Orbifold index and equivariant K-homology

Ulrich Bunke

February 26, 2007

Abstract

Let G be countable group and M be a proper cocompact even-dimensional G manifold with orbifold quotient \bar{M}. Let D be a G-invariant Dirac operator on M. It induces an equivariant K-homology class $[D] \in K_{0}^{G}(M)$ and an orbifold Dirac operator \bar{D} on \bar{M}. Composing the assembly map $K_{0}^{G}(M) \rightarrow K_{0}\left(C^{*}(G)\right)$ with the homomorphism $K_{0}\left(C^{*}(G)\right) \rightarrow \mathbb{Z}$ given by the representation $C^{*}(G) \rightarrow \mathbb{C}$ of the maximal group C^{*}-algebra induced from the trivial representation of G we define $\operatorname{index}([D]) \in \mathbb{Z}$. In the second section of the paper we show that $\operatorname{index}(\bar{D})=$ index $([D])$ and obtain explicit formulas for this integer. In the third section we review the decomposition of $K_{0}^{G}(M)$ in terms of the contributions of fixed point sets of finite cyclic subgroups of G obtained by W. Lück. In particular, the class $[D]$ decomposes in this way. In the last section we derive an explicit formula for the contribution to $[D]$ associated to a finite cyclic subgroup of G.

Contents

1 Introduction 2
2 Assembly and orbifold index 4
2.1 The equivariant K-homology class of an invariant Dirac operator 4
2.2 Descent and index . 5
2.3 Index and Orbifold index . 5
2.4 The local index theorem . 7
2.5 Cyclic subgroups . 9
2.6 Cap product and twisting . 9
2.7 A cohomological index formula for twisted operators 10

3 Chern characters 11
3.1 The cohomological Chern character . 11
3.2 Differential forms . 12
3.3 Smooth approximations of $C W$-complexes 13
3.4 The homological Chern character 14
4 Explicit decomposition of K-homology classes 15
4.1 An index formula 15
4.2 Decomposition 18

1 Introduction

Let G be countable group and M be a proper cocompact even-dimensional G-manifold with orbifold quotient \bar{M}. In the literature, orbifolds which can be represented as a global quotient of a smooth manifold by a proper action of a discrete group are often called good orbifolds.

Let D be a G-invariant Dirac operator on M acting on sections of a G-equivariant $\mathbb{Z} / 2 \mathbb{Z}$ graded Dirac bundle $F \rightarrow M$. It induces an equivariant K-homology class $[D] \in K_{0}^{G}(M)$ and an orbifold Dirac operator \bar{D} on \bar{M} with index $\operatorname{index}(\bar{D}) \in \mathbb{Z}$. In the following we briefly describe these objects.

We can identify \bar{D} with the restriction of D to the subspace of G-invariant sections $C^{\infty}(M, F)^{G}$. The operator \bar{D} is an example of an elliptic operator on an orbifold. Index theory for elliptic operators on orbifolds has been started with [Kaw81] (see also [Kaw79], [Kaw78] for special cases, and [Far92b], [Far92c], [Far92a] for alternative approaches). In particular, we have $\operatorname{dim} \operatorname{ker}(\bar{D})<\infty$, and we can define

$$
\operatorname{index}(\bar{D}):=\operatorname{dim} \operatorname{ker}\left(\bar{D}^{+}\right)-\operatorname{dim} \operatorname{ker}\left(\bar{D}^{-}\right) .
$$

In the present paper we use the analytic definition of equivariant K-homology using equivariant $K K$-theory

$$
K^{G}(M):=K K^{G}\left(C_{0}(M), \mathbb{C}\right)
$$

The class $[D] \in K K^{G}\left(C_{0}(M), \mathbb{C}\right)$ is represented by the Kasparov module $(\mathcal{E}, \mathcal{F})$ with $\mathcal{E}:=L^{2}(M, F)$ and $\mathcal{F}:=D\left(D^{2}+1\right)^{-1 / 2}$ (see Subsection 2.1 for more details).

Let $C^{*}(G)$ denote the unreduced group C^{*}-algebra of G. In general, the theory of the present paper would not work with the reduced group C^{*}-algebra $C_{r}^{*}(G)$. The key point is that finite-dimensional unitary representations of G extend to representations of $C^{*}(G)$, but not to $C_{r}^{*}(G)$ in general.
We now consider the assembly map

$$
\text { ass }: K_{0}^{G}(M) \rightarrow K_{0}\left(C^{*}(G)\right)
$$

We use an analytic description of the assembly map which is part of Definition 2.1, and we refer to [MN06], [DL98] and [BM04] for modern treatements of assembly maps in general.

Composing the assembly map with the homomorphism $I_{1}: K_{0}\left(C^{*}(G)\right) \rightarrow K_{0}(\mathbb{C}) \cong \mathbb{Z}$ given by the representation $1: C^{*}(G) \rightarrow \mathbb{C}$ induced from the trivial representation of G we define

$$
\operatorname{index}([D]):=I_{1} \circ \operatorname{ass}([D]) \in \mathbb{Z}
$$

As a special case of the first main result Theorem 2.2 we get the equality

$$
\begin{equation*}
\operatorname{index}(\bar{D})=\operatorname{index}([D]) \tag{1}
\end{equation*}
$$

Theorem 2.2 deals with the slightly more general case where the trivial representation triv of G is replaced by an arbitrary finite-dimensional unitary representation of G. We think, that equation (1) was known to specialists, at least as a folklore fact.
The next result of the present paper is a nice local formula for index $([D])$. The main feature of local index theory is that one can calculate the index of a Dirac operator on a closed smooth manifold in terms of an integral of a local index form. A standard reference for local index theory is the book [BGV92]. Local index theory generalizes to Dirac operators on orbifolds. The index formulas in [Kaw81] and [Far92b] express the index of the Dirac operator on the orbifold as a sum of integrals of local index forms over the various strata. In the case of a good orbifold $G \backslash M$ the strata correspond to the fixed point manifolds M^{g} of the elements $g \in G$. There are various ways to organize these contributions. For the purpose of the present paper we need a formula which expresses the index as a sum of contributions associated to the conjugacy classes of finite cyclic subgroups of G. We will state this formula in Corollary 2.4 (we refrain from giving a detailed statement here since this would require the introduction of too much of notation). In principle one could deduce the formula given in Corollary 2.4 by reorganising the previous results [Kaw81] and [Far92b]. But we found it simpler to prove the formula directly using the heat equation approach to local index theory and the local calculations from equivariant index theory [BGV92].

The proper cocompact G-manifold M can be given the structure of a finite G-CWcomplex. The equivariant K-homology of proper G-CW-complexes has been studied intensively in connection with the Baum-Connes conjecture. Rationally, $K^{G}(M)$ decomposes as a sum of contributions of conjugacy classes (C) of finite cyclic subgroups $C \subset G$ (see (7) for a detailed statement). This decomposition is a consequence of a result of [Lüc02b] which is finer since it only requires to invert the primes dividing the orders of the finite subgroups of G. We thus can write $[D]$ as a sum of contributions $[D](C)$ where (C) runs over the set of conjugacy classes of finite cyclic subgroups of G. Our last result Theorem 4.3 is the calculation of $[D](C)$. In the proof we use the index formula Corollary 2.4 as follows. By a result of [LO01b] the equivariant K-theory $K_{G}^{0}(M)$ has a description in terms of finite-dimensional G-equivariant vector bundles $E \rightarrow M$. We first derive a cohomological index formula Theorem 4.1 for the pairing of a K-homology class coming
from a finite cyclic subgroup $C \subset G$ with the class $[E] \in K_{G}^{0}(M)$. In the proof we use the relation (1).

We then observe that the pairing of $[D]$ with $[E]$ is the index of the twisted operator $\left[D_{E}\right]$ which can be written as a sum of contributions of conjugacy classes of finite subgroups by 2.4. We obtain $[D](C)$ be a comparison of the formulas in Theorem 4.1 and Corollary 2.4 and variation of E.

Acknowledgement: The first version of this paper was written in spring 2001. I want to thank W. Lück for his motivating interest in this work, and Th. Schick for pointing out a small mistake ${ }^{1}$ in the previous version.

2 Assembly and orbifold index

2.1 The equivariant K-homology class of an invariant Dirac operator

Let G be a countable discrete group. Let M be a smooth proper cocompact G-manifold, i.e. a G-manifold such that the stabilizer G_{x} is finite for all $x \in M$, and $G \backslash M$ is compact. We further assume that M is equipped with a complete G-invariant Riemannian metric g^{M} and a G-homogeneous Dirac bundle $\left(F, \nabla^{F}, \circ,(., .)_{F}\right)$. Here $\circ: T M \otimes F \rightarrow F$ is the Clifford multiplication, ∇^{F} is a Clifford connection, $(., .)_{F}$ is the hermitian scalar product, and these structures satisfy the usual compatibiliy conditions (see [BGV92], Ch.3) and are, in addition, G-invariant.

For simplicity we assume that $\operatorname{dim}(M)$ is even and that the Dirac bundle is $\mathbb{Z} / 2 \mathbb{Z}$ graded. In fact, the odd-dimensional case can easily be reduced to the even dimensional case by taking the product with S^{1}.

We use equivariant $K K$-theory in order to define equivariant K-homology. Thus let $K K^{G}$ be the equivariant $K K$-theory introduced in [Kas88] (see also [Bla98]). Let $C_{0}(M)$ be the G - C^{*} algebra of continuous functions on M vanishing at infinity. Then by definition $K_{0}^{G}(M)=K K^{G}\left(C_{0}(M), \mathbb{C}\right)$. The Dirac operator D associated to the invariant Dirac bundle F induces a class $[D] \in K_{0}^{G}(M)$ as follows. We form the $\mathbb{Z} / 2 \mathbb{Z}$-graded G-Hilbert space $\mathcal{E}:=L^{2}(M, F)$. Then $C_{0}(M)$ acts on \mathcal{E} by multiplication. Furthermore, we consider the bounded G-invariant operator $\mathcal{F}:=D\left(D^{2}+1\right)^{-1 / 2}$ which is defined by applying the function calculus to the unique (see [Che73]) selfadjoint extension of D. Then $[D]$ is represented by the Kasparov module $(\mathcal{E}, \mathcal{F})$.

