphsm

H i(X; ΣkE) ∼= H i+k(X; E) .

Example 4.11. At the moment we shall accept that for every abelian group A there
exists a spectrum HA with

Hk(S0
∗ ; HA) ∼=

{
A k = 0
0 k 6= 0

.

This spectrum is called the Eilenberg-MacLane spectrum of A. In order to construct
such a spectrum we must construct for every n ∈ N a so-called Eilenberg-MacLane
space K(A, n) and homotopy equivalences

K(A, n)→ ΩK(A, n+ 1) .

The Eilenberg-MacLane spaceK(A, n) is characterized by the property that πn(K(A, n)) ∼=
A is its only non-trivial homotopy group. If we had K(A, n), then we could simply define
K(A,m) := Ωn−mK(A, n) for m ≤ n. Unfortunately, there is no largest integer to start
with.

A construction of the Eilenberg-MacLane spectrum HA will be given in Corollary 7.72.

More generally, if A is a Z-graded group, then we can consider

HA :=
∏
k∈Z

ΣkHAk .

This is the Eilenberg-MacLane spectrum with coefficients in the Z-graded group A.

The cohomology theory
X 7→ H∗(X;A) := H∗(X; HA)

is called the ordinary cohomology of X with coefficients in A.

2

In the following we discuss two features of the cohomology of unpointed spaces, namely
excision and the Mayer-Vietoris sequence. For excision we consider a sequence of sub-
spaces

U ⊆ A ⊆ X .
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Lemma 4.12. If we assume that A ⊂ X is a NDR (see Definition 3.7) and that U ⊂ A
is open, then the natural map induces the excision isomorphism

H∗(X,A; E) ∼= H∗(X \ U,A \ U ; E) .

Proof. Note that A \ U → X \ U is again a NDR and the natural bijection

(X \ U)/(A \ U)→ X/A

is a homeomorphism.

Problem 4.13. Check this assertion.

Using Lemma 3.8 twice we get the isomorphism

H∗(X,A; E) ∼= H∗(X/A; E) ∼= H∗((X \ U)/(A \ U); E) ∼= H∗(X \ U,A \ U ; E) .

2

We now consider a decomposed space X = U ∪ V . Let i : U → X and j : V → X,
a : U ∩ V → U and b : U ∩ V → V denote the inclusions.

Lemma 4.14. If V ⊆ X is a NDR and U is closed, then we have a long exact Mayer-
Vietoris sequence

· · · → Hk−1(U ∩ V )
δ→ Hk(X)

i∗⊕j∗→ Hk(U)⊕Hk(V )
a∗−b∗→ Hk−1(U ∩ V )→ . . .

Proof. We combine the long exact sequences of the pairs (U,U ∩ V ) and (X, V ) and
excision for (X \ U) ⊆ V ⊆ X by Lemma 4.12. We get the commuting diagram

Hk−1(U ∩ V ) //

δ

++

Hk(U,U ∩ V ) // Hk(U)
a∗ // Hk(U ∩ V )

Hk−1(V ) //

OO

Hk(X, V )

∼=

OO

// Hk(X)

i∗

OO

j∗ // Hk(V )

b∗

OO

which defines δ as the obvious composition. Form this we derive exactness of the sequence

Hk−1(U ∩ V )
δ→ Hk(X)

i∗⊕j∗→ Hk(U)⊕Hk(V )
a∗−b∗→ Hk−1(U ∩ V )

by a diagram chase.

Problem 4.15. Work out the details of this argument.

2
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Problem 4.16. Let X be a pointed space. Then we have an isomorphism

ΣX ∼= C(X) ∪X C(X) , [t, x] 7→
{

[2t, x] t ≤ 1/2
[2− 2t, x] t ≥ 1/2

.

Find the precise relation between the suspension isomorphism and the boundary operator
in the Mayer-Vietoris sequence associated to this decomposition

Problem 4.17. Calculate the cohomology H∗(Σg,k;Z) for an oriented surface Σg,k of
genus g with k boundary components. Use the presentation of Σg,k by glueing g cylinders
over S1 to a two-sphere with 2g + k holes and the Mayer-Vietoris sequence.

4.2 CW-complexes and the AHSS

Assume that we have a filtered space

X0 ⊆ X1 ⊆ X2 · · · ⊆ X .

Then the cohomology has a natural decreasing filtration

FpH∗(X; E) := ker(H∗(X; E)→ H∗(Xp−1; E)) .

For every j ∈ N we get a long exact sequence

· · · → H i(Xj+1, Xj; E)→ H i(Xj+1; E)→ H i(Xj; E)→ H i+1(Xj+1, Xj; E)→ . . .

These long exact sequences fit together in an exact couple⊕
j H

∗(Xj; E) //
⊕

j H
∗(Xj; E)

uukkkkkkkkkkkkkk

⊕
j H

∗(Xj+1, Xj; E)

iiSSSSSSSSSSSSSS

.

We thus get a spectral sequence in the right half space (p, q) ∈ N× Z with

Ep,q
1 = Hp+q(Xp, Xp−1; E) .

If the filtration is finite, then the associated spectral sequence converges to

Ep,q
∞
∼= GrpHp+q(X; E) .

This spectral sequence is useful if one can calculate Ep,q
1 . This is possible for CW -

complexes.

Definition 4.18. A relative CW -complex (X,X0) is a topological space X with addi-
tional structure:
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1. An increasing filtration
X0 ⊆ X1 ⊆ X2 · · · ⊆ X

indexed by N.

2. For every j ∈ N a collection of attaching maps (κα)α∈Ij+1
, κα : Sj → Xj.

3. A presentation of the inclusion Xj → Xj+1as a pushout⊔
α∈Ij+1

Sjtακα //

��

Xj

��⊔
α∈Ij+1

Dj+1 tαeα // Xj+1

. (10)

4. A homeomorphism X ∼= colimjXj.

If X0 is a discrete space, then we call X a CW -complex.

Let X be a CW -complex. Then we call Xj the j-skeleton of X. For j ∈ N and
α ∈ Ij+1 the map κα : Sj → Xj is called the attaching map of the cell with index
α, and eα : Dj+1 → Xj+1 is the characteristic map of the same cell. The spectral
sequence associated to the filtration of a CW-complex by its skeleta is called the Atiyah-
Hirzebruch spectral sequence (AHSS). If the filtration is finite, then it converges to
GrH∗(X; E).

If X is a CW -complex, then the inclusion Xj → Xj+1 is a NDR, see Example 3.10.
Consequently

H∗(Xj+1, Xj; E) ∼= H∗(Xj+1/Xj; E) .

Moreover, the presentation (10) induces a homeomorphism∨
α∈Ij+1

Sj+1
∗

∼=←
∨

α∈Ij+1

Dj+1/Sj
∼=→ Xj+1/Xj .

We therefore get, using the wedge axiom and the suspension isomorphism,

H∗(Xj+1/Xj; E) ∼= H∗(
∨

α∈Ij+1

Sj+1
∗ ; E) ∼=

∏
α∈Ij+1

H∗(Sj+1
∗ ; E) ∼=

∏
α∈Ij+1

E∗−j−1 .

Putting these isomorphism together we get the first page of the AHSS

Ep,q
1
∼= Hp+q(Xp, Xp−1; E) ∼=

∏
α∈Ip

Eq .

Our next task is to describe the differential

d1 : Ep,q
1 → Ep+1,q

1 .
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In view of the above isomorphism we must describe homomorphism∏
α∈Ip

Eq →
∏

α∈Ip+1

Eq .

Let α ∈ Ip and β ∈ Ip+1. Then it suffices to give the composition

φβα : Eq ↪→
∏
α′∈Ip

Eq →
∏

β′∈Ip+1

Eq → Eq ,

where the first map is the natural inclusion of the factor with index α and the last map is
the projection to the factor with index β. The following exercise shows that the collections
of maps (φβα) really defines a morphisms between the products.

Problem 4.19. Check that for every β ∈ Ip+1 the set

{α ∈ Ip | φβα 6= 0}

is finite.

If we follow through the definitions φβα is given by the composition

Eq ∼= Hp+q(Sp∗ ; E)
π∗α→ Hp+q(Xp/Xp−1; E)→ Hp+q(Xp; E)→ Hp+q+1(Xp+1/Xp; E)→

iβ∗→ Hp+q+1(Sq+1
∗ ; E) ∼= Eq .

Here

πα :
Xp

Xp−1

→ Xp

Xp−1 t
⊔
α′∈Ip\{α} eα′(D

p)
∼= Sp∗

is the natural projection where the last homeomorphism is induced by eα. Furthermore,

iβ : Sp+1
∗
∼= Dp+1/Sp

eβ→ Xp+1/Xp .

The following square commutes

Hp+q(Xp; E) // Hp+q+1(Xp+1/Xp; E)

eβ∗

��
Hp+q+1(Dp+1/Sp; E)

Hp+q+1(Sp+1
∗ ; E)

∼=

OO

suspension∼=
��

Hp+q(Xp; E)
κ∗α // Hp+q(Sp∗ ; E)

63



Problem 4.20. Check this assertion.

It follows that φβα is induced by the composition

πα ◦ κβ : Sp∗ → Sp∗ .

We first consider this map in ordinary cohomology with coefficients in Z. Let f : Sp∗ → Sp∗
be a map. It induces a homomorphism

Z ∼= Hp(Sp;Z)→ Hp(Sp;Z) ∼= Z ,

and is hence given by multiplication by a uniquely determined number deg(f) ∈ Z.

Definition 4.21. We call deg(f) ∈ Z the degree of f .

We conclude that in this case φβα : Ep → Ep is multiplication with the degree deg(πα ◦
κβ) ∈ Z

Remark 4.22. It is known that the degree induces a bijection

[Sp∗ , S
p
∗ ]
∼=→ Z .

We have not yet developed the techniques to show this assertion, but see Theorem 6.16
below. For p ≥ 1 the bijection is an isomorphism of rings when consider Sp∗ as a co-H-space
for p ≥ 1 for the additive structure, and the composition of maps for the multiplication
on [Sp∗ , S

p
∗ ].

Remark 4.23. For applications we must be able to calculate the degree of a map. Let
f : Sp → Sp be given. Up to homotopy we can assume that there exists a point ξ ∈ Sp
and a small embedded p-ball ξ ∈ B ⊆ Sp such that f is smooth on the preimage f−1(B).
We can further assume that ξ is regular. After shrinking the balls we can now assume
that f|f−1(B) is a covering. We can now deform f (keeping its restriction to f−1(1/2B)
fixed) by expanding it on B \ 1/2B to a map

Sp →
∨

f−1(ξ)

Sp
∨xfx→ Sp ,

where the restriction fx of f to the summand with index x is a diffeomorphism. Here the
first map is an iteration of the coproduct δ : Sp → Sp ∨ Sp. We get

deg(f) =
∑

x∈f−1(ξ)

deg(fx) .

The degree of a diffeomorphism must be a unit in Z, i.e. deg(fx) ∈ {1,−1}. The degree
of the identity is 1. One can now check that the degree of an orientation reversing map
is −1. One can e.g. produce a homotopy from (id∨−id) ◦ δ : Sp → Sp ∨Sp → Sp to the
constant map.
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Problem 4.24. Give the details.

Proposition 4.25. The differential d1 : Ep,q
1 → Ep+1,q

1 of the first page of the AHSS
is given by the collection multiplication operators φβα = deg(πα ◦ κβ) for β ∈ Ip+1 and
α ∈ Ip.

Proof. We have checked this in the case of ordinary cohomology with coefficients in Z.
The general case would require more theory which we have not developed so far. 2

Let us specialize the AHSS to the case E = HA for an abelian group A. In this case the
whole spectral sequence is concentrated in the zero line, i.e. we have Ep,q

∗ = 0 for q ≥ 1.
We define the cochain complex

Cp(X;A) := Ep,0
1
∼=
∏
α∈Ip

A , d := d1 : Cp(X;A)→ Cp+1(X;A) . (11)

This is the cochain complex of the CW -complex X with coefficients in A. Note
that the notation is sloppy since the chain complex depends on the cell decomposition
of X. If the filtration is finite (this condition is actually not necessary), then we get an
isomorphism

Hp(X;A) ∼= GrpHp(X,A) ∼= Ep,0
∞
∼= Ep,0

2
∼= Hp(C∗(X,A), d) .

Note that H∗(X;A) does not depend on the CW -structure.

Remark 4.26. By Proposition 4.25 (the unproven part), in the general case, the second
page of the Atiyah-Hirzebruch spectral sequence of a CW -complex can be expressed in
terms of ordinary cohomology:

Ep,q
2
∼= Hp(X;Eq) .

From the second page on it does not depend on the CW-structure. In general there is
now space for higher differentials which are usually difficult to determine.

4.3 Calculations of cohomology

Example 4.27. We consider the complex projective space CPn. We have a filtration

∗ ⊂ CP1 ⊂ CP2 ⊂ · · · ⊂ CPn−1 ⊂ CPn .

We identify Cn ∼= CPn\CPn−1 such that z ∈ Cn corresponds to the line [1 : z] ∈ CPn. The
projection map Cn \{0} → CPn−1, z 7→ [z], extends to the compactification of Cn ↪→ D2n

with the sphere at infinity. Hence we get a presentation

CPn ∼= CPn−1 ∪S2n−1 D2n .
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This equips the complex projective space CPn with a CW -structure with one cell in every
even dimension between 0 and 2n.

The cellular cochain complex C∗(CPn;Z) is now given by

Z→ 0→ Z→ 0→ · · · → 0→ Z ,

where the last Z is in degree 2n. We read off the cohomology:

Hk(CPn;Z) ∼=
{

Z k = 2i , i ∈ {0, 1, . . . , n}
0 else

.

For an arbitrary group A we get the same picture:

Hk(CPn;A) ∼=
{
A k = 2i , i ∈ {0, 1, . . . , n}
0 else

.

Example 4.28. The real projective space RPn has a similar filtration

∗ ⊂ RP1 ⊂ · · · ⊂ RPn−1 ⊂ RPn .

This gives a CW -structure with one cell in every dimension between 0 and n.

The cellular cochain complex C∗(RPn;Z) is given by

Z→ Z→ Z→ · · · → Z→ Z ,

where the last Z is in degree n. It is now important to determine the differential. To this
end we must study the map

φ : Sj → RPj → RPj/RPj−1 ∼= Sj .

It is given on the open dense subset {ξ0 6= 0} by

Sj 3 ξ 7→ [ξ]→ [[ξ]]→ ξ/ξ0 ∈ Rj ⊂ Sj .

