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1 Abelian varieties

1.1 Basic definitions

1.1.1 We consider an algebraically closed field k.

Definition 1.1 An abelian variety is a group object (X, m, i, e) in the category of algebraic

varieties over k such that X is in addition complete.

Here m : X ×X → X is a group law, i : X → X is the inverse, and e : spec(k) → X is

the identity.

1.1.2 In scheme theoretic terms, X is an integral, separated scheme of finite type over

spec(k) such that the structure morphism X → spec(k) is proper (what in this case is

the addition condition of being universally closed).

1.1.3 It suffices to require the existence of m and a two sided identity.

1.1.4 The group law is automatically commutative. This follows from the following

observation. We consider the conjugation map C : X × X → X given (in the language

of points by C(x, y) := m(x, m(m(y, i(x))))). Let C̃n : X → End(Oe/m
n
e ) be the induced

map on the nth infinitesimal neighborhood of the identity. Now End(Oe/m
n
e ) is affine,

and any map from a complete variety to an affine variety is locally constant. From this

we conclude that C̃n(x) = id for all n and x ∈ X(k). This then implies that C = pr2

since X is connected.

1.1.5 X is automatically smooth. In fact, using left translation on shows that the sheaf

of relative differentials ΩX/spec(k) is locally free.
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1.2 Examples of abelian varieties

1.2.1 Let k = C and consider a k-vector space V together with a lattice U . Then

X = V/U is an analytic abelian group. In general it does not come from an algebraic

variety.

Theorem 1.2 X comes from an algebraic variety iff there exists a positive definite her-

mitean form H on V such that its imaginary part im(H) is integral on U × U .

1.2.2 The idea of the proof is as follows. On constructs a line bundle on X with Chern

form im(H). It is fixed by an Appel-Humbert datum (α, H). The pull-back of this bundle

to V is trivial. One tries to construct sections downstairs by averaging sections upstairs.

The positive definiteness of H implies the convergence of the theta series. They provide

enough sections of L for an embedding of X into a projective space.

1.2.3 Let C be a compact Riemann surface of genus g. We consider the space V :=

H0(C, Ω1
C) of holomorphic one forms on C. It has dim(V ) = g. We define a hermitean

form on V by

H(ω1, ω2) := 2i

∫
C

ω1 ∧ ω̄2 .

Let U ⊂ V be the image of H1(C, Z) under the natural injective map

H1(C, Z) → H1(C, C) → H1(C, Ω1
C) .

Then the imaginary part of H is the intersection form on U and therefore integral.

Let V ∗ be the C-linear dual of V , and U∗ ⊂ V be the dual of U . The complex torus

V ∗/U∗ comes from an abelian variety J(C), the Jacobian of C.

1.2.4 Let us fix a base point c0 of C. Then we define the map Φ : C → J(C) such that

Φ(c) is the class of the linear map V 3 ω 7→
∫

γ
ω ∈ C, where γ is a path from c0 to c.

The map does depend on the choice of the path, but the class is independent. We have

an induced map

Φ̃ : C × · · · × C︸ ︷︷ ︸
g×

→ J(C)
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given by Φ̃(c1, . . . , cg) = Φ(c1) + · · · + . . . Φ(cg). This map has degree g! and represents

J(C) birationally as a quotient of Cg by the symmetric group Sg.

1.2.5 Let now k be an algebraically closed field. The Jacobian J(C) of a complete smooth

curve C over k is an abelian variety. It is birational to the quotient pr : Cg → J(C) by

the symmetric group. The group law depends on the choice of a positive divisor a on C of

degree g. Roughly it can be described as follows. For x ∈ J(C) the preimage x̃ := pr−1(x)

can be considered as a positive divisor of degree g. Given x, y ∈ J(C) there exists a unique

positive divisor in the one-dimensional system x̃ + ỹ − a which represents x + y.

1.3 Line bundles

1.3.1 Let X be an abelian variety over k. For x ∈ X(k) we have a left translation

Tx : X → X.

