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Abstract

In the present paper we develop a framework in which questibquantum ergodicity
for operators acting on sections of hermitian vector busdieer Riemannian manifolds
can be studied. We are patrticularly interested in the catzcafly symmetric spaces. For
locally symmetric spaces, we extend the recent construcicsilberman and Venkatesh
[Fl] of representation theoretic lifts to vector bundles.
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1 Introduction

1.1 We start with a brief review of the basic set-up for the stuflguantum ergodicity of the
Laplace operator acting on functions on a Riemannian mi@hif@iven a closed Riemannian
manifold we can consider a sequence of normalized eigetifunscof the Laplace operator
associated to a sequence of eigenvalues tending to infifating the square of the absolute
value of each of these functions we obtain a sequence of pildipaneasures on the manifold.
Note that the space of probability measures is weakly cot@acwe can ask for a description
of possible limit points of this sequence. In particularthe framework of quantum unique
ergodicity, we want to know under which circumstances thei@ unique limit point, namely
the measure determined by the Riemannian metric.

1.2 The natural way to study these limit measures is to lift thena icanonical way to a
probability measure (called microlocal lift) on the unithgpe bundle of the manifold. One
way to define a microlocal lift is as follows. Each eigenfuoctdefines a positive state on the
algebra of zero-order pseudodifferential operators. IEin@ose a positivity-preserving operator
convention (a right inverse of the symbol map), then thigestaduces a positive linear form on
the algebra of symbols. Since the latter is the algebra aftions on the unit sphere bundle this
linear form is just a measure on this bundle. Applying thia equence of eigenfunctions we
get a bounded sequence of measures on the unit sphere b&inglémit point of this sequence
is called a microlocal lift. It is now an interesting obseiga thatthe set of microlocal lifts is
independent of the choice of the operator convention

1.3 The unit sphere bundle carries a natural dynamical systemgeodesic flow. It could be
considered as the classical counterpart of the quanturaraydtscribed by the Laplace opera-
tor. The second basic observation is now #dhaticrolocal lifts are invariant with respect to the
geodesic flow The combination of this observation with additional imf@tion about mixing
properties of the geodesic flow is the starting point of a fineestigation of the shape of these
microlocal lifts. In particular, under the assumption,tttfee geodesic flow is ergodic (with
respect to Lebesgue class), it is natural to ask wether tbetacal lift is just the (normalized)
Riemannian measure. This is the basic question of quantgadieity. We refer to the intro-
duction of [T] for a detailed description of the current krlegdlge. Here we only mention the
following. A manifold (or rather its Laplacian) for whichéhRiemannian measure is the only



microlocal lift is called quantum uniquely ergodic (QUEudhick and SarnaK][5] conjectured
that negatively curved manifolds are always QUE. Recehthgenstrauss[]3] has proved an
arithmetic version of this conjecture for certain arithirodtyperbolic surfaces.

1.4 The details of the construction of microlocal lifts and therification of the two basic
properties are not at all complicated. It is the purpose ctiBe[2 to give these arguments in
a more general setting. In fact, if the Riemannian manifalthes equipped with a hermitian
vector bundle with connection, then we can replace the Icaptgperator on the manifold by
the Laplace operator on this bundle. Then we are looking fioratocal lifts associated with
sequences of eigensections of the operator. The new palrdtithe algebra of symbols is now
the algebra of sections of the endomorphism bundle of theowbandle lifted to the unit sphere
bundle. In particular, this algebra can be non-commutafiles essentially leads to a change
of terminology, the main instance of which is the replaceno¢probability measures by states.

The set of microlocal lifts is now a set of states on the algefrsymbols. We show in Propo-

sition[Z.] that this set is naturally associated to the geoen@ata. The connection induces a
natural lift of the geodesic flow to a flow of automorphismstwé tlgebra of symbols, and we
verify in Propositior] 2]3 that each microlocal lift is invant.

Finer quantum ergodicity questions are left untouchedisyghper and will be a topic of future
research. Note that in the bundle case one cannot expect¢haanal lift to be unique (even
for negatively curved manifolds). Let us consider e.g. thsecof differential forms which
can be decomposed into closed and coclosed ones. Assowidkethis decomposition is a
natural splitting into two parts of the pull-back of bundkddferential forms to the unit sphere
bundle. If we consider e.g sequence of closed eigenforras, tthe associated microlocal lifts
are annihilated by the projection onto the subbundle cpaeging to coclosed eigenforms. The
microlocal lifts associated to sequences of coclosed farahsive in the opposite way.

1.5 In Section B we start to develop a theory of representatiearttic lifts for the case of a
compact locally symmetric spa€&G/K. Representation theoretic lifts serve as a substitute for
the microlocal lifts discussed so far. They are designedke tnto account the rich structure
available in the locally symmetric situation. While defingithout any reference to pseudodif-
ferential operators it turns out (see the final Secfjon 5)ttey determine the microlocal lifts.
Thus representation theoretic lifts should be consideseéfaned microlocal ones.
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Our guide here is the recent paper by Silberman and Venkfgshhere the notion of a repre-
sentation theoretic lift was introduced. The Laplace ojgeren functions o \G/K commutes
with a whole algebra of differential operators coming frdm tenterz (g) of the universal en-
veloping algebra of the Lie algebra G Therefore the spectrum of the Laplace operator can
be further decomposed with respect to this algebra. Foistgdhe fine structure of the lifts
associated with the locally symmetric situation it seemserappropriate to consider instead
of a sequence of eigenfunctions of the Laplacian the cooretipng sequence of embeddings of
spherical unitary representations®fnto L?(I"\G). Following earlier constructions for special
cases due to Zelditch and Lindenstrauss, Silberman andatestk associate to such a sequence
of embeddings a representation theoretic lift.

Our main observation is that one can apply an analogous gwoeef one wants to study se-
quences of eigensections of bundles of the fONG xk Vy, where(y,Vy) is a unitary represen-
tation ofK.

1.6 Letusremark at this point that locally symmetric spacedgtiér rank do not have strictly
negative curvature. In fact, they do not have the QUE-ptypefined in[ I3 as follows from
the results of Sectiofj 5. In fact it turns out that the micealdifts associated to conveniently
arranged sequences ($eé 3.4) of embeddings of princijes sepresentations are supported on
subsets of the unit sphere bundle of Lebesgue measure zero.

Thus the definition of QUE must be modified in the case of highek locally symmetric
spaces. Replacing microlocal by representation thedsievhich live onl"\ G one can define
an (arithmetic) QUE-property which has recently been \eiin many cases (see the forth-
coming second part of][7]).

1.7 We now describe our construction of the representatiorrétiedifts which is presented in
detail in Sectiorf]3. We follow quite closely the approach[#jf Pur contribution is essentially
an adaptation of arguments and language to the non-comweusétiation in the case of non-
trivial K-types.