[^0]
2.2 Descent and index

Let $C^{*}(G)$ denote the (non-reduced) group C^{*}-algebra of G. It has the universal property, that any unitary representation of G extends to representation of $C^{*}(G)$. In particular, if $\rho: G \rightarrow U\left(V_{\rho}\right)$ is an unitary representation of G on a finite-dimensional Hilbert space V_{ρ}, then there is an extension $\rho: C^{*}(G) \rightarrow \operatorname{End}\left(V_{\rho}\right)$. On the level of K-theory it induces a homomorphism (using Morita invariance and $K_{0}(\mathbb{C}) \cong \mathbb{Z}$) $I_{\rho}: K_{0}\left(C^{*}(G)\right) \rightarrow K_{0}\left(\operatorname{End}\left(V_{\rho}\right)\right) \cong \mathbb{Z}$. In particular, if $\rho=1$ is the trivial representation, then we also write $I:=I_{1}$. Note that I_{ρ} can be written as a Kapsarov product $\otimes_{C^{*}(G)}[\rho]$, where $[\rho] \in K K\left(C^{*}(G), \operatorname{End}(V(\rho))\right)$ is represented by the Kasparov module $\left(V_{\rho}, 0\right)$.

Let $C^{*}\left(G, C_{0}(M)\right)$ be the (non-reduced) cross product of G with $C_{0}(M)$. Then there is the descent homomorphism $j^{G}: K_{0}^{G}(M) \cong K K^{G}\left(C_{0}(M), \mathbb{C}\right) \rightarrow K K\left(C^{*}\left(G, C_{0}(M)\right), C^{*}(G)\right)$ introduced in [Kas88], 3.11. Following [GHT00] we choose any cut-off function $\chi \in$ $C_{c}^{\infty}(M)$ with values in $[0,1]$ such that $\sum_{g \in G} g^{*} \chi^{2} \equiv 1$. Then we define the projection $P \in$ $C^{*}\left(G, C_{0}(M)\right)$ by $P(g)=\left(g^{-1}\right)^{*} \chi \chi$. Let $[P] \in K_{0}\left(C^{*}\left(G, C_{0}(M)\right) \cong K K\left(\mathbb{C}, C^{*}\left(G, C_{0}(M)\right)\right)\right.$ be the class induced by P, which is independent of the choice of χ.

Definition 2.1 We define index $_{\rho}: K_{0}^{G}(M) \rightarrow \mathbb{Z}$ to be the composition

$$
K_{0}^{G}(M) \xrightarrow{j^{G}} K K\left(C^{*}\left(G, C_{0}(M)\right), C^{*}(G)\right) \xrightarrow{[P] \otimes_{C^{*}\left(G, C_{0}(M)\right)}} K K\left(\mathbb{C}, C^{*}\left(G, C_{0}(M)\right)\right) \xrightarrow{I_{\rho}} \mathbb{Z} .
$$

In particular, we set index $:=$ index $_{1}$.

2.3 Index and Orbifold index

The quotient $\bar{M}:=G \backslash M$ is a smooth compact orbifold carrying an orbifold Dirac bundle $\bar{F}:=G \backslash F$ with associated orbifold Dirac operator \bar{D}. In our case the space of smooth sections $C^{\infty}(\bar{M}, \bar{F})$ can be identified with the G-invariant sections $C^{\infty}(M, F)^{G}$. Then \bar{D} coincides with the restriction of D to this subspace. It is well-known that $\operatorname{dim}(\operatorname{ker} \bar{D})<\infty$ so that we can define the index index $(\bar{D}):=\operatorname{dim}_{s} \operatorname{ker}(\bar{D}) \in \mathbb{Z}$, where the subscript " ${ }_{s}$ " indicates hat we take the super dimension.
If $\rho: G \rightarrow U\left(V_{\rho}\right)$ is a finite-dimensional unitary representation of G, then we define the orbifold bundle $\bar{V}(\rho):=G \backslash M \times V_{\rho}$ and let \bar{D}_{ρ} be the twisted operator associated to $\bar{F} \otimes \bar{V}(\rho)$. The space $C^{\infty}(\bar{M}, \bar{F} \otimes \bar{V}(\rho))$ can be identified with $\left(C^{\infty}(M, F) \otimes V_{\rho}\right)^{G}$ such that \bar{D}_{ρ} is the restriction of $D \otimes 1$ to this subspace. Still we can define index $\left(\bar{D}_{\rho}\right)$.

Theorem $2.2 \operatorname{index}\left(\bar{D}_{\rho}\right)=\operatorname{index}_{\rho}([D])$
Proof. We first apply j^{G} to the Kasparov module $\left(L^{2}(M, F), \mathcal{F}\right)$ representing $[D]$. According to $[\operatorname{Kas} 88], 3.11 ., j^{G}([D])$ is represented by $\left(C^{*}\left(G, L^{2}(M, F)\right), \tilde{\mathcal{F}}\right)$, where $C^{*}\left(G, L^{2}(M, F)\right)$
is a $C^{*}(G)$-right-module admitting a left action by $C^{*}\left(G, C_{0}(M)\right)$. It is a closure of the space of finitely supported functions $f: G: \rightarrow L^{2}(M, F)$. The operator $\tilde{\mathcal{F}}$ is given by $(\tilde{\mathcal{F}} f)(g)=(\mathcal{F} f)(g)$. The $C^{*}(G)$-valued scalar product is given by $\left\langle f_{1}, f_{2}\right\rangle(g)=$ $\sum_{h \in G}\left\langle f_{1}(h), f_{2}(h g)\right\rangle$. Furthermore, the left action of $C^{*}\left(G, C_{0}(M)\right)$ is given by $(\phi f)(g)=$ $\sum_{h \in G} \phi(h)(h f)(g)$.

Using associativity of the Kasparov product we can compute index ${ }_{\rho}$ by first applying $\otimes_{C^{*}(G)}[\rho]$ and then $[P] \otimes_{C^{*}\left(G, C_{0}(M)\right)}$. Using that $C^{*}\left(G, L^{2}(M, F)\right) \otimes_{C^{*}(G)} V_{\rho} \cong L^{2}(M, F) \otimes$ V_{ρ} by $f \otimes v \mapsto \sum_{g \in G} f(g) \rho(g) v$ we conclude that $j^{G}([D]) \otimes_{C^{*}(G)}[\rho]$ is represented by the Kasparov module $\left(L^{2}(M, F) \otimes V_{\rho}, \hat{\mathcal{F}}\right)$, where $\hat{\mathcal{F}}=\mathcal{F} \otimes \mathrm{id}_{V_{\rho}}$. The left-action of $C^{*}\left(G, C_{0}(M)\right)$ is given by $(\phi f)=\sum_{h \in G} \phi(h)(h \otimes \rho(h)) f$.

Finally we compute $[P] \otimes_{C^{*}\left(G, C_{0}(M)\right)}\left(j^{G}([D]) \otimes_{C^{*}(G)}[\rho]\right)$. We represent $[P]$ by the Kasparov module $\left(P C^{*}\left(G, C_{0}(M)\right), 0\right)$. We must understand $P C^{*}\left(G, C_{0}(M)\right) \otimes_{C_{0}(M)}$ $\left(L^{2}(M, F) \otimes V_{\rho}\right)$.
There is a natural unitary inclusion $L: L^{2}(\bar{M}, \bar{F} \otimes \bar{V}(\rho)) \hookrightarrow L^{2}(M, F) \otimes V_{\rho}$. If $f \in$ $L^{2}(\bar{M}, \bar{F} \otimes \bar{V}(\rho))$ is considered as an element \hat{f} of $\left(L_{l o c}^{2}(M, F) \times V_{\rho}\right)^{G}$ in the natural way, then $L(f):=\chi \hat{f}$. The projection $L L^{*}$ onto the range of L is given by

$$
L L^{*}(f)=\sum_{g \in G}\left(g^{-1}\right)^{*} \chi g f .
$$

It now follows from the definition of P that

$$
\begin{aligned}
P C^{*}\left(G, C_{0}(M)\right) \otimes_{C^{*}\left(G, C_{0}(M)\right)}\left(L^{2}(M, F) \otimes V_{\rho}\right) & =P\left(L^{2}(M, F) \otimes V_{\rho}\right) \\
& \stackrel{L^{*}}{ } L^{2}(\bar{M}, \bar{F} \otimes \bar{V}(\rho))
\end{aligned}
$$

The operator \bar{D} has a natural selfadjoint extension (also denoted by \bar{D} such that we can form $\overline{\mathcal{F}}:=\bar{D}\left(1+\bar{D}^{2}\right)^{-1 / 2}$. We claim that $[P] \otimes_{C^{*}\left(G, C_{0}(M)\right)}\left(j^{G}([D]) \otimes_{C^{*}(G)}[\rho]\right)$ is represented by the Kapsarov module $\left(L^{2}(\bar{M}, \bar{F} \otimes \bar{V}(\rho)), \overline{\mathcal{F}}\right)$. The assertion of the Theorem immediately follows from the claim. In order to show the claim we employ the characterization of the Kasparov product in terms of connections (see [Kas88], 2.10). In our situation we have only to show that $\overline{\mathcal{F}}$ is a $\hat{\mathcal{F}}$-connection.

