arXiv:math.GT/0309417 v1 25 Sep 2003

Real secondary index theory

Ulrich Bunke and Thomas Schick *

November 10, 2003

Contents

I Introduction 2

R Real local index theory 5
2.1 Chern classes of geometric Tamilies in Deligne cohomology] . . . . . . . .. )
R.2 Thereal index . . . . . . . . . . . 11

B 'T'he analytic invariant| 14
.l Construction of a natural transtormationdg,._{ - . . . . . . . . . . .. .. 14
B.2 Some propertiesof d'%, . . . . ... 16
B.3 Nontrivial exampled . . . . . . . . . . 20

1 'lopological universal classed 22
B.1 'Iransgression of the Chern classed . . . . . . . . . . . . .. ... ... ... 22
B.2 A topological description ot d% 400 . . - . . . oo oo 25
.3  'The topological interpretation ot dpyp o | - 0 o o 0 o o o o 0oL 28
.4 Explicit calculation of the universal clas§q . . . . ... ... ... ... ... 30
.5 The relation with ordinary characteristic classed . . . . . . . . . . . . ... 35
B.6 BExtendibility] . . . . . . . 36

*Mathematisches Institut, Universitat Gottingen, Bunsenstr. 3-5, 37073 Gottingen, GERMANY,
bunke@uni-math.gwdg.de, schick@uni-math.gwdg.de



1 INTRODUCTION 2

[A Transgression 39
[A.1 Transgression in cohomology . . . . . . . . . . .. ... 39
A.2 'Transgression and productd . . . . . . . . . . ... L. 43

[A.3 'Transgression in ordinary cohomology and the relation with the Bocksteiry 45

B Cohomology of BO, BU and their loop spacesd 47
[B.1 The cohomologyj. . . . . . . . . . . 47
.2 Maps between loop spacesot 5 . . . . . . . ... ... ... ... ... 50

1 Introduction

1.0.1 The index of a family of Fredholm operators parametrized by a space B is an
element in the K-theory K*(B) of this parameter space. If this family is in fact a family
of fiberwise generalized Dirac operators on a smooth fiber bundle over B, then after adding
some further geometric structures in order to define the Bismut super connection we can
do local index theory in the sense of [[]. Let us denote by € the family with this collection
of geometric structures, by D(E) the family of Dirac operators, and by index (&) the index
of this family. Local index theory provides a closed form Q(€) on B (see Definition P-9)
which represents a cohomology class [2(€)] € H*(B,R). The local index theorem states
that
ch®(index(&)) = [Q(E)] .

1.0.2 The focus of the present paper is not a generalization of this type of results.
Let us illustrate the philosophy of the present paper in the case above. We start with
local index theory and produce the even form Q(€). We then observe that this form is
closed and therefore represents a cohomology class [Q2(E)] € H®*"(B,R). We observe
that this class in fact only depends on index(€) € K°(B). The classifying space of the
functor K° is BU x Z. By naturality we conclude that there must be a universal class
chf . € H®(BU x Z,R) such that [()] = f*chl,,., if f: B — BU x 7 classifies

UNIV uUniv?

index(&). We know that H(BU,R) is a polynomial ring in generators c5, cy,.... Then
R

we finally look for a formula which expresses ch,,,;, in terms of these generators, this way
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obtaining the Chern character. Of course this is a well known possible way toward the

family index formula.

1.0.3 1In fact the real subject of the present paper is a secondary version of this approach.
Let K} (B) denote the k’'th step of the Atiyah-Hirzebruch filtration of K-theory (see
P.1.6). Under the assumption that index(€) € K} _;(B), the Chern class ¢x(index(&)) €
H*(B,Z) (note that we use a non-standard notation where the subscript is equal to the
degree) admits a natural lift to smooth Deligne cohomology ¢, (€) € HE_,(B) (see B-1.3
and P.1.17). This lift is a differential-geometric (or even global-analytic) invariant which
varies continuously with the geometry. In particular it has a curvature w(é,(€)) € A*(B),

which can be expressed through Q(E).

1.0.4 We rigidify the situation be imposing additional geometric constraints. We in fact
assume that the family of Dirac operators D(€) is a family of twisted Dirac operators
on a family of Spin-manifolds, and that the twisting bundle is a real bundle. Let n be
the fiber-dimension of this family. It follows from the presence of the real structure that,
if k 4+ n = 2(4) then the class ¢ (&) is flat (see R.1.19). This means that w(¢x(E)) = 0.
Since any two geometric structures can be connected by a path we can now conclude that
under this assumptions ¢ (&) is a differential-topological invariant. In Subsection B.3 we

give some non-trivial examples.

1.0.5 Note that the flat part of Hp(B) can be identified with H*~'(B,R/Z). Thus,
given a family of n-dimensional spin manifolds and a real twisting bundle such that
index(€) € K;_,(B) we have defined a class ¢;(€) € H*1(B,R/Z). This class is natural
under pull-back.

The index of the family D(E) has a real refinement indexg(€) € KO~"(B) (see Subsection
R.2). We prove that in fact ¢ (&) only depends on indexr(€) and that 2¢,(E) = 0 (see

Propositions B.2 and B.5).

Let U, ,_,(B) C KO™"(B) be the subset of classes which after complexification belong

to K", ,(B). What we have constructed so far is a natural transformation

d;ﬁlkJrlfn : Uél_lcrilfn(B) - H4k+1_n(Ba R/Z)
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such that d"y. ., _,(indexg(E)) = Capr2(E).

1.0.6 The universal situation is given by the fiber sequence
Q"U/O L QY(BO x Z) — Q*(BU x 7).

It is obtained by application of the functor Q" to the fibration U/O . BO — BU ,
where we construct BO = EU/O and thus obtain the inclusion i: U/O — BO. A class
x € KO ™(B) is represented by a map f : B — Q"(BO x Z). If x belongs to U_"(B),
then this map factors up to homotopy through a map g : B — Q"U/O. Thus there must
be a universal class

dipi1-n € H¥7(Q"U/O,R/Z)

such that ¢*dyps1—n = P +1-n(7). Note that this universal class has the special property

that g*dyz41_, only depends on the homotopy class of the composition Q" o g.

1.0.7 The main purpose of the present paper is the calculation of the universal class
dyi41-n in terms of the classically known generators of the cohomology of Q2"U/O. The

result is presented in Theorem [.173.

1.0.8 Ifn=23450rn=1k>0,then dyi1_p, =0. Ifn=0o0rn =1,k =0 then the
class djy, 1, () is a classical characteristic class of x (i.e. it can be expressed in terms
of the dimension and Stiefel-Whitney classes). The dimension n = 6 is interesting since
in this case the class is definitely not just a classical characteristic class of x. For n =7

the relation with classical classes is open (see Subsection [L. for all that) .

1.0.9 For the convenience of the reader we have added two appendixes. In the first we

recall (with proof) some material about transgression.

In the second we recall the results of Cartan [f] about the cohomology of the spaces

Q"U/O and about the action of various maps and transgressions on this cohomology.
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2 Real local index theory

2.1 Chern classes of geometric families in Deligne cohomology

2.1.1 We consider a fiber bundle 7 : £ — B with closed n-dimensional fibers. We
assume that the vertical T"m := ker(dr) bundle is oriented and equipped with a spin
structure. We choose a vertical Riemannian metric g7 ™ and a horizontal distribution
Thr, ie. a complement of TV in TE. Finally, we let W := (W, V", h") be an auxiliary
complex vector bundle with hermitian metric and metric connection. The data described

so far make up a geometric family £ over B.

2.1.2 We assume that W admits a real structure ¢ € End(Wr) which is compatible
with the connection and the metric. Then W is the complexification of a real bundle
Wg = (Wg, V& BWR). The latter can be identified with the +1-eigenbundle of Q.

2.1.8 The data which we compressed in the notion of a geometric family induces a family
of elliptic operators D (&) over B. Indeed, for b € B the operator D(E)(b) is the spin Dirac
operator of the Riemannian spin manifold Ej, := 7—!(b) twisted by the bundle W g,. The
family index of D(E) is the element index(€) € K~ "(B).

2.1.4 TFor k € Ny we introduce a natural transformation of ¢;, : K"(B) — H*(B,Z) given
by the Chern class. In order to have a uniform notation in the even and odd dimensional
case we use a notation which differs from the conventional one. So if n is even, then we
set cop := ¢ and cyqq = 0, where ¢, : K°(B) — H?*(B,Z) is the Chern class in the
usual notation. If n is odd, then we set cop = 0 and define c9,41 such that the following

diagram is commutative

K™(B) ' HY(B 7)

I I :
K"™Y(B) “%* H2(¥B,7)

where K denotes the reduced K-theory and the vertical isomorphisms are the natural

suspension isomorphisms.



2 REAL LOCAL INDEX THEORY 6

2.1.5 The Chern character is a natural transformation
ch: K"(B) —» €p H"B,Q).
k=n(2)
Here again the even part ch : K*"(B) — Do) H*(B,Q) adopts the usual convention,

while the odd part is defined such that the following diagram is commutative
ch

K*Y(B) = @kzl(Q) H"(B,Q)
| |
K2 (EB> - @kzo (mod 2) Hk<EB7 @)

For k € Ny let chy : K*(B) — H*(B,Q) denote the corresponding component.

2.1.6 'The ring K*(B) has a natural decreasing filtration, the Atiyah-Hirzebruch filtra-
tion [,

- C Kiy(B) C Kj(B) C - C Ki(B) = K*(B) .
Recall that x € K (B) iff f*2 = 0 for any k& — 1-dimensional C'W-complex X and

continuous map f: X — B.

2.1.7 Fix now k € Ny and define m € N such that k =m or k =2m — 1. If 2 € K} (B),
then we have

cr(®)g = (=)™ (m — 1)!chy(z) (2.1)
where cx(r)g € H¥(B,Q) is the natural image of cx(x) in cohomology with rational

coeflicients.

2.1.8 Let H},,(B) denote the smooth Deligne cohomology of B. In the present paper
we use its description in terms of differential characters given by Cheeger-Simons [[[].
Let Z*~1 be the group of smooth singular chains on B. A class & € HF_,(B) is a homo-
morphism # : Z¥~1 — R/Z such that there exists a differential form w(z) € A*(B) with
the property that for any smooth singular k-chain C' we have #(9C) = [[,w(Z)], where
[r] € R/Z denotes that class of r € R. Note that w(Z) is uniquely determined by &. It is

called the curvature of Z. It is necessarily closed and has integral periods.

The association B +— Hj, ,(B) is a contravariant functor from smooth manifolds and

smooth maps to graded abelian groups. There is a natural exact sequence

H*Y(B,Z) — A*Y(B)/im(d) % HY (B) % H*(B,Z) — 0 ,
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where a is given by
a(0)2) =[] al. Bea(B).