Definition 1.3 We define the subgroup

Pic0(X) := {L ∈ Pic(X) | T ∗
xL ∼= L ∀x ∈ X(k)}

We have an exact sequence of groups

0 → Pic0(X) → Pic(X) → NS(X) → 0 ,

where NS(X) is called the Neron-Severi group of X. We will see later that Pic0(X) is

the group of closed points of an abelian variety X̂, the dual of X.

1.3.2 We shall need the following technical result.

Proposition 1.4 (Refined seesaw principle) Let X be a complete variety, Y be a

scheme, and L → X × Y be a line bundle. Then there exists a unique closed subscheme

Y1 → Y such that

(1) The restriction L|X×Y1 is isomorphic to pr∗2M for some M ∈ Pic(Y1).
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(2) If f : Z → Y is a morphism of schemes such that (id × f)∗L ∼= pr∗2K for some

K ∈ Pic(Z), then f factors through Y1.

1.3.3 The idea of the proof is a follows. First one reduces to the case that Y = spec(A).

The subset F := {y ∈ Y (k)|L|X×y trivial} is closed. One checks that if L|X×y is not trivial,

then Y1 does not meet a neighborhood of y. Therefore F is the set of closed points of Y1

and it remains to discuss the scheme structure.

One shows that there is an A-module M which gives (pr2)∗(L) universally (after all

possible base changes). For y ∈ F we see that dimk(M/myM) = 1. After further

localization M ∼= A/a for some ideal a. Finally one checks that Y1 is the subscheme

corresponding to a.

1.3.4

Theorem 1.5 (Theorem of the cube) Let X, Y be complete varieties, Z be a con-

nected scheme, and L → X × Y × Z be a line bundle such that L|x0×Y×Z, L|X×y0×Z, and

L|X×Y×z0 are trivial for points x0 ∈ X, y0 ∈ Y , and z0 ∈ Z. Then L is trivial.

1.3.5 The idea of the proof is the following. Let Z ′ ⊂ Z be the maximal subscheme

over which L is trivial. We have z0 ∈ Z ′ so that Z ′ 6= ∅. Since Z ′ is closed it suffices

to show that Z ′ is also open. This is achieved by a local consideration. Essentially one

must extend a trivialization of L|X×Y×z0 to a neighborhood of z0. The obstruction lies in

H1(X×Y × z0, L|X×Y×z0) By the Kuenneth formula, completeness of X, Y , and triviality

of L|X×Y×z0 we have an injection

H1(X × Y × z0, L|X×Y×z0) → H1(X × y0 × z0, L|X×y0×z0)⊕H1(x0 × Y × z0, L|x0×Y×z0) .

By our assumptions the trivialization can be extended to X × y0 × Z and x0 × Y × Z.

This implies that the obstruction vanishes.

1.3.6 Let f, g, h : Y → X be maps from a variety to an abelian variety and L ∈ Pic(X).
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Corollary 1.6 We have

(f + g + h)∗L ∼= (f + g)∗L⊗ (f + h)∗L⊗ (g + h)∗L⊗ f ∗L−1 ⊗ g∗L−1 ⊗ h∗L−1 .

1.3.7 In order to show this we apply the theorem of the cube to

M = m∗L⊗m∗
12L

−1 ⊗m∗
13L

−1 ⊗m∗
23L

−1 ⊗ pr∗1L⊗ pr∗2L⊗ pr∗3L

over X ×X ×X.

1.3.8

Theorem 1.7 (Theorem of the square) Let L ∈ Pic(X). Then we have for all x, y ∈
X(k) that

T ∗
x+yL⊗ L ∼= T ∗

xL⊗ T ∗
y L .

1.3.9 The idea of the proof is as follows. We apply 1.6 to X = Y and f := constx,

g := consty and h := id.

1.3.10 Let L ∈ Pic0(X).

Lemma 1.8 On X ×X we have m∗L ∼= pr∗1L⊗ pr∗2L.