The main part of the spectrum of the Laplacian (and the otiwllly invariant differential op-
erators) orL?(M\G xk Vy) is caused by embeddings of unitary principal series reptagens
(associated with the minimal parabolic subgroug@dinto L2(M\G). These pricipal series rep-
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resentations come in natural families. l@t= KAN be an Iwasawa decomposition Gfand

M := Zx (A) be the centralizer oA in K. Then a family of unitary principal series representa-
tions (sed 3]4) is determined by an elemert M. The family parameter runs through, the
dual of the Lie algebra oA.

1.8 We fix nowk and therefore a family of principal series representatiof® consider a
sequence of embeddings of members of this family lcR@™\G) with parameter tending to
infinity approximately along a regular ray (se€] 3.5nin Such a sequence contributes to the
spectrum inL2(M\G x W) if and only if [Vk @ WM # {0}. In the function casey(= 1) this
condition is equivalent tx = 1, i.e., the corresponding principal series represemtstare
spherical. In contrast to the spherical case the dimendidvk®\,]M can be greater than one
in general.

To anyT € [W ®Vy]'v' there is an associated vectpt of “y-spherical elements” in the corre-
sponding principal series representation 3.4). Applthe embedding of a principal se-
ries representation intc("\G) to Yt we get an eigensectidiyr) € L2(I"'\G x V) denoted
by &(r). This section defines a stadgy,) on the algebr&("\G x End(Vy)), which can be
identified with the subalgebra éf-invariants inC(I'\G) ® End(Vy). Recall that we considered
a sequence of embedded principal series representatimhsherefore we get a sequence of
such states. We are interested in “lifting” the limit stati@s state oC(I"\G) ® End(Vy) which

is not a prioriK-invariant.

To this end we construct for each individual embedcﬁragfunctionalcin& (se€[3.7]7 for the
definiton) on the smaller algeb@ (M\G) ® End (V) (the C¥ stands forK-finite functions).
After choosing an appropriate subsequence of embeddieg®thesponding sequence of func-
tionals converges to a functional which extends to a statb@algebraC(I"\G) ® End(Vy) (see
Proposition3.70). The states which are obtained in this araythe representation theoretic
lifts in question. Their restriction to the subalgebrakeinvariants inC(I"\G) ® End(Vy) coin-
cides with the set of limit states associatediqy, ) discussed above (see Proposifion|3.16). On
the one hand, this justifies the name “lift". On the other hahd representation theoretic lifts
contain additional microlocal information.

1.9 ltis not apriori clear that a representation theoretiadifa limit point of states associated
to a sequence of functions If(M\G) ® V. In Theoren[3:34 we show that this is indeed the
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case.

The space of embeddings of a fixed unitary representatidd ioto L2("\G) is acted on by
Hecke operators. In particular, fixing a Hecke operator andmaplex number, it makes sense
to talk about eigenembeddings with this given eigenvalue.

If the representation theoretic lift is associated to a fpwii eigenembeddings (for fixed Hecke
operator and eigenvalue), then we show further that theeseptation theoretic lift is a limit
of states associated to a sequence of functiong(fi\G) ® Vi, which are also eigenfunctions
of the Hecke operator with the given eigenvalue. Such a ptppéayed a fundamental role in
the study of the quantum ergodic properties[in [2]. In pal&g it implies restrictions on the
support of the representation theoretic lifts.

1.10 In Section}# we investigate various invariance propertfab® representation theoretic
lifts. Note that the group acts onl"\G by right multiplication. This induces an action Af

by automorphisms o€(I'\G) ® End(Vy). The main result of the section (Theorém] 4.4) now
states thaall representation theoretic lifts are invariant with resg to the action of AThis

is the locally symmetric counterpart of the invariance @& thicrolocal lifts with respect to the
geodesic flow.

We show further (Propositidn 4.2) that the microlocal lgteM-invariant and, when associated
with T € [Vk ® M, are essentially states on the smaller algefifa\G xu End(Vr)), where
the irreducibleM-representation spasg C Vy is given by{< v,T > |v € V}. In particular, a
pair of sequences of eigensections which corresponds tio afpiaearly independent’s has a
disjoint pair of sets of representation theoretic liftsview of the comparison result (Corollary
b.2) between representation theoretic and microlocal difitained in the final Sectidh 5 this is
another manifestation of the non-uniqueness of the micedldts mentioned at the end pf1.4.

2 Microlocal lifts

2.1 LetM be a closed smooth manifold with Riemannian megritet E — M be a complex
vector bundle of dimensiamwith hermitian metridh and metric connectionl. By A = [1*[J we



denote the Laplace operator. With the smooth sect@h#, E) as domain it can be consid-
ered as an unbounded essentially selfadjoint operatoreHlilbert space.?(M, E) of square
integrable sections d&.

2.2 Lettt: SM— M denote the unit sphere bundle of the cotangent bufithé — M. Let
WDO' (M, E) denote the algebra of classicidgh-order pseudodifferential operators bh Then
we have an exact sequence of algebras

0— WDO }(M,E) — WDO(M,E) > C*(SM, p*End(E)) — 0,
wheresis the principal symbol map.
A linear continuous right-invers@p : C*(SM, p*End(E)) — WDOP(M, E) of sis called a quan-
tization or operator convention. The algebra pseudo-diffeal operators is here topologized
as algebra of continuous operators@®H M, E). In general, a quantization does not extend con-
tinuously to a magC(SM, p*End(E)) — B(L?(M,E)). But using a construction of Friedrichs
(see [B], p. 142) we can choose the quantizatiprsuch that it preserves positivity, i.e. if

a € C”(SM, p*End(E)) is a non-negative element in tl@&-algebraC(SM, p*End(E)), then
Op(a) > 0 in theC*-AlgebraB(L?(M, E)).

2.3 Consider e&C*-algebraA and a dense subalgebfa C A. A linear mapo : A, — C is
called positive ifa > 0 implies thato(a) > 0.

If 0: A, — Cis positive ands(1) < o, theno extends uniquely to a continuous linear positive
mapo : A — C. A state orAis a normalized (i.ec(1) = 1) linear positive map : A— C.

2.4 Lety e C®(M,E) be aunit vector in?(M, E). We then consider the linear map
oy :C*(SM, p*End(E)) — C

given by
oy(a) =< y,0p(a)y > .

Since the quantization preserves positivity,is a positive. Sincey(1) < « it follows thatoy
extends to a continuous positive linear functional

Oy : C(SM, p"End(E)) — C..
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In fact, we have the uniform estimate

loyll < [[op(L)]] -

2.5 We now consider the countable set of functionalsSa§8M, p“End(E)) of the formay,,
wherey is a normalized eigenvector &. This set is a bounded set in the Banach dual of
C(SM, p*End(E)) and therefore weak-precompact. By C C(SM, p*End(E))* we denote
then non-empty set of all its accumulation points.

Proposition 2.1 The set V is independent of the choice of the positive quitiizmap and
consists of states.