Note that w(a(3)) = dB3. The map v has the following description. Let & € HY_,(B). We
choose a smooth R-valued (k — 1)-cochain T" such that 7Tj,x-1 = &. This is possible since
R is divisible. Then we have d1" = w — ¢ for some Z-valued k-cochain c. It follows that ¢

is closed, and we set v(Z) := [¢]. For details we refer to Cheeger-Simons [L0].

2.1.9 A complex vector bundle W — B represents an element [W] € K°(B). Assume
that W comes with a hermitian metric A" and metric connection V. We set W :=
(W,hW VW), For k € Ny, Cheeger-Simons [[(] constructed a natural lift ¢y, (W) €
HZ ,(B) of cop([W]) such that v(éep(W)) = cor([W]) and w(cor(W)) € A?**(B) is the

Chern-Weyl representative of co([W])r associated to the connection VW,

2.1.10 The bundle W can be considered as a geometric family W over B with zero-

dimensional fiber in a natural way. In this case we have index(W) = [W].

Therefore we can consider the geometric family £ over B as a generalization of a hermitian
vector bundle with connection over B. It is now an obvious question whether one can
define a natural lift ¢,(£) € HY,,(B) of cx(index(£)).

2.1.11 The geometric data associated with the geometric family £ induce a connection
VT'™ on the vertical bundle in a natural way. In fact, if we choose for a moment a
Riemannian metric ¢g?? on the base, then we can define a Riemannian metric ¢* on
the total space E as the orthogonal sum of the vertical metric ¢7'™ and the metric gTh7r
on the horizontal bundle obtained as lift of ¢g?2. Then V'™ is the projection of the
Levi-Civita connection of 7% to the vertical bundle. This connection does not depend
on the choice of ¢”%. We refer to [[] for details. By A(V™'") € A*(E) we denote the
Chern-Weyl representative of the A-class of T%m. Furthermore, let ch(V"Y) € A(E) be
the Chern-Weyl representative of the Chern character of W.

Definition 2.2 The local index form Q(E) € A(B) of the geometric family & is defined

by

Q) = A(VT"™)ch(VY) |
E/B
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2.1.12 The Atiyah-Singer index theorem for families states that
ch(index(&))r = [Q2E)]

where [w] € H*(B,R) denotes the class represented by the closed form w. Here we
once and for all fix the isomorphism between de Rham cohomology Hj,(M) and singular
cohomology H*(B,R) which is induced by the integration map. This means that the

value of the class [w] on the cycle Z is given by [, w.

2.1.13 The form Q(€) plays the role of the Chern-Weyl representative of the Chern
character of an index bundle with connection V*4¢*() for D(£) though we are not able
to define the latter object. In particular, the local index form also determines candidates
for the Chern-Weyl representatives cj (V%)) of the Chern classes cj(index(£)). Un-
fortunately we are not able to define natural lifts ¢,(£) € HE_,(B) of cx(index(£)) with

curvature w(¢(€)) = ¢ (Vindex(©)),

2.1.14 Assume that index(€) € K;(B) and k = 2m or k = 2m — 1. By equation (B.1])
we have

cr(index(&))g = [(—1)™ Hm — 1)IQF(&)] .

In [ff] we have constructed a natural class
cr(€) € Hp(B)

with curvature w(éx(€)) = QF(€) and v(¢x(€)) = ¢ (index(£)). Instead of repeating the
rather indirect construction [[]] we give here a direct description which could be taken as
definition of ¢, (€) as well. Note that ¢,(€) = 0 by definition if n # k(2) (recall that n is
the dimension of the fiber of &).

2.1.15 Let Z € Z*7! be a smooth cycle. We must prescribe é,(£)(Z). We can find a
smooth manifold X (not necessarily closed) of the homotopy type of a k — 1-dimensional
CW-complex, a map f: X — B, and a smooth k — 1-cycle Z’ in X, such that f,Z' = Z.
We could e.g. take for f : X — B the inclusion of a thickening of the trace |Z| C B
of Z and Z = Z'. Note that 0 = f*index(€) = index(f*E). Therefore we can find a
perturbation of the family of Dirac operators D(f*E) by a family of selfadjoint smoothing
operators () (which are odd in the even-dimensional case) such that the family D(f*€)+Q
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is invertible. In [[]] the pair (f*€, Q) was called a tamed geometric family and denoted by
f&:.

2.1.16 1f F; is a tamed geometric family over some base B, then the super connection
formalism provides an eta-form 7(F;) € A(B) such that dn(F;) = Q(E). We refer to [{]
and [[] for details. The form 7(F;) depends on the taming. Assume that F] is a second
taming of the same underlying geometric family. Then the difference n(F;) — n(F)) is a
closed form. As a consequence of the index theorem for boundary tamed families [[]] we
know that
[n(F:) — n(F7)] = ch(z)r

for some x € K*(B). In fact, we can take x = index((F X I)), where the boundary
taming is induced by F; and F.

2.1.17 We can now prescribe ¢(€)(Z) as follows.

Definition 2.3

(E)(2) 1= (-1~ 1) [y E) € R/Z. (2.4
In order to see that ¢, (€) is well-defined note that (m — 1)!chy is an integral cohomology
class. Therefore the right-hand side does not depend on the choice of the taming. One also
checks independence of f, X, Z’. The relation w(¢,(€)) = QF(E) follows from dn(f*&;) =

JrE).

2.1.18 Up to this point we have not employed the fact that the geometric bundle W =
(W, VW h") comes with a real structure Q. Because of the existence of @) the geometric
bundle W is isomorphic to its hermitian conjugate W. We conclude from the general
equality

chy, (VYY) = (—=1)*chy,(VY)
that chy (V") =01if [ # 0(4).

2.1.19 Recall that n = dim(F) — dim(B).

Lemma 2.5 If k+n % 0(4), then Q%(€) = 0.



2 REAL LOCAL INDEX THEORY 10

Proof. We have

Q) = A(VT"™)ch(VY) .
E/B

Since the form A(V7'7) is non-trivial only in degrees 41, [ > 0, we immediately see that
QFE)=0if k+n #0(4). 0

2.1.20 We call a class & € HF_(B) flat if w(2) = 0. By Lemma P.J the class ¢(&) is
flat if k£ +n = 2(4). The Deligne cohomology of B fits into the exact sequence (see [[[0])

0 — H*'(B,R/Z) % HE (B)  A*(B) (2.6)

such that vob: H*(B,R/Z) — H*(B,Z) is the Bockstein operator associated to the

exact sequence of coefficients
0—-Z—-R—->R/Z—0.

By (B:8), a flat class in H¥_,(B) can be considered as a class in H*~1(B,R/Z). From now

on we consider H* (B, R/Z) as a subset of H%_(B) and do not write b anymore.

2.1.21 The first assertion of the following proposition is just the conclusion of the pre-

ceeding discussion.

Proposition 2.7 1. Let & be a geometric family over B such that the geometric twist-
ing bundle W admits a real structure. Let k > 0 and assume that index(€) €
Ki(B). If furthermore k +n = 2(4) (where n = dim(E) — dim(B) is the fiber
dimension of £) then ¢,(E) € HY,, is flat and therefore gives rise to a class in
H*Y(B,R/Z).

2. The class ¢,(E) € H*Y(B,R/Z) is independent of the geometric structures, i.e. it
only depends on the differentiable fiber bundle E — B, the choice of spin structure

and orientation of the vertical bundle TVm, and on the real vector bundle Wig.

Proof. In order to show the independence of the geometric structures we argue using the

connectedness of the space P of these structures. We can set up a universal family &,
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over P x B and define ¢,(Eupnin) € H*Y(P x B,R/Z). It follows from the homotopy invari-
ance of the cohomology functor and the naturality of the construction of these classes with
respect to pull-back, that the specializations of ¢, (Eyniw) at different parameter points p, g
are cohomologous on the one hand, and give the classes ¢ (&,) and ¢, (&,) associated to
the families &£, and &, equipped with geometric structures given by p and g, respectively,

on the other hand. O

2.1.22 The main goal of the present paper is to understand the nature of the class

(&) € H*Y(B,R/Z) in terms of the topology of the geometric family.

2.2 The real index

2.2.1 The group KO°(B) is defined as the group completion of the semigroup of iso-
morphism classes of real vector bundles over B. The functor B — KO°(B) extends to a
8-periodic multiplicative cohomology theory K O*. Complexification of real vector bun-
dles induces a natural transformation cg : KO°(B) — K°(B) which extends to a natural

transformation cg : KO*(B) — KO*(B) of multiplicative cohomology theories.

If k+n # 0(4), then the composition
KO™(B) % K"(B) % H*B,Q)
vanishes.

2.2.2 In view of this observation the desirable explanation of the fact that Q¥(&) = 0
if k+n = 2(4) is that index(£) € K~ "(B) is in fact of the form cp(indexg(&)) for a
real refinement of the index indexg(£) € KO™™(B). In fact, the spinor bundle carries
additional structures which are “preserved” upon twisting by real bundles. Using these

structures we can indeed refine the index index(£) € K™(B) to a class indexg(€) €
KO™™(B).

For the purpose of illustration we sketch the construction of indexg(£). Although this is
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well known, the following exposition is designed to be a useful reference for the interested

reader.

2.2.3 Depending on the class of n modulo 8 we are going to use quite different pictures
of KO™(B). We make use of the real Clifford algebras CP? associated to RPT? with
quadratic form —z% — - — xf) + x§+1 +- 4 x§+q.

In one picture an element of K O™ is represented as a family of selfadjoint odd Fredholm
operators on a graded C™°-module. Another representation is as a family of antisymmetric
Fredholm operators which anticommute with an action of C%"~!, In this case there is no
grading. Finally an element of K'(B) is represented by a family of selfadjoint Fredholm
operators (and there is again no grading). We refer to [B] and [[3] for further details.

2.2.4 n = 0(8) The spinor bundle S(T"7) is the complexification of a real spinor bundle
Sr(T?m). Thus V = S(T7) ® W is the complexification of Vg := Sg(T"7) ® Wg. The
Dirac operator D(E) comes from the Dirac operator Dg(€) on Vg. The refined index
indexr(€) € KO°(B) is just the index of the family of real Fredholm operators Dg(E)*.

2.2.5 n = 1(8) The spinor bundle S(7T"7) admits a real structure, which anticommutes
with Clifford multiplication. It induces a real structure on ¥V which anticommutes with
D(E). Let Vg be again the real +1-eigenbundle of the real structure on V. The operator
iD(€) commutes with this real structure and therefore induces an antisymmetric operator
D(&)g on Vg. This family represents indexg(£) € KO™'(B).

2.2.6 n = 2(8) The spinor bundle S(T"7) has a quaternionic structure which is odd
with respect to the Z/Zs-grading and commutes with Clifford multiplication. Thus we
obtain an induced quaternionic structure J on V. We consider D(E)g = JD(E) as
an antisymmetric real operator on Vg . It anticommutes with the action of C%! which is
induced by multiplication by 7. Therefore the family D(&)r together with the C%!-module
structure represents indexg(€) € KO~ %(B).