1.3.11 This identity holds on x × X and X × x for all x ∈ X(k). Then we apply the

seesaw principle.

1.3.12 Let L ∈ Pic(X).

Definition 1.9 We define φL : X → Pic(X) by

φL(x) = T ∗
xL⊗ L−1 .

1.3.13 One checks that φL factors over Pic0(X) ⊂ Pic(X).
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1.3.14 We have φL⊗M = φL + φM .

1.3.15 The map φL : X(k) → Pic0(X) is a homomorphism.

1.4 Projectivity

1.4.1 Let L ∈ Pic(X).

Definition 1.10 We define

K(L) := ker(φL) .

1.4.2 K(L) ⊂ X is Zariski closed.

1.4.3 Let D be an effective divisor on X and L = O(D).

Theorem 1.11 The following assertions are equivalent.

(1) H(D) := {x ∈ X(k) |T ∗
x (D) = D} is finite (the equality is equality of divisors).

(2) K(L) is finite.

(3) The linear system |2D| has no base points and defines a finite morphism X → PN .

(4) L is ample.

1.4.4 As an illustration we discuss the implication (4) → (2). If K(L) is not finite,

then let Y ⊂ K(L) be the connected component of 0. It is an abelian variety of positive

dimension, and LY := L|Y is ample. We have T ∗
y LY

∼= LY for all y ∈ Y . It follows that

m∗LY ⊗ pr∗1L
−1
Y ⊗ pr∗2L

−1
Y is trivial. We pull-back by (id, i) : Y → Y ×Y and obtain that

LY ⊗ i∗LY is trivial. Now LY and i∗LY
∼= L−1

Y are ample. This is impossible.
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1.4.5 Let X be an abelian variety.

Theorem 1.12 X is projective.

The idea of the proof is the following. Let U ⊂ X be an open affine subset containing 0

and D = X \U . Then H(D) is a closed subgroup and U is stable under H(D). It follows

that H ⊂ U . Since H(D) is complete and U is affine it follows that H(D) is finite. We

now apply the conclusion (1) → (4) of the Theorem 1.11.

1.4.6 Let X be an abelian variety. It admits an ample line bundle L. In this case K(L)

is finite.

Definition 1.13 A polarized abelian variety is a pair (X, L) of an abelian variety and an

ample line bundle.

Any abelian variety admits a polarization.

1.5 The dual variety and the Poincare bundle

1.5.1 Let (X, L) be a polarized abelian variety. Then we define

M := m∗L⊗ pr∗1(L)−1 ⊗ pr∗2(L)−1 .

There exists a maximal subscheme K(L) ⊂ X such that M|K(L)×X = pr∗1(P ) for some

p ∈ Pic(K(L)). Maximal means, that for any morphism f : Z → X such that (f ×
idX)∗M = pr∗1P for some P ∈ Pic(K) the map f factors over K(L).

1.5.2 K(L) is a subgroup scheme. Therefore it acts freely on X. We have K(L)(k) =

K(L) as groups.

1.5.3
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Definition 1.14 The dual abelian variety X̂ is defined by the scheme theoretic quotient

X̂ := X/K(L) .

The canonical morphism π : X → X̂ is finite, surjective and flat.

1.5.4 Here are some details of the construction of the quotient. The construction is

done locally. So let G be an affine group scheme G = spec(R) over k, which acts on

V := spec(A). The action is given by µ∗ : A → R⊗k A. We consider

AG := {a ∈ A|µ∗(a) = 1⊗ a} .

Then one verifies that spec(A) → spec(AG) has the required properties of a quotient.

1.5.5 If char(k) = 0, then K(L) is the group scheme corresponding to the finite group

K(L). In particular X̂ = X/K(L).

1.5.6 If k = C, X = V/U and L corresponds to a Hermitan form H with im(H) integral,

then we have X̂ = V/U⊥, where U⊥ = {v ∈ V |im(H)(v, U) ⊂ Z}. Then we have U ⊂ U⊥

and K(L) ∼= U⊥/U .