Proof. LetV’ denote the set defined with another chdigéof the quantization. For the first
assertion it suffices to show thdtc V’. We consideo € V. Then there exists a sequence of
normalized eigenvectors, of A to eigenvalued, — o« such that for alf € C*(SM, p*End(E))

we haveo(f) = lim < W, 0p(f)Y, >. Note thatOp(f) —0p'(f) € YDO~(M,E). But for

A c WDO (M, E) we have lim< i, AU >= 0 since\, — . This shows that

o(F) = lim < Y, 0p/(F)n > .

We conclude that € V'.

We now show thaV consists of states. It is clear that the elementg afe positive. We must
verify normalization. Note thadp(1) = 1+ A, whereA ¢ YDO*(M,E). We conclude that
o(1) =1. O

2.6 Using functional calculus we can define the strongly cordusuigroup of unitary operators
exp(itv/A). One can show that these are Fourier-integral operatorte tNat the conjugation by
a Fourier-integral operator preserves pseudodifferenpierators. Letf € C*(SM, p*End(E)).
Then in principle one can calculate the symbol of

exp(it vA)Op(f) exp(—it VA)



using the calculus of Fourier-integral operators. Here wefgp a simpler way by comput-
ing the infinitesimal action which amounts to a calculatidrtr® symbols([iv/A,0p(f)]) €
C*(SM, p*End(E)). Let X € C*(SM, TSM) denote the generator of the geodesic flow. Note
that we have an induced connectionwind(E) which we will also denote by.

Lemma 2.2 We have §iv/A,0p(f)]) = Ox f.

Proof. This is a local computation and independent of the choich@fjuantization.

We consider a point itM and choose geodesic normal coordinated_et (x,§) denote the
corresponding coordinates M. We want to compute([i+/A,0p(f)]) in the point(0,§)

with ||€|| = 1. We further trivializeE using radial parallel transport. We now use the standard
guantization. In these coordinates the full symbol/d is given by||€|| +O(x?). The principal
symbol of a commutator of pseudodifferential operatorsvsmby the Poisson bracket of their
symbols. Therefore we get (on the sphéjé|| = 1})

s([ivD,0p()])(0,8) = £'dy, F(0,£) .

This implies the assertion in view of the choice of the triiziations, since'dy, is the value of
the generator of the geodesic flom(8t¢§). O

2.7 Using the connectionl on p*End(E) we can lift the geodesic flowp; on SMto a flow
@, on p*End(E). We denote the action of this flow on sections by the same sirifti® have
%n:o&)t(f) = [x f. Thus the algebr&(SM, p*End(E)) comes with a flow of automorphisms
®;. By LemmdZ] we have

s(exp(it vA)Op( ) exp(—it vVA)) = d(f) .

Proposition 2.3 Every limit stateo € V is invariant under this flow.



Proof. Let ), be a sequence of normalized eigenvecto tf eigenvaluea,, such that for all
f € C*(SM, p*End(E)) we haveo(f) = lim < Y, 0p(f)Pn >. We compute

o(f) = lim <yn,0p(f)Pn>
= lim < exp(—it VA)Wn, ,0p( ) exp(—it VA) P >
= lim < Yn, exp(it vVA)Op( f) exp(—it VA) Py >
= lim < Y, Op(s(exp(it VA)Op( ) exp(—it VA))) P >
= o(dy(f)).

2.8 A state on the algebra of functio@SM) is the same thing as a probability measure on
SM. A statec on the algebr&(SM, p“End(E)) determines and is determined by a pairM),
wherep is a probability measure d&8M, M € L*(SM, p*End(E), 1) gives a measurable family
of states on the local algebras, a(d ) = p(trM f). Heretr : p*End(E) — C denotes the local
trace andckrMf € L*(SM, ).

If o is invariant under the flowb;, thenpiis invariant under the geodesic flow, aids invariant
under its lift ®;.

2.9 The picture which we have described so far is a simple gdmatign of a well-known

construction (se€][6][J1][]9]) from the case of the triiiaindleE = M x C to arbitrary bundles
E — M. Itis by now an interesting piece of mathematics to obtaimemigformation about the
size of the set of limiting stat&and the properties of its elements under ergodicity assomgpt
on the geodesic flowp.

3 Representation theoretic lifts

3.1 LetG be a semisimple Lie groufK C G be a maximal compact subgroup®@fandl” be
a cocompact torsion free discrete subgroup. Then we candsribe locally symmetric space
M ="\ G/K with a Riemannian metric given by the Killing form & A unitary representation
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(Y, Vy) of K gives rise to a vector bundi&y) := N'\G xk Vy overM which comes with a natural
connection. In this situation we can consider the limitetats discussed in Subsectjpn 2. But
because of the locally-symmetric structure we can perforaiiaed construction which we will
describe below.

3.2 We consider th€*-algebra of functiong\, := C(I'\G) ® End(Vy). Let (1,H) be an irre-
ducible unitary representation G By H_.., we denote the distribution or smooth vectorg-of
Let& € [H* )" be an invariant distribution vector. Equivalently, we cansider as an embed-
dingH, — C*(I'\G). We shall assume thtis normalized such that this embedding extends
to a unitary embeddingl — L%(I'\G). Let @ U € Ho ®V,. We haveg(g) € C*(I'\G) ® .
Then we can define a functiona},y on A, by

Tl )= [ <EO(0). [(TOEW)Tg) > @)

_ &
If l@l] =1, thenoy, , is a state.

3.3 Let@y e Hs and f € Ay :=C%("\G) ®End(Vy). Furthermore, legy denote the Lie
algebra ofG andX € g. We setX f(g) = f(gX) := %n:of(g exp(tX)).

Lemma 3.2 We have

Proof. This follows from the fact that th&-action onl"\ G preserves the measure. O

3.4 LetG=KAN, g=k(g)a(g)n(g), be an Iwasawa decomposition, andVet= Zx (A) C K
be the centralizer oA in K. Let (K, V) be an irreducible unitary representation\bf

Let a denote the Lie algebra &&. The choice ok gives rise to a family of unitary princi-
pal series representatiof®* H**), A € a*, of G. In the compact picture we set* :=
L2(K xm Vk). Then(m*(g)@) (k) = @(k(g~k))a(gtk)*—P. Here forac A andA € ac :=
a ®g C the symbola® is a short-hand for exp(log(a))). Moreover,p € a* is given by
p(H) = %TrAd(H)hv H € a, wheren denotes the Lie algebra bf.
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By Frobenius reciprocity we ha€” (K xu Vi) @ WK 22 [Vk @ WM. Explicitly the isomor-
phism is given by evaluation atd K. ForT € [k @ M we letwr € [C*(K xm V) @ WK
denote the corresponding element.

3.5 The Weyl groupN(G,A) := Nk (A) /M acts by reflections oa*. A pointA € a* is called
singular, if it is fixed by some element of the Weyl group. Qttise it is called regular. Let
S(a*) := (a*\ {0})/R" be the space of rays irf. We have a corresponding decomposition of
S(a*) into singular and regular rays. Using the metfit induced by the Killing form org we
will identify S(a*) with the unit sphere im*.