2.2.7 n = 3(8) The spinor bundle carries a quaternionic structure which commutes with
Clifford multiplication. We get an induced quaternionic structure J on ¥V commuting with
D(&). The antisymmetric operator D(€)g := iD(€) anticommutes with the action of C%?
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generated by J and i.J. Therefore the family D(£)r on Vg together with the C%?-module
structure represents indexg(€) € KO™3(B).

2.2.8 n = 4(8) The spinor bundle S(T"7) carries a quaternionic structure which com-
mutes with the grading and Clifford multiplication. It induces a quaternionic struc-
ture J on V which commutes with D(E). We consider the antisymmetric operator
D(E)g := iD(E) on the bundle Vg which anticommutes with the Clifford algebra C°3
generated by i, J,iJ. Therefore the family D(£)gr on Vg together with the C%*-module
structure represents indexg(€) € KO~*(B).

2.2.9 n = 5(8) The spinor bundle S(T"7) carries a quaternionic structure which anti-
commutes with the Clifford multiplication. It induces a quaternionic structure J on V

which anticommutes with D(E). We form the real selfadjoint operator

on Vg & Vg with its standard odd grading

(13)

This operator commutes with the Clifford algebra C3° generated by

0 J 0 J 1 0
-7 0) \=iJ 0o /) \0o -1)"
The C3C-equivariant operator D(€)g represents indexg(€) € KO?*(B) = KO7(B).

2.2.10 n = 6(8) The spinor bundle S(7"7) carries a real structure which anticommutes
with the grading. In induces a real structure () on V which is odd and commutes with
D(E). We consider the selfadjoint operator D(E)g := D(E) on Vg. This bundle is Z/27Z-
graded and admits an action of C*? generated by Q and i@ commuting with D(€)g. The
C*Y-equivariant operator D(E)g represents index(€)r € KO*(B) = KO %(B).

2.2.11 n = 7(8) The spinor bundle §(7T"7) admits a real structure which commutes
with the Clifford multiplication. In induces a real structure ) on ¥V which commutes with

D(E). We consider the real symmetric operator D(€)r which is obtained as restriction of
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D(€) to the 1-eigenbundle of Q. The operator D(&)g represents indexg(€) € KO'(B) =
KO™"(B).

3 The analytic invariant

3.1 Construction of a natural transformation d%kal

3.1.1 Recall that complexification of real vector bundles induces a natural transfor-
mation of multiplicative cohomology theories cg: KO"(B) — K"(B). The real index
indexg(€) € KO™(B) is a refinement of index(€) € K~ "(B) in the sense that

cp(indexg(€)) = index(&) .

3.1.2 For k > 0 and n € Z we define the group U}}(B) by the following exact sequence
0 — Up(B) — KO"(B) 8 K"(B)/K}'(B) ,

where gp is the composition of cg with the projection onto the quotient. We also define

UZ (B) by the exact sequence
0—UL(B)— KO"(B) — K"(B).

Since ¢p is a natural transformation the association B — U}'(B) extends to a functor

with values in abelian groups.

3.1.3 Assume that k —n = 2(4).

Definition 3.1 We define the natural transformation
dp 1 Up(B) — H*\(B,R/Z)

by the requirement that
dp 1 (2) = Ea(€)

where & is any geometric family of dimension 8l —n, | € Z, such that * = indexg(E).
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3.1.4  We must check that the definition of d ; ; makes sense.

Proposition 3.2 If k —n = 2(4), then there is a unique homomorphism
Baor: Up(B) — H*'(B,R/Z)

such that di ,,_,(indexg(E)) = ¢ (&) for any geometric family over B of dimension 8] —n,
| € Z, with indexg(E) € U (B). This homomorphism is natural with respect to continuous

maps.

Proof. The essential parts of the proof are given in Lemma .3 and Lemma B.4 below.
It immediately follows from these Lemmas that for given B there exist a unique map
dp 1 satisfying the requirement. Additivity and naturality with respect to smooth maps
of d ., follows from naturality and additivity of the class ¢;(£). But then naturality
extends to continuous maps since U(+) as well as H*~1(-,R/Z) are weak homotopy func-

tors. O

3.1.5
Lemma 3.3 If indexg(€) = 0, then ¢,(E) = 0.

Proof. Assume that indexg(€) = 0. In this case we can find a smoothing perturbation of
the real operator D(€)r which is invertible. We call this perturbation a real taming. By
complexification a real taming induces a taming & which is compatible with the additional

symmetries determining the real structure.

These additional symmetries imply that the Chern form of the Bismut super connection
associated to D(€) and its tamed perturbation vanishes. Since the n-form is derived from
this Chern form we conclude that n(&;) = 0 if the taming is induced from a real taming.

The assertion of the Lemma now follows from the description of ¢ (&) in terms of the

n-form (see Subsection P.1.17). O
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3.1.0

Lemma 3.4 If x € KO"(B), then there exists a geometric family € as above such that

indexg(€) = x.

Proof. By the periodicity of KO*(B) we can assume that n < 0. By definition,
—n —0
KO"(B)=KO (By)=KO (¥"By) ,

where B, is obtained from B by adjoining an additional base point, and If(\én(3+) denotes
the reduced K O-theory.

Let now x € KO"(B) correspond to & € I?(/)O(E"BQ. Let p: S™ x By — Y"B, be
the natural projection and Wg = W5 @ Wy be the real Z/2Z-graded vector bundle over

S™ x B, representing p*7.

We form two geometric families £ with underlying bundle S" x B, — B, with its
standard fibrewise orientation and spin structure, and with the real twisting bundle W

Then we have (by Bott periodicity or the index theorem) = = indexg(E" Up, £7) O

|-

3.2 Some properties of dj ;.

3.2.1 We approach the study of the natural transformation d ; , from two sides. First,
in view of its definition through the analysis of families of Dirac operators we use mainly
analytical arguments in order to show some simple properties of this transformation. This

is the subject to the present section.

A finer study in Section [] leading to a complete understanding of the transformation
uses methods from topology and the observation, that a natural transformation comes
from an universal one between suitable classifying spaces. It should be noted that most
results of this section, the important exception being Corollary B.7, will also follow from

the topological description, and will not be needed to derive this description.
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3.2.2 There is a natural transformation
rg: K*(B) — KO*(B) .

It is determined by the special case rp : K°(B) — KO"(B) which associates to a class
represented by a complex vector bundle the class represented by the underlying real vector
bundle. It is easy to see that

T’BOCBIQ

(multiplication by 2).

3.2.3
Proposition 3.5 We have 2dj,_; = 0.

Proof. Fix z € U}'(B). The homology class d%,_,(x) € H* '(B,R/Z) is determined by

its values on all smooth cycles Z € Z¥~! on B.

Given a (k — 1)-cycle Z there exists a manifold X which is homotopy equivalent to a
(k — 1)-dimensional CW-complex, a smooth map f: X — B, and a (k—1)-cycle Z" in X
such that f,Z" = Z (compare .1.13). By the naturality of d”, , we have

2djy 1 (2)(Z) = 2fdg o (2)(Z") = di 1 (2f72)(Z]) .

It thus suffices to show that 2f*z = 0.

Since f*z € U}*(X) and X is (up to homotopy equivalence) (k — 1)-dimensional we have
cx(f*x) = 0. This implies 0 = rx o cx(f*z) = 2f*x. O

3.2.4  We have defined d ; , in terms of eta forms of families of Dirac operators. In the
following we show that it suffices to understand eta forms for zero-dimensional families.

Note that the latter are essentially objects of linear algebra.
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3.2.5 It © € U"(B), then there exist a real Z/2Z-graded vector bundle over "B

which represents the class = € l/(\éo(Z"BJr) corresponding to x under the identification
—0

KO™(B)~ KO (X"B,). Let Wg = Wi @ Wy be the pull-back of this bundle to S" x B

under the natural map S™ x B — X" B,.

The bundle 7: S x B — B has a natural fibrewise orientation and spin structure.

v . o .
"7 The canonical decomposition

The round metric of S™ induces a fibrewise metric g
T(S"x B) = pr. T'S"@pryTB yields the horizontal distribution prj;T'B. After choosing
geometric bundles Wi = (W, VWDQE, hWRi) we obtain the geometric family £+ and £ :=

ET Up (£7)% over B, with underlying bundle S™ x B, such that indexg(€) = =.

3.2.6 Since cp(r) = 0 by assumption we know that the complexification W of Wg
represents the trivial element 0 = [W] € K°(S™ x B). Thus (possibly after adding a
trivial bundle of formal dimension zero) the bundle W admits an odd unitary selfadjoint

(not necessary parallel) automorphism U.

3.2.7 The bundles W3 give rise to geometric families F* over S x B where the under-
lying zero-dimensional fiber bundle is id: S™ x B — S™ x B, and the twisting bundle is
Wz, We let F := F*+ Ugnyp (F7)P. Then we have indexg(F) = [Wg] € KO°(S" x B)
and index(F) = [W] = 0 € K°S" x B). The automorphism U gives a taming
Fi: of F. 1In particular, we have a well-defined form n(F;) € A(S™ x B) such that
dn(F;) = Q(F) = ch(VW).

3.2.8 For r >> 0 the operator rU can be considered as a sort of taming of the family
E. Tt is not a taming in the strong sense since U is not smoothing along the fibers of .
Rather it is a local taming in the sense of [[. Local index theory works for local tamings
as well. We let & (r) be the geometric family £ tamed with rU and let n(&(r)) be the

associated n-form.

3.2.9

Proposition 3.6 We have

i (&) = [ 0

r—00
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Proof. This assertion is proved using the adiabatic limit techniques developed e.g. in [§].

The general method gives

r—00

im o) = [ AT

The result now follows from A(V?'™) = pri, A(V7S") = 1, since A(V”S") =1 for round

metric (which is also locally conformally flat). O

3.2.10 A closed form w € A*'(B) represents a class [w] € H**(B,R). By [w]g/z €
H*1(B,R/Z) we denote its natural image. Let m be determined by 2m = k or 2m = k+1.
Then definition (R.4) together with Proposition B.G implies the following corollary.

Corollary 3.7 With the notation above

a5y (2) = (1) (m — 1)! / N (F )

SnxB/B

In fact, in view of Proposition B.5 we could also omit the sign (—1)""!,

3.2.11 We consider the sequence
0-Z—-R—-R/Z—0

and let 3": H*"Y(B,R/Z) — H"*(B,Z) be the associated Bockstein operator. Recall from
P-T20, that 8" coincides with the composition

Hk_l(Ba]R/Z) - Hf)el(B) i) Hk(BaZ) .