The first map sends a point in the sphere to the line determined by this point. The second
map identifies all points of the form [0 : z] to one point. On this subset it is a two-fold
covering, orientation preserving on the sheet ξ0 > 0 and orientation preserving (reversing)
on the sheet ξ0 < 0 of j is even (odd). From this we deduce

deg(φ) =

{
2 j even
0 j odd

Hence, the cochain complex is more precisely

Z 0→ Z 2→ Z 0→ Z 2→ . . .Z 1+(−1)n→ Z ,
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We now read off the cohomology.

Hk(RPn;Z) ∼=


Z k = 0

Z/2Z k = 2i , i ∈ {1, 2, . . . , [n/2]}
Z n odd and k = n
0 else

.

In is interesting to consider the cohomology with coefficients in Z/2Z. In this case mul-
tiplication by 2 is 0 and the complex is given by

Z/2Z 0→ Z/2Z 0→ Z/2Z 0→ Z/2Z 0→ . . .Z/2Z 0→ Z/2Z .

We conclude that

Hk(RPn;Z/2Z) ∼=
{

Z/2Z k = i , i ∈ {0, 1, . . . , n}
0 else

.

5 Fibre sequences

5.1 The homotopy fibre

We consider based spaces (X, x) and (Y, y) and a morphism between based spaces f :
X → Y . The fibre of f is the subspace f−1(y) ⊆ X with the base point x.

We can write the fibre as a pull-back

f−1(y) //

��

X

f

��
∗ y // Y

.

The fibre has a similar problem as the quotient. It is not homotopy invariant. The
following example should be compared with Example 3.1.

Example 5.1. The constant map const1 : S1 → S1 with image 1 ∈ S1 is homotopic to
a map f : S1 → S1 which is a two-fold covering near 1.

Problem 5.2. Find such a map.

The fibre of the first is S1, while the fibre of the second is a two-point space. These two
spaces are not homotopy equivalent.
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The fibre f−1(y) is characterized by the following universal property. For every based
space T to give a map φ : T → f−1(y) is equivalent to give a map φ̃ : T → X such that
the composition f ◦ φ̃ is constant.

In analogy with Remark 3.6 we want to define a space, called the homotopy fibre Fib(f)
of f , with the universal property that to give a map φ : T → Fib(f) is the same as to
give a map φ̃ : T → X together with a homotopy h : [0, 1] × T → Y from the constant
map to the composition f ◦ φ̃.

We let [0, 1] be a based space with base point 0 and consider the path space

PY := Map([0, 1], Y ) .

We have an evaluation e : PY → Y given by e(γ) := γ(1). The path space PY is
contractible. A contraction is given by

(s, γ) 7→ (t 7→ γ((1− s)t)) .

To give a map T → P is, by the exponential law, equivalent to give a map T → Y together
with a homotopy of this map to the constant map.

Definition 5.3. We define the homotopy fibre Fib(f) of a map f : X → Y between
pointed spaces to be the based space given by the pull-back

Fib(f) i //

p

��

X

f

��
PY

e // Y

Thus a point in Fib(f) is a pair (γ, x) of a point x′ ∈ X and a path γ in Y from the base
point y to f(x).

Problem 5.4. Show that to give a map T → Fib(f) is the same as to give a map T → X
together with a homotopy from the constant map to f ◦ T .

There is a natural map (the analog of (7))

p : f−1(y)→ Fib(f) , x′ 7→ (consty, x
′) .

We can again ask under which conditions this map is a homotopy equivalence.

Recall that a map f has the homotopy lifting property for a space A of the lift h̃ in

A
h̃0 //

i0
��

X

f

��
I × A

h̃
;;

h // Y

for every choice of h, h̃0. We call f a fibration if it has the homotopy lifting property for
every space A.
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Proposition 5.5. If f is a fibration, then the map p : f−1(y) → Fib(f) is a homotopy
equivalence.

Proof. We must construct a homotopy inverse q for p. To this end we consider

Fib(f) i //

i0
��

X

f

��
I × Fib(f)

h̃

::

h // Y

,

where h is gien by
h(s, (γ, x′)) := γ(1− s) .

We define
q := h̃|{1}×Fib(f) : Fib(f)→ f−1(y) .

Then
I ×X 3 (s, x′) 7→ h̃(s, (consty, x

′)) ∈ X

is a homotopy from idX to q ◦ p. Similarly,

(s, (γ, x′)) 7→ ((t 7→ γ((1− s)t)), h̃(s, (γ, x′)))

is a homotopy from idFib(f) to p ◦ q. 2

Lemma 5.6. We can consider the Fib as a functor

Fib : Top∆1 → Top∆1

, (f : X → Y ) 7→ (i : Fib(f)→ X) .

Proof. Exercise. 2

Assume that the square

X
f //

φ
��

Y

ψ
��

X ′
f ′ // Y ′

commutes up to distinguished homotopy H, i.e. is a generalized morphism (φ, ψ,H) :
f → f ′.

Lemma 5.7. A generalized morphism (φ, ψ,H) : f → f ′ determines commutative dia-
gram

Fib(f) i //

Fib(φ,ψ,H)
��

X

φ

��
Fib(f ′) // X ′

. (12)
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Proof. We define
Fib(φ, ψ,H)(γ, x′) := (µ, ψ(f(x)) ,

where µ is the concatenation of paths

t 7→ φ(γ(t)) , t 7→ H(t, x) .

2

Lemma 5.8. Given two composeable generalized morphisms (φ, ψ,H), (φ′, ψ′, H ′) we have

Fib(φ ◦ φ′, ψ ◦ ψ′, H ◦H ′) ∼ Fib(φ, ψ,H) ◦ Fib(φ′, ψ′, H ′) .

Proof. Exercise. 2

Lemma 5.9. We have a homeomorphism I × Fib(f)
∼=→ Fib(I × f)

Proof. It is given by

(t, (γ, x′)) 7→ ((t 7→ (t, γ(t)), (t, f(x′))) .

Corollary 5.10. The map (φ, ψ,H) 7→ Fib(φ, ψ,H) preserves homotopies.

The following corollary in connection with Proposition 5.5 explains why Fib is the homo-
topy invariant way to take the fibre of a map.

Corollary 5.11. If (φ, ψ,H) is a homotopy equivalence, then so is Fib(φ, ψ,H).

5.2 The fibre sequence

If f : X → Y is a map between pointed spaces, then we call

Fib(f)
i→ X

f→ Y

the associated fibre sequence.

Lemma 5.12. For a pointed space Z the sequence of pointed sets

[Z,Fib(f)]
i∗→ [Z,X]

f∗→ [Z, Y ]

is exact.
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Proof. To give a map u : Z → Fib(f) is equivalent to give a map v : Z → Y and homo-
topy from the constant map to f ◦ v. If we start with u, then v = i ◦ u and therefore
f ◦ i ◦ u ∼ const. Vice versa, given v such that v ∼ const, then the choice of a homotopy
defines a preimage u such that i ◦ u = v. 2

The following is completely analogous to Section 3.4. We can iterate the fibre construction
and get the long fibre sequence

F(f) : · · · f
(3)

→ Fib(f (1))
f (2)→ Fib(f (0))

f (1)→ Y
f (0)→ X .

Then
[Z,F(f)]

is a long exact sequence of sets.

We now discuss the first iteration in detail

Fib(i)
k→ Fib(f)

i→ X
f→ Y .

There is a natural map
q : ΩY → Fib(f) , γ 7→ (γ, x) .

An point in Fib(i) is a tuple (µ, (γ, x′)) where µ is a path in X from the base point to x′

and γ is a path in Y from the base point to f(x′). We define a canonical map

a : ΩY → Fib(i) , γ 7→ (const, (γ, x)) .

Lemma 5.13. We have a commutative diagram

ΩY
q //

a

��

Fib(f)

Fib(i) k // Fib(f)

and a is a homotopy equivalence.

Proof. We give the inverse equivalence

b : Fib(i)→ ΩY , (µ, (γ, x′)) 7→ f ◦ µ−1]γ .

The composition a ◦ b is given by

(µ, (γ, x′)) 7→ (const, (f ◦ µ−1]γ, x)) .

Let µs be the path µ up to time s. The a homotopy from a ◦ b to the identity is given by

(s, (µ, (γ, x′))) 7→ (µs, (f ◦ µ−1
s ]γ, µ(s)))
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Similarly, b ◦ a is given by
γ 7→ f ◦ const]γ .

This is obviously homotopic to the identity. 2

We now verify the dual of Lemma 3.24.

We have a diagram

ΩX
? //

a(1)'

((

ΩY

Fib(q) //

��

ΩY
q //

' a

��

Fib(f) i // X
f // Y

Fib(k) ` // Fib(i) k // Fib(f) i // X // Y

Lemma 5.14. The map ? is homotopic to −Ω(f).

Proof. Exercise. 2

Corollary 5.15. We have equivalences ΩFib(f) ' Fib(−Ωf).

This is the analog of Corollary 3.25.

Corollary 5.16. If f : X → Y is a map of pointed spaces, then the long fibre sequence
is equivalent to

· · · → Ω2Fib(f)
Ω2(i)→ Ω2X

Ω2(f)→ Ω2Y
−Ω(q)→ ΩFib(f)

−Ω(i)→ ΩX
−Ω(f)→ ΩY

q→ Fib(f)
i→ X

f→ Y

Corollary 5.17. If Z is a pointed space, then we have a long exact sequence

ssfffffffffffffffffffffffff

[Z,Ω2Fib(f)] // [Z,Ω2X] // [Z,Ω2Y ]

sshhhhhhhhhhhhhhhhhhhhh

[Z,ΩFib(f)] // [Z,ΩX] // [Z,ΩY ]

ssggggggggggggggggggggggg

[Z,Fib(f)] // [Z,X] // [Z, Y ]

. (13)

The lowest line consists of sets, the first line of groups, and all higher lines of abelian
groups.
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Remark 5.18. There is a right action of the group [Z,ΩY ] on [Z,Fib(f)]. It is induced
by the map

ΩY × Fib(f)→ Fib(f) , (γ, (γ′, x′)) 7→ (γ′]γ, x′) .

The action is simply transitive on the fibre of [Z,ΩY ]→ [Z,ΩX] over the base point.

5.3 The long exact homotopy sequence

We consider a sequence of maps F
j→ X

f→ Y such that f ◦j is homotopic to the constant
map. A choice of a homotopy provides a lift in the diagram

F

j

��

c // Fib(f)

i

��
X

f
��

X

f
��

Y Y

.

The sequence is called a fibre sequence if c is a homotopy equivalence. It is called a
quasi-fibration of c is a weak equivalence.

Example 5.19. If the map f : X → Y is a fibration and F → X is the inclusion of the
fibre over the base point, then F → X → Y is a fibration sequence.

We consider a pull-back diagram

X ′

f ′

��

// X

f

��
Y ′ // Y

.

Lemma 5.20. If f is a fibration, then f ′ is a fibration.

Proof. Exercise. 2

Proposition 5.21. If F → X → Y is a quasi-fibration, then we have a long exact
sequence of homotopy groups/sets.

· · · → π2(F )→ π2(X)→ π2(X)→ π1(F )→ π1(X)→ π1(Y )→ π0(F )→ π0(X)→ π0(Y ) .

Proof. We apply (13) to Z = S0. We can replace Fib(f) by F . Finally we use that
[S∗0 ,Ω

kA] ∼= πk(A). 2

We should provide the example that a locally trivial fibre bundle is a fibration sequence.
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Theorem 5.22. If π : W → B is a locally trivial fibre bundle over a paracompact Haus-
dorff space, then it is a fibration.

Proof. For the very technical proof we refer to [Spa81, Cor. 2.7.14] 2

6 Homotopy groups

6.1 Calculation of homotopy groups

Example 6.1. We have
πi(S

n) = 0 , 1 ≤ i < n .

To see this consider a base-point preserving map f : Si → Sn. We can deform f to a
smooth map. By Sard’s theorem its set of regular values has full measure and is therefore
not empty. If ξ ∈ Sn is a regular value, then because of i = dim(Si) < dim(Sn) we have
f−1(ξ) = ∅. We indentify Sn with the compactification of Rn at ∞ such that ∞ = ξ.
Then we can deform f to a constant map inside Rn.

On the other hand we have seen in Subsection 4.2 that πn(Sn) 6= 0.

Lemma 6.2. If f : X → Y is a covering of pointed spaces, then f∗ : πi(X) → πi(Y ) is
an isomorphism for i ≥ 2 and injective for i = 1.

Proof. A covering is a locally trivial fibre bundle with a discrete fibre which we will denote
by F . We have πi(F ) = 0 for all i ≥ 1. It now follows from the long exact homotopy
sequence that f∗ is an isomorphism between homotopy groups in degree ≥ 2 and injective
for i = 1. 2

Example 6.3. For n ∈ N, n ≥ 1, we have a convering Rn → T n. Since Rn is contractible
we can conclude that πi(T

n) ∼= 0 for i ≥ 2. We have already seen that π1(T n) ∼= Zn.
Hence T n is a model for the Eilenberg-MacLane space K(Zn, 1), see see Example 4.11.

More generally, if EΓ is a contractible space on which a discrete group Γ acts freely and
properly, then BΓ := EΓ/Γ has the homotopy type of K(Γ, 1), i.e.

πi(BΓ) ∼=
{

0 i 6= 1
Γ i = 1

.

Such a space BΓ is also called a classifying space for Γ.

Let f : W → B be a locally trivial fibre bundle with fibre S1. Since πi(S
1) = 0 for i ≥ 2

we have isomorphisms
f∗ : πi(W → πi(B) , i ≥ 3 ,
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and an exact sequence

0→ π2(W )→ π2(B)→ Z→ π1(W )→ π1(B)→ 0 .

Example 6.4. We can apply this to the Hopf bundle S2n+1 → CPn. We conclude that

πi(CPn) ∼= πi(S
2n+1) i ≥ 3 .

In particular,
πi(CPn) ∼= 0 , 3 ≤ i ≤ 2n .

We further note that
π2(CPn) ∼= Z , π1(CPn) ∼= 0 .

There are natural inclusions CPn → CPn+1. We define

CP∞ := colimn→∞CPn .

Then

πi(CPn) ∼=
{

0 i 6= 2
Z i = 2

Hence CP∞ is a model for the Eilenberg-MacLane space K(Z, 2), see Example 4.11.

Let f : X → Y be a map between spaces. For a choice of a base point in X we can define

πi(f) := πi−1(Fib(f)) , i ∈ N

and get a corresponding long exact sequence. In particular, if f is the inclusion of a
subspace, then we write

πi(Y,X) := πi(f)

and call them the relative homotopy groups (or sets in the case i = 1). We therefore
have a long exact sequence of the pair (X, Y )

· · · → π2(Y )→ π2(X, Y )→ π1(X)→ π1(Y )→ π1(Y,X)→ π0(X)→ π0(Y ) .

