Abelian Varieties and the Fourier Mukai transformations (Foschungsseminar 2005)

U. Bunke *

April 27, 2005

Contents

1 Abelian varieties 2
1.1 Basic definitions 2
1.2 Examples of abelian varieties 3
1.3 Line bundles 4
1.4 Projectivity 7
1.5 The dual variety and the Poincare bundle 8
1.6 The universal property 10
2 The Fourier-Mukai transformation 10
2.1 Cohomology of Line bundles 10
2.2 The cohomology of the Poincaré bundle 11
2.3 The Fourier-Mukai transformation 13
2.4 Principally polarized abelian varieties and $S \widetilde{S(2, \mathbb{Z}) \text {-action }}$ 14

[^0]
1 Abelian varieties

1.1 Basic definitions

1.1.1 We consider an algebraically closed field k.

Definition 1.1 An abelian variety is a group object (X, m, i, e) in the category of algebraic varieties over k such that X is in addition complete.

Here $m: X \times X \rightarrow X$ is a group law, $i: X \rightarrow X$ is the inverse, and $e: \operatorname{spec}(k) \rightarrow X$ is the identity
1.1.2 In scheme theoretic terms, X is an integral, separated scheme of finite type over $\operatorname{spec}(k)$ such that the structure morphism $X \rightarrow \operatorname{spec}(k)$ is proper (what in this case is the addition condition of being universally closed).
1.1.3 It suffices to require the existence of m and a two sided identity.
1.1.4 The group law is automatically commutative. This follows from the following observation. We consider the conjugation map $C: X \times X \rightarrow X$ given (in the language of points by $C(x, y):=m(x, m(m(y, i(x)))))$. Let $\tilde{C}_{n}: X \rightarrow \operatorname{End}\left(\mathcal{O}_{e} / m_{e}^{n}\right)$ be the induced map on the nth infinitesimal neighborhood of the identity. Now $\operatorname{End}\left(\mathcal{O}_{e} / m_{e}^{n}\right)$ is affine, and any map from a complete variety to an affine variety is locally constant. From this we conclude that $\tilde{C}_{n}(x)=$ id for all n and $x \in X(k)$. This then implies that $C=\mathrm{pr}_{2}$ since X is connected.
1.1.5 X is automatically smooth. In fact, using left translation on shows that the sheaf of relative differentials $\Omega_{X / \operatorname{spec}(k)}$ is locally free.

1.2 Examples of abelian varieties

1.2.1 Let $k=\mathbb{C}$ and consider a k-vector space V together with a lattice U. Then $X=V / U$ is an analytic abelian group. In general it does not come from an algebraic variety.

Theorem 1.2 X comes from an algebraic variety iff there exists a positive definite hermitean form H on V such that its imaginary part $\operatorname{im}(H)$ is integral on $U \times U$.
1.2.2 The idea of the proof is as follows. On constructs a line bundle on X with Chern form $\operatorname{im}(H)$. It is fixed by an Appel-Humbert datum (α, H). The pull-back of this bundle to V is trivial. One tries to construct sections downstairs by averaging sections upstairs. The positive definiteness of H implies the convergence of the theta series. They provide enough sections of L for an embedding of X into a projective space.
1.2.3 Let C be a compact Riemann surface of genus g. We consider the space $V:=$ $H^{0}\left(C, \Omega_{C}^{1}\right)$ of holomorphic one forms on C. It has $\operatorname{dim}(V)=g$. We define a hermitean form on V by

$$
H\left(\omega_{1}, \omega_{2}\right):=2 i \int_{C} \omega_{1} \wedge \bar{\omega}_{2}
$$

Let $U \subset V$ be the image of $H^{1}(C, \mathbb{Z})$ under the natural injective map

$$
H^{1}(C, \mathbb{Z}) \rightarrow H^{1}(C, \mathbb{C}) \rightarrow H^{1}\left(C, \Omega_{C}^{1}\right)
$$

Then the imaginary part of H is the intersection form on U and therefore integral.