1.5.7 We want to define the Poincare bundle P ∈ Pic(X̂ ×X) such that π∗P = M .

Since K(L) × {0} ⊂ X × X it acts freely with quotient X̂ × X there is a one-to one

correspondence of K(L)× {0}-equivariant sheaves on X and sheaves on X̂ ×X.

We must lift the action of K(L)× {0} to M . We use the language of S-valued points of

K(L). Let the subscript S denote objects obtained by base extension. For x ∈ K(L)(S)

we have a P̃ ∈ Pic(S) such that (MS)x×XS
∼= pr∗1P̃ . This is equivalent to T ∗

xLS
∼= LS ⊗ P̃

We calculate

T ∗
(x,0)MS

∼= m∗
ST ∗

x (LS)⊗ pr∗1T
∗
x (LS)−1 ⊗ pr∗2(LS)−1 ∼= m∗

SP̃ ⊗ pr∗1(P̃ )−1 ⊗MS
∼= MS .

This isomorphism is uniquely fixed by its restriction to XS ×S 0S. We have a canonical

isomorphism

(MS)|XS×0S
∼= LS ⊗ L−1

S ⊗ VS
∼= VS ,
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(identifying XS
∼= XS×S 0S on the right-hand side), where V := OX⊗kO0/m0. Note that

Tx acts canonically on the trivial bundle VS. We define the isomorphism T ∗
(x,0)MS

∼= MS

such that it induces this canonical action on VS.

Definition 1.15 We define the Poicaré bundle P → X̂ ×X as the quotient of M by the

action of K(L)× 0 constructed above.

1.6 The universal property

1.6.1 The universal property of the Poincaré bundle can formally be phrased as follows.

We consider the so-called Picard functor B on the category of schemes S over k which

associates to each S the set B(S) of isomorphism classes of line bundles L over X × S

such that L|0×S is trivial and L|X×s ∈ Pic0(X) for all s ∈ S(k).

Theorem 1.16 The dual abelian variety represents the functor B, and the Poicaré bundle

P → X × X̂ induces a natural isomorphism Map(. . . , X̂) ∼= B(. . . ).

1.6.2 We indicate the proof. We consider M := pr∗13P ⊗ pr∗12(L)−1 over X × S × X̂.

Then we let ΓS ⊂ S × X̂ be the maximal subscheme on which M is the pull-back of a

bundle over ΓS. Then we show that ΓS is the graph of a well-defined map f : S → X̂.

Then (idX × f)∗P ∼= L. The uniqueness assertion of the universal property follows from

the construction. To show that ΓS is a graph we must show that pr2 : ΓS → S is an

isomorphism. This is a longer argument.

2 The Fourier-Mukai transformation

2.1 Cohomology of Line bundles

2.1.1 Let X be an abelian variety and let L ∈ Pic0(X).
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Proposition 2.1 If for some p ≥ 0 we have Hp(X, L) 6= 0, then L is trivial.

2.1.2 The idea of the proof is the following. First one shows that H0(X,L) 6= 0 implies

that L = OX . To this end we employ that then also H0(X, i∗L) 6= 0 and i∗L = L−1 (i is

the inversion on X).

Assume now that L is not trivial. Then we consider the composition

X
x 7→(x,0)→ X ×X

m→ X .

It induces the identity on cohomology of line bundles. On the other hand by the Kuenneth

formula since m∗L ∼= pr∗1L⊗ pr∗2L we have

Hk(X ×X, m∗L) ∼=
∑

i+j=k

H i(X, L)⊗Hj(X, L) .

This shows that the higher cohomology vanishes, too

2.2 The cohomology of the Poincaré bundle

2.2.1 We consider the Poincaré bundle P → X × X̂. Let g = dim(X).

Theorem 2.2 We have

R(pr2)∗P = k(0̂)[−g] ,

the skyscraper sheaf at 0̂ with fibre OX̂,0̂/m0̂[−g].