We say that the map f is q-connected if and π0(X)→ π0(Y ) is surjective and πi(f) = 0
for all 1 ≤ i ≤ q for all choices of a base point in X.

Remark 6.5. The condition that f is q-connected is equivalent to the condition that

1. πi(X)→ πi(Y ) is bijective for i < q and

2. πi(X)→ πi(Y ) is surjective for i = q.

More generally, if f : A→ B is a map between Z-graded abelian groups, then we call it n-
connected, if it induces an isomorphism in the components of degree < n and a surjection
in degree n.
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Remark 6.6. We now give an explicit description of relative homotopy classes.

To give a map Sn → Fib(f) is equivalent to give based maps a : Sn → Y I and b : Sn → X
such that ev1 ◦ a = f ◦ b. The map a is the same data as a map a : I × Sn → Y such
that a(0, ξ) = y, i.e. a map a : Dn+1 ∼= C(Sn) → Y . This map must further satisfy
a|Sn = f ◦ b.

We conclude:

Corollary 6.7. For n ∈ N the group (or set if n = 0) πn+1(f) is the group (set) of
homotopy classes of pairs of maps (a, b) where a : Dn+1 → Y and b : Sn → X are such
that a|Sn = f .

In the special case where f is the inclusion of a subset we have

πn+1(f) ∼= [(Dn+1, Sn), (Y,X)] .

We can further describe the natural transformations

πn+1(f)→ πn(X) , πn+1(Y )→ πn+1(f)

explicitly. The first sends the class of (a, b) to the class of b. The second sends the class

of a map h : Sn+1 → Y to the pair (a, const), where a : Dn+1 → Dn+1/Sn ∼= Sn+1 b→ Y .

Example 6.8. We let D ⊂ S2 be the upper hemisphere and n ∈ D be the northpole.
We choose the southpole s as the base point. The inclusion of the lower hemisphere is a
homotopy equivalence

(D2, S1)
'→ (S2 \ {n}, D \ {n}) .

The long exact sequence of the pair (D2, S1) gives (since π2(D2, s) ∼= 0 and π1(D2, s) ∼= 0)

π2(D2, S1) ∼= π1(S1
∗)
∼= Z .

On the other hand we have a homotopy equivalence

(S2, s)→ (S2, D) .

We conclude that (for the same reasons as above)

π3(S2, s) ∼= π2(S2, D) .

Combining these two calculations we get

π3(S2, s) ∼= Z .

We see that for a manifold M the group πi(M) can be non-trivial also for i > dim(M).
Moreover, excision for homotopy is wrong:

Z ∼= π3(S2, D) 6= π3(S2 \ {n}, D \ {n}) ∼= π3(D2, S1) ∼= π2(S1
∗)
∼= 0 .
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6.2 The Blakers-Massey theorem and applications

Let Y = Y1 ∪ Y2 be a decomposition of a space Y into a union of open subspaces with
non-empty intersection Y0 := Y1 ∩ Y2.

Theorem 6.9 (Blakers-Massey theorem). We assume that for p, q ≥ 1

1. (Y1, Y0) is p-connected

2. (Y2, Y0) is q-connected.

Then the exision map (Y2, Y0)→ (Y, Y1) is p+ q-connected.

Proof. The proof will be given later. 2

Remark 6.10. Note that the stament, that (Y2, Y0)→ (Y, Y1) is p+ q-connected means,
that πn(Y2, Y0)→ πn(Y, Y1) is

surjective for n = p+ q
bijective for 1 ≤ n ≤ p+ q − 1

Remark 6.11. We consider the decomposition Sn = Dn
+ ∪Sn−1 Dn

− with the base point
in the equator. In order to apply the Blakers-Massey theorem we replace these subsets
by homotopy equivalent open neighbourhoods.

We consider the commuting square

πi(S
n) E // πi+1(Sn+1)

∼=
��

πi+1(Dn+1
− , Sn)

∼=∂

OO

ι // πi+1(Sn+1, Dn+1
+ )

(defining E) and the following statements:

N(n) : Sn is n− 1-connected
E(n) : ι is 2n− 1-connected.

Remark 6.12. Note that we have shown N(n) in Example 6.1 for all n using methods
of differential topology. We will reprove this here as a consequence of the Blakers-Massey
theorem.

Proposition 6.13. The statements N(n) and E(n) hold for every n ∈ N.

Proof. We prove the proposition by induction on n. We have N(1) = true since S1 is
connected. We apply Blakers-Massey to

(Y, Y1, Y2, Y0) = (Sn+1, Dn+1
+ , Dn+1

− , Sn)

(see Remark 6.11) for p = q = n. The assumptions are verifed using N(n) by the following
Lemma:
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Lemma 6.14. For every i ≥ 0 and n ≥ 0 we have the isomorphisms

∂ : πi+1(Dn+1
− , Sn)→ πi(S

n) , ι : πi(S
n+1)→ πi(S

n+1, Dn+1
± ) .

Proof. The first follows from the long exact pair sequence and the fact that Dn+1
− is con-

tractible. The second follows from the fact that the map of pairs (Sn+1, ∗)→ (Sn+1, Dn+1
± )

is a homotopy equivalence of pairs. 2

Blakers-Massey gives E(n). The surjectivity statement now also implies N(n+ 1). 2

The homomorphism E is given by suspension. In general, for pointed spaces X, Y we
define

Σ : [X, Y ]→ [ΣX,ΣY ] , f 7→ idS1 ∧ f .

Theorem 6.15 (Freudenthal’s Suspension Theorem). The suspension map

Σ : πi(S
n)→ πi+1(Sn+1)

is 2n− 1-connected.

Proof. This is assertion E(n).

We can now finally calculate πn(Sn) for n ≥ 1.

Theorem 6.16. For n ≥ 1 we have an isomorphism

deg : πn(Sn)
∼=→ Z .

The inverse of this isomorphism is given by

Z ∼= π1(S1)
Σn−1

→ πn(Sn)

Proof. Follows from Theorem 6.15 2

Recall the discussion of the degree in Remark 4.23.

Example 6.17. If
f : Sn → Sn , g : Sm → Sm

are maps between the pointed spheres, then we have the identity

deg(f ∧ g) = deg(f) deg(g) .

Let p = n+m and consider the composition

h : Sp ∼= Sn ∧ Sm flip→ Sm ∧ Sn ∼= Sp .

78



Then we have
deg(h) = (−1)mn .

The verification of these facts is an exercise.

Example 6.18. In Example 6.8 we have seen that π3(S2) ∼= Z. By Freudenthal for n = 2
we get a sequence of maps for p ≥ 3

π3(S2)→ π4(S3) ∼= πp+1(Sp)

where the first map is surjective. It is known that the image of the first map is Z/2Z. At
the moment we can not show this fact.

Example 6.19. Recall that by the Banach fixed point theorem a contractive map f :
Dn → Dn has a fixed point. The Brouwer fixed point theorem shows that one can omit
the assumption that f is contractive.

Theorem 6.20 (Brouwer fixed point theorem). A continuous map f : Dn → Dn has a
fixed point.

Proof. We argue by contradiction. If f has no fixed point then we can define a family of
maps

gt : Sn−1 → Sn−1 , x 7→ x− tf(x)

‖x− tf(x)‖
parametrized by t ∈ [0, 1]. Note that g0 = idSn−1 and g1 extends to Dn. It follows that

0 = deg(g1) = deg(g0) = 1 .

This is false. 2

6.3 Homotopy of classical groups

For every n we have a locally trivial fibre bundle

U(n)→ U(n+ 1)→ S2n+1 .

We consider the long exact sequence in homotopy. We get

1. πi(U(n))→ πi(U(n+ 1)) is an isomorphism for i ≤ 2n− 1.

2. We have a sequence

π2n+1(U(n+ 1))→ Z = π2n+1(S2n+1)→ π2n(U(n))→ π2n(U(n+ 1))→ 0 .
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In particular, the map U(n)→ U(n+ 1) is 2n-connected.

We have U(1) ∼= S1. The inclusion U(1)→ U(n) induces an isomorphism

Z ∼= π1(U(1))
∼=→ π1(U(n))

for all n ∈ N. We have U(2) ∼= U(1)× S3 as spaces.

Problem 6.21. Show this assertion.

Hence,
0 ∼= π2(U(2)) ∼= π2(U(n))

for all n ∈ N with n ≥ 2. Moreover,

Z ∼= π3(U(2))
∼=→ π3(U(n))

for all n ∈ N with n ≥ 2.

For the groups SO(n) we can use the sequences

SO(n)→ SO(n+ 1)→ Sn .

We leave it to the reader to work out the consequences.

6.4 Quotients

Let (X,A) be a pair of spaces and f : A→ B be a map. We consider a push-out diagram

A
f //

j

��

B

J
��

X
F // Y

defining the pair (Y,B).

Proposition 6.22. If (X,A) is p-connected and f is q-connected, then

πi(X,A)→ πi(Y,B)

is p+ q-connected.

Proof. We consider the mapping cylinder of f given by

Z(f) := (I × A) ∪(0,a)∼f(a) B .

Note that we reverse the direction of the cylinder and attach B in the unususal manner at
the bottom. It comes with an inclusion k : A→ Z(f), k(a) := (1, a), which is a cofibration
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and a projection p : Z(f) → B which is a homotopy equivalence. The mapping cylinder
Z(f) fits into the diagram

A

j

��

k // Z(f)
p //

L

��

B

J

��
X

K // Z
P // Y

.

Here the left square defines the space Z as a push-out. The right square is the a push-out,
too. Note that

Z ∼= X ∪a∼(1,a) Z(f) .

The map P is obtained from the universal property of the push-out.

The map L is a push-out of the cofibration j and therefore itself a cofibration. The map
P is a push-out of a homotopy equivalence p along the cofibration L and therefore again
a homotopy equivalence. It follows that (p, P ) is a homotopy equivalence between the
morphisms L and J . Hence it suffices to show that the map πi(X,A) → πi(Z,Z(f))
induced by (k,K) is p+ q-connected.

We write (k,K) as composition

(X,A)→ ((0, 1]× A ∪(1,a)∼a X, (0, 1]× A)
ι→ (Z,Z(f)) ,

where the first map sends x→ x and the second map ι is determined by

(t, a) 7→ (t, a) ∈ Z(f) , x 7→ x .

The first map is a homotopy equivalence. We must show that ι is p+ q-connected.

We consider the diagram

((0, 1]× A ∪(1,a)∼a X, (0, 1)× A)

��

ι′ // (Z, [0, 1)× A ∪(0,a)∼f(a) B)

��
((0, 1]× A ∪(1,a)∼a X, (0, 1]× A) ι // (Z,Z(f))

The vertical maps are homotopy equivalences. It suffices to show that ι′ is p+q-connected.

To this end we apply the Blakers-Massey Theorem 6.9 to

1. Y := Z

2. Y1 := [0, 1)× A ∪(0,a)∼f(a) B

3. Y2 := (0, 1]× A ∪(1,a)∼a X

4. Y0 := (0, 1)× A.
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By homotopy invariance π∗(X,A) ∼= π∗(Y2, Y0) and π∗(f) ∼= π∗(Y1, Y0). 2

We consider a pair of spaces A ⊂ X and the map (X,A) → (X/A, ∗). In the following
theorem we assume that A is connected and that the inclusion A→ X is a cofibration.

Theorem 6.23. If for p, q ≥ 1 the pair (C(A), A) is p-connected and (X,A) is q-
connected, then

πi(X,A)→ πi(X/A)

is p+ q-connected.

Proof. We apply Proposition 6.22 to the map

(X,A)→ (X ∪ C(A), C(A))

and conclude that it is p + q-connected. Since C(A) → X ∪ C(A) is a cofibration and
C(A) is contractible the projection

X ∪ C(A)→ X ∪ C(A)/C(A) ∼= X/A

is a homotopy equivalence. 2

We now consider a well-pointed space (X, ∗), i.e. the inclusion ∗ → X is a cofibration.

Theorem 6.24 (generalized Freudenthal). If (X, ∗) is n-connected, then the suspension
map

Σ : πi(X)→ πi+1(ΣX)

in homotopy is 2n+ 1-connected.

Proof. We have a push-out diagram

({0} ×X) ∨ I × {∗} //

��

X

��
I ×X // C(X)

Since the left vertical map is a cofibration we conclude that the right vertical map is a
cofibration, too. The suspension map is the conmposition

πj(X)
∼=,∂← πj+1(C(X), X)

p→ πj+1(ΣX) ,

where p : (C(X), X)→ (ΣX, ∗) is the natural projection. By assumption, Since (X, ∗) is
n-connected the pair (C(X), X) is n-connected. We now apply Theorem 6.23 and con-

clude that π∗+1(C(X), X)
p→ π∗+1(ΣX) is 2n-connected. This implies the assertion after

degree-shift by one. 2
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Lemma 6.25. For every k ≥ 0 the space ΣkX is k − 1-connected.

Proof. We argue by induction on k. The case k = 0 is trivial. Let us now assume for
k ≥ 0 that ΣkX is k − 1-connected. Then 0 ∼= πk−1(ΣkX) → πk(Σ

k+1X) is an isomor-
phism since k − 1 ≤ 2(k − 1) + 1. 2

Example 6.26. For a pointed space X and n ∈ N we have a sequence of maps

πk(X)
Σ→ πk+1(ΣX)

Σ→ πk+2(Σ2X)
Σ→ . . . .

We define the stable homotopy groups of X by

πsn(X) := colimk→∞πn+k(Σ
kX) .

Using Lemma 6.25 and the generalized Freudenthal theorem 6.24 we see that πn+k(Σ
kX)→

πn+k+1(Σk+1X) is an isomorphism if k ≥ n+ 1. We conclude that

π2n+1(Σn+1X) ∼= πsn(X) .

Hence the colimit defining the nth stable homotopy group stabilizes from k = n+ 1 on.

6.5 Proof of the Blakers-Massey theorem

We follow the presentation of tom Dieck [tD08, Ch. 6.9].

For n ∈ N let In := [0, 1]n ⊂ Rn denote the standard cube. A good embedding Rp → Rn

is a composition
scaling ◦ translation ◦ i ,

where i : Rp → R is an embedding which maps the standard basis of Rp to a subset of
the standard basis of Rn. A cube W of dimension dim(W ) = p in Rn is the image of
Ip ⊂ Rp under a good embedding. The boundary ∂W is the image of the boundary ∂Ip.
It is the union of (closed) boundary faces which are again cubes of dimension < p.

Finally we define for a p-dimensional cube W

Kq(W ) := image of {x ∈ Ip | ](i ∈ {1, . . . , p} | xi < 1/2) ≥ q}
Gq(W ) := image of {x ∈ Ip | ](i ∈ {1, . . . , p} | xi < 1/2) ≥ q}

Let W be a cube.