For Hilbert- C^{*}-modules X, Y over some C^{*}-algebra A let $L(X, Y)$ and $K(X, Y)$ denote the spaces of bounded and compact adjoinable A-linear operators (see [Bla98] for definitions). For $\xi \in P C^{*}\left(G, C_{0}(M)\right)$ we define $\theta_{\xi} \in L\left(L^{2}(M, F) \otimes V_{\rho}, P L^{2}(M, F) \otimes V_{\rho}\right)$ by $\theta_{\xi}(f)=\xi f$. Since \mathcal{F} and $\overline{\mathcal{F}}$ are selfadjoint we only must show that $\theta_{\xi} \circ \hat{\mathcal{F}}-\left(L \overline{\mathcal{F}} L^{*}\right) \circ \theta_{\xi} \in$ $K\left(L^{2}(M, F) \otimes V_{\rho}, P L^{2}(M, F) \otimes V_{\rho}\right)$. We have $\xi \hat{\mathcal{F}}-\left(L \overline{\mathcal{F}} L^{*}\right) \xi=[\xi, \hat{\mathcal{F}}]+\left(\hat{\mathcal{F}}-L \overline{\mathcal{F}} L^{*}\right) P \xi$. Since $[\xi, \hat{\mathcal{F}}]$ is compact it suffices to show that $\left(\hat{\mathcal{F}}-\left(L \overline{\mathcal{F}} L^{*}\right) P\right.$ is compact. We consider $\tilde{D}:=(1-P) D(1-P)+L \bar{D} L^{*}$. Then we have $\tilde{D}=D+Q$, where Q is a zero order non-local operator. Let $\tilde{\mathcal{F}}:=\tilde{\mathcal{D}}\left(1+\tilde{\mathcal{D}}^{2}\right)^{-1 / 2}$. Then $\left(\hat{\mathcal{F}}-L \overline{\mathcal{F}} L^{*}\right) P=(\hat{\mathcal{F}}-\tilde{\mathcal{F}}) P$. Let $\tilde{\chi} \in C_{c}^{\infty}(M)$ be such that $\chi \tilde{\chi}=\chi$. Then we have $(\hat{\mathcal{F}}-\tilde{\mathcal{F}}) P=(\hat{\mathcal{F}}-\tilde{\mathcal{F}}) \tilde{\chi} P$. Therefore it
suffices to show that $(\hat{\mathcal{F}}-\tilde{\mathcal{F}}) \tilde{\chi}$ is compact. This can be done using the integral representations for $\hat{\mathcal{F}}$ and $\tilde{\mathcal{F}}$ as in [Bun95].

2.4 The local index theorem

In this the present subsection we derive a local index theorem which is a formula for index $\rho([D])$ in terms of integrals of characteristic forms over the various singular strata of \bar{M}.

Let $W \in C^{\infty}\left(M \times M, F \boxtimes F^{*}\right)^{G}$ be a an invariant section which satisfies an estimate

$$
\begin{equation*}
|W(x, y)| \leq C \exp \left(-c \operatorname{dist}(x, y)^{2}\right) \tag{2}
\end{equation*}
$$

for some $c>0, C<\infty$. Since \bar{M} is compact the manifold M has bounded geometry, and in particular, it has at most exponential volume growth. Therefore, W defines an integral operator \bar{W} on $L^{2}\left(\bar{M}, \bar{F} \otimes \bar{V}_{\rho}\right)$ by

$$
\bar{W} f(x):=\int_{M}\left(W(x, y) \otimes \operatorname{id}_{V_{\rho}}\right) f(y) d y
$$

This operator is in fact of trace class. We claim that

$$
\begin{equation*}
\operatorname{Tr} \bar{W}=\int_{\bar{M}} \sum_{g \in G} \operatorname{tr}\left(W(x, g x) g_{x}\right) d x \operatorname{tr} \rho(g), \tag{3}
\end{equation*}
$$

where g_{x} denotes the linear map $g_{x}: F_{x} \rightarrow F_{g x}$. In order to see the claim note that $\operatorname{Tr} \bar{W}=\operatorname{Tr} L W \bar{L}^{*}$, and $R:=L W L^{*}$ is the integral operator on $L^{2}(M, F) \otimes V_{\rho}$ given by the integral kernel $R(x, y)=\sum_{g \in G} \chi(x) W(x, g y) g_{y} \chi(y) \otimes \rho(g)$.

Again, since M and F have bounded geometry the heat kernel $W_{t}, t>0$, i.e. the integral kernel of $\exp \left(-t D^{2}\right)$, satisfies the Gaussian estimate (2). Moreover, \bar{W}_{t} is precisely $\exp \left(-t \bar{D}^{2}\right)$. By the McKean-Singer formula we have

$$
\operatorname{index}\left(\bar{D}_{\rho}\right)=\operatorname{Tr}_{s} \bar{W}_{t}
$$

for any $t>0$, where Tr_{s} is the super trace. We obtain the local index formula by evaluating $\lim _{t \rightarrow 0} \operatorname{Tr}_{s} \bar{W}_{t}$.

If $g \in G$, then let M^{g} denote the fixed point submanifold of g. If $M^{g} \neq \emptyset$, then g is of finite order. Furthermore, let $Z_{G}(g)$ denote the centralizer of g in G. Then $Z_{G}(g) \backslash M^{g}$ is compact. For $g \in G$ let $(g) \in C(G)$ denote the conjugacy class of g, where $C(G)$ denotes the set of conjugacy classes. By $\mathcal{F}(G)$ we denote the set of elements of finite order, and by $\mathcal{F} C(G)$ we denote the set of conjugacy classes of G of finite order.

The formula (3) can we rewritten as follows.

$$
\begin{aligned}
\operatorname{Tr}_{s} \bar{W} & =\int_{\bar{M}} \sum_{g \in G} \operatorname{tr}_{s}\left(W(x, g x) g_{x}\right) d x \operatorname{tr} \rho(g) \\
& =\sum_{(g) \in C(G)} \int_{G \backslash M} \sum_{h \in Z_{G}(g) \backslash G} \operatorname{tr}_{s}\left(W\left(x, h g h^{-1} x\right)\left(h g h^{-1}\right)_{x}\right) d x \operatorname{tr} \rho\left(h g h^{-1}\right) \\
& =\sum_{(g) \in C(G)} \int_{Z_{G}(g) \backslash M} \operatorname{tr}_{s}\left(W(x, g x) g_{x}\right) d x \operatorname{tr} \rho(g) .
\end{aligned}
$$

If $W=W_{t}$ is the heat kernel, then due to the usual gaussian estimates the integral $\int_{Z_{G}(g) \backslash M} \operatorname{tr}_{s}\left(W(x, g x) g_{x}\right) d x$ localizes at $Z_{G}(g) \backslash M^{g}$ as $t \rightarrow 0$. There is a $Z_{G}(g)$-invariant density $U(g) \in C^{\infty}\left(M^{g},\left|\Lambda^{\max }\right| T^{*} M^{g}\right)^{Z_{G}(g)}$ which is locally determined by the Riemannian structure g^{M} and the Dirac bundle F such that

$$
\lim _{t \rightarrow \infty} \int_{Z_{G}(g) \backslash M} \operatorname{tr}_{s}\left(W_{t}(x, g x) g_{x}\right) d x=\frac{1}{\operatorname{ord}(g)} \int_{Z_{G}(g) \backslash M^{g}} U(g) .
$$

An explicit formula for $U(g)$ is given in [BGV92], Ch. 6.4, and it will be recalled below. We conclude that

$$
\operatorname{index}_{\rho}([D])=\sum_{(g) \in C \mathcal{F}(G)} \frac{1}{\operatorname{ord}(g)} \int_{Z_{G}(g) \backslash M^{g}} U(g) \operatorname{tr} \rho(g)
$$

The fixed point manifold M^{g} is a totally geodesic Riemannian submanifold of M with induced metric $g^{M^{g}}$. Let $R^{M^{g}}$ denote its curvature tensor. We define the form $\hat{\mathbf{A}}\left(M^{g}\right) \in$ $\Omega\left(M^{g}, \operatorname{Or}\left(M^{g}\right)\right)$ by

$$
\hat{\mathbf{A}}\left(M^{g}\right)=\operatorname{det}^{1 / 2}\left(\frac{R^{M^{g}} / 4 \pi \mathrm{i}}{\sinh \left(R^{M^{g}} / 4 \pi \mathrm{i}\right)}\right)
$$

where $\operatorname{Or}\left(M^{g}\right)$ denote the orientation bundle (the orientation bundle occurs since we must choose an orientation in order to define $\operatorname{det}^{1 / 2}$).

Furthermore, we define the G-equivariant bundle $F / S:=\operatorname{End}_{\text {Cliff }(T M)}(F)$. It comes with a natural connection $\nabla^{F / S}$. By $R^{F / S}$ we denote its curvature. Following [BGV92], 6.13, we define the form $\operatorname{ch}(g, F / S) \in \Omega\left(M^{g}, \Lambda^{\max } N \otimes \operatorname{Or}(M)\right)$ by

$$
\operatorname{ch}(g, F / S)=\frac{2^{\operatorname{codim}_{M}\left(M^{g}\right)}}{\sqrt{\operatorname{det}\left(1-g^{N}\right)}} \operatorname{str}\left(\sigma_{\operatorname{codim}_{M}\left(M^{g}\right)}\left(g^{F}\right) \exp \left(-R_{0}^{F / S} / 2 \pi \mathrm{i}\right)\right) .
$$

Here g^{N} is the restriction of g to the normal bundle N of M^{g}. Note that $\operatorname{det}(1-$ $\left.g^{N}\right)>0$ so that $\sqrt{\operatorname{det}\left(1-g^{N}\right)}$ is well-defined. Furthermore g^{F} is the action of g on the fibre of $F_{\mid M^{g}}$. Since g^{F} commutes with $\operatorname{Cliff}\left(T M^{g}\right)$ it corresponds to an element of $\operatorname{Cliff}(N) \otimes \operatorname{End}_{\operatorname{Cliff}(M)}(F) . \quad \sigma_{\operatorname{codim}_{M}\left(M^{g}\right)}: \operatorname{Cliff}(N) \rightarrow \Lambda^{\max } N$ is the symbol map so
that $\sigma_{\operatorname{codim}_{M}\left(M^{g}\right)} g^{F} \in \operatorname{End}_{\operatorname{Cliff}(M)}(F) \otimes \Lambda^{\max } N$. Furthermore, the restriction $R_{0}^{F / S}$ of the curvature $R^{F / S}$ to M^{g} is a section of $\Omega\left(M^{g}, \operatorname{End}_{\text {Cliff }(M)}(F)_{\mid M^{g}}\right)$. The super trace str : $\operatorname{End}_{\text {Cliff }(M)}(F) \rightarrow \mathbb{C} \otimes \operatorname{Or}(M)$ is defined by $\operatorname{str}(W)=\operatorname{tr}_{s}(\Gamma W)$, where $\Gamma=\mathrm{i}^{n / 2} \operatorname{vol}_{M}$ is the chirality operator defined using the orientation of M.
Let $T_{N}: \Lambda^{\max } N \rightarrow \mathbb{C} \otimes \operatorname{Or}(N)$ be the normal Beresin integral, where $\operatorname{Or}(N)$ is the bundle of normal orientations. Then we have

$$
U(g):=\left[T_{N}\left(\frac{\hat{\mathbf{A}}\left(M^{g}\right) \operatorname{ch}(g, F / S)}{\operatorname{det}^{1 / 2}\left(1-g^{N} \exp \left(-R^{N} / 2 \pi \mathrm{i}\right)\right)}\right)\right]_{\max }
$$

Here R^{N} is the curvature tensor of $N, \frac{1}{\operatorname{det}^{1 / 2}\left(1-g^{N} \exp \left(-R^{N}\right)\right)} \in \Omega\left(M^{g}, \operatorname{Or}\left(M^{g}\right)\right)$, and $[\cdot]_{\text {max }}$ takes the part of maximal degree. In order to interpret the right-hand side as a density on M^{g} we identify $\Lambda^{\max } T^{*} M^{g} \otimes \operatorname{Or}\left(M^{g}\right)^{2} \otimes \operatorname{Or}(N) \otimes \operatorname{Or}(M)$ with $\left|\Lambda^{\max }\right| T^{*} M^{g}$ in the canonical way.

