Duality of abelian groups stacks and *T*-duality

U. Bunke

September 6, 2006

String theory origin of T-duality

String theory:

Space with fields \rightarrow (susy) conformal field theory (CFT)

T-duality:

Space
$$\xrightarrow{\text{Type IIA string theory}} CFT$$

$$\downarrow ? \qquad \qquad \downarrow \text{CFT-}T\text{-duality}$$
Space $\xrightarrow{\text{Type IIB string theory}} CFT$

? - space level T-duality

Math. Aspects: Mirror symmetry, Fourier-(Mukai) transform, Pontrjagin-(Takai) duality, Hitchin's generalized geometry

Topology of *T*-duality - history

{underlying top. space} $\overset{\text{top. } T\text{-duality}}{\longleftrightarrow}$ {underlying top. space} most studied for \mathbb{T}^n -principal bundles with B-field background

- 1. Bouwknegt, Evslin, Hannabuss, Mathai (n = 1) (2003)
- 2. Bunke, Schick (n = 1) (2004)
- 3. Mathai, Rosenberg (n = 2) (2004)
- 4. Bouwknegt, Evslin, Hannabuss, Mathai,... $(n \ge 1)$ (2004-...)
- 5. Bunke, Rumpf, Schick $(n \ge 1)$ (2005)
- 6. Bunke, Schick (n = 1, non-free actions of \mathbb{T} , orbifolds) (2004)

Basic objects over base B

pairs:

$$H \xrightarrow{\mathcal{B}\mathbb{T}} E \xrightarrow{\mathbb{T}^n} B$$

Explanation of gerbe : topological background of *B*-field. Alternative ways of realization :

- noncommutative geometry: bundle of algebras of compact operators (Mathai, Rosenberg)
- classical differential geometry: three form (Bouwknegt, Evslin, Hannabuss, Mathai, ...)
- ▶ homotopy theory : $E o K(\mathbb{Z},3)$ (Bunke, Schick)
- ▶ topological stacks : map $H \to E$ of topological stacks with fibre $B\mathbb{T}$ (this talk)

The problem

Given (E, H).

What is a T-dual pair ? (Mathai,...):

The Buscher rules give the local transformation rules for the fields which are classical geometric objects. Topological T-duality is designed such that these Buscher can be realized globally.

Does (E, H) admit a T-dual pair (\hat{E}, \hat{H}) ? Yes, if n = 1. Under additional conditions, if $n \ge 2$.

Is the *T*-dual (\hat{E}, \hat{H}) unique? Yes, if n = 1. In general no for $n \ge 2$.

Solution via *T*-duality triples

- (E, H) admits a T-dual iff it admits an extension to a T-duality triple.
- Classification of T-duality triples extending (E, H) leads to classification of T-dual pairs.

Solution via C^* -algebras

(Mathai-Rosenberg)

- ▶ Realize gerbe $H \rightarrow E$ as bundle of algebras of compact operators
- ▶ (E, H) admits T-dual if and only if \mathbb{T}^n -action on E amits lift to \mathbb{R}^n -action on H with trivial Mackey obstruction.
- ▶ Let A := C(E, H), $\hat{A} := C(\hat{E}, \hat{H})$. Then

$$\hat{A} \cong \mathbb{R}^n \ltimes C(E, H)$$

▶ different \mathbb{R}^n -actions correspond to different T-duals

Connection with T-duality triples : (A. Schneider (Göttingen))

Solution via duality of abelian group stacks

proposed by T Pantev

worked out in detail by: Bunke, Schick, Spitzweck, Thom (2006)

Abelian groups stacks

- ▶ Site **S**: category of compactly generated locally contractible spaces, open coverings (e.g. topological submanifolds of \mathbb{R}^{∞})
- Abelian group stack : stack on S with abelian group structure (Precise notion : Strict Picard stack (Deligne, SGA 4 XVIII)), PIC(S)
- ▶ isom. classes of objects and automorphisms of $P \in PIC(\mathbf{S})$: $H^0(P), H^{-1}(P) \in Sh_{Ab}\mathbf{S}$

Classification : $A, B \in Sh_{Ab}S$

 $\bullet \ \mathtt{Ext}^2_{\mathtt{Sh}_{\mathtt{Ab}}\mathsf{S}}(A,B) \cong \big\{P \in \mathtt{PIC}(\mathsf{S}) \ | \ H^0(P) \cong A, \ H^{-1}(P) \cong B \big\}/\sim$

Pontrjagin duality for locally compact abelian groups

Topological abelian group G gives sheaf $\underline{G} \in Sh_{Ab}S$:

$$S \ni U \mapsto C(U,G)$$
.