3.6 For0# A € a”let[A] € S(a*) denote the corresponding ray.

Definition 3.3 We define the closed subsg¢k). C S(a*) as the set points ¢ S(a*) such that
there exists a sequenég : H"» — 2(I'\G) of unitary embeddings such tha} — c and

3.7 Let CK(K xm Vi) C C?(K xm Vk) denote the subspace Kffinite vectors. Let us fix a
regular point € L(K).

Definition 3.4 We call a sequendg, : H*» — L2(I"\G) of unitary embeddings I-conveniently
arranged ifAp — o, [\y] — |, all A, are regular, and for allg,y € CK(K xy k) ®Vy the
sequence of functionacbfp'jLp converges weakly.

3.8
Lemma 3.5 For each regular le L(K) there exists a I-conveniently arranged sequence.

Proof. Consider a sequendg : H** — L2(I'\G) of unitary embeddings such that — o
and[Ap] — |. By taking a subsequence we can assume thatalte regular.

For fixed, ¢ € CK(K xnm Vk) ®V, the bounded se{tofp”wm € N} of functionals oA is weak-
x-precompact. Therefore, by taking a subsequence, we camasﬂaalaa"qJ weakly converges.
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Finally note thaiCK (K xy Vk) ®Vy is a vector space with a countable base. Therefore by a
diagonal sequence argument we can again choose a subsequehdhabfp“w converges for

all @ W e CX(K xm Vi) @V m

3.9 Note that theC*-algebraC(K /M) acts naturally on the Hilbert spaté(K xm V) ®V
by multiplication on the first factor. The subalgel2&(K /M) of K-finite functions acts on
CK(K xm Vi) @W.

We consider a reguladre L(k) and let€, be al-conveniently arranged sequence as in Definition
B.4. Byaoyy We denote the weak limit of the sequence of functiort11§[§J for fixed @,
CK(K xm V) @W.

Note that if||@|| = 1, thenog is a state.

3.10 Lethe CE(K/M) be a real-value&-finite function.

Lemma 3.6 We have

Proof. Let P = MAN C G be the minimal parabolic subgroup@f ForA € a. we consider the
representatior, (man) := k(m)aP— of P onV. We identifyC®(K xy Vi) ® V, with C*(G xp
Vk,) ®Vy by restriction fromG to K. This restriction intertwines th&-actiont- on C*(G xp
Vk, ) ®Vy by left translations with the action* (see[3.4) o™ (K xm Vi) ®W.

Let g = £d a®n be the lwasawa decomposition, andXet= X, + X, + X, denote the corre-
sponding decomposition &f € g. Furthermore, fok € K let X(k) := Ad(k—1)X and Iwasawa
decompos& (k) = Xe(Kk) + Xa(K) +Xq (K). If @€ C*(G xpVy, ) ®Vy, then we have

(MX)Pk) = XK
= @(kX(k))
= @(kX(k)) + @(kXa(K)) + (kX (K))
= QkX(K)) — (P —A)(Xa(k)) (k)
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Let now f € Ay ando, Y € CK(K xm k) ®Vy. Note that the action of preserveK-finite
vectors. Sinc& > k— (p—A)(Xa(K)) =: px p—a(K) € Cis aK-finite function onK /M, we see
thatk — @x (k) 1= @(kX(k)) is K-finite, too.

By Lemma[3.R we have

&n &n &n
0= GT[L(X)(w(f) +0¢7T[L(X)Lp(f) +0W(x f)=0.
This implies
&n En I S &n
Opxﬁix_ntp,w(f)+0(p7vaix_nw(f) N (Op 0w (F) T pu(F)

Anll Anll

—~ G (1) = Oy (F) = Gy (X T)) .

The right-hand side of this equation converges to zemtaads to infinity. We set

px 1 (K) == —i lim pxjﬁ(k) )

n—oo [An]]

W span finite-dimensional spaces. Simggy

The sequences of functioms, . », @andp
An]

i X,i
. . . _ " TAnl ’
is conjugated linear ipwe conclude that

Oy ou(f) —Oqpyeu(f)=0.

Let 7 C CK(K/M) denote the algebra of functions generated by the constactiéins and the
functionspy |, X € g. Then we have shown that for &llc ¥ we have

It remains to show thaf = CK(K/M). It suffices to show thay = C(K/M), where 7 is

the closure off in Cgx(K/M). The algebrar contains the identity and separates points. This
can be seen as follows. Using the lwasawa decomposition teaeito | € g*. Then we can
write px (k) = [(Ad(k~1)X) = Ad(K) (D) (X). If px (k1) = px.(kz) for all X € g, then we have
Ad(ky) (1) = Ad(kp)(I). Sincel is regular, this implies that 'k, € M, hencekqM = koM. We
conclude by the Stone-Weierstrass theorem that Cr(K/M). O

Corollary 3.7 For @, € CX(K xu V) ® Wy and he CX(K/M) we have
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3.11 Let Ayx C A denote the subalgebra Bf-finite elements. Letp c CK(K xm Vi) @ Vy
andy € C™(K xm Vk) ®Vy. Then we havep =3 ¢ Yy in the sense of distributions, where
Wy € CX(K xm V) @V is the component ol in the prisotypic subspace @@~ (K xy V).
ForF C K we setyr = > uer Y. Itis easy to see that fdr € Ak the sumy, ¢ Ogy,(f) is
finite. In fact, there exists a finite set= F (@, f), independent o) (but which depends o@
andf), of K-types which can contribute to this sum.

Definition 3.8 We define the functional,, : Ay x — C by

Opu(f) =3 Opu,(f).

peK

3.12 Now we fixT € [V« @M such that|T|| = 1 and letyr € CK(K xm V) @V, as in[3.1.
Furthermore, we lebr € C™%(K xu Vk) ®Vy be the distributiorp— < T,@(1) >.

Definition 3.9 We define the functionalr on A,k by

OT = Oyr 3y

Proposition 3.10 The functionabt extends continuously to a stade on A,.

Proof. We choose a sequenége CK(K /M) such that fj|? is ad-sequence located abL In
particular we require thatf;| 2 ,y) = 1 for all j. Note that lim | fj|?@r = &r and

IFUT L2k v v, = 1 -

Let f € Ayx. We consider the finite subsét= F (1, f) C K. Then we can write
or(f) = O¢T,5T,F(f)
= imGye 11,24 (F)
- Ii?]OwT7‘fj‘2LpT< )

= Ii'}n Ofyr. fyr ()

—h

using[3.} in the last step. Sincyej W, fjur is a state the assertion follows.
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3.13 Recall thator may depend on the choice of the sequeficeLet us fixk € M, y € K,
andT € [Vk @ WM with || T|| = 1.

Definition 3.11 For each regular le L(k) we define the set¥,k,y,T) of states on {of the
form ot for the various I-conveniently arranged sequenggsThese states are called repre-
sentation theoretic lifts.

3.14 Letort €V(l,K,y,T) be associated to tHeconveniently arranged sequerige We again
consider thé-sequencdj € CX(K/M) as in the proof of Propositidn 3]10.