Theorem 2.3

$$
\operatorname{index}_{\rho}([D])=\sum_{(g) \in C \mathcal{F}(G)} \frac{\operatorname{tr} \rho(g)}{\operatorname{ord}(g)} \int_{Z_{G}(g) \backslash M^{g}}\left[T_{N}\left(\frac{\hat{\mathbf{A}}\left(M^{g}\right) \operatorname{ch}(g, F / S)}{\operatorname{det}^{1 / 2}\left(1-g^{N} \exp \left(-R^{N} / 2 \pi \mathrm{i}\right)\right)}\right)\right]_{\text {max }}
$$

2.5 Cyclic subgroups

We now reformulate the local index theorem in terms of contributions of conjugacy classes of cyclic subgroups. Let $\mathcal{F} C y c(G)$ denote the set of finite cyclic subgroups. If $C \in$ $\mathcal{F} C y c(G)$, then let gen (C) denote the set of its generators. The normalizer $N_{G}(C)$ and the Weyl group $W_{G}(C):=N_{G}(C) / Z_{G}(C)$ acts on gen (C). There is a natural map $p: \mathcal{F}(G) \rightarrow$ $\mathcal{F} C y c(G), g \mapsto<g>$ which factors over conjugacy classes $\bar{p}: C \mathcal{F}(G) \rightarrow C \mathcal{F} C y c(G)$. If $(C) \in C \mathcal{F} C y c(G)$, then $\bar{p}^{-1}(C)$ can be identified with $W_{G}(C) \backslash \operatorname{gen}(C)$.
Note that $M^{g}=M^{<g>}$, i.e. it only depends on the cyclic subgroup generated by g. Similarly, $Z_{G}(g)=Z_{G}(<g>)$. So we obtain

Corollary 2.4

$$
\operatorname{index}_{\rho}([D])=\sum_{(C) \in C \mathcal{F} C y c(G)} \frac{1}{|C|} \sum_{g \in W_{G}(C) \backslash \operatorname{gen}(C)} \int_{Z_{G}(C) \backslash M^{C}} U(g) \operatorname{tr} \rho(g)
$$

2.6 Cap product and twisting

We define $K_{G}^{0}(M):=K K^{G}\left(\mathbb{C}, C_{0}(M)\right)$. If E is a G-equivariant complex vector bundle, then let $[E] \in K_{G}^{0}(M)$ denote the class represented by the Kasparov module $\left(C_{0}(M, E), 0\right)$, where we define the $C_{0}(M)$-valued scalar product on $C_{0}(M, E)$ after choosing a G invariant hermitean metric $(., .)_{E}$.

Since $C_{0}(M)$ is commutative any right $C_{0}(M)$-module is a left- $C_{0}(M)$-module in a natural way. If we apply this to Kasparaov modules we obtain a map

$$
a: K K^{G}\left(\mathbb{C}, C_{0}(M)\right) \rightarrow K K^{G}\left(C_{0}(M), C_{0}(M)\right)
$$

Definition 2.5 The cap-product $K_{G}^{0}(M) \otimes K_{0}^{G}(M) \rightarrow K_{0}^{G}(M)$ is defined by

$$
v \cap x:=a(v) \otimes_{C_{0}(M)} x
$$

If we choose on $(E,(.,)$.$) a hermitian connection \nabla^{E}$, then we can form the twisted Dirac bundle $E \otimes F$ with associated Dirac operator D_{E}. The following fact is well-known. An elementary proof (for trivial G) can be found e.g. in [Bun95].

Proposition $2.6\left[D_{E}\right]=[E] \cap[D]$

2.7 A cohomological index formula for twisted operators

Let R^{E} denote the curvature of the connection ∇^{E}. For a finite cyclic subgroup $C \subset G$ let R_{0}^{E} denote the restriction of R^{E} to M^{C}. If $g \in \operatorname{gen}(C)$, then we have

$$
\mathbf{c h}(g, E \otimes F / S)=\mathbf{c h}(g, F / S) \cup \boldsymbol{c h}(g, E),
$$

where $\operatorname{ch}(g, E)=\operatorname{tr} g^{E} \exp \left(-R_{0}^{E} / 2 \pi \mathrm{i}\right)$. Here g^{E} denotes the action of g on the fibre of E. Thus we can write

$$
U_{E}(g):=\left[T_{N}\left(\frac{\hat{\mathbf{A}}\left(M^{g}\right) \operatorname{ch}(g, F / S) \cup \operatorname{ch}(g, E)}{\operatorname{det}^{1 / 2}\left(1-g^{N} \exp \left(-R^{N} / 2 \pi \mathrm{i}\right)\right)}\right)\right]_{\max } .
$$

We can write $U_{E}(g)=[\hat{U}(g) \cap \mathbf{c h}(g, E)]_{\text {max }}$, where

$$
\begin{equation*}
\hat{U}(g)=T_{N}\left(\frac{\hat{\mathbf{A}}\left(M^{g}\right) \operatorname{ch}(g, F / S)}{\operatorname{det}^{1 / 2}\left(1-g^{N} \exp \left(-R^{N} / 2 \pi \mathrm{i}\right)\right)}\right) \tag{4}
\end{equation*}
$$

The cohomology $H^{*}\left(Z_{G}(C) \backslash M^{C}, \mathbb{C}\right)$ of the orbifold $Z_{G}(C) \backslash M^{C}$ can be computed using the complex of invariant differential forms $\left(\Omega^{*}\left(M^{C}\right)^{Z_{G}(C)}, d\right)$. Furthermore, the homology $H_{*}\left(Z_{G}(C) \backslash M^{C}, \mathbb{C}\right)$ can be identified with the dual of the cohomology, i.e. $H_{*}\left(Z_{G}(C) \backslash M^{C}, \mathbb{C}\right) \cong$ $H^{*}\left(Z_{G}(C) \backslash M^{C}, \mathbb{C}\right)^{*}$. The closed form $\hat{U}(g) \in \Omega^{*}\left(M^{g}\right.$, Or $)$ now defines a homology class $[\hat{U}(g)] \in H_{*}\left(Z_{G}(C) \backslash M^{C}, \mathbb{C}\right)$ such that $[\hat{U}(g)]([\omega])=\int_{Z_{G}(C) \backslash M^{C}}[\hat{U}(g) \cap \omega]_{\text {max }}$ for any closed form $\omega \in \Omega^{*}\left(M^{C}\right)^{Z_{G}(C)}$.

Let $[\operatorname{ch}(g, E)] \in H^{*}\left(Z_{G}(C) \backslash M^{C}, \mathbb{C}\right)$ denote the cohomology class represented by the closed form $\operatorname{ch}(g, E)$.

Theorem 2.7

$$
\operatorname{index}_{\rho}([E] \cap[D])=\sum_{(C) \in C \mathcal{F} C y c(G)} \frac{1}{|C|} \sum_{g \in W_{G}(C) \backslash \operatorname{gen}(C)}\langle[\operatorname{ch}(g, E)],[\hat{U}(g)]\rangle \operatorname{tr} \rho(g)
$$

3 Chern characters

3.1 The cohomological Chern character

In this Subsection we review the construction of the Chern character given in [LO01a]. There the equivariant K-theory is introduced using a classifying space $\mathbf{K}_{G} \mathbb{C}$. If X is a proper G-CW complex, then $\mathbf{K}_{G}^{0}(X):=\left[X, \mathbf{K}_{G} \mathbb{C}\right]_{G}$, where $[\text {., , }]_{G}$ denotes the set of homotopy classes of equivariant maps.

Let $\mathbb{K}_{G}(X)$ be the Grothendieck group of G-equivariant complex vector bundles. Then there is a natural homomorphism $b: \mathbb{K}_{G}(X) \rightarrow \mathbf{K}_{G}^{0}(X)$, which is an isomorphism if X is finite ([LO01a], Prop. 1.5).

If H is a finite group, then let $R_{\mathbb{C}}(H)$ denote the complex representation ring of H with complex coefficients. The character gives a natural identification of $R_{\mathbb{C}}(H)$ with the space of complex-valued class functions on H, i.e. $\mathbb{C}(C(H))$.

Since we want to work with differential forms later on we simplify matters by working with complex coefficients (the constructions in [LO01a] are finer since they work over \mathbb{Q}). For any finite subgroup $H \subset G$ the construction [LO01a], (5.4), provides a homomorphism

$$
\operatorname{ch}_{X}^{H}: K_{G}^{0}(X) \rightarrow H^{*}\left(Z_{G}(H) \backslash X^{H}\right) \otimes \mathbb{C}(C(H))
$$

For our purpose it suffices to understand $\operatorname{ch}_{X}^{H}(b(\{E\}))$, where E is a G-equivariant complex vector bundle over X, and $\{E\}$ denotes its class in $\mathbb{K}_{G}(X)$. First of all note that $E_{X^{H}}$ is a $N_{G}(H)$-equivariant bundle over X^{H}. We can further write $E_{\mid X^{H}}=$ $\sum_{\phi \in \hat{H}} \operatorname{Hom}_{H}\left(V_{\phi}, E_{\mid X^{H}}\right) \otimes V_{\phi}$, where $\operatorname{Hom}_{H}\left(V_{\phi}, E_{\mid X^{H}}\right)$ is a $Z_{G}(H)$-equivariant bundle over X^{H}. We therefore obtain an element of $\mathbb{K}_{Z_{G}(H)}^{0}\left(X^{H}\right) \otimes R(H)$. We now apply the composition

$$
\begin{aligned}
\mathbb{K}_{Z_{G}(H)}^{0}\left(X^{H}\right) \xrightarrow{\mathrm{pr}^{*}} \mathbb{K}_{Z_{G}(H)}^{0}\left(E G \times X^{H}\right) \xrightarrow{\cong} \mathbb{K}_{1}^{0}\left(E G \times_{Z_{G}(H)} X^{H}\right) \\
\quad \xrightarrow{\text { ch }} H^{*}\left(E G \times_{Z_{G}(H)} X^{H}, \mathbb{C}\right) \xrightarrow{\left(\mathrm{pr}^{*}\right)-1} H^{*}\left(Z_{G}(H) \backslash X^{H}, \mathbb{C}\right)
\end{aligned}
$$

to the first component, and the character $R(H) \rightarrow \mathbb{C}(C(H))$ to the second. The result belongs to $H^{*}\left(Z_{G}(H) \backslash X^{H}, \mathbb{C}\right) \otimes \mathbb{C}(C(H))$ and is $\boldsymbol{c h}_{X}^{H}(b(\{E\}))$.