Proposition 3.8 For z € U}, ,(B) we have

(8" 0 di1)(w) = (Caps2 0 cp) () -
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Proof. We write x = indexg(€) for a suitable geometric family £ over B. Then we have

the chain of equalities

(8" 0 dfjy1)(x) = (v 0 Capy2)(E) = Cana(index(€)) = (capr2 0 c)(x) -

3.3 Nontrivial examples

In Section f.4 we will give a complete description of the universal classes d”;,, which also
decides when exactly these classes can be non-trivial. In this section, we want to construct

explicit and easy non-trivial examples over low dimensional spheres as base manifolds.

3.3.1 Let MSpin* be the spin bordism cohomology theory and a : M Spin* — KO* be
the a-genus introduced by Hitchin [[J]. Note that o : M Spin*(x) — KO*(x) is surjective.
If E is a closed spin manifold, then we write «(FE) for the result of a applied to the class
[E] € M Spin*(*) represented by E

The most important common feature of the following examples is that they all come with
a trivial twisting bundle. In other words, the respective geometric family £ represents an
element [E, 7] € MSpin~"(S") (with n € Ny and ¢ € {0,1,2} depending on the case),
such that indexr (&) = a([E, 7).

3.3.2 [n=1(8), k =1]

Let E be a closed spin manifold of dimension n = 1(8) with a(E) =1 € KO™(x) X Z/27Z.
Such manifolds exist by the Remark B.3.1].

We choose a Riemannian metric g7, Then we consider E as a geometric family £ over
the point * with the trivial twisting bundle Wr = E x R. We claim that ¢,(£) # 0.

Note that Hp, (¥) = R/Z and ¢ (E)([*]) = 7°(&)]r/z, where & is any taming. The
degree 0 part n°(&;) is defined even for a pre-tamed manifold in the sense of [[f], and if the
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pre-taming is trivial, then it is one half of the usual Atiyah-Patodi-Singer eta invariant
[B]. Now we have n°(€) = 0 since D(&) anticommutes with the real structure and thus has
symmetric spectrum. Since by spectral flow (taming essentially means that the underlying

operators are invertible)

() = 1°(E )l = [ cimker DE ez

we see that

I (E)e/z = [% dimker D(E)]g/z -

The condition a(E) # 0 says that dimker D(E) = 1(2). Therefore, d} (indexg(£)) =
[770<5t)]R/Z = [%]R/z #0¢€ H(x,R/Z).

3.3.3 [n=0(8), k =2]

We consider a family F — S of closed spin manifolds with fiber dimension n = 0(8) and
a(F) # 0. Indeed for any given spin manifold M of dimension n = 0(8) such a bundle
with fiber M exists by [[J]. We will in addition assume that «(M) 2 A(M) =0.

We equip E with geometric structures and consider the trivial twisting bundle £ x Wrg.
Let £ denote the corresponding geometric family over S!. Since a(M) = 0 we have
index(€) € KI(S') = 0 and thus indexg (&) € UY(ST).

We claim that é(€) # 0. We consider a taming &. For a > 0 the standard metric g7 "of
S' and the horizontal distribution of € induces a Riemannian metric 7% = g7 *@an* g™ '
on the total space E. Since E is spin we can consider the total Dirac operator D(a) on £
and its perturbation D;(a) which is induced by the taming. In the adiabatic limit a — 0
the operator D;(a) becomes invertible. In other words, for small a the perturbation D,(a)

is induced by a local taming. As in [[], we have

iy (D) = [ 06}z = s (imdena(£))(S) € R/Z.

For sufficiently small a the class [°(D;)(a)]r/z is independent of the adiabatic parameter.
As in B33, since a(E) # 0 and 1°(D(a)) = 0 we have [n°(Di(a))lr/z = [3]r/z. Thus
déy #0€ H'(S', R/Z).
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This result can be interpreted as follows : The holonomy of the determinant line bundle

of £is —1 € U(1).
3.94 n=1@8), k=3

We consider a family £ — 52 of closed spin manifolds with fiber dimension n = 7(8) and
a(E) # 0. Such a family exists [[J] for any given closed spin manifold M of dimension
n = 7(8). We choose geometric structures and consider the trivial twisting bundle £ x R.

In this way we obtain a geometric family €. Since K'(S?) = 0 we have index(£) = 0 and

therefore indexg(€) € U (S?). We claim, that d%e ,(indexg(£)) # 0 € H?(S?, R/Z).

We proceed as in B.3.d. We consider a taming &;. It induces a perturbation D;(a) of the
total operator D(a) on E. We have again

[lim n°(Dy(a))lr/z = [/52 0 (&)lr/z = di2 5 (indexr(£))([S7]) -

Again, for sufficiently small a the class [7°(Dy(a))]g/z is independent of the adiabatic
parameter. Since a(E) # 0 and n°(D(a)) = 0 we have [n°(Dy(a))lr/z = [3]r/z. This

implies the claim.

4 'Topological universal classes

4.1 Transgression of the Chern classes

4.1.1 As proposed in we shall understand d%Akfl through its universal example.
In the present section we start with the definition of this universal class. We will obtain
an expression of this class in terms of familiar characteristic classes of real vector bundles.
In Theorem f.I( we show that the transformation d%’ 45— 1s indeed induced by the corre-
sponding universal example. In Theorem we will then identify dj"y, ,, in topological
terms for all n. Then we will establish some vanishing results and more details about the

topological side.
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4.1.2 In the present section all spaces have distinguished base points and all maps are
base point preserving. Let O and U be the direct limits of O(n) and U(n) induced by
the embedding into the left upper corner. The embeddings R" — C", n € N, induce
embeddings O(n) — U(n) and ¢: O — U. The map ¢ induces the complexification
transformation cp. (see .2.1)).

4.1.3 Let EU — BU be a universal bundle for U. We can consider BO := FU/O and
obtain a bundle
U/O -5 BO L BU (4.1)

with fiber U/O over the base point of BU, compare [ and [[T] on page p1.
In the following, we use the transgression homomorphism for cohomology associated to
this fibration (f.1]). For the convenience of the reader, we have collected the main def-

initions and properties of transgression in general (with proofs) in Appendix [A], and of

transgression and cohomology of the spaces in the fibration U/O — BO — BU in Lemma
B-§ in Appendix [B

4.1/

Definition 4.2 We define the universal transgressed Chern classes
dagy1 := T<Ci1Qk+2) € H4k+1<U/Ov Q) )
where C%cﬁ 15 the image of the universal Chern class cario under the natural map

H**2(BU,7) — H***(BU,Q).

4.1.5 We now consider the following commutative diagram:

2%

0 Z 7 —— 7./22 —— 0

l: l . ll . (4.3)

0 Z Q Q/Z —— 0

NI

Definition 4.4 We define dy.,, € H**Y(U/O,Q/Z) as the image of du1 under the
natural map H*1(U/O,Q) — H*T1(U/O,Q/Z).
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4.1.6  The cohomology ring of BO with coefficients in Z/2Z is a polynomial ring
Z/QZ[wl, Wy, . . ] s

where w; € H'(BO,Z/27) are the universal Stiefel-Whitney classes. It is well known (see

[[4]) that

Blwar U wap11) = p*capya, (4.5)

where (3 is the cohomological Bockstein operator associated to the exact sequence of
coefficients in the first row of (£). In particular, 2p*cypy2 = 0 € H*2(BO;Z), as also
stated in Appendix [B.

4.1.7 Let I, : H¥TY(BO,Z/2Z) — H**(BO,Q/Z) be induced by [ of (). Note that
by Lemma [B.5 the map [, factors over the image of 3.

Definition 4.6 We define
dyps1 == Lou € H*1(BO,Q/7),

where uw € H*YY(BO,Z/27Z) is such that (u) = p*cap o

Such an u exists by ([.5) and l,u is independent of the choice since we have fixed 3(u).

4.1.8 Let i: U/O — BO be the inclusion.

Lemma 4.7 We have i*ci4k+1 = J4k+1. Moreover, 2J4k+1 =0 and 2J4k+1 =0.

Proof. The first assertion is a special case of Proposition A.15, where we use 2p*(cp12) =

0. Note that the homomorphism [ is given by division by 2.

The second assertion follows from the fact that 2J4k+1 = 2l,u = [,(2u) = 0 for u of
Definition L8, and 2dy1 = i*(2d4k+1) =0. O
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4.1.9 By (EF) we have the following corollary.

Corollary 4.8 We have J4k+1 = L (wor Uwogi1).

4.2 A topological description of dOB,4k 41

4.2.1 In this subsection we pretend that p: BO — BU is a smooth fiber bundle. To
be precise, we should replace this bundle by a N-equivalent finite-dimensional smooth

bundle for N sufficiently large.

Let Wi — BO be the universal bundle. Then p: BO — BU classifies its complexification,
i.e. if W — BU is the universal bundle over BU, then we have an isomorphism W ®g
C ¥ p*W which induces a real structure @) (complex conjugation) on p*W+. We can

assume that Wy comes with a metric /"% | and we choose a connection V2 . We set
Wi = (Wi, VW& A% ) and let W be its complexification.

4.2.2  We now consider the Z/2Z-graded bundle W := W @ W~ with W~ := W'

admits an odd unitary selfadjoint (not necessary parallel) automorphism

(1)

We form the geometric families G* on BO with underlying fiber bundle id: B — B and
twisting bundles p*W=. Then the family G = G* Ug G~ admits a taming G, induced by
R. The associated n-form satisfies dn(G;) = Q(G) = ch(V?"W). By construction we have
chyy o (VP = 2p*chyy o (VW) and chy,(VPW) = 0 (compare PT.15).

It

4.2.3 Leti: U/O — BO be the inclusion of the fiber. Then
di ™ H(Gy) = 2(i* 0 p*)chypyo (VY ) = 0
since p o7 is a constant map. Thus we can consider the class

[0 1G] € H¥H(U/O,R).
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4.2.4 Let df.., € H*(U/O,R) be the image of dy1 € H*(U/O,Q) under the

natural map induced by the map of coefficients r: Q — R.

Lemma 4.9 We have o
2d44

(2k)!

[i*ﬁ4k+1 (gt)] —

Proof. The proof follows from the fact that in the smooth situation there is the alternative
description of the transgression T%: H*+2(BU,R) — H**1(U/O, R) given in Proposition
A T4. Let x € H**2(BU,R) be represented by a closed form X € A**+2(BU). Then there
is some form Y € A*+1(BO) such that dY = p*X. The class T®(z) € H;5"™(U/O,R) is
then represented by i*Y € A%*T1(U/O).

In our case
z = 2ch, L, (WF]), X =2chyo(VV"), Y =n"t(G)

so that
[ (G)] = TF (2chyy o ((WH))).

Note that
chye o ((WT]) =

1
0] c4k+2 + decomposable classes,
where for reasons of degree each decomposable summand contains at least one factor ¢y o

which is transgressive by the table on page [B.2.5. Hence by Proposition [A.13

2 2d 41
W) = _
T(20h4k‘+2([ ])) - (2k)'T<C4k+2> - (2]€)'
This implies the assertion since T® o r, = r, o T' by Lemma [A9. O

4.2.5 We now consider a manifold B and x € If(\ao(B). Let X: B — BO be a classifying
map for z. We assume that x € U2 (B). Then we can assume that X factors through the
inclusion i: U/O — BO, i.e. without loss of generality we can assume that X: B — U/O.