" . . &n;
Proposition 3.12 There exists a sequence of integefs-no such thairjf?flJT fr weakly con-
verges taot as j— oo.

Proof. Let f € Ay k. We haveor (f) = limp o™ (f), where the finite subsét:=F (Y, f) C

~ Yr,0rF
K only depends oif andf. We estimate
&n &n &n &n
05 50 (1) =08y tyur (D] < 105 5 (=08 oy ()]

&n &n
+|0¢T7|fj\2lUT(f) - ijllJTyfquT(f)| '

We choose; > j sufficiently large such that (by Corollafy B.7)

En] En] 71
1O 112w (F) = Our o (=177

Since lim[| f; |2qJT]F = Ot r inside a finite dimensional vector space we conclude that

En,

&
lim|o (f)—crquJT?ijIJT

Wr.orF (f)[=0.

3.15 |If T is arithmetic (this is automatic & has higher real rank add C G is irreducible),
then we can consider Hecke operators. Heétc H denote the subset 6finvariant vectors in
a representatiofi, H) of G. If h € G is in the commensurator &F, i.e. " :=hrh~ andr are
commensurable, then we define the following opera@itoH"™ — H'.

Definition 3.13 Th(®) = 3 yier /(rarm TUY) TUM) .
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3.16 We can apply the Hecke operaf®to [H*,]" and toC*(I"'\G) ® V. Letn € C and
assume tha,, is al-conveniently arranged sequence of unitary embedditfgd — L2(I'\G)
for some regulal € L(k) such thafl,&,, = n&, for all n. Let ot denote a limit state as [n 3]12.
Foru € L2(I'\G) ® V4 let o, be the functional or, given by

()= [, < urQ) Frgurg) > .

Theorem 3.14 There exists a sequence@C”(IM\G) ® Vy of eigenvectors ofqlto the eigen-
valuen such that|uj[| 2\ g)v, = 1 @andor is the weak limit of the sequence of statigs

Proof. We choose the sequenggas in Propositioft 3.12 and set
Uj = &n (fjbr) -

Since|| fjUr|l 2k ey, = 1 @ndén; is an unitary embedding, the sectiopis a unit vector.
It is a Hecke-eigenvector s.inéaj iS so. O

3.17 LetA} C A,be the subalgebra éf-invariants, i.e. the algebra of sections of the bundle of
endomorphisms of the vector bundeG xx Vy — I'\G/K. For each unit vectare L2(I'\G x
\y) we consider the stat®, as defined if 3.16.

Let& : HY" — L2("\G) be a unitary embedding. Then we have a unit vebtor ) € L2(M\G x
Vy) = [LAM\G) @ V,]¥. Let f € A As in[3.T1 the functionap — oﬁJw(f) extends to distri-
butionsq.

3

Lemma 3.15 We haveawT’éT(f) = Og(yr)(F)-

Proof. LetF = F(yr, f) C K be the finite subset df-types as in3.71. We may assume thRat
contains the triviaK-type. Note that

V007N B = [ v(lo R (khar = g
K K

17



In fact, the integral definesk-invariant vector inH*:* ®Vy which by Frobenius reciprocity is
determined by its value atd K. In view of the definition oBr this evaluationi§ € [V ®Vy]’v'.

We compute

% (1) = Oy age (1)
= [ <EWN(ro). FroE(dre) (o) >
= o SEONTO v f TGN E(Bre) (o) >
= [ J <YK EWN Ok . FTok) E(Bre) Tk ) >
= ol SEWDTO) e O kB (Tg) >
= Lol H(rEWn) (o) >
= Ojryr(f)
= Ogyn)(f)

3.18 Letl € L(k) be regular anavt € V(I,K,y, T) associated to thieconveniently arranged
sequence of unitary embeddings

Proposition 3.16 The sequence of stateg, ;) on A{} has a weak limit which is given by the
restriction ofat from A, to A*,(

Proof. This is a consequence of Lemma 3.15. O

4 Invariance of representation theoretic lifts

4.1 Throughout this section we fix a unitaKrepresentatiorty,Vy) and an elemerk M.
We further fix a regulal € L(k), andT € [Vk ® WM such thaf| T|| = 1.

18



We want to study the invariance properties of the states/(I,k,y, T) constructed in Section

B.

4.2 We first consider the action of the subgrddp Note thatk acts on the&C*-algebraA, .=
C(M\G) ®End(Vy) by

K(f @A) (g) = (foyK)AyK D)(gk) , feC(M\G),AcEnd(V)keK . (4.1)

By duality, (4.1) induces K-action on the set of states 4.

4.3 We considefT as an element dfomy (Vi,Vy), wherek is the dual representation &f
Then din{Vi) TT* € End(Vy) is anM-equivariant projection. Le®r ;= 1®dim(Vi)TT* € A,
be the corresponding projectionAy.

Proposition 4.2 Leto e V(I,K,y,T).

(1) ois M-invariant w.r.t. the action induced by (#.1).

(2) Foreach fe Aywe haves(PrfPr) =o(f).

Proof. LetA € a*, and letf : HX* — L2(I"\G) be a unitary embedding. Using that
Wr,8r € H2 @M and (id @ dim(Vi) TT*)3r = 3t

3 A 3 —ad o0
we see tham%T,aT = Oy 5 for allme M, and thaprTjT(Pr f)= GLUT,fST(f) forall f € Al .

Taking the limit over anl-conveniently arranged sequerigewe obtain the first assertion and
that

o(Prf)=o0(f). (4.3)
A stateg on aC*-algebra is a real functional, i.e., it satisf@s *) = o(f) for all f. Using (4.B)
we obtain
o(Pr fPr) = o(fPr) = o(Pr f*) = o( ) = o(f) .
SinceAJx C Ayis dense this finishes the proof of the proposition. O
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4.4 The proposition tells us that € V(I,k,y,T) is given as a pull back of a stat€ on the
smaller algebr@TA{}"PT which is in fact isomorphic t€(IN'\G x v End(Vk)).

It seems to be likely that® is actually a trace o€(I"\G xy End(Vz)). Up to now we do not
know how to prove this property. It would imply thatis determined by a probability measure
onl"\G/M alone. By Theorem 4.4 below this measure would be rghvariant.

4.5 The right-regular representation & on C(I'\G) induces an action o6 by automor-
phisms on th&€*-algebraA, = C(I'\G) ® End(Vy). Dually, we obtain &-action on the states
of Ay. The main goal of this section is to prove the following higtenk analog of Proposition
P.3. Recall the Iwasawa decompositi@n= KAN (sed 3}4).

Theorem 4.4 The statew € V(I,K,y, T) are A-invariant.

Let&,: HM — L2(M\G) be al-conveniently arranged sequence of unitary embeddingsgiv
rise too. Following the approach of][7], Section 4, we will exhibitertain family of differential

operatorsD(A), depending polynomially oA € a*, such thatD()\n)crEJ“T 5 = 0. In the limit

n — oo this will imply A-invariance ofo.