Lemma 6.27. We consider a map f : W → Y and a subset A ⊂ Y . We assume that for
p ≤ dim(W ) we have

f−1(A) ∩W ′ ⊂ Kp(W
′)

83



for all faces of W ′ in ∂W . Then there exists a map g : W → Y such that f ∼ g (rel ∂W )
and

g−1(A) ⊂ Kp(W ) .

A similar statement holds for Gp(W ) in place of Kp(W ).

Proof. Let n = dim(W ) and assume that W = In. We consider the point x = (1
4
, . . . , 1

4
).

A ray y starting at x meets ∂(1/2In) in the point P (y) and ∂In in the point Q(y). The
map g is defined be the following prescription:

1. It sends the segment P (y)Q(y) to Q(y).

2. It sends the segment xP (y) affinely to yQ(y).

Then h ∼ idIn (rel ∂In). We define g := f ◦ h. One verifies that g does the job.
Assume that z ∈ In and g(z) ∈ A. We must show that z ∈ Kp(W ). Note that
1/2In ⊆ Kp(W ). If z 6∈ 1/2In, then h(z) ∈ ∂In and therefore is contained in some bound-
ary face W ′. Consequently f(h(z)) ∈ A and therefore by assumption h(z) ∈ Kp(W

′). Let
(h(z)1, . . . , h(z)dim(W ′) ∈ Idim(W ′) be the coordinates of W ′. Then ](j | h(z)j < 1/2) ≥ p.
Note h(z)i = 1/4 + t(zi − 1/4) for some t > 1. Hence ](i | zi < 1/2) ≥ p. This implies
z ∈ Kp(W ). 2

We assume now that Y = Y1 ∪ Y2 is a decomposition of a space into open subsets with
Y0 := Y1 ∩ Y2. Let f : In → Y be given. We can choose a subdivision of In into cubes
such that either f(W ) ⊂ Y1 or f(W ) ⊂ Y2 for all cubes W of the subdivision.

Proposition 6.28. We assume that for p, q ≥ 0 the pair (Y1, Y0) is p-connected and
(Y2, Y0) is q-connected. Then there exists a homotopy ft from f to f1 such that the
following holds:

1. If f(W ) ⊂ Yj, then ft(Yj) ⊂ Yj for all t ∈ [0, 1].

2. If f(W ) ⊂ Y0, then ft is constant on W .

3. If f(W ) ⊂ Y1, then f−1
1 (Y1 \ Y0) ∩W ⊂ Kp+1(W ).

4. If f(W ) ⊂ Y2, then f−1
1 (Y2 \ Y0) ∩W ⊂ Gq+1(W ).

Proof. Let Ck be the union of all cubes W of dimension dim(W ) ≤ k. We perform
inductively on k the following construction steps.

1. We assume that a homotopy ft is constructed such that 1. to 2. hold true and 3.
and 4. hold true for the restriction of the homotopy to Ck.

2. For every cube W of dimension k+ 1 we construct a homotopy of (f1)|W relative to
the boundary such that 3. and 4. holds.
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3. Using the fact that the inclusion Ck+1 → In has the homotopy extension property
these homotopies together with the constant homotopy on Ck can be extended to
a homotopy of f1 on all of In respecting 1. and 2. As long as k ≤ p we assume for
the cubes with f1(W ) ⊆ Y1 that f1(∂W ) ⊆ Y0.

4. We concatenate this homotopy with ft and call the result again ft.

5. We increase k by one and start again.

We can start the iteration at k = −1. Then C−1 = ∅ and ft is the constant homotopy of
f . The iteration finishes at k = n.

We now argue that we can perform the step 2. Let W be a cube of dimension k.

1. If f1(W ) ⊂ Y0, then we use the constant homotopy.

2. If f1(W ) ⊂ Y1, f1(W ) 6⊂ Y0, and k ≤ p, then since (Y1, Y0) is p-connected and
f1(∂W ) ⊂ Y0 there exists a homotopy fWt of (f1)|W which is constant on ∂W and
such that fW1 (W ) ⊂ Y0.

3. If f1(W ) ⊂ Y1, f1(W ) 6⊂ Y0, and k ≥ p + 1, then we find a homotopy fWt of (f1)|W
by Lemma 6.27.

2

We consider the space F (Y1, Y, Y2) defined by the pull-back

F (Y1, Y, Y2) //

��

Y I

(ev0,ev1)

��
Y1 × Y2

// Y × Y

.

Proposition 6.29. We assume that for p, q ≥ 0 the pair (Y1, Y0) is p-connected and the
pair (Y2, Y0) is q-connected. Then the natural inclusion

F (Y1, Y1, Y0)→ F (Y1, Y, Y2)

is p+ q − 1-connected.

Proof. Let n ≤ p+ q − 1 and a map

φ : (In, ∂In)→ (F (Y1, Y, Y2), F (Y1, Y1, Y0))

be given. We must show that φ can be deformed as a map of pairs to a map which sends
I to F (Y1, Y1, Y0).

By adjunction, φ corresponds to a map Φ : In × I → Y with

1. Φ(x, 0) ∈ Y1 for x ∈ In.
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2. Φ(x, 1) ∈ Y2 for x ∈ In.

3. Φ(y, t) ∈ Y1 for y ∈ ∂In and t ∈ I.

Let us call maps with this property admissible. We must show that we can deform Φ
inside admissible maps to a map which takes values in Y1. We first apply Propostion 6.28
and get a map Ψ. Let π : In × I → In be the projection.

We claim that
π(Ψ−1(Y \ Y1)) ∩ π(Ψ−1(Y \ Y2)) = ∅ .

Let y by a point in this intersection. Assume that y = π(z) for z ∈ Ψ−1(Y \ Y2) ∩W
for some cube of the subdivision. Then z ∈ Kp+1(W ) and y = π(z) has at least p large
coordinates. Similarly, if y = π(z)′ for z′ ∈ Ψ−1(Y \ Y1) ∩W ′ we conclude that y has at
least q small coordinates. If n < p + q, then such a point can not exist. This shows the
claim.

We have
π(Ψ−1(Y \ Y1)) ∩ ∂In = ∅

since Ψ(∂In × I) ⊆ Y1. We choose a function τ : In → I such that

1. τ ≡ 0 on π(Ψ−1(Y \ Y1))

2. τ ≡ 1 on ∂In ∪ π(Ψ−1(Y \ Y2)) .

Then we define the homotopy

(s, (x, t)) 7→ Ψ(x, (1− s)t+ stτ(x)) .

It stays inside admissible maps and takes values in Y1 for s = 1. 2

We can now finish the proof of the Blaker-Massey theorem 6.9. We consider the path
fibration sequence

F (∗, Y, Y2)→ F (Y, Y, Y2)
ev0→ Y .

Since the pull-back along Y1 → Y of this fibration sequence is again a fibration sequence
(Lemma 5.20) we get the map of fibration sequences

F (∗, Y1, Y0)
β //

��

F (∗, Y, Y2)

��
F (Y1, Y1, Y0) α //

ev0

��

F (Y1, Y, Y2)

ev0

��
Y1 Y1

.

We have seen in Proposition 6.29 that α is p + q − 1-connected. It follows by a diagram
chase in the map of associated long exact homotopy sequences that β is p+q−1-connected,
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too. Finally we note that

πn(F (∗, Y1, Y0)) ∼= πn+1(Y1, Y0) , πn(F (∗, Y, Y2)) ∼= πn+1(Y, Y2) .

2

7 Diverse Constructions

7.1 The Ω∞Σ∞-construction

In Section 4.1 we have seen that a spectrum gives rise to a cohomology theory. In this
section we describe the construction of suspension spectra.

A prespectrum E is a pair ((En)n∈N, (σn)n∈N) consisting of a sequence of pointed spaces
(En)n∈N and maps σn : ΣEn → En+1 for all n ∈ N. In contrast to spectra we do not
require that the adjoint maps En → ΩEn+1 are homotopy equivalences. Furthermore we
only consider sequences indexed by N instead of Z.

Example 7.1. Given a pointed space X we can construct the suspension prespectrum
Σ∞X simply by setting (Σ∞X)n := ΣnX and σn := idΣn+1X .

We now describe a construction which associates to a prespectrum E a spectrum R(E).
We use the unit u : id → ΩΣ of the adjunction (Σ,Ω). For a pointed space X the map
u : X → ΩΣX is the morphism corresponding to idΣX under the bijection

Hom(ΣX,ΣX) ∼= Hom(X,ΩΣX) .

The data of a prespectrum provide maps

ΩkEn+k
u→ ΩkΩΣEn+k

σn+k→ Ωk+1En+k+1

for all k ∈ N and n ∈ Z satisfying n ≥ −k. We define

R(E)n := colimk∈N,k≥−n ΩkEn+k . (14)

Since S1 is compact the loop space functor Ω commutes with filtered colimits. For every
n ∈ Z we get a sequence of homeomorphisms

ΩR(E)n+1
∼= Ωcolimk∈N,k≥−n−1ΩkEn+1+k

∼= colimk∈N,k≥−n−1Ωk+1En+1+k

∼= colimk∈N,k≥−nΩkEn+k

∼= R(E)n .
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The adjoint of this homeomorphism is the structure map

ΣR(E)n−1 → R(E)n

of the spectrum R(E).

Definition 7.2. We call R(E) the associated spectrum of E. For a pointed space X the
spectrum R(Σ∞X) is called the suspension spectrum of X.

Example 7.3. The sphere spectrum S is defined as the suspension spectrum S :=
R(Σ∞S0). The cohomology theory represented by S is the stable cohomotopy theory
(or framed bordism theory). It is in a certain sense the simplest spectrum to define, but
a very complicated cohomology theory. Its coefficients

πsn(S) := H0(Sn; S)

are called the stable homotopy groups of the sphere. They are calculated in small
dimensions, say n ≤ 55.

Problem 7.4. Let X be compact and

Y0 → Y1 → Y2 → . . .

a sequence of inclusions indexed by N. Show that the natural map

colimn∈N[X, Yn]→ [X, colimn∈NYn] (15)

is a bijection.

If E is a prespectrum, then for every n, k ∈ N we have natural maps

[X,En]
Σ→ [ΣX,ΣEn]

σn→ [ΣX,En+1] .

We can express the cohomology of a space X with coefficients in a the associated spectrum
of a prespectrum E in terms of the prespectrum as follows:

Lemma 7.5. If E is a prespectrum such that its structure maps are inclusions, then for
a compact pointed space X we have

Hk(X;R(E)) ∼= colimk∈N,k≥−n[ΣkX,En+k] . (16)

Proof. Note that the unit u : Y → ΩΣY is always an inclusion of subspaces. The
assumption on E implies that the connecting maps ΩkEn+k → Ωk+1En+k+1 in the colimit
defining R(E)n are inclusions of subspaces. We calculate

Hk(X;R(E)) = [X,R(E)n]
∼= [X, colimk∈N,k≥−nΩkEn+k]
!∼= colimk∈N,k≥−n[X,ΩkEn+k]
∼= colimk∈N,k≥−n[ΣkX,En+k]

We use the compactness of X at the marked isomorphism (see Problem 7.4). 2
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Remark 7.6. In the remark we comment on the condition that the structure maps of
E are inclusions. In general we want that the cohomology of a spectrum associated to a
prespectrum E is given by the right-hand side of (16). If the structure maps of E are not
inclusions, then the spectrum R(E) might be the wrong choice. In this case one would first
modify the prespectrum such that the structure map become inclusions without changeing
the right-hand side of (16) and then apply the construction of an associated spectrum.

Example 7.7. For a space X we have

H0(Sn;R(Σ∞X)) ∼= colimk∈N[Sn+k,ΣkX] .

By Example 6.26 we know that

H0(Sn;R(Σ∞X)) ∼= [S2n+1,Σn+1X] .

Example 7.8. Assume that we are given a pointed space X with a map β : Σ`X → X
for some ` ∈ N, ` > 0. Then using the unit u k times we get maps

ΩnX → Ωn+`Σ`X → Ωn+`X .

We can define a spectrum Σ∞X[β−1] whose n space is

Σ∞X[β−1]n := colimkΩ
n+k`X .

7.2 Simplicial sets, singular complex and geometric realization

Simplicial sets provide a combinatoral way to describe topological spaces. By [n] we
denote the poset {0, 1, . . . , n} with the natural order. We consider the category ∆ whose
objects are the posets [n] for n ∈ N and whose morphisms are order preserving maps.

The following maps play a particular role:

1. ∂i : [n] → [n + 1] for i = 0, . . . , n + 1 is the injective map whose image does not
contain i. It is called the ith boundary face map.

2. σi : [n+ 1]→ [n] for i = 0, n+ 1 is the surjective map which sends i and i+ 1 to i.
It is called the ith degeneration.

Definition 7.9. For a category C we define the category of simplicial objects sC in
C to be the functor category

sC := Fun(∆op, C) .

Similarly, the category
cC := Fun(∆, C)

is the category of cosimplicial objects in C.

89



So one can consider sC as the category of presheaves with values in C on ∆.

Remark 7.10. One can check that every morphism in ∆ can be written as a composition
of a collection of boundary face maps followed collection of degenerations. Hence in order
to present a simplicial or cosimplicial object in C it suffices to provide a sequence of objects
(X[n])n∈N and to describe the action of the boundary face maps and of the degenerations.

Example 7.11. Assume that the category C has fibre products andX → Y is a morphism
in C. Then we can form the simplicial object E(X → Y ) given by

E(X → Y )[n] := X ×Y · · · ×Y X︸ ︷︷ ︸
n+1

.

If f : [n]→ [m] is a morphism in ∆, then the induced map

E(X → Y )[m]→ E(X → Y )[n]

is given by
(x0, . . . , xm)→ (xf(0), . . . , xf(m)) .

We will in particular deal with the categories of simplicial sets sSet and simplicial topo-
logical spaces sTop.

Example 7.12. We define the cosimplicial topological space

∆−top : ∆→ Top

as follows:

1. ∆n
top is the space of probablity measures on the underlying set [n]. Let δi be the point

measure on i ∈ [n]. Then we can write every point in ∆n
top in the form

∑n
i=0 xiδi. In

this way we have coordinates x = (x0, . . . , xn) on ∆n
top. Via these coordinates ∆n

top

can be considered as the subset of Rn+1 determined by the conditions that xi ≥ 0
for all i ∈ {0, . . . , n} and

∑n
i=0 xi = 1.

2. The functor ∆−top sends a map f : [n]→ [m] to the push-forward map ∆top(f) := f∗
of measures. In coordinates the push-forward is given by (f∗(x))j =

∑
i∈f−1(j) xi.