We define di,,, € H*™(B,R/Z) as the image of d,,, under the map of coefficients
R — R/Z, or equivalently, as the image of dy1 under the map of coefficients Q/Z — R/Z.

We now come to the main result of this subsection.
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Theorem 4.10 d% 4, (z) = X*dj, ;.

Proof. Let x be of the form [V4] — [Vg ], where Vg := RY x B is trivial. Then we
have an isomorphism Vi~ 2 X*W. The metric AWz and the connection V% induce
a metric A'% and a connection V2 on Vi . In this way we obtain a geometric bundle
Vi = (Vi V%, hY% ). Furthermore, we equip Vj with the canonical geometry and get
Vi.

Set V* := VZ ® C and consider the Z/2Z-graded bundle V := V* & V™. Since [V] =0
in K°(B) we can choose a unitary odd selfadjoint (not necessary parallel) automorphism
UofV.

We form the geometric families H* over B with underlying bundle id: B — B and twist-
ing bundle V=, Furthermore we define H := H"Ug(H ). Then we have indexg(H) = =
and dng’B(:p) = Cyp12(H). The isomorphism U induces a taming H;. By Corollary B.7
we thus have

Canra(M) = [(28)" T (M) w2 € H* (B, R/Z) .

We now consider the bundle V := Vt@V-@ V@&V~ with the Z/2Z-grading diag(1,1, —1, —1)

and the two odd automorphisms

0 0 U- 0 0 Rt 0
. 0 0 U" 0 . 0 0 0 R
U .= _ 5 R := )
0O U 0 0 Rt 0 0 0
ut 0 0 0 0O R~ 0 0

where R* is the C-linear isomorphism between Vﬂgt ® C and its complex conjugate given

by complex conjugation.

Note that [R, U] = 0. The bundle V gives rise to a geometric family H = H+ Up (H ™),
where the underlying fiber bundle of H* is again id: B — B, and the twisting bundles
are VE. For each o € [0,7/2] the operator

cos(a)U + sin(a) R
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defines a taming H,,. The family (H,, ), defines a taming H; of H := priyH over [0, 7/2] x
B. A computation shows that dn(H,) = prich(VY) = 0. We conclude the following

equality of de Rham cohomology classes
[+ (He )] = (0™ (He, )] -
An inspection of the definitions shows that

774k+1<7:(t0) — 2n4k+1(Ht>
774k+1(7:‘tﬂ/2> — (X* o i*)n4k+1(gt)-

We conclude with Lemma .9 that

) wroe (2K)! .
C4k+2(H) =X [Z %774“1(@)]11%/2 =X CERkH .

4.3 The topological interpretation of d;%, , .,

4.3.1 Recall that the classifying space of KO™ is 2" BO. In view of the fibration
Q"U/O — Q"BO — Q"BU

we see that the classifying map X: B — Q"BO of an element x € U_"(B) factors (up
to homotopy) over Q"U/O, since then the composition B X Q"BO — Q"BU is null

homotopic.

Let Q" : H¥**Y(U/O,R) — H*+1="(Q"U/O,R) be the n-fold iteration of the loop map
introduced in Definition [A.]].

Theorem 4.11 We have

dB,4k+1—n<x> = X' [0 d§k+1]R/Z = X[

o R AC W

(2k)!
where m s determined by 2m = 4k +3 —n or 2m =4k + 2 —n.
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Proof. We employ Corollary B.7. Let & € I?éO(Z”B ) correspond to z € KO~"(B) under
the identification KO~"(B) = [%O(E"B). Let 7 € f(\éO(S" X B) be the pull-back of &

under the natural map S™ x B — ¥"B.

Note that the classifying map Y: ¥"B — U/O of & is the adjoint of X : B — Q"U/O,
and that the composition X : 5" x B — U/O of the projection S" x B — %"B and Y is

the classifying map of 7.

Then we have
Bitnoale) =[m =100 [ )
SnxB/B

where H, is constructed as in the proof of Theorem [.10. In that proof we have also shown
that
1, o, .
)] = [5(X7 08 H(G)

We now apply Lemma [£.9 in order to conclude that

v JR
o X d4k+1

[774k+1<Ht)] - (2]€)'

Thus ( |
n m — 1)! o
dB,4k+1—n(x) = [7(%), /5 B/BX d]}karl]R/Z .
! nx

The assertion now follows from the general fact that for any 2 € H**+1(U/O,R) we have
/ X2 =Y"Y*2 = X*Q"z ,
SnxB/B

where 3 is the suspension isomorphism. For the first equality we use that integration over
the fiber essentially is the suspension isomorphism in the above construction. The second
equality is a special case of the relation between suspension and loop homomorphism

proved in Lemma [A-G. O

4.3.2 Theorem {.10| and Theorem give a topological description of the value of
dglypy1_n(7) only under the additional assumption that z € UZ"(B) C Uyt (B). In

order to see that this determines dg", ,,_, completely we argue as follows.
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Let z € Uy, ,(B). Then the cohomology class dg'y,. () of degree 4k + 1 —n is
determined by its restriction dg’y 1, () gisr1-n to the 4k + 1 — n-skeleton B*H=" of
B. We have zgun-n € UZ"(B*™7"). Thus we know the topological description of

n S n :
Al n gji1_n(@|par+1-n), Which is equal to dg'y ., _, () pun+1-n by naturality.

4.4 Explicit calculation of the universal class

Theorem [L.T1 does give a topological interpretation of our invariant .. However, we want
to be even more precise and explicitly compute the corresponding universal cohomology

class

g Pdwslor = o 0TSl € 1 (00/0,0/2).

where m is determined by 2m = 4k 4+ 3 — n or 2m = 4k + 2 — n. In particular, we will

show that for half of the parameters n (mod (8)) this class vanishes

We will make use of many of the results about the cohomology of BO, BU and their loop
spaces collected in Appendix B.

4.4.1 Consider the map of fibrations
U —— EU —— BU

P [
U/o —— Bo £ By,

where the upper row is the universal principal U-bundle, and the lower row is obtained

from the upper by dividing out the subgroup O.

4.4.2 By Lemma [B.4, cileH € H**2(BU,Q) is transgressive in the second (and of
course also in the first) fibration. We have to compute the transgression T'(cyi2) €
H**+Y(U/0,Q). To do this, we observe that the upper fibration is the path space fibra-
tion, and therefore by Lemma [A4 the transgression Ty of this fibration coincides with
the loop homomorphism. By Theorem [B.4 we obtain Ty (csr42) = car+1 (even in integral

cohomology). Moreover, transgression is natural, therefore

p*(T(c%H)) = TU(C%CH) = C%c-‘,—l € H*(U,Q).
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By Theorem B3, Theorem B and Table B:25, p*: H*(U/O,Q) — H*(U,Q) is injective

and p*(a4k+1/2) = Caf+1-

Notation 4.12 In order to avoid an inflationary appearance of the exponent ® from now
on we will use the same symbol for an integral cohomology class and its image in rational

cohomology. It will be clear from the context which meaning the symbol has.

Consequently (with the new convention .19 ) we can write

1
T(caps2) = o Mak+1 € H* N (U/0;Q).

4.4.8 Our next goal is the calculation of
O"T(cypr2) = Q”(%QMH) c H*1=(Q"U/0,Q) .
We consider the fibration
Q"U/O — Q"BO — Q"BU (4.13)
which is the n-fold loop of the fibration considered above.

4.4.4 1In the following, we use the Bott periodicity maps to identify Q2"U/O with the
spaces listed in Theorem B.1l:

n o 1 2 3 4 5 6 7
Q'U/O |U/O BOxZ O O/U U/Sp BSpxZ Sp Sp/U

4.4.5 Unfortunately, our knowledge about the map 2" is not complete enough to calcu-

late Q" (T cy42) directly. We use the following trick:

Using that map a : U/O — U (compare Subsection B.3, Item [H) we have fas1 =

o %c4k+1 . Therefore,

1 1
D (Saar1) = () Q" (Seaen) -
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4.4.6  We shall first compute Q"(cqy+1). By Theorem B

Qeapr1) = (2k)!chyg.
Note that QBU = Q(BU x Z) so that we can iterate the argument.
Next, (2k)!chy, = 2k - cqy, + decomposable. We conclude that

Q((2]{Z>'Ch4k) = 2]€Q<C4k) = 2]€C4k,1 .

4.4.7 Now, an easy induction allows us to compute 2" (cyr11) for each n € N. However,

because of the factors appearing in our formulas, we really have to study (72;)1!)! Q" (Caps1),
where m = 2k + 1 — 5 if n is even, and m = 2k + 1 — "T’l if n is odd. In the induction,
this factor cancels the factors (like (2k)) which show up in the calculations above, and we

get (with m depending on n and k as above)

Qn<(m —1)! Cik+1-n n even

m=D! (4.14)
(2k)! (2k — 254 Ichye -, noodd .

4.4.8 From this and the calculation of the map in cohomology induced by Q"« : Q"U/O —
Q"U, we read off the cohomology classes we are interested in. Since we are really only
interested in the image of the class under the map in cohomology induced by the map of

coefficients Q — Q/Z, we obtain the following list:
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Theorem 4.15

(m — 1>!T 1 H%(17/0-0Q/7,
[W (car+2)larz = [Faarnlosz € (U/0;Q/Z)

o % T(essa))loys = [3cholg/z € HY(BO X Z,Q/Z) 4k+1=n
! 0 € H*(BO x 7:Q/7) dh+1>n

(O T eno = 0 € B0, 072

(O T cusadlo = 0 € 1#%2(0/0,0/2)

(P Tewsalllo = 0 € HU 0/ 5.0/
0 (o Tewsallloz = 0 € HY(BSp x 2.Q/2)
0 s T e lore = [gn-slorz € H*-¥(5p.0/2)
07 (s T ensalore = [y(ens + cacucs -+ casemlogz € H(Sp/U,Q/2)

(4.16)

Forn > 8, the answer can be read off from the list by reduction mod 8 by Bott periodicity.

In particular, the natural transformation dg", ., _, vanishes for n congruent to 2,3,4,5
mod 8, and, if k > 0, also for n = 1 (mod 8). In the other cases, since the universal

classes are non-trivial, there are non-trivial examples.

4.4.9 Proof. As observed above, we simply have to take the cohomology classes on the
right-hand side of equation ({.14), divide them by 2, and then apply the map from rational
cohomology to cohomology with coefficients in Q/Z. Finally through Q"«a we pull back
the result to Q"U/O. In this step we use the results of Subsection B.3.