If C is a finite cyclic subgroup, then let $r: \mathbb{C}(C(C)) \rightarrow \mathbb{C}(\operatorname{gen}(C))$ be the restriction map. Note that $W_{G}(C)$ acts on $\mathbb{C}(\operatorname{gen}(C))$ as well as on $H^{*}\left(Z_{G}(C) \backslash X^{C}, \mathbb{C}\right)$. The result [LO01a], Lemma 5.6, now asserts that if X is finite, then

$$
\begin{equation*}
\prod_{(C) \in C \mathcal{F} C y c(G)}(1 \otimes r) \operatorname{ch}_{X}^{C}: \mathbf{K}_{G}^{0}(X)_{\mathbb{C}} \rightarrow \prod_{(C) \in C \mathcal{F} C y c(G)}\left(H^{e v}\left(Z_{G}(C) \backslash X^{C}, \mathbb{C}\right) \otimes \mathbb{C}(\operatorname{gen}(C))\right)^{W_{G}(C)} \tag{5}
\end{equation*}
$$

is an isomorphism.

3.2 Differential forms

In the present subsection we give a description of the equivariant Chern character using differential forms. Let M be a smooth proper G-manifold and E be a G-equivariant complex vector bundle over M. Then we can find a G-invariant hermitian metric (., . $)_{E}$ and a G-invariant metric connection ∇^{E}. Let R^{E} denote the curvature of ∇^{E}. We define the closed G-invariant form $\operatorname{ch}(E) \in \Omega(M)^{G}$ by $\operatorname{ch}(E):=\operatorname{tr} \exp \left(-R^{E} / 2 \pi \mathrm{i}\right)$. It represents a cohomology class $[\boldsymbol{c h}(E)] \in H^{*}(G \backslash M, \mathbb{C})$. Furthermore, we have the class $\operatorname{ch}_{M}^{\{1\}}(b(\{E\}))$, which is given by the following composition

$$
\begin{align*}
\mathbb{K}_{G}^{0}(M) \xrightarrow{\operatorname{pr}_{1}^{*}} \mathbb{K}_{G}^{0}(E G \times M) \xrightarrow{\cong} \mathbb{K}_{1}^{0}\left(E G \times_{G} M\right) \\
\quad \xrightarrow{\text { ch }} H^{*}\left(E G \times_{G} M, \mathbb{C}\right) \xrightarrow{\left(\operatorname{pr}_{2}^{*}\right)^{-1}} H^{*}(G \backslash M, \mathbb{C}) . \tag{6}
\end{align*}
$$

Lemma $3.1[\mathbf{c h}(E)]=\operatorname{ch}_{M}^{\{1\}}(b(\{E\}))$
Proof. We show that $\boldsymbol{c h}_{M}^{\{1\}}(b(\{E\}))$ can be represented by the form $\boldsymbol{\operatorname { c h }}(E)$. To do so we employ an approximation $j: \tilde{E} G \rightarrow E G$, where $\tilde{E} G$ is a free G-manifold and the G-map j is $\operatorname{dim}(M)+1$-connected. This existence of such approximations will be shown in Subsection 3.3. Then we can define $\operatorname{ch}_{M}^{\{1\}}(b(\{E\}))$ by (6) but with $E G$ replaced by $\tilde{E} G$. It is now clear that $\operatorname{pr}_{2}^{*} \boldsymbol{\operatorname { c h }}(E)=\boldsymbol{\operatorname { c h }}\left(G \backslash \mathrm{pr}_{1}^{*} E\right)$.

Let $C \subset G$ be a finite cyclic subgroup. Furthermore, let $[\mathbf{c h}(g, E)] \in H^{*}\left(Z_{G}(C) \backslash M^{C}, \mathbb{C}\right)$ denote the cohomology class represented by $\operatorname{ch}(g, E)$. The function $\operatorname{gen}(C) \ni g \mapsto$ $[\boldsymbol{c h}(g, E)]$ can naturally be considered as an element $[\mathbf{c h}(., E)] \in H^{*}\left(Z_{G}(C) \backslash M^{C}, \mathbb{C}\right) \otimes$ $\mathbb{C}(\operatorname{gen}(C))$ which is in fact $W_{G}(C)$-equivariant.
Proposition $3.2[\mathbf{c h}(., E)]=(1 \otimes r) \mathbf{c h}_{M}^{C}(b(\{E\}))$.
Proof. First of all note that R_{0}^{E} is the curvature of $E_{\mid M^{C}}$. Furthermore, the decomposition $E_{\mid M^{C}}=\sum_{\phi \in \hat{C}} E(\phi) \otimes V_{\phi}$ is preserved by R_{0}^{E}, where $E(\phi)=\operatorname{Hom}_{C}\left(V_{\phi}, E_{\mid M^{C}}\right)$. Let $R^{E(\phi)}$ be the restriction of the curvature to the subbundle $E(\phi) \otimes V_{\phi}$. We get for $g \in \operatorname{gen}(C)$

$$
\begin{array}{rll}
(1 \otimes r) \mathbf{c h}_{M}^{C}(b\{E\})(g) & \stackrel{\text { def. }}{=} & \sum_{\phi \in \hat{C}} \operatorname{ch}_{M^{C}}^{\{1\}}(b\{E(\phi)\}) \operatorname{tr} \phi(g) \\
& \stackrel{\text { Lemma3.1 }}{=} \sum_{\phi \in \hat{C}}[\operatorname{ch}(E(\phi))] \operatorname{tr} \phi(g) \\
& =\sum_{\phi \in \hat{C}}\left[\operatorname{tr} \exp \left(-R^{E(\phi)} / 2 \pi \mathrm{i}\right)\right] \operatorname{tr} \phi(g) \\
& =\quad\left[\operatorname{tr} g^{E} \exp \left(-R_{0}^{E} / 2 \pi \mathrm{i}\right)\right] \\
& =\quad[\operatorname{ch}(g, E)] .
\end{array}
$$

3.3 Smooth approximations of $C W$-complexes

The goal of this subsection is to show that the approximation $j: \tilde{E} G \rightarrow E G$ used in the proof of Lemma 3.1 exists. We start with the following general result.

Proposition 3.3 If X is a countable finite-dimensional $C W$-complex, then there exists a smooth manifold M and a homotopy equivalence $M \xrightarrow{\sim} X$.

Proof. Let X be a finite-dimensional $C W$-complex. Following [Bro62] we call a manifold with boundary $(\bar{M}, \partial \bar{M})$ a tubular neighbourhood of X if there exists a continuous map $F: \partial \bar{M} \rightarrow X$ such that the underlying topological space of \bar{M} is the mapping cylinder $C(F)=\partial \bar{M} \times[0,1] \cup_{F} X$ of F, the inclusion $\partial \bar{M} \times[0,1) \hookrightarrow M$ is smooth, and the inclusion $X \hookrightarrow \bar{M}$ is smooth on each open cell of X.

Let

$$
X^{0} \subseteq X^{1} \subseteq X^{2} \subseteq \cdots \subseteq X^{n}=X
$$

be the filtration of X by skeletons. We obtain X^{i+1} from X^{i} by attaching a countable number of $i+1$-cells.
It is clear that the collection of points X^{0} admits a tubular neighbourhood of any given dimension. Let us now assume that there exists an i-dimensional $C W$-complex Y together with a homotopy equivalence $h: Y \xrightarrow{\sim} X^{i}$ and a m-dimensional tubular neighbourhood $(W, \partial W), F: \partial W \rightarrow Y$ of Y, such that $m \geq 2 n+3$.
Via a homotopy inverse of h the attaching data for $X^{i} \subseteq X^{i+1}$ yields the attaching data $\tilde{\chi}_{\alpha}: S^{i} \rightarrow Y, \alpha \in J$, for a countable collection J of $i+1$-cells. Let \tilde{Z} be the result of attaching these cells to Y. Then we have a homotopy equivalence $\tilde{Z} \xrightarrow{\sim} X^{i+1}$.

We consider \mathbb{R} with the cell-structure given by its decomposition into unit intervals. The product ($W \times \mathbb{R}, \partial W \times \mathbb{R}$) is a tubular neighbourhood of $Y \times \mathbb{R}$ in a natural way with retraction $F \times \operatorname{id}_{\mathbb{R}}: \partial W \times \mathbb{R} \rightarrow Y \times \mathbb{R}$. The projection $Y \times \mathbb{R} \rightarrow Y$ is a homotopy equivalence.

We now fix an inclusion $J \subseteq \mathbb{Z}$ and define attaching maps $\chi_{\alpha}:=\tilde{\chi}_{\alpha} \times\{\alpha\}: S^{i} \rightarrow Y \times \mathbb{R}$. Let \hat{Z} denote the complex obtained by attaching the cells to $Y \times \mathbb{R}$. Our choice of attaching maps is made such that these $i+1$-cells are attached to the i-skeleton of Y. We have a homotopy equivalence $\hat{Z} \xrightarrow{\sim} \tilde{Z}$.
In order to improve the attaching maps we argue as in the proof of [Bro62, Theorem II]. Since $2 \operatorname{dim}(Y)+1=2 i+1 \leq 2 n+3 \leq m=\operatorname{dim}(W)$ we can deform the attaching map $\tilde{\chi}_{\alpha}$ slightly so that its image is disjoint from Y. To do so we adapt the method of the proof of [Whi55, Theorem 11a], and we use the assumption that the open cells of
Y are smoothly embedded. Using the mapping cylinder structure $W \backslash Y \cong \partial W \times[0,1)$ we can further deform the attaching map such that it maps to ∂W. Finally, using that $2 i+1 \leq \operatorname{dim}(\partial W)=m-1$ we can deform it to an embedding (see [Whi36, Theorem II]) into ∂W. Again for dimension reasons, the normal bundle of this embedding is trivial. We still denote this deformed attaching map by $\tilde{\chi}_{\alpha}$, and we obtain a new deformed map $\chi_{\alpha}:=\tilde{\chi}_{\alpha} \times\{\alpha\}: S^{i} \rightarrow \partial W \times\{\alpha\} \subseteq \partial W \times \mathbb{R}$.