Remark 7.13. The point of the description in terms of measures is to formulate the
functoriality in a condensed way.
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The space ∆n
top is called the n-dimensional topological simplex. The topological simplex

∆n
top has the structure of an n-dimensional manifold with corners. The map

∆top(∂i) : ∆n
top → ∆n+1

top

is the inclusion of the ith boundary face. In coordinates it is given by

x 7→ (x0, . . . , xi−1, 0, xi, . . . , xn) .

The degeneration
∆top(σi) : ∆n+1

top → ∆n
top

is a linear projection to the ith boundary face {xi = 0} from the i’th corner {xi = 1}
opposite to that boundary. In coordinates,

x 7→ (x0, . . . , xi + xi+1, . . . , xn+1) .

The topological simplex ∆n
top is homemeomorphic to Dn.

Problem 7.14. Write out an explicit formula for the homeomorphism.

Restricting the homemorphism to the boundary ∂∆n
top we get a decomposition of Sn−1

into the images of the boundary faces. This is a triangulation of Sn−1, a special form of
a cell decomposition.

We now consider constructions of simpicial sets.

1. The Yoneda embedding ∆− : ∆→ sSet is given by [n]→ ∆n := Hom∆(. . . , [n]).

2. The Yoneda embeddig for Top is a functor

Top→ Fun(Topop,Set) , X 7→ HomTop(−, X) .

The restriction of this functor along ∆−top : ∆→ Top yields a functor

sing : Top→ sSet .

It associates to a topological space the simplicial set

sing(X)(−) := HomTop(∆−top, X) .

Since ∆−top : ∆ → Top is covariant, this functor is indeed contravariant from ∆ →
Set. The simplicial set sing(X) is called the singular complex of X.
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3. We have a Yoneda embedding embedding

Cat→ Fun(Cat,Set) , C 7→ ObFun(−,C) ,

where Ob indicates that we take the set of objects of the functor category. Consid-
ering posets as categories we get a functor

∆→ Cat , [n] 7→ [n] .

Restricting the Yoneda embedding along this functor we get the nerve functor

N : Cat→ sSet .

We have
N(C)[n] = ObFun([n],C) .

Problem 7.15. Describe the simplicial set N(C) explicitly.

4. If G is a group, then we can form the category BG with one object and morphism
set G, and whose composition is given by the group multiplication. Its nerve is the
simplicial set

BG := N(BG) .

5. We can consider G as a set and form the simplicial set EG := E(G → ∗). The
group G acts on this simplicial set. The quotient can be identified with BG.

Problem 7.16. Give an explicit description of the sets BG and EG and show that
EG/G ∼= BG and of the action of the boundary and face maps.

Simplicial sets are used as combinatorial models of spaces. To this end we define a functor

| − | : sSet→ Top

as the left Kan-extension of ∆top : ∆ → Top along the Yoneda embedding ∆− : ∆ →
sSet discussed above:

∆
∆top //

∆−

""D
DD

DD
DD

DD
Top

sSet

|−|
;; .

It is called the geometric realization functor.

Lemma 7.17. We have an adjunction

| − | : sSet � Top : sing .
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Proof. This is a formal consequence of the definition of sing. Indeed, using the objectwise
formula

|X| ∼= colim(∆→X)∆
−
top

for the left Kan extension and the general facts

X ∼= colim∆−→X∆− , X ∼= HomsSet(∆
−, X)

for X ∈ sSet (true for every category of presheaves of sets) we get for every topological
space Y the following equivalence:

HomTop(|X|, Y ) ∼= HomTop(colim∆−→X∆−top, Y )
∼= lim∆−→XHomTop(∆−top, Y )
∼= lim∆−→Xsing(Y )(−)
∼= lim∆−→XHomsSet(∆

−, sing(Y ))
∼= HomsSet(colim∆−→X∆−, sing(Y ))
∼= HomsSet(X, sing(Y ))

2

An n-simplex in a simplicial set X is a morphism ∆n → X. By Yoneda, there is a
bijection between X[n] and the set of n-simplices of X. This bijection maps σ : ∆n → X
to the point σ∗(id[n]).

Explicitly, we can write |X| as a the space obtained from the disjoint union of topolog-
ical simplices, an n-dimensional one for every n-simplex of X, by identifying simplices
according to the morphisms in ∆ (face and degeneracy relations),

|X| ∼=
∐
n∈N

X[n]×∆top[n]/ ∼ . (17)

Here (x, s) ∈ X[n]×∆n
top is identified with (y, t) ∈ X[m]×∆m

top, if there exists f : [n]→ [m]
such that X(f)(y) = x and ∆top(f)(s) = t.

A simplex x ∈ X[n] is called degenerate if there exist i ∈ {0, . . . , n} such that x = σi(y)
for some y ∈ X[n− 1]. Let Xnd[n] ⊆ X[n] be the set of non-degenerate simplices.

Problem 7.18. Show that

|X| ∼=
∐
n∈N

X[n]nd ×∆n
top/ ∼

where (x, s) ∈ Xnd[n] × ∆n
top is identified with (y, s) ∈ Xnd[n + 1] × ∆m

top, if there exists
i ∈ {0, . . . , n+ 1} such that X(∂i)(y) = x and ∆top(∂i)(s) = t.

Lemma 7.19. |X| is a CW -complex.

93



Proof. We use the homeomorphism of pairs

(Dn, Sn−1) ∼= (∆n
top, ∂∆n

top) .

We consider the filtration

∅ = |X|−1 ⊆ |X|0 ⊆ |X1| ⊆ · · · ⊆ |X| ,

where
|X|k ∼=

∐
n∈{0,...,k}

X[n]nd ×∆n
top/ ∼ .

The relations are the same as in Problem 7.17. Then by construction X ∼= colimn|X|n.
We now observe that

Xnd[n+ 1]× ∂∆n+1
top

κ //

��

|X|n

��
Xnd[n+ 1]×∆n+1

top
// |X|n+1

is a push-out diagram. The attaching map κ sends a point (x, ∂i(t)) ∈ Xnd[n+1]×∂∆n+1
top

with t ∈ ∆n−1
top to the point (X(∂i)(x), t). One must check that this well-defined since the

same point may have a different presentations of this form. 2

Example 7.20. We have |∆n| ∼= ∆n
top. This is clear from the definition, but can also be

seen from the formula.

Example 7.21. We define ∂∆n ⊂ ∆n to be the simplicial set such that ∂∆n[m] is the
set set of all m-simplices which are in the image of some boundary map. Then one can
check that

|∂∆n| ∼= Sn−1 , |∆n/∂∆n| ∼= Sn .

Example 7.22. For a small category C the space |N(C)| is called the classifying space
of C. It is known that every homotopy equivalence class of CW -complexes can be repre-
sented in the form |N(C)| for a suitable category.

Example 7.23. The unit of the adjunction (| − |, sing) provides an natural map

|sing(X)| → X .

It sends the equivalence class of (x, t) ∈ X[n] ×∆n
top to ∆top(x)(t), where we interpret x

as a map of simplicial sets ∆n → X. It is known that if X is a CW -complex, then this
map is a homotopy equivalence. It always induces an isomorphism in homotopy groups.
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Example 7.24. If G is a group, then BG := |BG| is called the classifying space of G.
Since | − | is a left-adjoint it commutes with quotients. Since BG ∼= EG/G we conclude
that BG ∼= EG/G, where EG := |EG|. One can show that EG is contractible, that
EG → BG is a locally trivial bundle, and that consequently BG ' K(G, 1). We will
actually verify this in the more general context where G is a topological group.

7.3 Simplicial spaces and classifying spaces of topological groups

If G is a topological group, then the simplicial sets EG and BG defined after forgetting
the topology on G are not the appropriate objects. The categories EG and BG inherit
topological structures from G. In order to capture these structures we will consider
category objects in Top, i.e. categories internal to Top which we call shortly topological
categories. A topological category C has in particular topological spaces of objects Ob(C)
and morphisms Mor(C). These spaces are connected by maps s, t : Mor(C) → Ob(C)
which determine source and target of a morphism, and a map Ob(C)→ Mor(C) realizing
the identities.

Example 7.25. A category is a topological category with discrete spaces of objects and
morphisms. A topologically enriched category is a topological category with a discrete
space of objects.

Example 7.26. The category of vector subspaces of Rn is a topological category. Its
space of objects is the disjoint union of Grassmannians

B :=
n⊔
i=0

Gr(i,Rn) .

Let ξi → Gr(i,Rn) be the tautological bundle. Then we define the bundle ξ :=
⊔n
i=0 ξi →

B. Then the space of morphisms in this topological category is given by the total space
of the vector bundle

Hom(pr∗1ξ, pr
∗
2ξ)→ B ×B .

Source and target are the projections to the first and second factors.

Example 7.27. The category of locally compact topological spaces Toplc is enriched
over Top and therefore a topological category.
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Example 7.28. For a topological group G we can consider BG as a topological category.
Its space of objects is has one point, and its space of morphisms is the group G. The
composition is induced by the group structure of G and the identity section is the inclusion
of the identity element.

The category EG is the topological category with space of objects G and space of mor-
phisms G×G. The source and target maps are given by s : (g, h) 7→ g and t : (g, h) 7→ gh.
The composition sends the pair of composeable morphisms ((g, h), (gh, k) to (g, ghk). The
identity section is the diagonal G→ G×G.

If C is a topological category, then Fun([n],C) is again a topological category.

Problem 7.29. Show that for a topological category D whose spaces of morphisms and
objects are locally compact Hausdorff spaces the category Fun(D,C) is naturally a topo-
logical category.

For a topological category we can refine the simplicial set

N(C) = ObFun([n],C)

to a topological space. Indeed, we can write the space of n-simplices as an iterated
fibre-product

N(C)[n] = Mor(C)×s,Ob(C),t · · · ×s,Ob(C),t Mor(C)︸ ︷︷ ︸
n+1

.

Therefore the nerve of a topological category C is a simplicial space, i.e. N(C) ∈ sTop.

Example 7.30. For a topological group G we get the simplicial spaces BG := N(BG)
and EG := N(EG).

Example 7.31. Note that ∆n
top is locally compact and Hausdorff. For a topological space

X we can thus refine the simplicial set sing(X) to a simplicial space singtop(X) ∈ sTop
by setting

singtop(X)[n] = Map(∆n
top, X) .

Lemma 7.32. We have an adjunction

| − | : sTop � Top : singtop .

Proof. This is formal as in Lemma 7.16. 2

For the following Lemma we work in the category of compactly generated weak Hausdorff
spaces Topk. The advantage of this category is that it is cartesian closed. So the functor
of taking the cartesian product with a space X is the left-adjoint in the adjunction

−×X : Topk � Topk : Map(X,−) .

96



Being a left-adjoint the functor −×X commutes with colimits. In general, if we take the
cartesian product in Top of two objects of Topk, the the result will not be compactly
generated. The cartesian product in Topk is obtained from the product in Top by
modifying the topology.

The geometric realization in this context is still defined by an adjunction

| − | : sTopk � Topk : singtop

and explicitly given by the formula (17).

Lemma 7.33. The geometric realization | − | : sTopk → Topk preserves finite products.

Proof. Let X, Y be simplicial spaces. By functoriality the projections

X ← X × Y → Y

induce maps
|X| ← |X × Y | → |Y |

and therefore a map
ζ : |X × Y | → |X| × |Y | .

We show that ζ is a homeomorphism. To this end we construct an inverse ξ. For a
simplicial space X we set

X :=
∐
n∈N

X[n]×∆n
top .

We let Xn be the component with index n. Then we have a quotient map

X → |X| .

We first define a map
ξ̄ : X × Y → |X × Y |

and then observe that it factorizes over the quotient |X| × |Y |.

Let
((x, t), (y, s)) ∈ Xn × Y m .

Here x ∈ X[n], y ∈ Y [m] and t ∈ ∆n
top, s ∈ ∆m

top. We define numbers in [0, 1] by

uk :=
k∑
i=0

ti , k = 0, . . . , n− 1

and

vl :=
l∑

j=0

sj , l = 0, . . . ,m− 1 .
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Then we let
0 ≤ w0 ≤ · · · ≤ wn+m−1 ≤ 1

be obtained by ordering the numbers uk and vl. In addition we set w−1 := 0 and wn+m :=
1. We now define

ri := wi − wi−1 , i = 0, . . . , n+m .

We consider r as a point in ∆n+m
top .

Let
i1 < · · · < in , j1 < · · · < jm

be the disjoint sequences such that

wir ∈ {uk} ,∀r , wjs ∈ {vl} ,∀s .

Then
t = ∆top(σj1) . . .∆top(σjm)r , s = ∆top(σi1) . . .∆top(σin)r ,

Then we define

ξ̄((x, t), (y, s)) := [(X(σjm) . . . X(σj1)(x), Y (σin) . . . Y (σi1)(y)), w] ∈ |X × Y | .

This map is continuous and preserves the relations for the quotient

X × Y → |X| × |Y | .

Problem 7.34. Check this assertion.

We thus get a diagram

X × Y

ξ̄

&&
//

��

(X × Y )/ ∼ //

wwo o o o o o
|X × Y |

|X| × |Y |

ξ

33 .

In order to obtain the dotted arrow we must invert the dashed one. In general, this is not
a homeomorphism since finite products do not commute with quotients. But this is true
if we work in a convenient category of compactly generated weak Hausdorff spaces Topk.

2

From now we work in the category Topk without further notice. A functor between
topological categories is a functor between the underlying categories with the additional
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property that the maps induced by the functor between the spaces of objects and mor-
phisms are continuous. Similarly, a natural transformation between functors C → D
between topological categories is a natural transformation between the functors on the
underlying categories with the additional property that the map Ob(C) → Mor(D) is
continuous.

For a topological category C we use the abbreviation

|C| := |N(C)|

for the classifying space.

Lemma 7.35. The following data are equivalent:

1. a natural transformation h : F0 → F1 between functors Fi : C → D between topo-
logical categories

2. a functor
H : [1]×C→ D

between topological categories such that H|{i}×C = Fi.

Proof. We describe the functor H determined by h. On objects we define

H((0, C)) := F0(C) , H((1, C)) := F1(C) .

On morphisms we set
H(idi, f) := Fi(f) , i = 0, 1

and
H(0→ 1, idC) := hC .

One checks that this prescription determines H uniquely. Vice versa, from these formulas
we see how to read off h from H. 2

There is a natural definition of the notion of an equivalence between topological categories.

Lemma 7.36. If F : C → D be an equivalence between topological categories, then
|F | : |C| → |D| is a homotopy equivalence.