4.6 For any real or complex Lie algebtdet « () be its universal enveloping algebra over
C. The algebrapy := u(g) ® End(Vy) ® End(Vy)°PP acts by differential operators ofy =
C®(M'\G) ®End(Vy):

(X®A®B)(f®C):=Xf®ABC, Xecu(g), AB,CcEnd(Vy), feC?(I\G).

The subspace d-finite eIementsA;‘jK = A;° NAyk is invariant w.r.t. this action. Therefore we
have an action ob, on the space of functionals GX@TK given by

Da(f):=o(D'f), (4.5)
whereD — D! is the anti-automorphism @b, induced by

Xel)'=-X®1e1, Xcg, (loA®B)!'=12B®A ABCcEnd(\).

We are mainly concerned with the subalgebra
Ly:=U(n®a)®End(W)°P? C U (g) ®End(Vy) @ End(Vy) PP = Dy .
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There is a linear maypyy, : ¢ (g) — £y which sendsX®Y € u(n@a) ® U (¢) = u(g) to
X@Y(Y) € u(n®a)®End(Wy)°PP = L.

If [is aLie algebraandi : | — C is a Lie algebra homomorphism, then there is a corresponding
translation automorphismy, : 7 ([) — @ (I) characterized byy(X) = X+ ¢(X)-1,X e L.

4.7 Letm be the Lie algebra dfl. We choose a Cartan subalgebram. Thenh :=t®ais
a Cartan subalgebra gf Let W be the Weyl group ofic in gc. LetP € u (). We viewP
as a complex-valued polynomial g = ti @ ag. Its differentialP is a polynomial orh¢. with
values inhc = (hp)*. Letp € it* C hg be an extremal weight o, i.e., itis the highest weight
of K w.r.t. some positive root system bin mc.

Proposition 4.6 Fix P € « (h)¢ of degree< d € No. Then there exists a-valued polynomial
Jp ona} of degree at most & 2 such that for all unitary G-map&: H<* — L2(I'\G)

(ayoTu (P/(iN) + Jp(iN)) 0y, 5, = 0.

Here P(iA) € hc is viewed as an element of(h). Thenty, (P'(i\)) € u(h) C u(g), and g,
can be applied.

The Weyl groupAp of tc in mc considered as subgroup bt fixes the element c br.. It
follows thatP'(iA) € b%b. Since all extremal weights &f are conjugated b\, the element
Ty (P'(iA)) € u (h) does not depend on the choiceppf

4.8 The proof of Propositiofi 4.6 starts in the next paragraphaé® will then occupy the
remainder of this section. Here we argue agjin [7], Corolaéy Lemma 4.7 and Corollary 4.8
in order to conclude that Propositipn 4.6 implies Theofe# 4.

We first assum® e « (h)Ye to be homogeneous of degreeFix f ¢ AJx- Then by Proposition
A8 the equation

. . t

En / |)\n )) \]P(l)\n)) )

o T P +—"1] f)]=0
wTvéT((qu “K( (HMH a1

holds for alln. There is a finite dimensional subspate” AV such that

iA Jp(idn) \'
foi=(aqyot (P’( ”))+ )fev
" ( o [[Anl [Anfld-
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for all n. Moreover, f, converges itV to (qyo Ty, (P/(il )))t (f). We obtain

(ayotu (P(il))or) () =0.
Since this is valid for allf, and eactP € u (h)¥e can be decomposed into homogeneous com-

ponents, we conclude thatis annihilated by all the operatoggo 1y, (P'(il ), P € u (h)e.

For eachH ¢ a there exists an elemeRt € « (h)e such that?/,(il) = H (see [J], Lemma
4.7). Here the regularity df is crucial. Thengyot,, (P (il)) = H® 1. It follows thato is
a-invariant, and hencA-invariant. This proves Theorem }1.4 assuming Proposjiiign 4 O

4.9 Letk, ¥ be the representations dualkpy. Letv € af. The algebrau (g) acts on the
tensor product representatibif @ H". We letA® B € End(Vy) ® End (V) °PP act onvy @V

by B" ® A, whereB' € End(V%) is the dual operator d € End(V). We obtain an action of
Dy on (HEV@W) @ (H @W). If v € ia*, then we have a canonical antilinear identification
R:H"Y @V, — HK.—v ®Vy. Itis a direct consequence of Leminal 3.2 gnd| (4.5) that,

if D(RU®@) = IZqu ®Re@, then DGEW: Zoalwim. 4.7)
Here& : H*Y — L2(N\G), y € HSY @V, o€ HX, @\, D € 2.

4.10 The composition of € ag. with the projection oh © a — a defines a Lie algebra homo-
morphismv : n @ a — C. Lett, be the corresponding translation automorphisnuéh @ a)
(seg[4.5). Themy ® idgaq(y,)ore IS @n automorphism ofy, which will be denoted by, as well.

Lemma 4.8 Forv € a, W € HS ™V, T € M@ WM, and De £, we have

Tp(D)(W®or) = (DY) ® 7 .

Proof. It suffices to check the assertion for the generaXoesa, Y € n, andB € End(Vy)°PP of
Ly. ForD = B the assertion holds by definition while fbr=Y it follows from Y&t = 0. Now
let X € a andpe H& V. Then

(X37,@) = —(31,X¢) = —(T, X@(1)) = —(T, (v+p)(X)9(1)) = —(v+p)(X)(0r,9) -
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HenceXdr = —(v+p)(X)dr and

Turp(X) (W@ O7) = (XP) ® 87 + Y@ (X3r) + (V+p) (X) (W@ 3T) = (XYP) @3 .

4.11 Letu (u, resp.) be the sum of positive (negative) root spacegciw.r.t. a chosen
positive Weyl chamber ihr := it® a. We arrange this choice such that C u. Then we have
a decomposition

gc=udbhcdu.

It induces decomposition
u(g) =u(h) @ (ua(g)+u(g)w) .

Let p be the projection onto the first summand. Note thas equivariant w.r.t. the adjoint
action of hc on « (g). By u=9(l) we denote the subspace of elementzudf) of degree at
mostd. The following lemma is essentially Lemma 4.3 gf [7].

Lemma 4.9 If Z € u=9(g)bc, then Z— p(Z) € u (n)u=92(a)u (¥).

Proof. Observe that
(utt (g)+ u(g)w)’e C uu(g)u.
If Z € u=9(g)bc, then byhc-equivariance op

Z—p(2) euust?(ghuc uwust?(h)u ) . (4.10)

Using thathc C ac @ mc, u C nec @mg, me C Ec, andu C ne @ €c one shows inductively that
the right hand side of (4.110) is containedkir(n) z =9=2(a)u (€). This proves the lemma. O

4.12 Letz(g) be the center ofi(g). If v € ag, thenz (g) acts orH%~V by a certain character
denoted byxkv. Recall the definition ofy, : ¢ (g) — £y from B.6. ForZ € z(g) we consider

the elementpy(Z) :=ay(p(Z)) € £y andby(Z) := qy(Z — p(2)) € Ly.
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Lemma 4.11 If g € [HE ™V @ %]X, then we have for all Z z(g)

(pV(Z> —Xkv(Z)+ by(Z)) P=0.