For each $\alpha \in J$ we now perform the procedure of attaching a handle to $W \times \mathbb{R}$ described in [Bro62, Sec .2]. We can arrange the construction such that for $\alpha \in J$ it takes place on $W \times(\alpha-1 / 4, \alpha+1 / 4)$.

The result of this construction is a manifold with boundary $(N, \partial N)$ of dimension $m+1$ containing an $i+1$-dimensional $C W$-complex Z, and a map $N \rightarrow Z$ which represents $(N, \partial N)$ as a tubular neighbourhood of Z, and we have a homotopy equivalence $Z \xrightarrow{\sim} \hat{Z}$.

After we finite iteration of this construction we obtain a manifold with boundary $(\bar{M}, \partial \bar{M})$ which is a tubular neighbourhood of a $C W$-complex \tilde{X} which admits a homotopy equivalence $\tilde{h}: \tilde{X} \xrightarrow{\sim} X$. The mapping cylinder structure on \bar{M} gives rise to a projection $p: \bar{M} \rightarrow \tilde{X}$. We now consider the smooth manifold $M:=\bar{M} \backslash \partial \bar{M}$. The composition $\tilde{h} \circ p_{\mid M}: M \rightarrow X$ is a homotopy equivalence from a smooth manifold to X.

We can now construct the smooth n-connected approximation $j: \tilde{E} G \rightarrow E G$, where $n \geq 2$. We start with a countable $C W$-complex $B G$ of the homotopy type of the classifying space of G. For example, we can take the standard simplicial model. It is countable since G is countable.

We consider the n-skeleton $B G^{n} \subseteq B G$. It is a finite-dimensional countable $C W$ complex. By Proposition 3.3 we can find a smooth manifold $\tilde{B} G$ together with a homotopy equivalence $\hat{j}: \tilde{B} G \rightarrow B G^{n}$. Let $\bar{j}: \tilde{B} G \rightarrow B G$ denote the composition of \hat{j} with the inclusion $B G^{n} \hookrightarrow B G$. By construction \bar{j} is n-connected.

Since \bar{j} induces an isomorphism of fundamental groups it lifts to a n-connected map of universal coverings $j: \tilde{E} G \rightarrow E G$.

3.4 The homological Chern character

In this subsection we review the construction of the homological Chern character given in [Lüc02a], [Lüc02b]. Let X be a proper G-CW-complex. The main constituent of the Chern character is a homomorphism

$$
\operatorname{ch}_{H}^{X}: H_{e v}\left(Z_{G}(H) \backslash X^{H}, \mathbb{C}\right) \otimes R_{\mathbb{C}}(H) \rightarrow K_{0}^{G}(X)
$$

for any finite subgroup $H \subset G$.

$$
\begin{aligned}
& H_{e v}\left(Z_{G}(H) \backslash X^{H}, \mathbb{C}\right) \otimes R_{\mathbb{C}}(H) \quad\left(\mathrm{pr}_{2}\right)_{\rightarrow}^{-1} \otimes \mathrm{id} \quad H_{e v}\left(E G \times{ }_{Z_{G}(H)} X^{H}, \mathbb{C}\right) \otimes R_{\mathbb{C}}(H) \\
& \xrightarrow{\mathrm{ch}^{-1} \otimes \mathrm{id}} \quad K_{0}\left(E G \times_{Z_{G}(H)} X^{H}\right)_{\mathbb{C}} \otimes R_{\mathbb{C}}(H) \\
& \xlongequal{\cong} \quad K_{0}^{Z_{G}(H)}\left(E G \times X^{H}\right)_{\mathbb{C}} \otimes K_{0}^{H}(*)_{\mathbb{C}} \\
& \xrightarrow{\text { mult }} \quad K_{0}^{Z_{G}(H) \times H}\left(E G \times X^{H}\right)_{\mathbb{C}} \\
& \operatorname{Ind}_{Z_{G(H)}^{G}}^{G} \\
& K_{0}^{G}\left(\operatorname{Ind}_{Z_{G}(H) \times H}^{G}\left(E G \times X^{H}\right)\right)_{\mathbb{C}} \\
& \operatorname{Ind}_{Z_{G}(H) \times H}^{G}\left(\mathrm{pr}_{2}\right)_{*} \quad K_{0}^{G}\left(\operatorname{Ind}_{Z_{G}(H) \times H}^{G} X^{H}\right)_{\mathbb{C}} \\
& \xrightarrow{m_{*}} \quad K_{0}^{G}(X)
\end{aligned}
$$

Here $\mathbf{c h}$ is the homological Chern character, $\operatorname{Ind}_{Z_{G}(H) \times H}^{G}$ denotes the induction functor, and $m: \operatorname{Ind}_{Z_{G}(H) \times H}^{G} X^{H}=G \times{ }_{Z_{G}(H) \times H} X^{H} \rightarrow X$ is the G-map $(g, x) \mapsto g x$.

Let $C \subset G$ be a finite cyclic subgroup. Then we have a natural inclusion $r^{*}: \mathbb{C}(\operatorname{gen}(C)) \rightarrow$ $R_{\mathbb{C}}(C) \cong \mathbb{C} C$ such that the image consists of functions which vanish on $C \backslash \operatorname{gen}(C)$. Note that $\mathbb{C}(\operatorname{gen}(C))$ and $H_{*}\left(Z_{G}(H) \backslash X^{H}, \mathbb{C}\right)$ are left and right $W_{G}(C)$-modules in the natural way. It follows from [Lüc02b], Thm. 0.7, that

$$
\begin{equation*}
\oplus_{(C) \in C F C y c(G)} \operatorname{ch}_{C}^{X}\left(1 \otimes r^{*}\right): \bigoplus_{(C) \in C \mathcal{F} C y c(G)} H_{e v}\left(Z_{G}(C) \backslash X^{C}, \mathbb{C}\right) \otimes_{\mathbb{C} W_{G}(C)} \mathbb{C}(\operatorname{gen}(C)) \rightarrow K_{0}^{G}(X)_{\mathbb{C}} \tag{7}
\end{equation*}
$$

is an isomorphism.

4 Explicit decomposition of K-homology classes

4.1 An index formula

Let E be a G-equivariant vector bundle over X. If $A \in H_{*}\left(Z_{G}(H) \backslash X^{H}, \mathbb{C}\right) \otimes R_{\mathbb{C}}(H)$, then we can ask for a formula for $\operatorname{index}_{\rho}\left([E] \cap \operatorname{ch}_{H}^{X}(A)\right)$ in terms of $\operatorname{ch}_{X}^{H}(b(\{E\}))$. Let $\epsilon: R(H) \rightarrow$ \mathbb{Z} be the homomorphism which takes the multiplicity of the trivial representation. It extends to a group homomorphism $\epsilon_{\mathbb{C}}: R_{\mathbb{C}}(H) \rightarrow \mathbb{C}$. Using the ring structure of $R_{\mathbb{C}}(H)$ and the pairing between homology and cohomology we obtain a natural pairing

$$
\begin{aligned}
\langle.,\rangle_{\rho} & :\left(H_{*}\left(Z_{G}(H) \backslash X^{H}, \mathbb{C}\right) \otimes R_{\mathbb{C}}(H)\right) \otimes\left(H^{*}\left(Z_{G}(H) \backslash X^{H}, \mathbb{C}\right) \otimes R_{\mathbb{C}}(H)\right) \\
& \rightarrow R_{\mathbb{C}}(H) \xrightarrow{\otimes\left[\rho_{H}\right]} R_{\mathbb{C}}(H) \xrightarrow{\epsilon \mathbb{C}} \mathbb{C} .
\end{aligned}
$$

Theorem $4.1 \operatorname{index}_{\rho}\left([E] \cap \operatorname{ch}_{H}^{X}(A)\right)=\left\langle\operatorname{ch}_{X}^{H}(b(\{E\})), A\right\rangle_{\rho}$

Proof. Let M be a cocompact free even-dimensional $Z_{G}(H)$-manifold equipped with a invariant Riemannian metric and a Dirac operator D associated to a $Z_{G}(H)$-equivariant Dirac bundle $F \rightarrow M$. Furthermore, let $f=\left(f_{1}, f_{2}\right): M \rightarrow E G \times X^{H}$ be a $Z_{G}(H)$ equivariant continuous map. We form $[D] \in K_{0}^{Z_{G}(H)}(M)$ represented by the Kasparov module $\left(L^{2}(M, F), \mathcal{F}\right)$. Then $f_{*}[D] \in K_{0}^{Z_{G}(H)}\left(E G \times X^{H}\right)$.

Note that $K_{0}^{Z_{G}(H)}\left(E G \times X^{H}\right)_{\mathbb{C}}$ is spanned by elements arising in this form. This can be seen as follows. First observe that every class in $K_{0}\left(E G \times_{Z_{G}(H)} X^{H}\right)$ can be represented in the form $\bar{f}_{*}[\bar{D}]$, where $\bar{f}: \bar{N} \rightarrow E G \times_{Z_{G}(H)} X^{H}$ is a map from a closed $S p i n^{c}$-manifold, and \bar{D} is the $S_{\text {pin }}{ }^{c}$-Dirac operator on \bar{N}. A proof of this result is given in [BHS]. We now consider the pull-back

The manifold N carries a $Z_{G}(H)$-invariant S pin ${ }^{c}$-structure with associated Dirac operator D. The class $f_{*}[D]$ corresponds to $\bar{f}_{*}[\bar{D}]$ under the isomorphism $K_{0}^{Z_{G}(H)}\left(E G \times X^{H}\right) \cong$ $K_{0}^{Z_{G}(H)}\left(E G \times X^{H}\right)$.