Proof. Let G : D → C be a functor and φ : idC → G ◦ F and idD → F ◦ G be natural
isomorphisms. Using Lemma 7.34 from φ we get a functor H : [1]×C→ C which restrict
to idC and G ◦ F at 0 and 1. Note that |[1]| ∼= [0, 1]. Using Lemma 7.32 and the fact
that N preserves products we get a homotopy

|H| : |[0, 1]| × |C| → C|

from id|C| to |G| ◦ |F |. We argue similarly for |F | ◦ |G|. 2
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For a topological group we now consider the spaces EG := |BG| and BG := |BG|.

We call a space X locally contractible if every point x ∈ X admits a basis of neigh-
bourhoods which are contractible to the point x. For example, a manifold is locally
contractible. If G is a group, then it suffices to show that the identity element admits a
basis of neighbourhoods which can be contracted to this element.

Lemma 7.37. 1. EG is a contractible space.

2. G acts freely and properly on EG with quotient BG

3. If G is locally contractible, then EG→ BG is a locally trivial bundle with fibre G.

Proof. The space EG is the classifying space of the topological category described in
Example 7.27. Let ∗ be the terminal category. Let A : ∗ → EG be the functor which
sends the unique object of ∗ to 1 ∈ G. We define B : EG→ ∗ in the canonical way. Then
B ◦ A = id∗. We construct a natural transformation

h : A ◦B → idEG , h : G→ G×G , h(g) := (e, g) .

Problem 7.38. Check the details.

We see that |A| : EG → ∗ and |B| : ∗ → EG are inverse to each other homotopy
equivalences. This implies that EG is contractible.

We consider the group G as a group G in sTop by setting G[n] := G for all n ∈ N and
defining all structure maps to be the identity. Thus G is the constant simplicial space
on G. The group G acts on EG as follows:

EG[n]×G[n] 7→ EG[n] , ((g0, . . . , gn), h) 7→ (g0h, . . . , gnh) .

We define a map EG→ BG by

(g0, . . . , gn) 7→ (g0g
−1
1 , g1g

−1
2 , . . . , gn−1g

−1
n ) .

Problem 7.39. Check that this map is well-defined.

We argue that this map presents BG as the quotient EG/G. For every n ∈ N we have
an isomorphism of G-spaces BG[n]×G→ EG[n] over BG[n] which sends

((g1, . . . , gn), h)→ (h, g−1
1 h, g−1

2 g−1
1 h, . . . , g−1

n . . . g−1
1 h) . (18)

Note that this morphism is not compactible with the simplicial structures.

Let X be a simplicial space and EG → X a G-invariant morphism. Then for every
n ∈ N we have the G-invariant continuous map EG[n]→ X[n]. By the discussion above
it determines a unique map BG[n] → X. It follows from the uniqueness assertion that
the collection of these factorizations for all n ∈ N together give a morphism of simplicial
spaces BG→ X which is unique.
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We now observe that G ∼= |G| since in the constant simplicial group G all higher simplices
are degenerated. Since | − | preserves products it sends the action of G on EG to the
action of G on EG. Since the action of G on BG[n] is proper and free one checks that
the action of G on EG is proper and free, too.

As a left-adjoint the geometric realization functor | − | preserves colimits, so in particular
coequalizers. We conclude that BG ∼= EG/G.

It remains to construct local sections. We use the filtration

∅ = BG−1 ⊆ BG0 ⊆ BG1 ⊆ · · · ⊆ BG ,

where BGn is the image of
n⊔
k=0

BG[k]×∆k
top .

Let x ∈ BG. Then there exists a smalles k0 such that x ∈ BGk0 . Then x = [a, t], where
a ∈ BG[k0] and t ∈ Int(∆k0

top). For every k ∈ N the pull-back

(BG[k]×∆k
top)×BG EG→ BG[k]×∆k

top

is trivial (use 18). Hence we can find a section over the open subset

BG[k0]× Int(∆k0
top) ⊂ BGk0 .

We now extend this section inductively. We decompose the space of k-simplices into the
degenerated and non-degeneted part:

BG[k] := BG[k]nd tBG[k]d .

Here BG[k]d is the subspace of all tuples (g1, . . . , gk) ∈ BG[k] where gi = 1 for at least
one index i ∈ {1, . . . , k}. Then we have

BGk = BGk−1 ∪BG[k]d×∆k
top∪BG[k]nd×∂∆k

top
BG[k]×∆k

top .

We now assume that we have a section defined on an open neighbourhood V ⊆ BGk−1 of
a point x ∈ BGk−1. Then we must extend it to an open neighbourhood of x considered
as a point in BGk. Using the trivialization of the pull-back of the bundle to BG[k]×∆k

top

we can identify the data of the section with a map

BG[k]d ×∆k
top ∪BG[k]nd × ∂∆k

top ⊇ V → G .

We now use that

BG[k]d ×∆k
top ∪BG[k]nd × ∂∆k

top ↪→ BG[k]×∆k
top

is a neighbourhood deformation retract.

Problem 7.40. Deduce this fact from the property that G is locally contractible.

Hence we can extend the section as required. 2
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7.4 Classification of principal bundles

Let G be a topological group.

Definition 7.41. A G-principal bundle is a locally trivial bundle E → B where E
admits a fibrewise right action such that the natural map

E ×G→ E ×B E , (e, g) 7→ (e, eg)

is a homeomorphism.

Problem 7.42. Let E → B be a map between topological spaces admitting local sections
and assume that G acts fibrewise on E such that E ×G→ E ×B E is a homeomorphism.
Then E → B is a G-principal bundle.

The problem thus consists in translating the condition of being local trivial in the condition
of having local sections.

Assume that E → B is trivial. Then choosing a section s we get a G-equivariant homeo-
morphism

B ×G '→ E , (b, g) 7→ s(b)g

over B. So we see that the fibre of a G-principal bundle is isomorphic to G as a right
G-space.

Example 7.43. For every spaces B and group G we have the trivial G-principal bundle
B ×G→ B.

Example 7.44. The map EG → BG is a G-principal bundle. It is often called the
universal G-principal bundle. We shall see below, why.

Example 7.45. If V → B is an n-dimensional vector bundle, then we can form the
space Fr(V ) of pairs (b, φ), where b ∈ B and φ : Rn → Vb is an isomorphism. The group
GL(n,R) acts on Fr(V ) from the right by (b, φ)g := (b, φ ◦ g). We have a projection
Fr(V )→ B which sends (b, φ) to b. This describes a GL(n,R)-principal bundle called the
frame bundle of V → B.

Example 7.46. Let F be a locally compact Hausdorff space. Then we have a topological
group Aut(F ) ⊂ Map(F, F ). If E → B is a locally trivial fibre bundle with fibre F , then
we can generalize the construction of the frame bundle. We let Fr(E) be the space of
pairs (b, φ), where b ∈ B and φ : F → Eb is a homeomorphism. The action of Aut(F ) on
E is given by (b, φ)g := (b, φ ◦ g). Then Fr(E)→ B is a Aut(F )-principal bundle.

102



Example 7.47. Let X̃ → X be a Galois covering with group Γ, see Subsection 1.7. This
is a Γ-principal bundle.

Let E → B be a G-principal bundle and f : A→ B be a continuous map. Then

prA : A×B E → A

is again a G-principal bundle. It is called the pull-back and is often denoted by f ∗E → A.

An isomorphism between G-principal bundles E → B and F → B over the same space
B is a G-invariant map over B.

Problem 7.48. Show that such a map is automatically invertible.

So we do not have to require invertibility explicitly.

Let E → B and E ′ → B′ be G-principal bundles.

Lemma 7.49. A square

E ′

��

F // E

��
B′

f // B

where F is G-equivariant is a pull-back square.

Proof. We have a canonical map E ′ → B′ ×B E which is G-equivariant and over B′ and
hence a homeomorphism. 2

Let F be a right G-space and E → G be a G-principal bundle. Then we form the map

π : (E × F )/G→ B .

The map π is the projection of a locally trivial fibre bundle with fibre F . It is called the
associated fibre bundle to the G-principal bundle E → B and the G-space F .

Lemma 7.50. There is a bijection between sections of the associated fibre bundle π and
G-equivariant maps E → F .

Proof. Let s be a section of π. Then we define the G-equivariant map σ : E → F by
σ(e) := f , where f ∈ F is uniquely determined by the condition that s(b) = [e, f ]. It is
obvious from this definition that σ(eg) = fg.

If σ : E → F is a G-equivariant map, then we define the section s by s(b) := [e, σ(e)] for
any choice of e ∈ Eb. The value s(b) is well-defined. Indeed, if we would chose eg instead
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of e, then [eg, σ(eg)] = [eg, σ(e)g] = [e, σ(e)]. 2

Let E → B be a G-principal bundle.

Lemma 7.51. There is a bijection between the sets of trivializations of the bundle and of
sections.

Proof. Given a trivialization φ : E
'→ B × G we have the section b 7→ φ−1((b, 1)). Given

a section s we define a trivialization by φ(e) := (π(b), e−1(φ)s(π(e))). Here for points
e, f ∈ Eb we let e−1f ∈ G be defined such that e(e−1f) = f . 2

Example 7.52. Let π : E → B be a G-principal bundle. Then E ×B E → E has a
canonical trivialization. It corresponds to the section diag : E → E ×B E.

We now fix a topological group. We consider the functor

PG : Topop → Set

which sends the space B ∈ Top to the set PG(B) of isomorphism classes of G-principal
bundles [E → B] on B and a continuous map f : A→ B to the map

f ∗ : PG(B)→ PG(A) , [E → B] 7→ [A×B E → A] .

Remark 7.53. If E → B is a G-principal bundle, then B ∼= E/G.

In the following we repeatedly assume that base spaces are paracompact Hausdorff. The
reason is that this assumption appears in Theorem 5.22. We need the fact, that a locally
trivial bundle over a paracompact Hausdorff space is a fibration. In particular we will use
the homotopy extension property for sections.

Alternatively we can assume that the base spaces are CW -complexes. Then the proof of
the homotopy extension property for sections is easier.

Let Topph ⊂ Top denote the subcategory of paracompact Hausdorff spaces.

Lemma 7.54. Assume that G ∈ Topph. Then the restriction of the functor PG to Topph
is homotopy invariant.
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Proof. Let E → I×B be a G-principal bundle over B ∈ Topph. We must show that there
is an isomorphism E0

∼= E1 of G-principal bundles, where Ei → B denote the restrictions
to the endpoints of the interval for i = 0, 1.

We consider the bundle
π : (E × E0)/G→ I ×B .

The identity of E0 is a section of π over {0}×B. Since π is a fibration this section extends
to a section s defined on all of I × B. It corresponds to a G-equivariant map E → E0

over an induced map H : I ×B → B obtained by passing to quotients. Let s1 := s{1}×B.
We now consider the lifting problem

{1} ×B

��

s1 // (E1 × E0)/G

p

��
I ×B

77

H // B

.

The lift exists again since p is a fibration. Note that H|{0}×B = idB. The evaluation of
the lift at {0} × B is a section which corresponds to a G-equivariant map E1 → E0 over
B, i.e an isomorphism of G-principal bundles E1

∼= E0. 2

2

We have a natural transformation of functors Top→ Set

Φ : [−, BG]→ PG(−) , ΦB : [f : B → BG] 7→ [f ∗EG→ B] .

Proposition 7.55. If B ∈ Topph, then the map ΦB is a bijection.

Proof. We first show that Φ is surjective. Let E → B be a G-principal bundle. We must
find a map f : B → BG such that ΦB([f ]) = [E → B]. We consider the associated fibre
bundle π : (E × EG)/G → B for the G-space EG. This is a locally trivial fibre bundle
with fibre EG. Since we assume that B ∈ Topph the map π is a fibration. A fibration
with a contractible fibre is a homotopy equivalence. Let s0 : B → (E × EG)/G be an
inverse up to homotopy. Again using the fibration property we can modify this map by
a homotopy such that it becomes a section s. It may be obtained as the evaluation at
{1} ×B of a lifting in

{0} ×B

��

s0 // E

��
I ×B

;;

// B

,

where the lower horizontal map is the homotopy from π ◦ s0 to idB. The section s is by
Lemma 7.49 equivalent to a G-equivariant map E → E × EG. Its second component is
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a G-equivariant map E → EG. By passing to quotients we get a map f : B → BG. We
now apply Lemma 7.48 to deduce that the resulting square

E

��

// EG

��
B // BG

is a pull-back square. Therefore [E → B] = ΦB([f ]). This shows the surjectivity of Φ.

We now show injectivity. We consider two maps f, g : B → BG and assume that
ΦB([f ]) = ΦB([g]). We must show that then f and g are homotopic. By assumption
we have an isomorphism of G-principal bundles ψ : f ∗EG → g∗EG. We define the total
space of a G-principal bundle E → I ×B as the push-out

(−1/2, 1/2)× f ∗EGincl×ψ //

incl×id
��

(−1/2, 1]× g∗EG

��
[−1, 1/2)× f ∗EG // E

.

We now consider the associated bundle (E × EG)/G → I × B. The canonical map
f ∗EG→ EG induces a section of this associated bundle restricted to {−1}×B. Similarly
we get a section over {1}×B from g∗E → EG. Since the fibre of the bundle is contractible,
we can solve the lifting problem in

{0, 1} ×B

��

// (E × EG)/G

��
I ×B

66

I ×B

.

Here we proceed in two steps. In the first

The lift can be interpreted as a G-equivariant map E → EG.

By passing to quotients we get the homotopy H : I ×B → BG from f to g. 2

Remark 7.56. Observe that in this argument we have only used that EG → BG is a
G-principal bundle such that EG is contractible. Let E → B a G-principal bundle over
a space B ∈ Topph such that E is contractible. Then we get an isomorphism of functors
[−, B] ∼= [−, BG]. From this we conclude that B and BG are homotopy equivalent.

A G-principal bundle E → B over a base space B ∈ Topph with contractible total space
E is called a universal G-bundle. The base space of a universal G-bundle is homotopy
equivalent to BG.

From the long exact sequence in homotopy we get isomorphisms

πn+1(BG) ∼= πn(G) (19)
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for all n ≥ 0.

Example 7.57. We consider the U(1)-principal bundles S2n−1 → CPn. There are inclu-
sions

S2n−1 //

��

S2(n+1)−1

��
CPn // CPn+1

.

If we form the colimit, then we get a U(1)-bundle

S∞ → CP∞ .

Problem 7.58. Verify that this bundle has local sections.

Since S∞ is contractible, this is the universal U(1)-bundle.

Problem 7.59. Show that S∞ := colimn∈NS
n is contractible.

Example 7.60. We consider the group Zn acting on Rn with quotient T n. Then Rn → T n

is a Zn-principal bundle. Since Rn we see that T n ' BZn.

Example 7.61. We have a bijection between isomorphism classes of n-dimensional real
vector bundles on a space B and GL(n,R)-principal bundles. This bijection is given as
follows:

1. If V → B is an n-dimensional real vector bundle, then the corresponding GL(n,R)-
principal bundle is the frame bundle Fr(V )→ B, see Example 7.44.