4.4.10 Note first that x,, := c4r411-n (n even), and respectively, x,, := (Qk—"T_l)!ch4k+1_n
(n 0odd) belong to the integral lattice in rational cohomology. Therefore [ (Q"a)*Q 2, ]z =
0 if 2(Q"a)* preserves the integral lattices. This is the case whenever Q" maps the Chern
classes to twice a generator of the integral cohomology, i.e. if Q"U/O equals O, O/U, or
U/Sp by the table B.2.5. This observation accounts for the zeros for n = 2,3,4 in the

theorem.
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4.4.11 Because of Proposition [A.T(]

(m —1)! (m —1)!

[T(QE)(WCMH))]Q/Z = [QT(Q4(WC4k+2))]Q/Z =0,

we obtain the zero for n = 5.

4.4.12  We now discuss the case n = 1. We have [T'(cari2)]g/z = le(war U wagy1), where

l. is induced by the map of coefficients Z/2Z — Q/27Z LN Q/Z (compare [l.1.5 and

Corollary £.§). If & > 0, then Q(ws, U wary1) = 0 since the loop map is applied to a
(m=1! _

decomposable class. Note that TR 1 in this case. Thus

[Q<(m—1)!

WT<C4I€+2))]Q/Z = 1, Q(war Uwagi1) =0

for k£ > 0.

4.4.13 For the calculation of [97(%T(C4k+2))](@/z we proceed as follows. The class
(2k — 3)!chy,_¢ € H*5(Sp/U,Q) belongs to the integral lattice. In fact, if we write
(2k — 3)Ichyy_¢ = oup_¢(Cco,Cq, ..., Cap_g) With the Newton polynomial oy_g, then the
right-hand side can be interpreted as an integral cohomology class in H*~(Sp/U, 7Z).

We now have

. (m—1)!

l*[04k76(02704, .. -yc4kf6)]Z/2Z = [Q ( (Qk)! T(C4k+2))]Q/Z :

The cohomology H*~6(Sp/U, Z/27Z) is an exterior algebra generated by [c2]7/27, [c4] 222, - - - -

Considered in this algebra, the Newton polynomial

0’4k76(c27 C4y - 7C4k76)

e S D DR G

i142i0+...(2k—3)ig,_3=2k—3

i+ igp—g — 1)' i1 2k—3
) : | Cy - . Cyp_g
11+ .. .12k—3"

simplifies considerably and gives exactly the expression asserted, if we use that

1

Llcalz oz = [§C2l]Q/Z '
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4.5 The relation with ordinary characteristic classes

4.5.1 Let us consider the fibration
Q"U/0E Q"BO — Q"BU .

We have constructed and calculated the universal cohomology class

(m—1)!

S OTaT

T(cas2)lo/z € H*7M(Q"U/0,Q/Z) .
If this class would be of the form (%i)*u for some u € H*T1="(Q"BO,Q/Z), then the
invariant dg, ., (z), * € Uy’ (B), could be expressed in terms of familiar charac-

teristic classes of the element z € KO™"(B).

4.5.2 In the case n = 0 we indeed have

[Qn((m—l)!

o LlemsDlerz = [Tleasa)lorz = 'L (war Un)

(above we have written w; for i*w; in order to save notation, but in the current discussion

it makes sense not to omit 4*). In particular we can extend dy 4, to all of KO°(B) by

setting d 41 () = L (wa U warys).

4.5.8 In the case n = 1 and k = 0 it is obvious that the class comes from Q' BO. As we
have seen in example 3.2, if z € KO~!(X) is represented by a family of anti-selfadjoint
real Fredholm operators (F})yep, then df () is represented by the locally constant R/Z-

valued function b — [1 dimker Fy]g /7

4.5.4 In the case n = 6 the class

m —1)!
0 T el = 0 gy el

definitely is not a pull-back from Q°BO = Sp/U. In fact H*(Sp/U,Q/Z) is concentrated
in even degrees, while our class is of odd degree. We see that in this case our invariant
d% 455 is more exotic and therefore more interesting. Unfortunately, we haven’t been

able to produce simple examples of for this invariant in Section B.3.
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4.5.5 The situation is unclear at the moment for n = 7. However, we suspect that
the map Sp/U — U/O induces a surjection in cohomology with Z/2Z-coefficients, which
would imply that all our classes pull back from U/O.

4.6 Extendibility

4.6.1 Given x € KO™(B), in order to define d;" ,_, (z) using topology we had to as-
sume that x € U "(B). Our analytic definition however works under the weaker condition
that € Uy",_,(B). Of course, if B¥*1=" C B denotes a 4k + 1 — n-skeleton, we have
Ty ga+i-n € U(B¥H=m) We also have seen that dy,, _, (zpasr1-n) = dy’;_, (@) gars1-n
determines d;",,_,(7) uniquely. The interesting feature of the analytic definition is that
it shows that dy",_, (% pas+1-n) admits an extension from B**1~" to B.

In the following Lemmas we give an alternative proof of this property.

4.6.2 Let f: B— Q"BO be amap. Assume that the restriction " := fig-: B" — Q"BO
of f to a r-skeleton B" of B factors over a map ¢": B" — Q"U/O (i.e. fr = Q" og",
where i: U/O — BO is as above). Assume further that r +n = 1 (mod 8). Let R be

some abelian group.

Lemma 4.17 Ifz € H*(Q"U/O, R) satisfies 2x = 0, then the class (¢")*(x) extends from
B" to B.

Since the map H"(B; R) — H"(B"; R) is injective, this extension is unique. Note that
the Lemma in particular applies to the cohomology classes listed in Theorem [.13.

4.6.3 Proof. Let K(R;r) denote the Eilenberg-Mac Lane space which represents the
functor H"(. .., R). We represent the cohomology class x by a map x: Q"U/O — K(R;r).
It suffices to show that (¢")*(x) extends to a r + 1-skeleton B"™! of B (such that B" C
B!, In fact, it then further extends to B since the inclusion B™™' — B is a r + 1-

equivalence.
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4.6.4 The universal example is given by the space B = K"™! which is obtained from
Q"U/O by attaching r+ 1-cells in such a way as to kill the kernel of ("), : m,Q"(U/O) —
(2" BO). Here f is obtained from Q"i: Q"(U/O) — Q" BO, which extends to some map
f: K™ — Q"BO by the construction of K™ (and elementary obstruction theory), and
g" is the inclusion of the r-skeleton of Q"(U/O) (and therefore of K™*1) into Q™(U/O).

In our case we have 7,.(Q"U/O) = Z and ker(Q"i), = 27 (as follows from Bott period-
icity and the long exact homotopy sequence (in low degrees) of U/O — BO — BU). If
¢: 8" — Q"(U/O) represents a generator of m.(Q2"U/O), and if h: S™ — Q"U/O repre-
sents twice this generator, i.e. a generator of ker(2"i),, then h*(¢")*x = 2¢*(¢")*x = 0.

Thus the map x o & is null homotopic, and therefore (¢g")*z extends to K™ O

4.6.5 Let still f: B — Q"BO be a map and assume that the restriction f#*+1-" .=
fipaesion s B — OnBO of f to a 4k 4+ 1 — n-skeleton B**1~" of B factors over a
map g*ti=n: p#tlon L OrU /O (e, fARHI = Qo g* 1" where i: U/O — BO is

as above).

Lemma 4.18 Ifz = [Q"(%T(ka))]@/z € H* ="+ QrU/O) is one of the classes of

Theorem [[.13, then (f*+1=")*x extends from B*+1=" to B.

4.6.6  Note that half of the cases are already covered by Lemma .17, namely whenever
the dimension condition is satisfied, i.e. when (4k + 1 —n) +n = 1 (mod 8), in other

words, if k is even.

4.6.7 Moreover, the cases n =0 (mod 8) as well asn =1 (mod 8) (and 4k+1 = n) are
trivial, because in these cases we have seen that the characteristic class x already pulls
back from Q"BO to Q"U/O: it is expressed in terms of Stiefel-Whitney classes in the first

case, and in terms of the dimension of the bundle in the second case.

4.6.8 We use the proof Lemma [L.17 to deal with the remaining cases. This proof shows
that it suffices to treat the case B¥*+1—" = §4+1-n and to show that the pullback class



4 TOPOLOGICAL UNIVERSAL CLASSES 38

(fA#*+1=m)* 2 vanishes for arbitrary f: S* "+ — Q"U/O (and therefore extends over the

disc D¥*+2=n),

4.6.9 Observe that, by Equation (f.14), the cohomology class x is obtained as pull back
of Capi1-p Or 3(2k—(n—1)/2)Ichiy,_(,—1y from U or BU, respectively (depending on the
parity of n). However, on all spheres the Chern character is integral, i.e. for an arbitrary

map f: S¥ — BU, f*ch € H*(S*; 7).

4.6.10 Ifn =7 (mod 8) and k odd (and 4k > n) then 4k+1—n > 4. This implies §(2k—
(n —1)/2)! € Z. Therefore by [:6.9 the cohomology class (2k — (n — 1)/2)!chj_(,-1)
pulls back to 0 in H*(S*~(=1;Q/Z) for an arbitrary map S*~("=1 — BU. As observed
in[£.6.4, n =7 (mod 8) and k even is covered by Lemma [L.17.

4.6.11 For n =6 (mod 8) and an arbitrary map f: S*~ "™ — U by Lemma [A.g and
Theorem [B.4

o1 1y L P n
f (§C4k+17n) = lF (§QC4k+lfn) = 1<F 5(2]€ - 5)'Ch[4k—n})

Here, 3: H4—n(G4k—n) — ppak-—n+l(G4k=n+1) ig the suspension isomorphism and
F: S*" — QU = BU X Z

is the adjoint of f: LS~ = G-+l 7 Again, if 4k —n > 4 then (2k —n/2)! € 2Z
and therefore by F*(3(2k —n/2)!chyy_(n—1) = 0. However, if 4k —n = 2 then, since
n =6 (mod 8) k is even and therefore (4k +1—n)+n =1 (mod 8), such that this case
is covered by Lemma [.17.

4.6.12 If n=23,4,5 (mod 8), then = = 0, which trivially extends. This concludes the
proof of Lemma [.1§. O
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A Transgression

A.1 Transgression in cohomology

A.1.1 In this section, we want to recall the general definition of transgression and its
basic properties. Special cases are “suspension” or “looping”. All of this is well known,

and included here for the convenience of the reader.

A.1.2 The situation is the following: let f: E — B be a map, and b € B a point. Write
Fy:= f~Y(B). Let i: F, — E be the inclusion. Let H* be any (generalized) cohomology
theory. In the following, the loop spaces 2B are defined with respect to the basepoint b.

Suspensions are reduced suspensions.

A.1.8 The adjoint of the identity map QB — QB gives a canonical map Q2B — B.
This induces H*(B) — H*(XQB).