Let $\phi \in \hat{H}$ be a finite-dimensional representation. It gives rise to an element $[\phi] \in$ $K_{0}^{H}(*)_{\mathbb{C}}$ under the natural identification $R_{\mathbb{C}}(H) \cong K_{0}^{H}(*)_{\mathbb{C}}$. Let $T: K_{0}^{Z_{G}(H)}\left(E G \times X^{H}\right) \otimes$ $K_{0}^{H}(*)_{\mathbb{C}} \rightarrow K_{0}^{G}(X)$ be the composition $m_{*} \circ \operatorname{Ind}_{Z_{G}(H) \times H}^{G}\left(\operatorname{pr}_{2}\right)_{*} \circ \operatorname{Ind}_{Z_{G}(H) \times H}^{G} \circ$ mult, which is part of the definition of $\mathbf{c h}_{H}^{X}$.

We first study $\operatorname{index}_{\rho}\left([E] \cap T\left(f_{*}[D] \otimes[\phi]\right)\right)$. We have mult $\circ f_{*}([D] \otimes[\phi])=f_{*} \circ$ $\operatorname{mult}([D] \otimes[\phi])$, and $\operatorname{mult}([D] \otimes[\phi]) \in K_{0}^{Z_{G}(H) \times H}(M)$ is represented by the Kasparov module $\left(L^{2}(M, F) \otimes V_{\phi}, \mathcal{F} \otimes \mathrm{id}\right)$. Furthermore, $\operatorname{Ind}_{Z_{G}(H) \times H}^{G} \circ f_{*} \circ \operatorname{mult}([D] \otimes[\phi])=$ $\operatorname{Ind}_{Z_{G}(H) \times H}^{G}\left(f_{*}\right) \operatorname{Ind}_{Z_{G}(H) \times H}^{G}(\operatorname{mult}([D] \otimes[\phi]))$. Explicitly, $\operatorname{Ind}_{Z_{G}(H) \times H}^{G}(\operatorname{mult}([D] \otimes[\phi]))$ is represented by a Kasparov module which is constructed in the following way. Consider the exact sequence

$$
0 \rightarrow K \rightarrow Z_{G}(H) \times H \rightarrow G,
$$

where $K=Z_{G}(H) \cap H=Z_{H}(H)$. We identify $K \backslash Z_{G}(H) \times H$ with the subgroup $Z_{G}(H) H \subseteq G$.
Note that we consider M as a $Z_{G}(H) \times H$-manifold via the action of the first factor. The $Z_{G}(H) H$-manifold $\hat{M}:=K \backslash M$ carries an induced equivariant Dirac bundle \hat{F}. We further consider the flat $Z_{G}(H) H$-equivariant bundle $\hat{V}_{\phi}:=V_{\phi} \times_{K} M$ over \hat{M}. The twisted bundle $\hat{F} \otimes \hat{V}_{\phi}$ is a $Z_{G}(H) H$-equivariant Dirac bundle. We consider the cocompact proper G-manifold $\tilde{M}:=G \times_{Z_{G}(H) H} \hat{M}$. The $Z_{G}(H) H$-equivariant Dirac bundle $\hat{F} \otimes \hat{V}_{\phi}$ induces a G-equivariant Dirac bundle $\tilde{F}_{\phi} \rightarrow \tilde{M}$ in a natural way with associated operator \tilde{D}_{ϕ}. Then $\operatorname{Ind}_{Z_{G}(H) \times H}^{G}(\operatorname{mult}([\underset{\sim}{D}] \otimes[\phi]))$ is represented by $\left[\tilde{D}_{\phi}\right]$. The map $\operatorname{Ind}_{\tilde{Z}_{G}(H) \times H}^{G}\left(f_{*}\right)$ is induced by the G-map $\tilde{f}: \tilde{M} \rightarrow G \times_{Z_{G}(H) H}\left(K \backslash E G \times X^{H}\right)$ given by $\tilde{f}([g, K m]):=$
[$\left.g,\left(K f_{1}(m), f_{2}(m)\right)\right]$. It is now clear that $T\left(f_{*}[D] \otimes[\phi]\right)$ is represented by $h_{*}\left[\tilde{D}_{\phi}\right]$, where $h: \tilde{M} \rightarrow X$ is given by $h([g, K m])=g f_{2}(m)$.
It follows from the associativity of the Kasparov product that

$$
\operatorname{index}_{\rho}\left([E] \cap T\left(f_{*}[D] \otimes[\phi]\right)\right)=\operatorname{index}_{\rho}\left([E] \cap h_{*}\left[\tilde{D}_{\phi}\right]\right)=\operatorname{index}_{\rho}\left(\left[h^{*} E\right] \cap\left[\tilde{D}_{\phi}\right]\right)
$$

By Theorem 2.2 and Proposition 2.6 we obtain index $\rho\left(\left[h^{*} E\right] \cap\left[\tilde{D}_{\phi}\right]\right)=\operatorname{index}\left(\bar{D}_{\phi, h^{*} E, \rho}\right)$, where $\tilde{D}_{\phi, h^{*} E}$ is the G-invariant Dirac operator associated to $\tilde{F} \otimes h^{*} E$, and $\bar{D}_{\phi, h^{*} E, \rho}$ is the operator on the orbifold $\bar{M}:=G \backslash \tilde{M}$ induced by $\tilde{D}_{\phi, h^{*} E}$ and the twist ρ. Restriction from \tilde{M} to the submanifold $\{1\} \times \hat{M}$ provides an isomorphism

$$
\left(C^{\infty}\left(\tilde{M}, \tilde{F}_{\phi} \otimes h^{*} E\right) \otimes V_{\rho}\right)^{G} \cong\left(C^{\infty}\left(\hat{M}, \hat{F} \otimes \hat{V}_{\phi} \otimes \bar{f}_{2}^{*} E_{\mid X^{H}}\right) \otimes V_{\rho}\right)^{Z_{G}(H) \times H}
$$

where $\bar{f}_{2}: \hat{M} \rightarrow X^{H}$ is induced by f_{2}. Since the action of H on the latter spaces is implemented by the action on the fibres of $V_{\phi} \otimes \bar{f}_{2}^{*} E_{\mid X^{H}} \otimes V_{\rho}$ we further obtain

$$
\left(C^{\infty}\left(\tilde{M}, \tilde{F}_{\phi} \otimes h^{*} E\right) \otimes V_{\rho}\right)^{G}=C^{\infty}\left(\hat{M}, \hat{F} \otimes\left(V_{\phi} \otimes \bar{f}_{2}^{*} E_{\mid X^{H}} \otimes V_{\rho}\right)^{H}\right)^{K \backslash Z_{G}(H)}
$$

In the present situation we have $\bar{M}=Z_{G}(H) \backslash M=\left(K \backslash Z_{G}(H)\right) \backslash \hat{M}$, i.e. the orbifold is smooth, and it carries the Dirac bundle \bar{F} with associated Dirac operator \bar{D}. We define the $\left(K \backslash Z_{G}(H)\right.$)-equivariant bundle $E_{\phi \otimes \rho}:=\left(V_{\phi} \otimes E_{\mid X^{H}} \otimes V_{\rho}\right)^{H}$ over X^{H}. Furthermore, we consider the quotient $\overline{f_{2}^{*} E_{\phi \otimes \rho}}:=\left(K \backslash Z_{G}(H)\right) \backslash \bar{f}_{2}^{*} E_{\phi \otimes \rho}$ over \bar{M}. The identifications above show that $\operatorname{index}_{\rho}\left(\bar{D}_{\phi, h^{*} E}\right)=\operatorname{index}\left(\bar{D}_{\overline{\bar{J}_{2}^{*} E_{\phi \otimes \rho}}}\right)$, i.e. it is the index of a twisted Dirac operator. Writing the index of the twisted Dirac operator in terms of Chern characters we obtain

$$
\operatorname{index}_{\rho}\left([E] \cap T\left(f_{*}[D] \otimes[\phi]\right)\right)=\left\langle\boldsymbol{\operatorname { c h }}\left(\overline{f_{2}^{*} E_{\phi \otimes \rho}}\right), \boldsymbol{\operatorname { c h }}([\bar{D}])\right\rangle .
$$

Note that $\overline{f_{2}^{*} E_{\phi \otimes \rho}}=\overline{f^{*}} \overline{\operatorname{pr}_{2}^{*} E_{\phi \otimes \rho}}$, where $\operatorname{pr}_{2}: E G \times X^{H} \rightarrow X^{H}, \bar{f}: \bar{M} \rightarrow E G \times_{Z_{G}(H)} X^{H}$ is induced by f, and $\overline{\operatorname{pr}_{2}^{*} E_{\phi \otimes \rho}}:=Z_{G}(H) \backslash \operatorname{pr}_{2}^{*} E_{\phi \otimes \rho}$. We conclude that

$$
\left\langle\boldsymbol{\operatorname { c h }}\left(\overline{\bar{f}_{2}^{*} E_{\phi \otimes \rho}}\right), \mathbf{c h}([\bar{D}])\right\rangle=\left\langle\mathbf{c h}\left(\overline{\operatorname{pr}_{2}^{*} E_{\phi \otimes \rho}}\right), \boldsymbol{\operatorname { c h }}\left(\overline{f_{*}}[\bar{D}]\right)\right\rangle .
$$

The right-hand side can now be written as

$$
\left.\left\langle\epsilon_{\mathbb{C}}\left(\operatorname{ch}_{X}^{H}(b([E])) \otimes[\phi] \otimes \rho\right),\left(\operatorname{pr}_{2}\right)_{*} \operatorname{ch}\left(\bar{f}_{*}[\bar{D}]\right)\right\rangle=\left\langle\operatorname{ch}_{X}^{H}(E),\left(\operatorname{pr}_{2}\right)_{*} \operatorname{ch}\left(\bar{f}_{*}[\bar{D}]\right) \otimes[\phi]\right)\right\rangle_{\rho} .
$$

Note that $\boldsymbol{c h}_{H}^{X}\left(\left(\operatorname{pr}_{2}\right)_{*} \boldsymbol{\operatorname { c h }}\left(\bar{f}_{*}[\bar{D}]\right) \otimes[\phi]\right)=T\left(f_{*}[D] \otimes[\phi]\right)$. Therefore we have shown

$$
\left.\operatorname{index}_{\rho}\left([E] \cap \boldsymbol{\operatorname { c h }}_{H}^{X}\left(\left(\operatorname{pr}_{2}\right)_{*} \boldsymbol{\operatorname { c h }}\left(\bar{f}_{*}[\bar{D}]\right) \otimes[\phi]\right)\right)\right)=\left\langle\operatorname{ch}_{X}^{H}(b([E])), \boldsymbol{\operatorname { c h }}\left(\bar{f}_{*}[\bar{D}]\right) \otimes[\phi]\right\rangle_{\rho} .
$$

Since the classes $\left(\operatorname{pr}_{2}\right)_{*} \operatorname{ch}\left(\bar{f}_{*}[\bar{D}]\right) \otimes[\phi]$ for varying data M, F, f, ϕ span $H_{e v}\left(Z_{G}(H) \backslash X^{H}, \mathbb{C}\right) \otimes$ $R_{\mathbb{C}}(H)$ the theorem follows.