For $G,H\in \mathbf{S}$: $\mathtt{Hom}_{\mathtt{Sh}_\mathtt{Ab}\mathbf{S}}(\underline{G},\underline{H})\cong \underline{\mathtt{Hom}}(G,H)$

Dual sheaf: $D(F) := \underline{\mathtt{Hom}}_{\mathtt{Sh}_{\mathtt{Ab}}\mathsf{S}}(F,\underline{\mathbb{T}})$, $F \in \mathtt{Sh}_{\mathtt{Ab}}\mathsf{S}$

Pontrjagin duality : (for $G \in S$)

$$\underline{G} \stackrel{\sim}{\to} D(D(\underline{G}))$$

The dual of an abelian group stack

Define $\mathcal{B}\underline{\mathbb{T}} \in \mathtt{PIC}(\mathbf{S})$ such that

$$H^0(\mathcal{B}\underline{\mathbb{T}}) \cong 0 , \quad H^{-1}(\mathcal{B}\underline{\mathbb{T}}) \cong \underline{\mathbb{T}}$$

For $P, Q \in PIC(S)$ we have

$$\underline{\mathtt{HOM}}_{\mathtt{PIC}(S)}(P,Q) \in \mathtt{PIC}(S)$$

Definition: Dual group stack:

$$D(P) := \underline{\text{HOM}}_{\text{PIC}(S)}(P, \mathcal{B}\underline{\mathbb{T}})$$

Pontrjagin duality for abelian group stacks

Theorem: Assume that $P \in PIC(\mathbf{S})$, $H^i(P) \cong \underline{\mathbb{T}}^{n_i} \times \underline{\mathbb{R}}^{n_i} \times \underline{F}_i$, F_i - finitely generated

1.
$$H^0(D(P)) \cong D(H^{-1}(P))$$
, $H^{-1}(D(P)) \cong D(H^0(P))$

- 2. $P \stackrel{\sim}{\rightarrow} D(D(P))$
- 3. $\mathcal{D}: \operatorname{Ext}^2_{\operatorname{Sh}_{\mathsf{Ab}}\mathsf{S}}(B,A) \to \operatorname{Ext}^2_{\operatorname{Sh}_{\mathsf{Ab}}\mathsf{S}}(D(A),D(B))$ $[D(P)] = \mathcal{D}([P])$

No counter example with $H^i(P) \cong \underline{G}_i$ with $G_i \in \mathbf{S}$ locally compact! Main technical result:

$$\underline{\mathrm{Ext}}_{\mathrm{Shap}}^{k}\mathbf{S}(H^{i}(P),\underline{\mathbb{T}})=0\;,\quad k=1,2$$

Application to T-duality: Pairs and group stacks

$$B \in \mathbf{S}$$

principal
$$\mathbb{T}^n$$
-bundle $E \to B$

$$\downarrow \text{sheaf of sections}$$
sheaf of $\underline{\mathbb{T}}_{|B}$ -torsors
$$\uparrow \text{ preimage of 1}$$

$$0 \to \underline{\mathbb{T}}_{|B}^n \to \mathcal{E} \to \underline{\mathbb{Z}}_{|B} \to 0$$

 $P \in \text{PIC}(\mathbf{S}/B)$ with $H^0(P) \cong \mathcal{E}$, $H^{-1}(P) \cong \underline{\mathbb{T}}_{|B|}$ defines pair

$$\begin{array}{ccc}
H \longrightarrow P \\
\downarrow & & \downarrow \\
E \longrightarrow \mathcal{E} \\
\downarrow & & \downarrow \\
\beta \times \{1\} \longrightarrow \underline{\mathbb{Z}}_{|B}
\end{array}$$

We say that P extends E.

T-duality via abelian group stacks

Theorem: There is a bijection between the sets

 $\{Extensions of E to abelian group stacks\}$

↓ construction

{Extensions of E to T-duality triples}

Construction

P extending $(E, H) \rightsquigarrow \text{triple } ((E, H), (\hat{E}, \hat{H}), u)$

 $R_{\mathbb{R}^n}^{\hat{E}} \to B$: gerbe of \mathbb{R}^n -reductions of \hat{E} ev: $P \times D(P) \to \mathcal{B}_{B}$ induces $u: \hat{p}^* \hat{H} \to p^* H$.