2.2.2 Here is the idea of the proof. Since P|X×x̂ is trivial if and only if x̂ = 0̂ we see first

that PX×x̂ ∈ Pic0(X) for all x̂ ∈ X̂, and second that R(pr2)∗P concentrated at 0̂. We

perform the base change for spec(OX̂,0̂) → X̂. Then Ri(pr2)∗P0̂ has finite length over

OX̂,0̂ and is calculated by a complex

0 → K0 → · · · → Kg → 0

of free finitely generated OX̂,0̂-modules.
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It is then a general fact (since OX̂,0̂ is local regular, of dimension g), that H i(K .) ∼= 0 for

0 ≤ i < g.

Finally one calculates Hg(K .). Since this is the essential calculation for this presentation

we give more details then elsewhere. We have an exact sequence

0 → K0 → · · · → Kg → N → 0

of OX̂,0̂-modules with N = Rg(pr2)∗P0̂. The same argument as above gives the exact

sequence

0 → K̂g → · · · → K̂0 → K → 0 ,

where K̂i = HomOX̂,0̂
(Ki,OX̂,0̂). Since P|X×0̂ is trivial we have

0 → k → K0/m0̂ → K1/m0̂ → .

It follows that K/m0̂
∼= k and K ∼= OX̂,0̂/a for some ideal a ⊂ m0̂.

We shall see that a = m0̂. To this end we show that P|X×V (a) is trivial and use the

fact that the closed point 0̂ ⊂ X̂ is the largest subscheme on which P is trivial by the

construction of X̂. We have

H0(X × V (a), P|X×V (a)) ∼= ker(K0/a → K1/a) ∼= HomOX̂,0̂
(K,OX̂,0̂/a) ∼= OX̂,0̂/a .

We see that the restriction

H0(X × V (a), P|X×V (a)) → H0(X × V (a), P|X×0̂)
∼= k

is surjective (P|X×0̂ is trivial). Let s ∈ H0(X×V (a), P|X×V (a)) be the section which maps

to a non-trivial constant section of P|X×0̂. It induces a trivialization of P|X×V (a).

We can write N ∼= Ext
g
OX̂,0̂

(k,OX̂,0̂). This extension can also be calculated using the

Koszul resolution, since OX̂,0̂ is regular local, of dimension g. It follows that

dimk Ext
l
OX̂,0̂

(k,OX̂,0̂) =
g!

(l − g)!l!
,

and in particular, N ∼= k.



2 THE FOURIER-MUKAI TRANSFORMATION 13

2.3 The Fourier-Mukai transformation

2.3.1 Let pri denote the projections from X × X̂ to the factors.

Definition 2.3 We define

S : D(X̂) → D(X) ,S(. . . ) := (pr1)∗(P ⊗ pr∗2(. . . )) .

We define Ŝ : D(X) → D(X̂) by an analogous construction.

2.3.2

Theorem 2.4

S ◦ Ŝ ∼= i∗[−g]

2.3.3 The composition is given by (pr1)∗(P ∗P ⊗pr∗2(. . . )), where P ∗P ∈ D(X×X) is

given by (pr12)∗(pr
∗
13P⊗pr∗23P ), and the projections map X×X×X̂ to the corresponding

factors.

We now observe, using the Theorem of the cube, that pr∗13P ⊗pr∗23P
∼= (m×id)∗P . Then

we have

(pr12)∗(pr
∗
13P ⊗ pr∗23P ) = m∗(pr2)∗P = m∗k(0)[−g] .

It follows that P ∗ P = OΓi
[−g], where Γi is the graph of i.

2.3.4 We have Ŝ ◦ S ∼= i∗[−g].

Corollary 2.5 S and Ŝ are isomorphisms of triangulated categories.

2.3.5

Theorem 2.6 We have

S ◦ T ∗
x̂

∼= (⊗P−x̂) ◦ S

S ◦ (⊗Px) ∼= T ∗
x ◦ S
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This is checked by a direct calculation.