2. If E → B is a G-principal bundle, then we let V := E ×GL(n,R) Rn → B be the
associated vector bundle.

We have the isomorphisms

Fr(V )×GL(n,R) Rn → V , ((b, φ), x) 7→ φ(x)

and
E → Fr(E ×GL(n,R) Rn) , e 7→ (π(e), (x 7→ [e, x])) .

Hence, for B ∈ Topph we can identify the set [B,BGL(n,R)] also with the set of isomor-
phism classes of n-dimensional real vector bundles over B.
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7.5 Topological abelian groups

For a based space B we consider the path fibration defined by the pull-back

PB

��

// BI

(ev0,ev1)

��
B

∗B×id// BG×BG

.

Lemma 7.62. The space PB is contractible.

Proof. A point in PB is a path (t 7→ γ(t)) such that γ(0) = ∗. The base point ∗PB of
PB is the constant path with value ∗B. Using this notation the contraction is given by

HPB : I × PB → PB , (s, (t 7→ γ(t))) 7→ (t→ γ(st)) .

2

Let now f : E → B be a fibration such that E is contractible and F := f−1(∗B) be the
fibre over the base point of B.

Lemma 7.63. We have a homotopy equivalence F ' ΩB.

Proof. We consider a diagram

F

��

κ // ΩB

��
E

k //

f

��

PB

ev1

��
B B

.

The choice of a contracting homotopy of H : I ×E → E from id to const∗E induces the
map k by

k(e) = (t 7→ H(t, e)) .

The map κ is obtained from k by restriction to the fibre.

We now show that κ is a homotopy equivalence. We solve the homotopy extension problem
for sections

{0} × PB
const∗E //

ev1

��

E

f

��
I × PB

::

f◦HPB // B

The restriction of the lift to {1}×PB yields a fibrewise map ` : PB → E. We now show
that the restriction λ : ΩB → F of ` is a homotopy inverse of κ.
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We clearly have a homotopy h : I×E → E from `◦k to idE, but which is not necessarily
fibrewise. We consider a map

({0, 1} × I ∪ I × {1})× E → B

which is the composition of the projection to E with f on {0, 1}× I×E and equal to the
loop γ : (t, e) 7→ f(h(t, e)) on I×{1}×E. We can extend this map to a map I×I×E → B
which is the composition of the projection to E with f on I × {0} × E. To see this let
HE : I × E → E be a contracting homotopy of E and consider

S1 × I × E 3 (t, s, e) 7→ f(h(t,HE(s, e))) ∈ B .

We have
f(h(t,HE(1, e))) = γ(t, e) .

The loop (t→ h(t,HE(0, e))) is independent of e. Since E is contractible we can extend
the restriction of the above map to S1 × {0} × E over D2 × E. We now identify (S1 ×
I) ∪S1×{0} D

2 ∼= D2 (we fill an annulus by a disc).

Using the claim we can consider the homotopy extension problem for a lift

({0, 1} × I ∪ I × {1})× E h̃ //

��

E

f

��
I2 × E

55

// B

,

where
h̃(0, t, e) := (λ ◦ κ)(e) , h̃(1, t, e) := e , h̃(s, 1, e) := h(s, e) .

The evaluation of the lift at I × {0} is the required homotopy between λ ◦ κ and idF .

The argument for κ ◦ λ is similar. 2

Remark 7.64. This Lemma is a standard method to identify a space F with the loop
space of another space B. To this end must embed into a fibration E → B with con-
tractible total space E.

Corollary 7.65. Assume that E → B is a universal G-principal bundle. Then we have
a homotopy equivalence

G ' ΩG .

In particular, G ' ΩBG.

Proof. Apply Lemma 7.62 to the fibration EG→ BG. 2

Problem 7.66. Study the compatibility of the group structures.
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Lemma 7.67. If G is an abelian topological group, then BG is an abelian group in sTop
and hence BG is an abelian topological group.

Proof. We observe that BG is an abelian group in sTop. The operation BG×BG→ BG
is given on the level of n-simplices given by

(g1, . . . , gn) + (h1, . . . , hn) := (g1 + h1, . . . , gn + hn) .

Problem 7.68. Analyse where the condition that G is abelian is important.-

Since the geometric realization preserves products | − | we conclude that BG = |BG| is
an abelian group in Top.

Remark 7.69. For example, the product in BG is given by

BG×BG ∼= |BG| × |BG| ∼= |BG×BG| |+|→ |BG| = BG .

We interpret the unit of G as a homomorphism 1 → G, where 1 is thre trivial group.
Then we get a map B1→ BG. Using that B1 ∼= |B1| ∼= ∗ we get a map

∗ ∼= B1→ BG

which represents the unit of BG.

Remark 7.70. More formally we can observe that the topological category BG is sym-
metric monoidal where the tensor product of morphisms is given by the sum. Thus BG
is an abelian group object in topological catgeories and therefore BG an abelian group
object in sTop. Finally we get the topological abelian group BG.

If G is a topological abelian group, then BG is again a topological abelian group. There-
fore we can iterate the construction of the classifying space.

Definition 7.71. Let G be a topological abelian group. For n ∈ N we define inductively
BnG := B(Bn−1G).

Let G be a discrete group.

Lemma 7.72. The space BnG has the weak homotopy type of K(G, n).

Proof. Iterating (19) we get

πi(B
nG) ∼= πi−n(G) ∼=

{
G i = n
0 else

2

Corollary 7.64 implies inductively that

BnG→ ΩBn+1G

is a homotopy equivalence.
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Corollary 7.73. For every topological abelian group G we get a spectrum

E = ((En)n∈Z, (σn)n∈Z) .

For n ∈ N we set
En := BnG , BnG→ ΩBn+1G .

For n ∈ Z and n < 0 we set En := Ω−nE0 und use the canonical structure maps.

If we apply this construction to the discrete abelian group A, then we get the Eilenberg-
MacLane spectrum HA.

7.6 Homology

Let
E = ((En)n∈Z, (σn)n∈Z)

be a spectrum. The cohomology H∗(X; E) of a pointed space X with coefficients in E
has been defined in Definition 4.2. In particular the homotopy groups of the spectrum E
are defined by

πsn(E) := E−n := H0(Sn; E) , n ∈ Z (20)

In this section we consider the dual theory, the homology H∗(X; E) of a pointed space X
with coefficients in E.

In order to define the homology as a functor we must consider a category of spectra. A
morphism between spectra f : E → F is a family of maps fn : En → Fn for all n ∈ Z
which preserve the structure maps, i.e. the diagrams

ΣEn
Σfn //

σE
n
��

ΣFn

σF
n
��

En+1
fn+1 // Fn+1

commute. A morphism between prespectra is defined similarly. In Definition 7.2 we have
defined the spectrum R(E) associated to a prespectrum E. This construction provides a
functor

R : prespectra→ spectra . (21)

Given a prespectrum E now define a functor from pointed spaces to prespectra

Top∗ → prespectra (22)

by the following description: It sends the pointed space X to the prespectrum

N 3 n 7→ X ∧ En , Σ(X ∧ En) ∼= X ∧ ΣEn
idX∧σn→ X ∧ En+1 .
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On morphisms this functor is defined in the obvious way. We now obtain a functor

− ∧ E : Top∗ → spectra

from pointed spaces to spectra by post-composing the functor (22) with the associated
spectrum construction (21). Recall πsk(−) from (20).

Definition 7.74. We define the homology of X with coefficients in E by

Hk(X; E) := πsk(X ∧ E) , k ∈ Z

By Lemma 7.5 we can express the homology of X with coefficients in E directly in terms
of X and the constituents En of E. If X is compact, then we have

Hk(X; E) ∼= colimnπn(X ∧ En−k) . (23)

In the following we state the obvious properties of homology:

1. The construction X 7→ X ∧ E preserves colimits. So in particular, if (Xα) is a
diagram of compact spaces, then

Hk(colimαXα; E)→ colimαHk(Xα; E)

is an isomorphism. We see that (23) holds true for general spaces whose topology
is compactly generated.

2. X 7→ Hk(X; E) is a homotopy invariant functor from Topop∗ to abelian groups. On
compactly generated spaces this is most easily seen from (23) since the functors
X 7→ πn(X ∧En−k) are homotopy invariant for all n ∈ N and take values in abelian
groups form n ≥ 2.

3. Homology has a suspension isomorphism

Hk(ΣX; E) ∼= Hk−1(X; E) .

Indeed, again using (23), we calculate

Hk(ΣX; E) ∼= colimnπn(ΣX ∧ En−k)
∼= colimnπn(X ∧ En−k+1)
∼= Hk+1(X; E)

4. The homology of spheres is given by

Hk(S
n; E) ∼= πk+n(E) .
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Next we consider the long exact sequence of a pair and its generalization. Compared with
the same feature for cohomology the case of homology is more complicated. For a map
f : A→ X we consider the mapping cone sequence Cor. 3.25 in pointed spaces

A→ X → C(f)→ ΣA→ ΣX → . . . . (24)

It immediately follows from the construction (14) of R(−) that

ΣX ∧ E ∼= Σ(X ∧ E) ,

see Example 4.10 for the definition of the shift of a spectrum. We get an induced sequence
of maps spectra

A ∧ E→ X ∧ E→ C(f) ∧ E→ Σ(A ∧ E) . (25)

Since Σ is an isomorphism this sequence can be prolonged to the left and right.

Proposition 7.75. The sequence (25) induces a long exact sequence in homology

· · · → Hk(A; E)→ Hk(X; E)→ Hk(C(f); E)→ Hk−1(A; E)→ . . .

Proof. We use the suspension isomorphism for ` ≥ 0

Hk(X; E) ∼= Hk+`(Σ
`X; E) .

The pair of pointed spaces (Σ`X ∧En−k−`,Σ`A∧En−k−`) gives rise to an exact sequence

πn(Σ`A ∧ En−k−`)→ πn(Σ`X ∧ En−k−`)→ πn(Σ`X ∧ En−k,Σ`A ∧ En−k−`)

of homotopy groups. An `-fold suspension of a space is `− 1-connected by Lemma 6.25.
We further use the identity (ΣX) ∧ Y ∼= Σ(X ∧ Y ). From Theorem 6.23 we get the
isomorphism

πn(Σ`X ∧ En−k,Σ`A ∧ En−k−`) ∼= πn(Σ`C(f) ∧ En−k−`)

for all n ≤ 2` − 3. We define `(n) to be the smallest integer greater n+3
2

. Then by (23)
we have

Hk(X; E) ∼= colimnπn(Σ`(n)X ∧ En−k−`(n)) .

The exactness of

πn(Σ`(n)A ∧ En−k−`(n))→ πn(Σ`(n)X ∧ En−k−`(n))→ πn(Σ`(n)C(f) ∧ En−k−`(n))

implies that
Hk(A; E)→ Hk(X; E)→ Hk(C(f); E)

is exact. It extends further to a long exact sequence using Corollary 3.25. 2
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Remark 7.76. We consider a sequence of maps between spectra

E→ F→ G→ ΣE . (26)

The choice of a homotopy of the composition Fn → Gn → En+1 to a constant map is
equivalent to the data of the following diagram

En

��

// ΩEn+1

��
Fn

��

// Fib(Gn → En+1)

��
Gn

��

Gn

��
En+1 En+1

(27)

(see 5.3 for a Definition of the homotopy fibre).

Definition 7.77. We say that the sequence of maps between spectra (26) is a fibre se-
quence, if the sequences of spaces

En → Fn → Gn → En+1

for all n ∈ N fit into diagrams (26) in which the horizontal maps are homotopy equiva-
lences and the upper horizontal map En → ΩEn+1 is homotopic to the structure map of
E.

Lemma 7.78. If (26) is a fibre sequence of spectra, then we have a long exact sequence

· · · → πsn(E)→ πsn(F)→ πsn(G)→ πsn−1(E)→ . . .

in homotopy.

Proof. The sequence in question can be written as

· · · → πn+k(ΩEk+1)→ πn+k(Fk)→ πn+k(Gk)→ πn+k(Ek+1)→ . . .

for k ≥ n+ 2. It is an exact sequence of abelian groups by Proposition 5.21. 2

Proposition 7.79. For a map f : A→ X between pointed spaces the sequence (25) is a
fibre sequence of spectra.

Proof. We will not give the details. One first introduces a notion of a cofibre sequence of
prespectra based on mapping cones. Then one observes that the mapping cone sequence
(24) induces a cofibre sequence of prespectra. Finally one observes that the associated
spectrum construction R(−) turns cofibre sequences in spectra into fibre sequences. 2
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In order to simplify the notation we define

H∗(f ; E) := H∗(C(f); E)

and for an inclusion of a subspace f : A ⊆ X we set

H∗(X,A; E) := H∗(f ; E) .

Corollary 7.80. For a map f : A→ X we have a long exact homology sequence

· · · → Hk(A; E)→ Hk(X; E)→ Hk(f ; E)→ Hk−1(A; E)→ . . .

Assume that
∅ = X−1 ⊆ X0 ⊆ X1 ⊆ · · · ⊆ X

is an increasing filtration of a space. We get an increasing filtration of the homology by

FpH∗(X; E) := im(H∗(Xp; E)→ H∗(X; E))

for all p ∈ Z. The associated graded groups can be calculated by a spectral sequence.

In order to obtain the usual grading conventions for spectral sequences it us useful to
consider the decreasing filtration and a cohomological grading of homology

F−pH−q(X; E) := FpHq(X; E) , p, q ∈ Z .

Then we can put the long exact pair sequences of the pairs (Xp, Xp−1) together and obtain
an exact couple⊕

jH∗(Xj; E) //
⊕

jH∗(Xj; E)

uukkkkkkkkkkkkkk

⊕
jH∗(Xj+1, Xj; E)

iiSSSSSSSSSSSSSS

.

This exact couple induces a spectral sequence. The spectral sequence resides in the left
half-plane. If it converges (e.g. if the filtration is finite), then we have

Ep,q
∞
∼= GrpH−p−q(X; E) .

If X is a CW complex and the filtration is by its skeleta, the the spectral sequence is
called the Atiyah-Hirzebruch spectral sequence. Its second page is

Ep,q
2
∼= H−p(X;Eq) .

If E = HZ, then the spectral sequence lives in the zero line. In this case the E1-term

E−p,01
∼= Cp(X) ∼=

⊕
p−cells

Z

is called the cellular chain complex (C∗(X), ∂) of X, where ∂ = d1. Its differentials ∂
can be determined using the following Lemma:
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Lemma 7.81. The cellular cochain complex C∗(X;A) of X (11) is obtained by applying
Hom(−, A) to the cellular chain complex (C∗(X), ∂).