Definition A.1 We define the loop map
Q: H*(B) — H*'(QB).

as the composition of H*(B) — H*(XQB) with the suspension isomorphism H*(XQB) —
H*1(QB)

By construction and functoriality of the suspension isomorphism, the loop map is func-

torial, too

A.1.4/ Given the map f: E — B, consider the cofibration sequence £ — Zf — Cf,
where Z f is the mapping cylinder and C'f the mapping cone. The inclusion B — Zf is

a homotopy equivalence. The long exact sequence in cohomology of this cofibration gives

H*(B)
[
— HNCf) — HRZf) L HNE) —

In particular, H*(C'f) maps surjectively onto ker(f*) C H*(B).
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A.1.5 Consider now QC f. Since the composition F %, E L Bis the constant map to

b, we can define a canonical map
[:F—=QCf, v cy,

where ¢, is the loop in C'f with ¢,(0) =b € B, ¢,(t) = (z,t) € Ex(0,1) C Cf, and ¢,(1)

is the cone point in C'f.

Mapping B to the second cone point gives the second map j in the cofibration sequence
B — Cf 2, YE. From this we conclude that the kernel of HY(Cf) — H*(B) equals
im(j*). The composition F' — QCf — QX E can be factored as F % E — QXE, where
the second map is the adjoint of the identity map X F — X E.

A.1.6

Definition A.2 We define the transgression T: H*(B) D ker(f*) — H*"1(F)/im(i*) as

the composition

ker(f*) = HY(Cf)/im(j*) = H=(QCF)/ im(()") — HFH(F)/im(i) .

Note that for the second map we used the factorization which shows that im((£27)*) goes

into im(i*).

It is clear from the construction that transgression is natural with respect to the map

f:F — B,ie. given a diagram

g & g
fl fl
B o B

we have an equality of the form 7" o h* = H* o T.

A 1.7

Definition A.3 The elements of ker(f*) C H*(B) are called transgressive. These are

the classes whose transgression is defined.
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A.1.8

Lemma A.4 The transgression in the fibration QB — PB — B, where PB is the
(contractible) space of paths ending at b coincides with the loop map.

Proof. Carry out the construction. If f: PB — B is the start point projection, use the
homotopy equivalence C'f — B which maps (p,s) € PBx (0,1) C Cf to p(s) (recall that

s = 1 corresponds to the cone point). a

A.1.9

Lemma A.5 The transgression of B — CB — YXB is the suspension isomorphism
Y: H*Y(XB) — H*(B).

Proof. Carry out the construction. Use the “folding” homotopy equivalence C'f — ¥B
(where f: C'B — XB is the projection). The composition of B — C'f with this homo-
topy equivalence is the identity map. Starting with H*(XB), we have to pull back with

this map and then use the suspension isomorphism (by naturality of the latter). O

A.1.10 Let f: ¥X — Y be a map with adjoint F': X — QY. Then we have a commu-

tative diagram of fibrations

X — (CX — ¥X

L

Q —— PY —— Y

Lemma A.6 Then for each a € H*(Y),

F*(Qa)=Xf"a . (A.7)
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Proof. This follows from naturality of transgression and the fact that both €2 and X are
transgression homomorphisms by Lemma [A.4 and Lemma [A.F. O

A.1.11 In the construction of the transgression, we consider in particular the following

commutative diagram of maps:

R

F —— CE — Cf (A.8)

fe T

F— CF — YF

By naturality, the transgression homomorphism in F 1, B is determined by the trans-
gression in CF — XF (this is of course, what we used in the construction), since

H*(Cf) — H*(B) surjects onto the transgressive classes.

A.1.12

Lemma A.9 Let ®: H* — h* be a natural transformation between generalized cohomol-

ogy theories. Transgression commutes with this natural transformation.

Proof. Let f: E — B be a continuous map. First observe that by naturality ® maps
ker(H*(f)) to ker(h*(f)) and im(H*(7)) to im(h*(7)), so that the assertion makes sense.

The construction of the transgression homomorphism only uses maps induced from con-
tinuous maps between topological spaces (and their inverses) and the suspension isomor-
phism. By definition, a natural transformation between cohomology theories is compatible

with such homomorphisms, and therefore also with transgression. O

A113 Let F % E L B bea sequence of maps as above. This gives rise to the
transgression homomorphism 7': H*(B) D ker(f*) — H*"1(F)/im(i*).
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Applying the loop space functor we also get the sequence of maps
oF 2 o 2L 0B,
with associated transgression homomorphism

To: H*(QB) D ker(Qf*) — H*(QF)/im((€4)*) .

Proposition A.10 Ifz € H"(B) is transgressive, then

OT(z) = To(Qx) € H™2(QF)/ im((Q%)").

Proof. We obtain the following commutative diagram

voF 2%, vor 2 voB

|»e | B (A.11)

f

F —/— E - B
where the vertical maps are adjoints of the identity maps 2 — -. Since we work with
the reduced suspension, the inclusion XQF — YQF is the fiber of X2 f. By naturality
of the transgression, pj(Tx) = Tua(phx) for each transgressive class € H*(B). The
suspension isomorphism maps by definition p}.(7'z) to (Tx) and pja to Qx. By Lemma
A9 transgression commutes with the suspension isomorphism (indeed the suspension iso-
morphism can be interpreted as a natural transformation between cohomology theories).
Therefore we have Q(T'x) = To(Qx). O

A.2 Transgression and products
A.2.1 Let A: B — B x B be the diagonal map. We still consider the map f: F — B.

Definition A.12 1. A class x € H*(B) is called a non-trivial product, if z = A*y
for some y € H*(B x B) such that (idg x {b})*y =0 = ({b} x idp)*y.
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2. We say that the first factor of a non-trivial product x is transgressive, if r = A*y
for any such that (f x idg)*y = 0 € H*(E x B), similarly we define that the second

factor is transgressive.

A.2.2 Note that if one of the factors of a product is transgressive, then so is the product.

Proposition A.13 The transgression of a non-trivial product with at least one transgres-

stve factor is zero.

Proof. This follows from naturality of the transgression. Consider the diagram

F— FE _ B

J/id l(idExf)oA lA

F —— ExB — BxB

/l\id /l\idBX{b} /l\idBX{b}

rFr—— F — B
Let us assume that z is transgressive in the first factor. By T; we denote the transgressions
associated to the corresponding rows. Then we have T} (z) = T(y) = T3((idp x {b})*y) =
0, since (idp x {b})*y = 0. O

A.2.3 Let us consider the following example. Define N := T2\ (D?)°, i.e. N is the
two torus with an open disc removed. Let f: N — T? be the map which collapses the
boundary of N to one point. On the one hand, the fundamental class [T?] € H*(T?,7Z)
is transgressive. On the other hand, [T?] is a non-trivial product of 1-dimensional coho-

mology classes, and none of the factors is transgressive.

Collapsing the complement of an open disc in 7% to a point gives a degree 1 map ¢g: T? —
S2. If we write S = ¥.S!, we then get a diagram
Sl —— C8t=D? —— ¥St =62

O i

st —— N L o
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Here, ¢g*[S? = [T?], where [S?] € H?*(S? Z) is the fundamental class. By naturality,
T([T?) = T([S?]) = [S'] € H'(S',Z) is the fundamental class of S!, in particular non-

Zero.

This shows that at least one of the factors in Proposition has to be transgressive for

the assertion to hold.

A.3 Transgression in ordinary cohomology and the relation with

the Bockstein

A.3.1 We now want to describe how one can construct the transgression in ordinary
singular cohomology with coefficients on the level of chains. Let f: E — B be a map
with fiber i : ' — E over b € B. Let R be an abelian group. Assume that z € H*(B, R)
is transgressive, i.e. we have f*z = 0. We choose a cocycle ¢ € C*(B, R) representing
x. Then the cocycle f*c is a boundary, i.e. there exists a chain ¢y € C*"1(E, R) with
dco = f*c. The restriction of ¢y to F' is closed, since di*cy = i*dcy = i*p*c. It follows
that i*cy represents a cohomology class [i*cg] € H*~1(F, R). The cocycle cq is well defined
only up to closed cocycles in E. Tt follows that the class [¢g] is well defined only up to the
image of 7*. Hence we get a well-defined class T'(z) € H*'(F)/im(i*).

A.8.2

Proposition A.14 We have T(z) = T(z).

Proof. The recipe described in the proposition defines a transformation T which is again
natural with respect to the map f : F — B. As explained in the Remark it
must coincide with the transgression T if it does so in the special case of the cofibration
B — CB — X B. But in this case the above description produces exactly the suspension

isomorphism which is by definition the transgression map 7. O
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A.8.8 If f: E — B is a map of smooth manifolds and R = R, then we could replace
the singular cochains by differential forms and construct 7' on the level of forms. Again

we get, T=T.

A.3.4 TFor a cohomology class € H*(X,Z) let 2% € H*(X,Q) denote the image of x
under the canonical coefficient homomorphism Z — Q. Let n € N and (3 be the Bockstein

transformation associated to the sequence

0—-2"%27—7/n7—0.

A.3.5 Letx € H¥(X,Z) be such that na is transgressive. Note that then ¢ is transgres-
sive, too. Since nf*z = 0 by the Bockstein exact sequence there exist u € H*Y(E, Z/nZ)

with B(u) = f*z. Recall that T'(nx) is an equivalence class of cohomology classes.

Proposition A.15 1. We have
T(nz) 3 i*u, (A.16)

nT(29) 3 i*u® (A.17)

Proof. We use the description of the transgression on the singular cochain level given
in Proposition A.14. Let ¢ be an integral cocycle representing x. Let ¢y be an integral

cochain of E with dcy = nf*c. Then i*c¢y represents T'(nz).

The reduction of ¢y modulo nZ becomes closed and therefore represents a cohomology

class u € H*"1(E,Z/nZ). By the explicit construction of the Bockstein homomorphism,
B(u) = f*x. Equation (AIQ) follows.

Since transgression commutes with the passage to rational coefficients by Lemma [A,

Equation (A.I7) follows from Equation (A.14). O
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B Cohomology of BO, BU and their loop spaces

B.1 The cohomology

B.1.1 In this appendix, we summarize the main results about the cohomology of BO,
BU and their loop spaces, and the relations between them, including the determination of
the transgression homomorphisms. These results are all classical, and almost all of them
can be found in Cartan’s [[], where these calculations were essential in his cohomological
proof of Bott periodicity. Since they are scattered over these papers, we collect them here

in more convenient form. All results without a proof or a different reference can be found

in [f].

B.1.2  Bott periodicity gives canonical (up to homotopy) homotopy equivalences between

Q" BO and other classical spaces summarized in the following list.

Theorem B.1

n—1 | -1 0 1 P 3 4 5 6 7
OU/O|U/O BOxZ O O/U  U/Sp BSpxZ Sp Sp/U UJO
or SO x7Z/2 SOJU xZ]2

This extends 8-periodically.

In the following, we will frequently identify the (cohomology of) different loop spaces
of spaces in this table using the corresponding homotopy equivalence without further

mentioning it. Note that we have done so already throughout the body of the paper.