Let V^{*} be the \mathbb{C}-linear dual of V, and $U^{*} \subset V$ be the dual of U. The complex torus V^{*} / U^{*} comes from an abelian variety $J(C)$, the Jacobian of C.
1.2.4 Let us fix a base point c_{0} of C. Then we define the map $\Phi: C \rightarrow J(C)$ such that $\Phi(c)$ is the class of the linear map $V \ni \omega \mapsto \int_{\gamma} \omega \in C$, where γ is a path from c_{0} to c. The map does depend on the choice of the path, but the class is independent. We have an induced map

$$
\tilde{\Phi}: \underbrace{C \times \cdots \times C}_{g \times} \rightarrow J(C)
$$

given by $\tilde{\Phi}\left(c_{1}, \ldots, c_{g}\right)=\Phi\left(c_{1}\right)+\cdots+\ldots \Phi\left(c_{g}\right)$. This map has degree g ! and represents $J(C)$ birationally as a quotient of C^{g} by the symmetric group S_{g}.
1.2.5 Let now k be an algebraically closed field. The Jacobian $J(C)$ of a complete smooth curve C over k is an abelian variety. It is birational to the quotient pr: $C^{g} \rightarrow J(C)$ by the symmetric group. The group law depends on the choice of a positive divisor a on C of degree g. Roughly it can be described as follows. For $x \in J(C)$ the preimage $\tilde{x}:=\operatorname{pr}^{-1}(x)$ can be considered as a positive divisor of degree g. Given $x, y \in J(C)$ there exists a unique positive divisor in the one-dimensional system $\tilde{x}+\tilde{y}-a$ which represents $x+y$.

1.3 Line bundles

1.3.1 Let X be an abelian variety over k. For $x \in X(k)$ we have a left translation $T_{x}: X \rightarrow X$.

Definition 1.3 We define the subgroup

$$
\operatorname{Pic}^{0}(X):=\left\{L \in \operatorname{Pic}(X) \mid T_{x}^{*} L \cong L \forall x \in X(k)\right\}
$$

We have an exact sequence of groups

$$
0 \rightarrow \operatorname{Pic}^{0}(X) \rightarrow \operatorname{Pic}(X) \rightarrow N S(X) \rightarrow 0
$$

where $N S(X)$ is called the Neron-Severi group of X. We will see later that $\operatorname{Pic}^{0}(X)$ is the group of closed points of an abelian variety \hat{X}, the dual of X.
1.3.2 We shall need the following technical result.

Proposition 1.4 (Refined seesaw principle) Let X be a complete variety, Y be a scheme, and $L \rightarrow X \times Y$ be a line bundle. Then there exists a unique closed subscheme $Y_{1} \rightarrow Y$ such that
(1) The restriction $L_{\mid X \times Y_{1}}$ is isomorphic to $\operatorname{pr}_{2}^{*} M$ for some $M \in \operatorname{Pic}\left(Y_{1}\right)$.
(2) If $f: Z \rightarrow Y$ is a morphism of schemes such that $(\mathrm{id} \times f)^{*} L \cong \operatorname{pr}_{2}^{*} K$ for some $K \in \operatorname{Pic}(Z)$, then f factors through Y_{1}.
1.3.3 The idea of the proof is a follows. First one reduces to the case that $Y=\operatorname{spec}(A)$. The subset $F:=\left\{y \in Y(k) \mid L_{\mid X \times y}\right.$ trivial $\}$ is closed. One checks that if $L_{\mid X \times y}$ is not trivial, then Y_{1} does not meet a neighborhood of y. Therefore F is the set of closed points of Y_{1} and it remains to discuss the scheme structure.

One shows that there is an A-module M which gives $\left(\mathrm{pr}_{2}\right)_{*}(L)$ universally (after all possible base changes). For $y \in F$ we see that $\operatorname{dim}_{k}\left(M / m_{y} M\right)=1$. After further localization $M \cong A / a$ for some ideal a. Finally one checks that Y_{1} is the subscheme corresponding to a.
1.3 .4

Theorem 1.5 (Theorem of the cube) Let X, Y be complete varieties, Z be a connected scheme, and $L \rightarrow X \times Y \times Z$ be a line bundle such that $L_{\mid x_{0} \times Y \times Z}, L_{\mid X \times y_{0} \times Z}$, and $L_{\mid X \times Y \times z_{0}}$ are trivial for points $x_{0} \in X, y_{0} \in Y$, and $z_{0} \in Z$. Then L is trivial.
1.3.5 The idea of the proof is the following. Let $Z^{\prime} \subset Z$ be the maximal subscheme over which L is trivial. We have $z_{0} \in Z^{\prime}$ so that $Z^{\prime} \neq \emptyset$. Since Z^{\prime} is closed it suffices to show that Z^{\prime} is also open. This is achieved by a local consideration. Essentially one must extend a trivialization of $L_{\mid X \times Y \times z_{0}}$ to a neighborhood of z_{0}. The obstruction lies in $H^{1}\left(X \times Y \times z_{0}, L_{\mid X \times Y \times z_{0}}\right)$ By the Kuenneth formula, completeness of X, Y, and triviality of $L_{\mid X \times Y \times z_{0}}$ we have an injection
$H^{1}\left(X \times Y \times z_{0}, L_{\mid X \times Y \times z_{0}}\right) \rightarrow H^{1}\left(X \times y_{0} \times z_{0}, L_{\mid X \times y_{0} \times z_{0}}\right) \oplus H^{1}\left(x_{0} \times Y \times z_{0}, L_{\mid x_{0} \times Y \times z_{0}}\right)$.
By our assumptions the trivialization can be extended to $X \times y_{0} \times Z$ and $x_{0} \times Y \times Z$. This implies that the obstruction vanishes.
1.3.6 Let $f, g, h: Y \rightarrow X$ be maps from a variety to an abelian variety and $L \in \operatorname{Pic}(X)$.