Proof. LetW € «(g), Y € tandy € [HS Y @ V4K, Then we havey(WY) = gy(Y)q,(W) and
WYL= WeY(-Y)y=WayY) )= (g )Wel)y.

It follows by induction that X © 1) = qy(X)y for any X € u (g) = u (n® a)u (¢). Applying
thistoX =Z € z(g) we obtain

0=((Z®1) — Xxn(Z)) Y = (ay(Z) — X v (2)) W= (Py(Z) +By(Z) — Xk n(Z)) W .
Combining Lemm# 4.11 with Lemnja 4.8 we obtain

Corollary 4.12 If € [HE V@WK and T € [k @M, then we have for all Z z(g)

(Tp(PY(Z)) = Xiw(Z) + Tv1p(by(2))) (W@ 37) = 0.

4.13 Let py € b7, be given bypy(H) = 3TrAd(H),. Thenp,:=p,—p €it* C h. The
compositiont,, o p maps the algebra(g) isomorphically ontou (h)e. In fact, this map is the
celebrated Harish-Chandra isomorphismPIE « (h)e, then we denote its preimage under
the Harish-Chandra isomorphism By. The roots oft¢ in mc Nu form a positive root system
of tc in me. Letpk € it" be the highest weight af with respect to this system of positive roots.

Lemma 4.13 Fix P € u (h)"¢ of degree< d. Then ther,-valued polynomialdon ag. defined
by

Ip(V) :=Turp(Py(Zp)) — Xk v(Zp) + Turp(by(Zp)) — Ayo Ty (P'(V))
has degree at most-d2. Here the expression,q 1y, (P'(v)) is interpreted as in Proposition

8.

Proof. If P has degred, thenZp € w (g)=9. Now Lemma[4] implies that — 15 (by(Zp))
has degree at modt— 2.
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We now analyze the first two terms appearing in the definitibdpo It is well-known that
Xkv(Zp) = P(v—p¢— ). The reader may verify this by computing the valye Zp(1)),
wherew € V is the highest weight vector anie H*~V (compare the proof of Lemnija 4.8).
LetSe @ (). Choosing a basis 04 consisting of weight vectors w.r.t. the actiontofie may
view qy(S) € U (a) ® End(Vy)°PP as a diagonal matrix whose entries are polynomialsion
The matrix entry corresponding to a weightc it* is then given by the polynomial. > X —
S(x+ ;). Therefore the matrix entries @f(Zp) = qy(p(Zp)) areag > x+— P(X—py + 1), and
the ones oftyp(pPy(Zp)) — Xk.v(Zp) are given byx — P(X+Vv —p¢+ 1) —P(V—p¢— k). The
Taylor expansion oP atv — p; — | Yields

P(X+V —pi+ ) =PV = pe—He) = P'(V = pe— He) (X b + ) + Qu(X+ Hi + )

whereP'(v — p; — ) is viewed as a linear form ohy. and the polynomiaQ, is formed by
partial derivatives oP atv — p; — ik of degree at least 2. Therefore the degre@gfv.r.t. v
is bounded by — 2. Using that the degree of— P'(v — p; — ) — P/(v) is also bounded by
d — 2 we conclude that the same is true for

V= P(X4-V = pr+ i) — P(V =P — k) = P/(V) (X4 W+ ) -
It follows that the degree of they-valued polynomial

V= T\H_p(py(ZP)) - XKN(ZP) - qVOTUK(P/(V>)

is at mosid — 2. Since we have already estimated the degree-efty.,(by(Zp)) the proof of
the lemma is now complete. O

4.14 It is now easy to finish the proof of Propositipn]4.6. Jetbe as in Lemm#& 4.13. Put

A €a*andT € W ®VV]K. We form the corresponding elements, &7 in Hi’g‘ ®Wy. Then we

have by Corollary 4.72

(ayoTu (P'(iIN) +Jp(ir)) (R(wr) ©61) = 0.

Now we apply formula[(4]7).
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5 The relation of the microlocal and representation theoreic
lifts

5.1 The discussion in the present section is completely patall§]], Sec. 5.4. Its goal is to
provide the link between the microlocal and the represemaheoretic lifts. The main result

is Corollary[5.P.

5.2 Letg=t®p be the Cartan decomposition. Then we can write the cotarigerdle of
M:=T\G/KasT*M =T\G xk p*. We letrt: '\G x p* — T*M denote the projection.

The Killing form of g restricts to a metric op which isK-invariant. It induces a Riemannian
metrics ol M andT*M. We further get an orthogonal decompositos a®a*. This induces
an embedding* — p*.

Let SMC T*M denote the unit cosphere bundle. Therestricts to a map

q:M\Gx S(a*) — SM.

5.3 We now consider a unitary representation K. It gives rise to a bundlé (y) := M\ G x
\y overM. Letp: SM— M be the projection. We consider the identification

MG x a*) xVy— g op*V(y)
defined such thatl"g,A,Vv) corresponds to the poiifitg,v] € V(y) in the fibre ofg" o p*V (y)
over(I'g,A).
In a similar manner we obtain an identification

M\G x S(a*) x End(Vy) — q* o p*End(V(y)) -

54 Let f € C(SM p*End(Vy)). Theng*f € C(I'\G x S(a*)) ® End(Vy). ForA € S(a*) we
definefy € A to be the restriction off* f to M'\G x {A}. The mapf — f, is @ homomorphism
of C*-algebras

Iy : C(SM, p*End(V,)) — A, .
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5.5 We now consider a regular elemént L(k) C S(a*) andT € [V ® WM with | T|| = 1.
Let &, be anl-conveniently arranged sequence giving rise to a reprasenttheoretic lifto €
V(I,K,y,T).

We have a sequence of normalized vecy®it) € L?(M'\G x V). These sections are in fact
smooth. They give rise to functionatg ;) on C(SM, pEnd(Vy)) (see[ZH§). After taking a
subsequence we can and will assume that the seqagpge) converges weakly to some limit
state, which we denote bymicro here. It is the microlocal lift associated with the family of
eigensection&n(Wr) € L?(M\G xk V) considered in Sectidp 2.

On the other hand we have function&f§T 5 ON Ay defined in[8]1). In fact, the same discus-
sion as if 3.1]11 shows that fé-finite f andg one can extendfw(f) to distributiong).

5.6 Leto(1) denote a quantity which tends to zeroraends to infinity.

Theorem 5.1 Assume that £ C(SM, p*End(Vy)) is such thatf, is K-finite. Then we have

O, () = 0 5, () +0(1).

Corollary 5.2 We hav&micro = I;(0). In particular, Omicro is supported on @\G x {I}).

5.7 The idea of the proof is to verify the theorem on the symbolgsafudodifferential oper-
atorsD(d,U,b) defined below. This is the contents of Proposifionh 5.3. Thersihowomicro

is supported omg(F\G x {I}) (Lemma[5.6). Finally we use that these symbols span a dense
subspace oE(q(M\G x {I}), p‘End(Vy)) (Lemma[5]7).