2.3.6 Let X be an abelian variety.

Definition 2.7 We define the convolution D(X)×D(X) → D(X) by

(. . . ) ∗ (. . . ) := m∗(pr
∗
1(. . . )⊗ pr∗2(. . . )) .

2.3.7 The Fourier-Mukai transformations is compatible with the tensor product in the

following sense.

Theorem 2.8 There exist natural equivalences of functors

S ◦ ((. . . ) ∗ (. . . )) ∼= S(. . . )⊗ S(. . . )

S ◦ ((. . . )⊗ (. . . )) ∼= S(. . . ) ∗ S(. . . )

This is again checked by a direct calculation.

2.4 Principally polarized abelian varieties and ˜SL(2, Z)-action

2.4.1 Let (X, L) be a polarized abelian variety and φL : X → X̂.

Lemma 2.9 We have

deg(φL) = χ(L)2 .

2.4.2 We have

(1× φL)∗P ∼= m∗L⊗ pr∗1L
−1 ⊗ pr∗2L

−1 .

Rpr∗1(1× φL)∗P is supported in the finite subset K(L) ⊂ X̂. Thus

Ri(pr1)∗(1× φL)∗P ∼= Ri(pr1)∗(m
∗L⊗ pr∗2L

−1) .
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It follows that

χ((1× φL)∗P ) = χ(m∗L⊗ pr∗2L
−1) .

We know by 2.2 that χ(P ) = (−1)g. Now (m, pr2) : X ×X → X ×X is an isomorphism

Thus

χ((1× φL)∗P ) = χ(pr∗1L⊗ pr∗2L
−1) = χ(L)χ(L−1) = (−1)gχ(L)2 .

It follows that

(−1)g deg(φL) = deg(Φ)χ(P ) = χ((1× φL)∗P ) = (−1)gχ(L)2 .

2.4.3

Definition 2.10 We say that (X, L) is principally polarized if χ(L) = 1.

Corollary 2.11 If X admits a principal polarization, then X̂ ∼= X.

2.4.4 Let (X, L) be principally polarized.

Lemma 2.12 We have S(L) ∼= L−1.

2.4.5 We have S(L) ∼= (pr1)∗(m
∗L)⊗L−1. Thus we must show that (pr1)∗(m

∗L) ∼= OX .

We have H0(X, L) ∼= k (higher cohomology vanishes). Let s be a generator. m∗s is then

a section of m∗L. m∗s|x×X is a section of T ∗
xL, which is again a principal polarization.

H0(x×X, m∗L|x×X) is generated by m∗s|x×X . It follows that (pr1)∗(m
∗L) ∼= OX .

2.4.6 Let (X, L) be principally polarized.

Lemma 2.13 We have a isomorphism of functors

(. . . ) ∗ L ∼= L⊗ S(i∗(. . . )⊗ L) .
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2.4.7 Here is the trick. Let ξ : X × X → X × X and d : X × X → X be given by

ξ : (x, y) 7→ (x, x + y) and d : (x, y) 7→ y − x. The first step is

(. . . ) ∗ L ∼= (pr2)∗(pr
∗
1(. . . )⊗ d∗L) .

The second step uses

d∗L ∼= pr∗1i
∗L⊗ pr∗2L⊗ P .

2.4.8 Let (X, L) be principally polarized. Then we have S : D(X) → D(X). It follows

S2 ∼= i∗[−g] and hence S4 ∼= [−2g].

2.4.9

Lemma 2.14 We have

(L⊗ S)3(. . . ) = (. . . )[−g] .

This is by a calculation using the Lemmas above.

2.4.10 Let (X, L) be principally polarized. The group SL(2, Z) is generated by S, T

with relations (TS)3 = 1 , S4 = 1. We define a cental extension

0 → Z → ˜SL(2, Z) → SL(2, Z) → 0

by (TS)3 = −g, S3 = −2g. This group acts on D(X) such that S acts as S, T acts as

L⊗ (. . . ), and the center acts by shifts.
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