Corollary 1.6 We have

$$
(f+g+h)^{*} L \cong(f+g)^{*} L \otimes(f+h)^{*} L \otimes(g+h)^{*} L \otimes f^{*} L^{-1} \otimes g^{*} L^{-1} \otimes h^{*} L^{-1}
$$

1.3.7 In order to show this we apply the theorem of the cube to

$$
M=m^{*} L \otimes m_{12}^{*} L^{-1} \otimes m_{13}^{*} L^{-1} \otimes m_{23}^{*} L^{-1} \otimes \operatorname{pr}_{1}^{*} L \otimes \operatorname{pr}_{2}^{*} L \otimes \operatorname{pr}_{3}^{*} L
$$

over $X \times X \times X$.
1.3.8

Theorem 1.7 (Theorem of the square) Let $L \in \operatorname{Pic}(X)$. Then we have for all $x, y \in$ $X(k)$ that

$$
T_{x+y}^{*} L \otimes L \cong T_{x}^{*} L \otimes T_{y}^{*} L
$$

1.3.9 The idea of the proof is as follows. We apply 1.6 to $X=Y$ and $f:=$ const $_{x}$, $g:=$ const $_{y}$ and $h:=$ id.
1.3.10 Let $L \in \operatorname{Pic}^{0}(X)$.

Lemma 1.8 On $X \times X$ we have $m^{*} L \cong \operatorname{pr}_{1}^{*} L \otimes \operatorname{pr}_{2}^{*} L$.
1.3.11 This identity holds on $x \times X$ and $X \times x$ for all $x \in X(k)$. Then we apply the seesaw principle.
1.3.12 Let $L \in \operatorname{Pic}(X)$.

Definition 1.9 We define $\phi_{L}: X \rightarrow \operatorname{Pic}(X)$ by

$$
\phi_{L}(x)=T_{x}^{*} L \otimes L^{-1} .
$$

1.3.13 One checks that ϕ_{L} factors over $\operatorname{Pic}^{0}(X) \subset \operatorname{Pic}(X)$.
1.3.14 We have $\phi_{L \otimes M}=\phi_{L}+\phi_{M}$.
1.3.15 The map $\phi_{L}: X(k) \rightarrow \operatorname{Pic}^{0}(X)$ is a homomorphism.

1.4 Projectivity

1.4.1 Let $L \in \operatorname{Pic}(X)$.

Definition 1.10 We define

$$
K(L):=\operatorname{ker}\left(\phi_{L}\right) .
$$

1.4.2 $K(L) \subset X$ is Zariski closed.
1.4.3 Let D be an effective divisor on X and $L=\mathcal{O}(D)$.

Theorem 1.11 The following assertions are equivalent.
(1) $H(D):=\left\{x \in X(k) \mid T_{x}^{*}(D)=D\right\}$ is finite (the equality is equality of divisors).
(2) $K(L)$ is finite.
(3) The linear system $|2 D|$ has no base points and defines a finite morphism $X \rightarrow \mathbf{P}^{N}$.
(4) L is ample.
1.4.4 As an illustration we discuss the implication (4) $\rightarrow(2)$. If $K(L)$ is not finite, then let $Y \subset K(L)$ be the connected component of 0 . It is an abelian variety of positive dimension, and $L_{Y}:=L_{\mid Y}$ is ample. We have $T_{y}^{*} L_{Y} \cong L_{Y}$ for all $y \in Y$. It follows that $m^{*} L_{Y} \otimes \operatorname{pr}_{1}^{*} L_{Y}^{-1} \otimes \operatorname{pr}_{2}^{*} L_{Y}^{-1}$ is trivial. We pull-back by (id, i) : $Y \rightarrow Y \times Y$ and obtain that $L_{Y} \otimes i^{*} L_{Y}$ is trivial. Now L_{Y} and $i^{*} L_{Y} \cong L_{Y}^{-1}$ are ample. This is impossible.
1.4.5 Let X be an abelian variety.