4.2 Decomposition

Lemma 4.2 Let X be a finite proper G-CW-complex. If $x \in K_{0}^{G}(X)_{\mathbb{C}}$ and $\operatorname{index}([E] \cap$ $x)=0$ for all G-equivariant complex vector bundles E on X, then $x=0$.

Proof.Because of the isomorphism (7) it suffices to show that if $A \in H_{e v}\left(Z_{G}(C) \backslash X^{C}, \mathbb{C}\right) \otimes_{\mathbb{C} W_{G}(C)}$ $\mathbb{C}(\operatorname{gen}(C))$ and index $\left([E] \cap \operatorname{ch}_{C}^{X}(A)\right)=0$ for all E, then $A=0$. By Theorem 4.1 we have index $\left([E] \cap \boldsymbol{\operatorname { c h }}_{C}^{X}(A)\right)=\left\langle\operatorname{ch}_{H}^{C}(b(\{E\})), A\right\rangle$. Using the surjectivity of b and of the isomorphism (5), and the fact that the pairing

$$
\langle., .\rangle:\left(H^{e v}\left(Z_{G}(C) \backslash X^{C}, \mathbb{C}\right) \otimes \mathbb{C}(\operatorname{gen}(C))\right)^{W_{G}(C)} \otimes\left(H_{e v}\left(Z_{G}(C) \backslash X^{C}, \mathbb{C}\right) \otimes_{\mathbb{C} W_{G}(C)} \mathbb{C}(\operatorname{gen}(C))\right)
$$

is nondegenerate we see that $\left\langle\operatorname{ch}_{H}^{C}(b(\{E\})), A\right\rangle=0$ for all E indeed implies $A=0$.

Let now M be an even-dimensional proper cocompact G-manifold equipped with a G invariant Riemannian metric g^{M} and a G-equivariant Dirac bundle F with associated Dirac operator D. Let $[D]_{\mathbb{C}} \in K_{0}^{G}(M)_{\mathbb{C}}$ be the equivariant K-homology class of D.

The G-space M has the G-homotopy type of a finite proper G-CW-complex. In particular, we have the isomorphism (7)
$\oplus_{(C) \in C \mathcal{F} C y c(G)} \mathbf{c h}_{C}^{M}\left(1 \otimes r^{*}\right): \bigoplus_{(C) \in C \mathcal{F C} C c(G)} H_{e v}\left(Z_{G}(C) \backslash M^{C}, \mathbb{C}\right) \otimes_{\mathbb{C} W_{G}(C)} \mathbb{C}(\operatorname{gen}(C)) \rightarrow K_{0}^{G}(M)_{\mathbb{C}}$.
Therefore, there exist uniquely determined classes $[D](C) \in H_{e v}\left(Z_{G}(C) \backslash M^{C}, \mathbb{C}\right) \otimes_{\mathbb{C} W_{G}(C)}$ $\mathbb{C}(\operatorname{gen}(C))$ such that

$$
\sum_{(C) \in C \mathcal{F} C y c(G)} \operatorname{ch}_{C}^{M}\left(1 \otimes r^{*}\right)([D](C))=[D]_{\mathbb{C}}
$$

Theorem 4.3 We have the equality

$$
[D](C)=[\hat{U}],
$$

where $[\hat{U}]$ is given by $\operatorname{gen}(C) \ni g \rightarrow[\hat{U}(g)] \in H_{e v}\left(Z_{G}(C) \backslash M^{C}, \mathbb{C}\right)$, and $\hat{U}(g)$ was defined in (4).

Proof. Let E be any G-equivariant complex vector bundle over M. Then we have

$$
\operatorname{index}\left([E] \cap[D]_{\mathbb{C}}\right)=\sum_{(C) \in C \mathcal{F} C y c(G)}\left\langle\operatorname{ch}_{M}^{C}(b(\{E\})),[D](C)\right\rangle
$$

Using the definition of $\epsilon_{\mathbb{C}}$ and Proposition 3.2 we can write out the summands of righthand side as follows

$$
\left\langle\operatorname{ch}_{M}^{C}(b(\{E\})),[D](C)\right\rangle=\frac{1}{|C|} \sum_{g \in \operatorname{gen}(C)}\langle[\operatorname{ch}(g, E)],[D](C)(g)\rangle .
$$

On the other hand the index formula Theorem 2.7 gives

$$
\operatorname{index}\left([E] \cap[D]_{\mathbb{C}}\right)=\sum_{(C) \in C \mathcal{F} C y c(G)} \frac{1}{|C|} \sum_{g \in \operatorname{gen}(C)}\langle[\operatorname{ch}(g, E)],[\hat{U}](g)\rangle
$$

Varying E and using Lemma 4.2 we conclude $[D](C)=[\hat{U}]$.

References

[BGV92] Nicole Berline, Ezra Getzler, and Michèle Vergne. Heat kernels and Dirac operators, volume 298 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1992. 1, 2.1, 2.4
[BHS] Paul Baum, Nigel Higson, and Thomas Schick. On the Equivalence of Geometric and Analytic K-Homology, arXiv:math.KT/0701484. 4.1
[BL94] Joseph Bernstein and Valery Lunts. Equivariant sheaves and functors, volume 1578 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1994.
[Bla98] Bruce Blackadar. K-theory for operator algebras, volume 5 of Mathematical Sciences Research Institute Publications. Cambridge University Press, Cambridge, second edition, 1998. 2.1, 2.3
[BM04] Paul Balmer and Michel Matthey. Model theoretic reformulation of the BaumConnes and Farrell-Jones conjectures. Adv. Math., 189(2):495-500, 2004. 1
[Bre93] Glen E. Bredon. Topology and geometry, volume 139 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1993.
[Bro62] Edgar H. Brown, Jr. Nonexistence of low dimension relations between StiefelWhitney classes. Trans. Amer. Math. Soc., 104:374-382, 1962. 3.3
[Bun95] Ulrich Bunke. A K-theoretic relative index theorem and Callias-type Dirac operators. Math. Ann., 303(2):241-279, 1995. 2.3, 2.6
[Che73] Paul R. Chernoff. Essential self-adjointness of powers of generators of hyperbolic equations. J. Functional Analysis, 12:401-414, 1973. 2.1
[DL98] James F. Davis and Wolfgang Lück. Spaces over a category and assembly maps in isomorphism conjectures in K - and L-theory. K-Theory, 15(3):201-252, 1998. 1
[Far92a] Carla Farsi. K-theoretical index theorems for good orbifolds. Proc. Amer. Math. Soc., 115(3):769-773, 1992. 1
[Far92b] Carla Farsi. K-theoretical index theorems for orbifolds. Quart. J. Math. Oxford Ser. (2), 43(170):183-200, 1992. 1, 1
[Far92c] Carla Farsi. A note on K-theoretical index theorems for orbifolds. Proc. Roy. Soc. London Ser. A, 437(1900):429-431, 1992. 1
[Fed88] V.V. Fedorchuk. The fundamentals of dimension theory. General topology. I. Basic concepts and constructions. Dimension theory. Encycl. Math. Sci. 17, 91-192 (1990); translation from Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat., Fundam. Napravleniya 17, 111-224 (1988)., 1988.
[GHT00] Erik Guentner, Nigel Higson, and Jody Trout. Equivariant E-theory for C^{*} algebras. Mem. Amer. Math. Soc., 148(703):viii+86, 2000. 2.2
[Kas88] G. G. Kasparov. Equivariant $K K$-theory and the Novikov conjecture. Invent. Math., 91(1):147-201, 1988. 2.1, 2.2, 2.3
[Kaw78] Tetsuro Kawasaki. The signature theorem for V-manifolds. Topology, 17(1):7583, 1978. 1
[Kaw79] Tetsuro Kawasaki. The Riemann-Roch theorem for complex V-manifolds. Osaka J. Math., 16(1):151-159, 1979. 1
[Kaw81] Tetsuro Kawasaki. The index of elliptic operators over V-manifolds. Nagoya Math. J., 84:135-157, 1981. 1, 1
[LO01a] Wolfgang Lück and Bob Oliver. Chern characters for the equivariant K-theory of proper G-CW-complexes. In Cohomological methods in homotopy theory (Bellaterra, 1998), volume 196 of Progr. Math., pages 217-247. Birkhäuser, Basel, 2001. 3.1
[LO01b] Wolfgang Lück and Bob Oliver. The completion theorem in K-theory for proper actions of a discrete group. Topology, 40(3):585-616, 2001. 1
[Lüc02a] Wolfgang Lück. Chern characters for proper equivariant homology theories and applications to K - and L-theory. J. Reine Angew. Math., 543:193-234, 2002. 3.4
[Lüc02b] Wolfgang Lück. The relation between the Baum-Connes conjecture and the trace conjecture. Invent. Math., 149(1):123-152, 2002. 1, 3.4
[MN06] Ralf Meyer and Ryszard Nest. The Baum-Connes conjecture via localisation of categories. Topology, 45(2):209-259, 2006. 1
[Whi36] Hassler Whitney. Differentiable manifolds. Ann. of Math. (2), 37(3):645-680, 1936. 3.3
[Whi55] Hassler Whitney. On singularities of mappings of euclidean spaces. I. Mappings of the plane into the plane. Ann. of Math. (2), 62:374-410, 1955. 3.3

[^0]: ${ }^{1}$ The factor $\frac{1}{\operatorname{ord}(g)}$ in (2.3) was missing.