B.1.3 In the following, L(x;,,x;,,...) denotes a polynomial algebra in the generators
x;, where by convention x; has (cohomological) degree i, and E(y;,,yi,,...) denotes an

exterior algebra, with similar degree conventions for the generators.

B.1./ In the following list, we describe the cohomology of the connected component of
the base point in Q*BO. Note that we “rename” some of the usual characteristic classes

like the Pontryagin classes: p4 is a cohomology class in H* etc.
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Theorem B.2

ko HYQ'BO.,Z)  H*(Q'BO,,Z/2Z) H*(Q*BOy,Z[L])
0 L(ps,ps,...)D2-Tors  L(wy,ws,...) L(ps, ps,---)
1 * L(dy,ds,...) E(vs,vq,...)
2 L(ug, ug, .. .)

3 E(ay,as,...)

4 L(ys,ys, - --)

5 E(ys,y7,...)

6 L(ug, ug,...)* E(co,cq,...) L(ca,cq,--)
6 Llcs, ¢y, . ]

Zi+j:2k(_1)lc2i62j
7 E(agks1) ® 2-Tors E(wy,ws,...) E(ay,as,...)

We add the following detailed explanations, using the description of the loop spaces as in
Theorem [B_1.

1.

(a) H*(BO;Z) contains a subalgebra isomorphic to the quotient by its torsion.
(b) This is a polynomial algebra L(py,ps, ... ).

(c) The torsion is annihilated by 2, it is the image of Bockstein.

(d) Reduction mod 2 maps py to (way)?.

(e) The classes wopy1 € H**Y(BO,Z/27) have unique lifts to H**1(BO, Z) which

we also denote by wop 1.

(f) The same is true for every class in degree k for k not divisible by 4, since in

these degrees H*(BO,Z) is annihilated by 2.

2. Most complicated is the cohomology of SO with Z-coefficients, for reasons of space

simply denoted x in the list (case k =1). We can say the following about it.

(a) The torsion in H*(SO,Z) is annihilated by 2, it is the image of Bockstein.

(b) The quotient of H*(SO,Z) by its torsion is an exterior algebra E(vs,v7,...).
It does not split back to H*(SO,Z) because of the product structure (compare
with H*(SO,Z/27)).
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(c) But of course, each monomial v; ...7;, has an inverse image v;, ...v;, €
H*(SO,Z) (only additive! no multiplicative structure) which is well defined

up to torsion, and the products are correct up to torsion.

3. The integral cohomology of Sp/U (case k = 6) is the dual of L(ug,ug,...). This
shows in particular, that it is torsion-free. As a ring, it is the quotient of L(ca, ¢y, . ..)

by the ideal generated by the elements Zi+j:2k(—1)i02i02j~.
4. (a) H*(U/O,Z) contains a subalgebra isomorphic to the quotient by its torsion,
this is an exterior algebra F(ay,as,...).
(b) The torsion is annihilated by 2, it is the image of Bockstein.

(¢) Reduction mod 2 maps i1 t0 WopWap 1+ B(Wag +Wotag o+ - ++Wak_oWag2).

B.1.5 We also need the complex case, i.e. BU (and will later relate BO to BU). The
case of BU is of course much easier because of 2-periodicity, and since the cohomology

does not contain torsion.

Theorem B.3
k  natural homotopy equivalence of Q*BU to  H*(2*BU,, 7Z),
0 BU L(ca,cy,...)
1 U E(Cl,Cg,...)
2 BU x Z.

B.1.6  We now describe the effect of the loop map Q: H*(X) — H*71(QX) for integral

cohomology and some of the spaces in B.1].

Theorem B.4
Space X QX  xe H(X,Z) Qz)e H1(QX,Z)

BU U Cop. Cok—1
U BU x Z Cok—1 (k — 1)!Ch2k,2
BSp Sp Yak Yak—1

BO O Dak 2U41,_1 + Tors
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Proof. We only have to prove that Q(cor—1) = (k — 1)!chi_s. For this, observe that
Col—1 — Q(Cgk) = Q((k} — 1)'Ch2k) = (l{} — 1)'Q(Ch2k),

since the other summands in chy; are decomposable (and the loop map applied to a
decomposable class is zero by Proposition [A.1J. Now the Chern character is compatible
with Bott periodicity, and therefore 2%(chy) = ch2k — 2. Consequently

QCQk_l = (k’ — 1)'92(Ch2k) = (k’ — 1)!Ch2k_2.

B.1.7

Lemma B.5 The natural map
l, : H**Y(BO,7./27) — H*™(BO,Q/Z)
of Equation ([.3) factors through the image of the Bockstein homomorphism

B : H*(BO,7/27) — H***(BO, 7).

Proof. We have the following map of long exact sequences

2 g%+Y(BO,7Z) % H%Y(BO,z/2Z) 2 H**(BO,Z) —
x| L | I

N H4k+1(BO,Q) N H4k+1(BO,Q/Z) ﬂ H4k+2(BO,Z) N

The assertion now follows from the fact that H*+(BO,Q) = 0. 0

B.2 Maps between loop spaces of BO

B.2.1 There is a large number of canonical maps between the different spaces in Theorem
B and in Theorem [B.J which are important for us and which are described in the

following list.
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10.

11.

12.

13.

14.

15.

16.

The inclusion ¢: O — U (given by complexification).

. The induced map Be¢: BO — BU, which gives rise to Bec X idz: BO X Z — BU X Z
. The inclusion ¢: U — Sp (given by tensoring with the quaternions)

. the induced map Bq: BU — BSp

. the inclusion f: U — O (given by forgetting the complex structure)

. the induced map Bf: BU — BO

. the inclusion j: Sp — U (given by forgetting the quaternionic structure)

. the induced map Bj: BSp — BU, which gives rise to Bj xidy: BSpxZ — BU XZ.

. the projection p: U — U/O

the projection P: U — U/Sp

the inclusion of the fiber i: U/O — BO obtained by dividing the total space of the
universal principal U-fibration U — EU — BU by O (here we use the fact that
EU/O is a model for BO)

The fibration BO — BU constructed in
the (similar) inclusion of the fiber I: Sp/U — BU.
the (similar) inclusion of the fiber ¢: O/U — BU.
a map «: U/O — U given as composition
U/O = QSp/U 25 QBU = U

where the first map is the Bott periodicity homotopy equivalence, and the third is

the usual homotopy equivalence (which is also part of (complex) Bott periodicity).
a similar map 3: U/Sp — U, given as composition

U/Sp = Q0/U 2% QBU = U



B COHOMOLOGY OF BO, BU AND THEIR LOOP SPACES 02

B.2.2 The following relations hold between these maps. As usual, we will freely use
the Bott periodicity homotopy equivalences of Theorem [B.] and Theorem to identify
certain loop spaces with other spaces (therefore, strictly speaking, the following assertions

are true up to homotopy).

1. It is a general fact in the theory of classifying spaces that one way to construct Bc
in P is the fibration map of [[J, which therefore can be identified with Be. Reason:
the identity map FU — FEU, where the domain is considered as contractible O-
principle bundle and the target as contractible U-principle bundle intertwines, using
the inclusion ¢: O — U the structures as principle bundles. Therefore the induced

map on the quotients is the map Be.

2. The map [ is obtained from P by applying the loop space transformation (and using
the Bott periodicity identifications of QBO = O and QBU = U).

3. Similarly, [] is obtained by applying the loop space functor to B.
4. By construction, looping [[J gives [[3.
5. By construction, looping [[4 gives [[§.

6. Cartan [ proves that O/U — BU, i.e. is obtained by applying the loop space

functor to the inclusion fl, O — U.

7. Cartan [[] proves that looping [] gives [3. This requires to check that his explicitly
given maps Sp/U — BU and O/U — BU are the fiber inclusions we claim they

are.
8. Cartan [[] also checks that looping [I§ gives .

9. Cartan [{g] proves that looping [[3 gives fl. Strictly speaking, in this and the previous
case he considers the corresponding maps of universal coverings SU/Sp — SU which
loops to BSp — BU, and SO/SU — SO which loops to BO — BU. Since we know
that U/Sp — U and O/U — O induce isomorphisms on m;-level (all isomorphic to
Z), the claim follows.
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B.2.3 To conclude, we have shown that in the sequence

Bexid: BO xZ — BU X Z
c:0—=U
¢: O/U — BU
B:U/Sp—U

Bj xid: BSp x Z — BU X Z
j:Sp—U
I:Sp/U — BU
a:U/O—=U

Bexid: BOXZ — BU X Z

each map is obtained by looping the previous one (and applying Bott periodicity to
identify the loop spaces with the next spaces in the list).

B.2./ 1In the following table, we list the effect of the maps in cohomology. Again, this is
due to Cartan [J], with a few exceptions easily obtained from his work. In these cases, the
reason is indicated in the last column of the following table. Recall that we always only
consider the cohomology of the connected component of the base point. “By looping”
means that we know that certain maps are obtained from each other by applying the loop

space functor (and some canonical homotopy equivalences), and that we know the effect
of the natural loop map functor Q: H*(X) — H*'(QX) by Theorem [B-4
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B.2.
fgg( —Y xe H(Y,Z) f*(xy) € H(Xo,Z) reason
BSp — BU  cy Yak
Cak42 0
O/U — BU  cypy2 2Up 42
Cak =23 cicon (1) f (c20) /2 - f*(Can—2:) /2
Sp/U — BU  ¢g Cak
cor, mod 2 Cok
Sp—U Cakt1 0 by looping
Cak+3 Yak+3 by looping
U/Sp—U Cakt1 204541 (since true dually in homology)
Caki3 0 (since true dually in homology)
U— Sp Yak—1 2C45—1 by looping (since products suspend to
Z€ro)
BU — BSp  ya Z@'+j:2k(_1>ic2i02j
SO — U Cakts 204543 + 2-Tor
Cak+1 2-Tor
U—-U/O A4k41 2¢4p41
U/o—U Cakt1 aqp41 + Tors
Cak+3 Tors
U— 0O Vght3 Cak+3
BO — BU Cyk Dak
Cak+2 w%,m
cqr, mod 2 w3,
BU — BO Pak qu-j:k(_]-)iCQiCQj
Wak+1 0
Way, Cop, mod 2
U/O — BO  wy mod 2 wy, mod 2
Dak 0 mod 2 it maps to 0, and pulled back

further to U it is also 0, i.e. no 2-torsion

and no free part

B.2.6 In two cases, we have to take the different components into account:
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[ X =Y v e H(Y,Q) f*(x) € H(X,Q)
BSpx7 — BU x7Z ch, 2chj

BO xZ— BU X7  chy chi,

B.2.7

Lemma B.6 In the fibration U/O 4 BO £5 BU, the classes c?kH € H*2(BU;Q) are

transgressive.

Proof. The pull back of c4,12 to BO is 2-torsion in integral cohomology, therefore vanishes

in rational cohomology. O
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