Theorem 1.12 X is projective.

The idea of the proof is the following. Let $U \subset X$ be an open affine subset containing 0 and $D=X \backslash U$. Then $H(D)$ is a closed subgroup and U is stable under $H(D)$. It follows that $H \subset U$. Since $H(D)$ is complete and U is affine it follows that $H(D)$ is finite. We now apply the conclusion $(1) \rightarrow(4)$ of the Theorem 1.11.
1.4.6 Let X be an abelian variety. It admits an ample line bundle L. In this case $K(L)$ is finite.

Definition 1.13 A polarized abelian variety is a pair (X, L) of an abelian variety and an ample line bundle.

Any abelian variety admits a polarization.

1.5 The dual variety and the Poincare bundle

1.5.1 Let (X, L) be a polarized abelian variety. Then we define

$$
M:=m^{*} L \otimes \operatorname{pr}_{1}^{*}(L)^{-1} \otimes \operatorname{pr}_{2}^{*}(L)^{-1}
$$

There exists a maximal subscheme $\mathcal{K}(L) \subset X$ such that $M_{\mid \mathcal{K}(L) \times X}=\mathrm{pr}_{1}^{*}(P)$ for some $p \in \operatorname{Pic}(\mathcal{K}(L))$. Maximal means, that for any morphism $f: Z \rightarrow X$ such that $(f \times$ $\left.\operatorname{id}_{X}\right)^{*} M=\operatorname{pr}_{1}^{*} P$ for some $P \in \operatorname{Pic}(\mathcal{K})$ the map f factors over $\mathcal{K}(L)$.
1.5.2 $\mathcal{K}(L)$ is a subgroup scheme. Therefore it acts freely on X. We have $\mathcal{K}(L)(k)=$ $K(L)$ as groups.
1.5.3

Definition 1.14 The dual abelian variety \hat{X} is defined by the scheme theoretic quotient

$$
\hat{X}:=X / \mathcal{K}(L)
$$

The canonical morphism $\pi: X \rightarrow \hat{X}$ is finite, surjective and flat.
1.5.4 Here are some details of the construction of the quotient. The construction is done locally. So let G be an affine group scheme $G=\operatorname{spec}(R)$ over k, which acts on $V:=\operatorname{spec}(A)$. The action is given by $\mu^{*}: A \rightarrow R \otimes_{k} A$. We consider

$$
A^{G}:=\left\{a \in A \mid \mu^{*}(a)=1 \otimes a\right\}
$$

Then one verifies that $\operatorname{spec}(A) \rightarrow \operatorname{spec}\left(A^{G}\right)$ has the required properties of a quotient.
1.5.5 If $\operatorname{char}(k)=0$, then $\mathcal{K}(L)$ is the group scheme corresponding to the finite group $K(L)$. In particular $\hat{X}=X / K(L)$.
1.5.6 If $k=\mathbb{C}, X=V / U$ and L corresponds to a Hermitan form H with im (H) integral, then we have $\hat{X}=V / U^{\perp}$, where $U^{\perp}=\{v \in V \mid \operatorname{im}(H)(v, U) \subset \mathbb{Z}\}$. Then we have $U \subset U^{\perp}$ and $K(L) \cong U^{\perp} / U$.
1.5.7 We want to define the Poincare bundle $P \in \operatorname{Pic}(\hat{X} \times X)$ such that $\pi^{*} P=M$.

Since $\mathcal{K}(L) \times\{0\} \subset X \times X$ it acts freely with quotient $\hat{X} \times X$ there is a one-to one correspondence of $\mathcal{K}(L) \times\{0\}$-equivariant sheaves on X and sheaves on $\hat{X} \times X$.

We must lift the action of $\mathcal{K}(L) \times\{0\}$ to M. We use the language of S-valued points of $\mathcal{K}(L)$. Let the subscript ${ }_{S}$ denote objects obtained by base extension. For $x \in \mathcal{K}(L)(S)$ we have a $\tilde{P} \in \operatorname{Pic}(S)$ such that $\left(M_{S}\right)_{x \times X_{S}} \cong \operatorname{pr}_{1}^{*} \tilde{P}$. This is equivalent to $T_{x}^{*} L_{S} \cong L_{S} \otimes \tilde{P}$