Proof. Excercise.

Example 7.82. We have

H∗(CPk;Z) ∼=
{

Z ∗ = 2, 4, . . . , 2k
0 else

Here we use that CPn has cells in even dimensions 0, 2, . . . , 2n. The complex is

Z← 0← Z← 0← Z← · · · ← Z ..

H∗(RP2k−1;Z) ∼=


Z ∗ = 0, 2k − 1

Z/2Z ∗ = 1, 3, . . . , 2k − 3
0 else

Here the chain complex has the form

Z 0← Z 2← Z 0← Z 2← Z← · · · 0← Z ,

where the last Z is in degree 2k − 1.

The relation between complexes

C∗(X,A) ∼= Hom(C∗(X),Z)

is reflected in cohomology/homology by the universal coefficient theorem UCT. We
start with the algebraic fact.

Lemma 7.83. Let C∗ be a chain complex consisting of free Z-modules, A be some abelian
group and define C∗ := Hom(C∗, A). Then we have a short exact sequence

0→ Ext(Hk−1(C∗), A)→ Hk(C∗)→ Hom(Hk(C∗), A)→ 0 .

Proof. The chain complex C∗ gives rise to a short exact sequence of chain complexes

0 // Zk−1
//

OO

Ck−1
∂ //

OO

Bk−2
//

OO

0

0 // Zk //

0

OO

Ck
∂ //

∂

OO

Bk−1
//

0

OO

0

0 // Zk+1
//

0

OO

Ck+1
∂ //

∂

OO

Bk

0

OO

// 0OO OO OO
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Using that the Z∗ are free we can take Hom(−, A) and get a short exact sequence of cochain
complexes

�� �� ��
0 Z∗k−1
oo

0
��

Ck−1oo

d

��

B∗k−2d
oo

0
��

0oo

0 Z∗koo

0
��

Ckoo

d

��

B∗k−1d
oo

0
��

0oo

0 Z∗k+1
oo

��

Ck+1oo

��

B∗k

��

d
oo 0oo

,

where E∗ = Hom(E,A). We now consider the long exact sequence in cohomology which
gives

Z∗k−1 → B∗k−1 → Hk(C∗)→ Z∗k → B∗k . (28)

We have
0→ Bk → Zk → Hk(C∗)→ 0 .

Applying Hom(−, A) and using that Bk is free we get

0→ Hom(Hk(C∗), A)→ Z∗k → B∗k → Ext(Hk(C∗), A)→ 0 .

This sequence describe the kernel and cokernel of the maps Z∗k → B∗k and Z∗k−1 → B∗k−1

in (28). We conclude that

0→ Ext(Hk−1(C∗), A)→ Hk(C∗)→ Hom(Hk(C∗), A)→ 0

is exact. 2

We get the universal coefficient theorem

Corollary 7.84. If X is a pointed space, then for each k ∈ N we have a (functorial)
short exact sequence

0→ Ext(Hk−1(X;Z), A)→ Hk(X;A)→ Hom(Hk(X;Z), A)→ 0 .

Example 7.85. We consider the case RP3. Since

H2(RP3;Z) ∼= 0 , H1(RP3;Z) ∼= Z/2Z

we have
H2(RP3;Z) ∼= Ext(Z/2Z,Z) ∼= Z/2Z

as expected.
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7.7 Hurewicz

We will first construct a morphism of spectra

ε : S→ HZ .

Here HZ consists of the spaces HZn = K(n,Z) for n ≥ 0 and ∗ for n < 0. Note
that K(Z, 0) ∼= Z. For simplicity we use a version where ΩK(Z, n + 1) ∼= K(Z, n) (a
homeomorphism and not just a homotopy equivalence).

Let S0 → K(Z, 0) be the map which sends to non-base point to 1. Using the structure
map of the Eilenberg-MacLane spectrum HZ this map induces a map

ΣnS0 → ΣnK(Z, 0)→ K(Z, n)

for all n ∈ N. For 0 ≤ k ≤ n we get an induced map

Ωn−kΣnS0 → Ωn−kK(Z, n) ' K(Z, k) .

These maps are compatible in the sense that the squares

Ωn−kΣnS0

��

// K(Z, k)

∼=
��

Ωn+1−kΣn+1S0 // ΩK(Z, k + 1)

commute. We get a collection of maps

Sk := colimnΩn−kΣnS0 → K(Z, k) , k ∈ N

where Sk are the constituents of the sphere spectrum S. The collection of these maps is
compatible with the structure maps and therefore provide a map between spectra

ε : S→ HZ .

In induces a natural transformation between the homology theories

ε : H∗(−; S)→ H∗(−;Z) .

The stable homotopy homology theory H∗(−; S) gives quite strong information about
spaces but is very difficult to compute since even its coefficients are not known. On
the other hand, the ordinary integral homology H∗(−;Z) is easy to compute using e.g.
the cellular chain complex but loses more information. The strongest information about
spaces are the (unstabilized) homotopy groups. They detect homotopy equivalences be-
tween CW -complexes. But they even more difficult to compute since they are not graded
components of a homology theory.
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The Hurewicz homomorphism compares homotopy and homology. We have a stabilization
map

s : πk(X)→ colimnπk+n(ΣnX) ∼= Hk(X; S) =: πsk(X) .

It is an a sense the best approximation of homotopy by a homology theory. The compo-
sition

h : πk(X)
s→ Hk(X; S)

ε→ Hk(X;Z)

is called the Hurewicz homomorphism. It is natural in X.

Theorem 7.86. If X is n− 1-connected, then

Hk(X;Z) ∼= 0 , k < n

and
h : πn(X)→ Hn(X;Z)

is an isomorphism (abelianization for k = 1).

Proof. We have
Hk(X;Z) ∼= colimmπm(X ∧K(m− k;Z)) .

Since K(m− k;Z) is m− k− 1-connected and X is n− 1-connected, by Proposition 6.22
the product X ∧ K(m − k;Z) is n + m − k-connected for sufficiently large m. Hence
πm(X ∧K(m− k;Z)) = 0 for k ≤ n− 1 and large m.

Assume that X is a CW -complex. We get a morphism of Atiyah-Hirzebruch spectral
sequences

SEr → HZSEr .

Since S0 = HZ0 ∼= Z and both spectra have no negative homotopy the only term which
contributes to Hn(X;−) is E−n,02 . No differential can end there since the spectra sequence
lives in the lower left quadrant. No differential can start there since the lower homology
of X (even with coefficients in πs∗(S)) vanishes. Since πs0(S) ∼= Z we have

SE−n,02
∼= Hn(X;Z) .

From the comparison of spectral sequences we thus get an isomorphism

ε : Hn(X; S) ∼= Hn(X;HZ) .

It remains to study the stabilization map

πn(X)→ πsn(X) = colimkπn+k(Σ
kX) .

If n ≥ 1, the Freudenthal’s theorem Theorem 6.24 applies and implies that this map is
an isomorphism, too.

It remains to study the case n = 1 and the map

π1(X)→ π2(ΣX)
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for a connected space. By Theorem 6.24 this map is surjective and since the target is
abelian we get a surjective map

π1(X)→ π1(X)ab → π2(ΣX) .

We refer to [tD08, Thm. 9.2.1] for an argument that π1(X)ab → π2(X) is an isomorphism.

8 Aufgaben

1. Show that a covering has the unique homotopy lifting property for every space.

2. Show that the concatenation of homotopy classes of paths is an associative operation.

3. Let Φ : C → D be an equivalence of categories. Show that the functor Φ∗ :
Fun(D,Set)→ Fun(C,Set) given by precomposition is an equivalence of categories.

4. Verify in detail, that the functor

Φ : Cov(Y )→ Fun(Π(Y ),Set)

is well-defined.

5. Let a : H → G be an equivalence of groupoids and C : G→ Set be a representation.
Show that the natural morphism ã : T (a∗C) → T (C) between transport categories is an
equivalence.

6. Let π and G be groups. Show that a π-Set S with a right G-action G→ AutπSet(S)
such that S is a right-G-torsor is isomorphic to one obtained from a homomorphism
π → G.

7. Let S1 ∨ S1 be the wegde of two circles (obtained from the disjoint union S1 t S1 by
identifying distinguished points in each copy. Let a, b ∈ π1(S1 ∨ S1, ∗) be the elements
represented by the two circles. Show that π1(S1 ∨ S1, ∗) is freely generated by a, b.

Hint: Describe first explicitly a universal covering.

8. Let (X, x) and (Y, y) be pointed space. Then we form the pointed space (X×Y, (x, y)).
Show that the natural map

π1(X × Y, (x, y))→ π1(X, x)× π1(Y, y)

induced by the projections to the factors induces an isomorphism of groups.
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9. Show that CPn is simply connected for every n ≥ 1.

10. Let S1 → S3 be a smooth embedding. Show that S3 \ S1 is not simply connected.

11. Let ω be a closed one-form on a connected manifold M and m ∈ M . On the set of
smooth paths starting in m we define the relation

γ ∼ µ :=

∫
γ

ω =

∫
µ

ω and γ(1) = µ(1) .

Show that this is an equivalence relation. Let X denote the set of equivalence classes of
such paths and f : X → M be the the map [γ] 7→ γ(1). Show that X has a natural
manifold structure such that f is a covering and f ∗ω is exact.

12. We continue the previous exercise. Let g : Z →M be a smooth map such that g∗ω
is exact. Show that there exists a smooth lift h in

X

f

��
Z

g //

h
>>

M

.

13. A flat vector bundle is called irreducible if it does not contain a non-trivial proper
flat subbundle. Describe the set of isomorphism classes of flat two-dimensional real vector
bundles on T 2 explicitly.

14. Let G be a topological group. On π1(G, 1) we consider the two group structures:

1. [γ] ◦ [µ] := [γ ◦ µ] given by concatenation of paths,

2. [γ] ∗ [µ] := [γµ] given by pointwise multiplication of paths.

Show that ∗ = ◦ and that π1(G, 1) is abelian.

15. Let X and Y be locally compact Hausdorff spaces and Z be any topological space.
Show that there is a natural homeomorphism

Map(X × Y, Z) ∼= Map(X, Map(Y, Z)) .

Further the composition

Map(X, Y )× Map(Y, Z)→ Map(X,Z)

is continuous.
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16. Let G be a group which acts on a topological space X. Then we can form the quotient
X/G by the usual universal property. If Y is a locally compact Hausdorff space, then we
let G act on X × Y via its action on the first factor. Show that have a homeomorphism

(X × Y )/G ∼= (X/G)× Y .

17. Let G be a topological group and LG be its loop group. Their base points are the
identity elements, respectively. Show that for every n ∈ N we have an isomorphism of
groups πn(LG) ∼= πn(G)× πn+1(G).

18. Let X be a pointed space and [. . . , X] : hTopop∗ → Set∗ be the pointed set valued
functor represented by X. Show that a refinement of this functor to a monoid valued
functor determines an H-space structure on X which is unique up to isomorphism.

19. We let Zδp and Zp denote the sets of p-adic numbers with the discrete, and with
usual locally compact topology, respectively. Show that the map idZp : Zδp → Zp is a
weak equivalence, but not a homotopy equivalence.

20. Let f : X → Y be a morphism of co-H-spaces. Show that C(f) has a naturally
induced co-H-space structure.

21. A map i : A→ X is called a cofibration if it has the homotopy extension property
for all spaces Y , i.e. if for every diagram (the bold part given)

I × A ∪ {0} ×X

��

H // Y

I ×X

H̃

77

the extension H̃ exists. Show that if i is a neighbourhood deformation retract, then it is
a cofibration.

22. Recall that the mapping cylinder Z(f) of a map f : X → Y is defined by I×X∪f Y ,
where we identify [1, x] ∈ I × X with f(x) ∈ Y . We consider the inclusion i : X ∼=
{0} ×X → Z(f) .

1. Show that f : X → Y is homotopy equivalent to i : X → Z(f) in Top∆1

.

2. Show that i : X → Z(f) is a neighbourhood deformation retract.

3. Show that the inclusion i : X → Z(f) is a cofibration (see Aufgabe 1).
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23. Show that if i : A → X is a cofibration (see Aufgabe 1), then the canonical map
C(i)→ X/A is a homotopy equivalence.

24. We consider pointed spaces X and Y .

1. Show that for a map f : X → Y the map Σf : X → Y is a map of co-H-spaces.

2. Show that the involution − : ΣX → ΣX represents the co-inverse.

3. Show that a map ΣX → ΣY may not be a map of co-H-spaces.

25. Let f : X → Y be a fibration and y0 and y1 two points. Show that f−1(y0) and
f−1(y1) are homotopy equivalent provided that y0 and y1 belong to the same connected
component.

26. Show that
f : R→ R , f(x) := x2

is not a fibration.

27. We consider a pull-back square in Top

X ′ //

f ′

��

X

f

��
Y ′ // Y

.

Show that if f is a fibration, then f ′ is a fibration.

28. Let f : X → Y be a fibration and T be locally compact. Show that then the induced
map Map(T,X)→ Map(T, Y ) is a fibration.

29. Read Theorem 7.1 in Husemoller’s book [Hus94] on fibre bundles. Conclude that a
locally trivial fibre bundle is a quasi-fibration.

30. Let f, g : Sn → Sm be continuous maps. Show that

deg(f) deg(g) = deg(f ∧ g) .

Further show in the case that n = m that

deg(f ◦ g) = deg(f) deg(g) .
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31. Calculate the homotoyp groups π∗(RPn). Conclude that

RP∞ := colimnRPn ' K(Z/2Z, 1) .

32. Let f : Dn → Rn be such that f|Sn−1 = idSn−1 . Show that then Dn ⊆ im(f).

33. Let I be a small category and X ∈ TopI∗ be an I-diagram of topological spaces.
Analyse under which conditions

πn(colimIX ) ∼= colimIπn(X )

and
πn(limIX ) ∼= limIπn(X ) .

34. Construct a non-trivial action of π1(X) on πn(X) which is natural on X.

35. Let X be a CW -complex and Xn ⊆ X be its n-skeleton. Show that the inclusion
Xn → X is n-connected.

36. Show that π3(SO(n)) is infinite for n ≥ 3.

37. For n ∈ N consider the simplicial set ∂∆n ∈ sSet given as a union of the images of
∆(∂i) : ∆n−1 → ∆n for all i. Show that |∂∆n| ∼= Sn−1.

38. Determine the non-degenerated simplices of ∆1 ×∆1. Verify explicitly, that |∆1 ×
∆1| ∼= |∆1| × |∆1|.

39. Describe a simplicial set X such that |X| ∼= T 2.

40. Let G be a topological group. Show that |singtop(G)| is again a topological group
which comes with a canonical homomorphism to G.
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