5.8 We start with the construction of the family(d,U,b) of zero order pseudodifferential
operators oi€”(M,V(y)), whereU € w(g)=% andb € C*K(I'\G) ® End(W). LetQ € z(g)
be the Casimir operator. Note th@t+i is invertible onL?(M,V(y)) so that we can define
(Q+i)~9/2 by the spectral theorem. We identlf§(M,V (y)) with the subspace d€-invariants
[L2(M\G) @WK, Letlk : L3(M\G) @V, — L2(M,V(y)) denote the orthogonal projection. It is
given by
Ik(1)(Fg) = [ VIOT(Fgh.
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Then we define

D(d,U,b) :=lx oMpo (RU) ®1) o (Q+i)"%?
HereR(U) denotes the right-regular actiondfon C*(I'\G), andMy, is the multiplication by
b, i.e. (Mpf)rg) =Db(rg)f(ro).

The compositiork o Mpo (R(U) ® 1) is a differential operator of ordet d. Since(Q +i)~9/2
is a pseudodifferential operator of orded we conclude thabD(d,U,b) is a pseudodifferential
operator of order zero.

5.9 In this paragraph we compute the symboDdid,U,b). We consider the symmetrization
mapsym: Synip) — U (g) defined on the degraesubspace by

1
SymXe -+ @X) = = zsxc(l)---xo(r) :
" oe
It extends to an isomorphism of vector spaces
® := mult(sym id) : Symip) @U (¢) — U(g) .

This map preserves the filtrations by degree on both sidesteTdxists a uniquely determined
ue S(p)dandr € S(p)=9-1®U(¢) such thatb(u®1+r)=U. Note that — d(u® 1) acts as
a differential operator of order d — 1.

We can now compute the symboligfo Mpo (R(U) ® 1). At the point[F'g,A] € SM=T\G x
S(p*) itis given by

S(D(d.U,b)(Fg.\) = | uA< " )y(b(T gyl & End()

P

Note thats(D(d,U, b)), is K-finite.

Proposition 5.3 The assertion of Theorem b.1 holds true for the functionseofdrm $D(d,U, b)) €
C”(SM, p*End(W)).
5.10 We know already that

< &n(Yr),D(d,U,b)n(Pr) >= Ogn(yr) (S(D(dvlJ?b))) +0(1).
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In order to prove the proposition we rewrite the left hanesidote that

En(Wr)(FgQ) = (AZ +c(K))&n(Wr)(TQ) |

whereé, € Hf’g‘“ determines\, andc(k) € C is some constant independentrof Therefore
we have

(Q+1)"Y2&n(Wr) = (N3 +c(K) +1)Zen(Wr) .
We thus get

<&n(Pr), (d,U,b)E
— (24 c(K) i) 92 /r\ / < En(Wr)(TQ), Y()b(TgK)En(Wr) (TgkU) >

= ol +) @2 [ < &r)(Te) vbIrgovk) e (MUY @ 1 ) Fg) >
whereUK:= ad(k)(U) andt:= 1t<iMn,

5.11 We now use thaf, (T(k) @ y(k))37 = W in order to write
MUY eDpr = (MU [ () syh)er
= | oy Ut Y 2 15
Now we use that
(M(U¥) @ 1)8r = U\ )8r +[[Anl“0(1)
It follows that

(MUY @ 1y = [ U ™) (1) @ y()37 + [Aa]“0(1)

Our final rewriting is

/r\G/ / < &n(Wr)(Fg), y(K (T gk y(Ku(1k ™M En((m(h) @y(h))3r)(Fg) > +o(1) .
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5.12 We now consider the right-hand side of the equafioh 5.1. We ha
o 5, (D(d,U,b)))

= | < Elr)(F9).SD.U.b)(Tg En(ar)(Tg) >

= oSl < WORA T, VBTG Ut )2 1)) >

= o e = EnTe) ik birak iy ) () @yik)ar) () >
= oS < BODre. v gy Hut Nn(mhy ey (e > (65)

The Propositiofi 513 now follows from the comparison[of](&aadl (5.5). O

5.13
Lemma 5.6 We havesupp(Omicro) C q(IM'\G x {I}).

Proof. Let f € C(SM, p*End(V(y)) be such thaf; = 0. We must show thade, ) (f) = 0(1).

Let D(G,y) denote the algebra @-invariant differential operators o8 x Vy. Note that the
operators oD(G,y) descent td \G xk V. The right-regular representation induces a homo-
morphismt : U(g)X — D(G,y) such that(t(U)f)(g) := f(gU). If we composer with the
symmetrization map (s¢e b.9), then we get a linear map

D : Synip) — D(G,y) -
Let p e Syn¥(p)K. Then the symbol of the corresponding degdegifferential operator is given
by the functions(D(p)) € C(SM, p*End(Vy)), S(D(p))([F'g,A]) = p(A). There is a Harish-
Chandra homomorphisy, : D(G,y) — U(a) ® Endm(Vy) (see [#]). We identifyU (a) =
Synia) naturally. FoD € D(G,y) we have ([#], Lemma 2.13)
DEn(WT) = &n(Wo, (D) (An)oT) -

In addition, theEndy (Vy)-valued polynomiahg > A — p(A)id — ®y(D)(A) has degree at most
d—1 ([A], Lemma 2.6). It follows that

D<p)zn(wT) = p()\n)zn(wT) + ”)\n”do(l) :
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Let now f € C(SM, p*End(V(Y)). Then we have

P10 r)(f) = g, yr) (S(D(P)) f) +0(1) .

If p(l) = 0, thenag, ;) (s(D(p)) f) = o(1). We now argue as if]7]. Ifi = 0, then it can be
approximated by products of the foistD(p))hwith p(l) = 0 (here one has to use the regularity
of | again). This implies the lemma. O

5.14 Sending[lg,|] to F'gM identifiesq(l"\G x {lI}) with the double quotienf\G/M. In
order to finish the proof of Theorem b.1 it remains to verifg fhllowing lemma.

Lemma 5.7 The symbols(®(d,U, b)) with d > 0, b € CX(MN'\G) ® End(V), and U € u=9(g),
span a dense subspace il \G x {I}), p*End(V(y))) = C(I'\G xm End(W)).

Proof. We have &K-bundle
MG x K/M x End(Vy) — N'\G xmEnd(Vy)

given by (Mg, kM, ®) — [Fgk y(k-1)®y(k)]. Sincel is regular, the function& u(I"fl),
u e Sp), span a dense subspaceC{K/M) (see the proof of Lemmp_3.6). Therefore the
functions('g, kM) — b(l‘g)u(l"il) span a dense subspaceXdf \G x K/M) ® End(Vy). It fol-
lows that theK-average§ g— [, y(K)b("gk)y(k) ~Lu(l "71) span a dense subspac&dl \ G xu
End(W)). O
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