We calculate

$$
T_{(x, 0)}^{*} M_{S} \cong m_{S}^{*} T_{x}^{*}\left(L_{S}\right) \otimes \operatorname{pr}_{1}^{*} T_{x}^{*}\left(L_{S}\right)^{-1} \otimes \operatorname{pr}_{2}^{*}\left(L_{S}\right)^{-1} \cong m_{S}^{*} \tilde{P} \otimes \operatorname{pr}_{1}^{*}(\tilde{P})^{-1} \otimes M_{S} \cong M_{S} .
$$

This isomorphism is uniquely fixed by its restriction to $X_{S} \times{ }_{S} 0_{S}$. We have a canonical isomorphism

$$
\left(M_{S}\right)_{\mid X_{S} \times 0_{S}} \cong L_{S} \otimes L_{S}^{-1} \otimes V_{S} \cong V_{S},
$$

(identifying $X_{S} \cong X_{S} \times{ }_{S} 0_{S}$ on the right-hand side), where $V:=\mathcal{O}_{X} \otimes_{k} \mathcal{O}_{0} / m_{0}$. Note that T_{x} acts canonically on the trivial bundle V_{S}. We define the isomorphism $T_{(x, 0)}^{*} M_{S} \cong M_{S}$ such that it induces this canonical action on V_{S}.

Definition 1.15 We define the Poicaré bundle $P \rightarrow \hat{X} \times X$ as the quotient of M by the action of $\mathcal{K}(L) \times 0$ constructed above.

1.6 The universal property

1.6.1 The universal property of the Poincaré bundle can formally be phrased as follows. We consider the so-called Picard functor B on the category of schemes S over k which associates to each S the set $B(S)$ of isomorphism classes of line bundles L over $X \times S$ such that $L_{\mid 0 \times S}$ is trivial and $L_{\mid X \times s} \in \operatorname{Pic}^{0}(X)$ for all $s \in S(k)$.

Theorem 1.16 The dual abelian variety represents the functor B, and the Poicaré bundle $P \rightarrow X \times \hat{X}$ induces a natural isomorphism $\operatorname{Map}(\ldots, \hat{X}) \cong B(\ldots)$.
1.6.2 We indicate the proof. We consider $M:=\operatorname{pr}_{13}^{*} P \otimes \operatorname{pr}_{12}^{*}(L)^{-1}$ over $X \times S \times \hat{X}$. Then we let $\Gamma_{S} \subset S \times \hat{X}$ be the maximal subscheme on which M is the pull-back of a bundle over Γ_{S}. Then we show that Γ_{S} is the graph of a well-defined map $f: S \rightarrow \hat{X}$. Then $\left(\operatorname{id}_{X} \times f\right)^{*} P \cong L$. The uniqueness assertion of the universal property follows from the construction. To show that Γ_{S} is a graph we must show that $\mathrm{pr}_{2}: \Gamma_{S} \rightarrow S$ is an isomorphism. This is a longer argument.

2 The Fourier-Mukai transformation

2.1 Cohomology of Line bundles

2.1.1 Let X be an abelian variety and let $L \in \operatorname{Pic}^{0}(X)$.

Proposition 2.1 If for some $p \geq 0$ we have $H^{p}(X, L) \neq 0$, then L is trivial.
2.1.2 The idea of the proof is the following. First one shows that $H^{0}(X, L) \neq 0$ implies that $L=\mathcal{O}_{X}$. To this end we employ that then also $H^{0}\left(X, i^{*} L\right) \neq 0$ and $i^{*} L=L^{-1}(i$ is the inversion on X).

Assume now that L is not trivial. Then we consider the composition

$$
X \xrightarrow{x \mapsto(x, 0)} X \times X \xrightarrow{m} X .
$$

It induces the identity on cohomology of line bundles. On the other hand by the Kuenneth formula since $m^{*} L \cong \operatorname{pr}_{1}^{*} L \otimes \operatorname{pr}_{2}^{*} L$ we have

$$
H^{k}\left(X \times X, m^{*} L\right) \cong \sum_{i+j=k} H^{i}(X, L) \otimes H^{j}(X, L) .
$$

This shows that the higher cohomology vanishes, too

2.2 The cohomology of the Poincaré bundle

2.2.1 We consider the Poincaré bundle $P \rightarrow X \times \hat{X}$. Let $g=\operatorname{dim}(X)$.

Theorem 2.2 We have

$$
R\left(\mathrm{pr}_{2}\right)_{*} P=k(\hat{0})[-g],
$$

the skyscraper sheaf at $\hat{0}$ with fibre $\mathcal{O}_{\hat{X}, \hat{0}} / m_{\hat{0}}[-g]$.
2.2.2 Here is the idea of the proof. Since $P_{\mid X \times \hat{x}}$ is trivial if and only if $\hat{x}=\hat{0}$ we see first that $P_{X \times \hat{x}} \in \operatorname{Pic}^{0}(X)$ for all $\hat{x} \in \hat{X}$, and second that $R\left(\mathrm{pr}_{2}\right)_{*} P$ concentrated at $\hat{0}$. We perform the base change for $\operatorname{spec}\left(\mathcal{O}_{\hat{X}, \hat{0}}\right) \rightarrow \hat{X}$. Then $R^{i}\left(\operatorname{pr}_{2}\right)_{*} P_{\hat{0}}$ has finite length over $\mathcal{O}_{\hat{X}, \hat{0}}$ and is calculated by a complex

$$
0 \rightarrow K_{0} \rightarrow \cdots \rightarrow K_{g} \rightarrow 0
$$

of free finitely generated $\mathcal{O}_{\hat{X}, \hat{0}}$-modules.

It is then a general fact (since $\mathcal{O}_{\hat{X}, \hat{0}}$ is local regular, of dimension g), that $H^{i}\left(K^{\cdot}\right) \cong 0$ for $0 \leq i<g$.

Finally one calculates $H^{g}\left(K^{\cdot}\right)$. Since this is the essential calculation for this presentation we give more details then elsewhere. We have an exact sequence

$$
0 \rightarrow K_{0} \rightarrow \cdots \rightarrow K_{g} \rightarrow N \rightarrow 0
$$

of $\mathcal{O}_{\hat{X}, \hat{0}}$-modules with $N=R^{g}\left(\mathrm{pr}_{2}\right)_{*} P_{\hat{0}}$. The same argument as above gives the exact sequence

$$
0 \rightarrow \hat{K}^{g} \rightarrow \cdots \rightarrow \hat{K}_{0} \rightarrow K \rightarrow 0
$$

where $\hat{K}_{i}=\operatorname{Hom}_{\mathcal{O}_{\hat{X}, \hat{0}}}\left(K_{i}, \mathcal{O}_{\hat{X}, \hat{0}}\right)$. Since $P_{\mid X \times \hat{0}}$ is trivial we have

$$
0 \rightarrow k \rightarrow K_{0} / m_{\hat{0}} \rightarrow K_{1} / m_{\hat{0}} \rightarrow .
$$

It follows that $K / m_{\hat{0}} \cong k$ and $K \cong \mathcal{O}_{\hat{X}, \hat{0}} / a$ for some ideal $a \subset m_{\hat{0}}$.

We shall see that $a=m_{\hat{0}}$. To this end we show that $P_{\mid X \times V(a)}$ is trivial and use the fact that the closed point $\hat{0} \subset \hat{X}$ is the largest subscheme on which P is trivial by the construction of \hat{X}. We have

$$
H^{0}\left(X \times V(a), P_{\mid X \times V(a)}\right) \cong \operatorname{ker}\left(K_{0} / a \rightarrow K_{1} / a\right) \cong \operatorname{Hom}_{\mathcal{O}_{\hat{X}, \hat{0}}}\left(K, \mathcal{O}_{\hat{X}, \hat{0}} / a\right) \cong \mathcal{O}_{\hat{X}, \hat{0}} / a
$$

We see that the restriction

$$
H^{0}\left(X \times V(a), P_{\mid X \times V(a)}\right) \rightarrow H^{0}\left(X \times V(a), P_{\mid X \times \hat{0}}\right) \cong k
$$

is surjective $\left(P_{\mid X \times 0}\right.$ is trivial). Let $s \in H^{0}\left(X \times V(a), P_{\mid X \times V(a)}\right)$ be the section which maps to a non-trivial constant section of $P_{\mid X \times \hat{0}}$. It induces a trivialization of $P_{\mid X \times V(a)}$.

We can write $N \cong \operatorname{Ext}_{\mathcal{O}_{\hat{X}, \hat{0}}}^{g}\left(k, \mathcal{O}_{\hat{X}, \hat{0}}\right)$. This extension can also be calculated using the Koszul resolution, since $\mathcal{O}_{\hat{X}, \hat{0}}$ is regular local, of dimension g. It follows that

$$
\operatorname{dim}_{k} \operatorname{Ext}_{\mathcal{O}_{\hat{X}, \hat{0}}^{l}}^{l}\left(k, \mathcal{O}_{\hat{X}, \hat{0}}\right)=\frac{g!}{(l-g)!l!},
$$

and in particular, $N \cong k$.

2.3 The Fourier-Mukai transformation

2.3.1 Let pr_{i} denote the projections from $X \times \hat{X}$ to the factors.

Definition 2.3 We define

$$
\mathcal{S}: D(\hat{X}) \rightarrow D(X), \mathcal{S}(\ldots):=\left(\operatorname{pr}_{1}\right)_{*}\left(\mathcal{P} \otimes \operatorname{pr}_{2}^{*}(\ldots)\right)
$$

We define $\hat{\mathcal{S}}: D(X) \rightarrow D(\hat{X})$ by an analogous construction.

2.3.2

Theorem 2.4

$$
\mathcal{S} \circ \hat{\mathcal{S}} \cong i^{*}[-g]
$$

2.3.3 The composition is given by $\left(\mathrm{pr}_{1}\right)_{*}\left(P * P \otimes \mathrm{pr}_{2}^{*}(\ldots)\right)$, where $P * P \in D(X \times X)$ is given by $\left(\mathrm{pr}_{12}\right)_{*}\left(\operatorname{pr}_{13}^{*} P \otimes \mathrm{pr}_{23}^{*} P\right)$, and the projections map $X \times X \times \hat{X}$ to the corresponding factors.

We now observe, using the Theorem of the cube, that $\mathrm{pr}_{13}^{*} P \otimes \mathrm{pr}_{23}^{*} P \cong(m \times \mathrm{id})^{*} P$. Then we have

$$
\left(\mathrm{pr}_{12}\right)_{*}\left(\mathrm{pr}_{13}^{*} P \otimes \mathrm{pr}_{23}^{*} P\right)=m^{*}\left(\mathrm{pr}_{2}\right)_{*} P=m^{*} k(0)[-g] .
$$

It follows that $P * P=\mathcal{O}_{\Gamma_{i}}[-g]$, where Γ_{i} is the graph of i.
2.3.4 We have $\hat{\mathcal{S}} \circ \mathcal{S} \cong i^{*}[-g]$.

Corollary 2.5 \mathcal{S} and $\hat{\mathcal{S}}$ are isomorphisms of triangulated categories.
2.3.5

Theorem 2.6 We have

$$
\begin{aligned}
\mathcal{S} \circ T_{\hat{x}}^{*} & \cong\left(\otimes P_{-\hat{x}}\right) \circ \mathcal{S} \\
\mathcal{S} \circ\left(\otimes P_{x}\right) & \cong T_{x}^{*} \circ \mathcal{S}
\end{aligned}
$$

This is checked by a direct calculation.
2.3.6 Let X be an abelian variety.

Definition 2.7 We define the convolution $D(X) \times D(X) \rightarrow D(X)$ by

$$
(\ldots) *(\ldots):=m_{*}\left(\operatorname{pr}_{1}^{*}(\ldots) \otimes \operatorname{pr}_{2}^{*}(\ldots)\right) .
$$

2.3.7 The Fourier-Mukai transformations is compatible with the tensor product in the following sense.

Theorem 2.8 There exist natural equivalences of functors

$$
\begin{aligned}
\mathcal{S} \circ((\ldots) *(\ldots)) & \cong \mathcal{S}(\ldots) \otimes \mathcal{S}(\ldots) \\
\mathcal{S} \circ((\ldots) \otimes(\ldots)) & \cong \mathcal{S}(\ldots) * \mathcal{S}(\ldots)
\end{aligned}
$$

This is again checked by a direct calculation.

2.4 Principally polarized abelian varieties and $\widetilde{S L(2, \mathbb{Z}) \text {-action }}$

2.4.1 Let (X, L) be a polarized abelian variety and $\phi_{L}: X \rightarrow \hat{X}$.

Lemma 2.9 We have

$$
\operatorname{deg}\left(\phi_{L}\right)=\chi(L)^{2}
$$

2.4.2 We have

$$
\left(1 \times \phi_{L}\right)^{*} P \cong m^{*} L \otimes \operatorname{pr}_{1}^{*} L^{-1} \otimes \operatorname{pr}_{2}^{*} L^{-1} .
$$

$\operatorname{Rrr}_{1}^{*}\left(1 \times \phi_{L}\right)^{*} P$ is supported in the finite subset $K(L) \subset \hat{X}$. Thus

$$
R^{i}\left(\operatorname{pr}_{1}\right)_{*}\left(1 \times \phi_{L}\right)^{*} P \cong R^{i}\left(\operatorname{pr}_{1}\right)_{*}\left(m^{*} L \otimes \operatorname{pr}_{2}^{*} L^{-1}\right)
$$

It follows that

$$
\chi\left(\left(1 \times \phi_{L}\right)^{*} P\right)=\chi\left(m^{*} L \otimes \operatorname{pr}_{2}^{*} L^{-1}\right)
$$

We know by 2.2 that $\chi(P)=(-1)^{g}$. Now $\left(m, \mathrm{pr}_{2}\right): X \times X \rightarrow X \times X$ is an isomorphism Thus

$$
\chi\left(\left(1 \times \phi_{L}\right)^{*} P\right)=\chi\left(\operatorname{pr}_{1}^{*} L \otimes \operatorname{pr}_{2}^{*} L^{-1}\right)=\chi(L) \chi\left(L^{-1}\right)=(-1)^{g} \chi(L)^{2} .
$$

It follows that

$$
(-1)^{g} \operatorname{deg}\left(\phi_{L}\right)=\operatorname{deg}(\Phi) \chi(P)=\chi\left(\left(1 \times \phi_{L}\right)^{*} P\right)=(-1)^{g} \chi(L)^{2} .
$$

2.4.3

Definition 2.10 We say that (X, L) is principally polarized if $\chi(L)=1$.

Corollary 2.11 If X admits a principal polarization, then $\hat{X} \cong X$.
2.4.4 Let (X, L) be principally polarized.

Lemma 2.12 We have $\mathcal{S}(L) \cong L^{-1}$.
2.4.5 We have $\mathcal{S}(L) \cong\left(\operatorname{pr}_{1}\right)_{*}\left(m^{*} L\right) \otimes L^{-1}$. Thus we must show that $\left(\mathrm{pr}_{1}\right)_{*}\left(m^{*} L\right) \cong \mathcal{O}_{X}$. We have $H^{0}(X, L) \cong k$ (higher cohomology vanishes). Let s be a generator. $m^{*} s$ is then a section of $m^{*} L . m^{*} s_{\mid x \times X}$ is a section of $T_{x}^{*} L$, which is again a principal polarization. $H^{0}\left(x \times X, m^{*} L_{\mid x \times X}\right)$ is generated by $m^{*} s_{\mid x \times X}$. It follows that $\left(\operatorname{pr}_{1}\right)_{*}\left(m^{*} L\right) \cong \mathcal{O}_{X}$.
2.4.6 Let (X, L) be principally polarized.

Lemma 2.13 We have a isomorphism of functors

$$
(\ldots) * L \cong L \otimes \mathcal{S}\left(i^{*}(\ldots) \otimes L\right)
$$

2.4.7 Here is the trick. Let $\xi: X \times X \rightarrow X \times X$ and $d: X \times X \rightarrow X$ be given by $\xi:(x, y) \mapsto(x, x+y)$ and $d:(x, y) \mapsto y-x$. The first step is

$$
(\ldots) * L \cong\left(\operatorname{pr}_{2}\right)_{*}\left(\operatorname{pr}_{1}^{*}(\ldots) \otimes d^{*} L\right)
$$

The second step uses

$$
d^{*} L \cong \operatorname{pr}_{1}^{*} i^{*} L \otimes \operatorname{pr}_{2}^{*} L \otimes P
$$

2.4.8 Let (X, L) be principally polarized. Then we have $\mathcal{S}: D(X) \rightarrow D(X)$. It follows $\mathcal{S}^{2} \cong i^{*}[-g]$ and hence $\mathcal{S}^{4} \cong[-2 g]$.

2.4.9

Lemma 2.14 We have

$$
(L \otimes \mathcal{S})^{3}(\ldots)=(\ldots)[-g]
$$

This is by a calculation using the Lemmas above.
2.4.10 Let (X, L) be principally polarized. The group $S L(2, \mathbb{Z})$ is generated by S, T with relations $(T S)^{3}=1, S^{4}=1$. We define a cental extension

$$
0 \rightarrow \mathbb{Z} \rightarrow S \widetilde{S L(2, \mathbb{Z})} \rightarrow S L(2, \mathbb{Z}) \rightarrow 0
$$

by $(T S)^{3}=-g, S^{3}=-2 g$. This group acts on $D(X)$ such that S acts as \mathcal{S}, T acts as $L \otimes(\ldots)$, and the center acts by shifts.

References

[1] D. Mumford. Abelian varieties. Oxford University Press, 1970.
[2] D. Huybrechts. Fourier Mukai transforms in algebraic geometry. Manuscript, Bonn 2005.
[3] S. Mukai Duality between $D(X)$ and $D(\hat{X})$ with applications to Picard sheaves. Nagoya Math. J., 81 (1981), 153-175.

[^0]: *Mathematisches Institut, Universität Göttingen, Bunsenstr. 3-5, 37073 Göttingen, GERMANY, bunke@uni-math.gwdg.de

