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1 Bornological spaces

In this section we introduce the notion of a bornological space. We show that the category
of bornological spaces and proper maps is cocomplete and almost cocomplete. We explain
how bornologies can be constructed and how they are applied.

Let X be a set. By PX we denote the power set of X. Let B be a subset of PX .

Definition 1.1. B is called a bornology if it has the following properties:

1. B is closed under taking subsets.

2. B is closed under forming finite unions.

3.
⋃
B∈B B = X.

The elements of the bornology are called the bounded subsets of X. 2 in Definition 1.1

Definition 1.2. B is a generalized bornology if it satisfies the Conditions 1 and 2 in
Definition 1.1.

Thus we we get the notion of a generalized bornology by dropping Condition 3 in Definition
1.1.

Remark 1.3. Let x be in X. Then the singleton {x} belongs to any bornology. Indeed,
by Condition 3 there exists an element B in B such that x ∈ B. Then {x} ⊆ B and hence
{x} ∈ B by Condition 1.

If B is a generalized bornology, then a point x in X is called bounded if {x} ∈ B. Otherwise
it is called unbounded. A generalized bornology is a bornology if and only all points of X
are bounded.

If X is a generalized bornological space, then we have a disjoint decomposition X = XbtXu

into the subsets of bounded and unbounded points. Then B becomes a bornology on Xb.

Remark 1.4. Let A be an abelian group and consider the abelian group AX of functions
from X to A. For f in AX we let

supp(f) := {x ∈ X | f(x) 6= 0}

be the support of f . We have supp(f + f ′) ⊆ sup(f) ∪ supp(f ′).

If B is a generalized bornology on X, then we can consider the subset

CB(X,A) := {f ∈ AX | supp(f) ∈ B} .
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We shall see that this is a subgroup of AX . Indeed, if f, f ′ are in CB(X,A), then supp(f)
and supp(f) belong to B. Since supp(f + f ′) ⊆ supp(f) ∪ supp(f ′) we see that also
supp(f + f ′) belongs to B so that f + f ′ is in CB(X,A). Similarly, supp(−f) = supp(f)
so that with f also −f belongs to CB(X,A).

In this way B determines a subgroup of AX of functions with bounded support.

If A is a ring, then AX is also a ring and CB(X,A) is a subring since supp(ff ′) ⊆
supp(f) ∩ supp(f ′).

We now turn to examples and constructions of bornologies.

Let X be a set and (Bi)i∈I be a family of (generalized) bornologies on X.

Lemma 1.5. The intersection
⋂
i∈I Bi is a (generalized) bornology.

Proof. Let B :=
⋂
i∈I Bi. Consider B in B and let B′ be a subset of B. Then B ∈ Bi for

all i in I and hence B′ ∈ Bi for all i in I. Hence B′ ∈ B′.

Assume that B,B′ belong to B. Then B ∈ Bi and B′ ∈ Bi for all i in I. Hence B∪B′ ∈ Bi
for all i in I and hence B ∪B′ ∈ B.

This finishes the case of generalized bornologies. For the case of bornologies we consider x
in X. Then {x} ∈ Bi for every i in I and hence {x} ∈ B. Hence x ∈

⋃
B∈B B.

Let A be a subset of PX . Then there is a smallest bornology containing A given by

B〈A〉 :=
⋂
B,A⊆B

B ,

where the intersection runs over all bornologies B on X. Similarly there is a smallest
generalized bornology containing A

B̃〈A〉 =
⋂
B,A⊆B̃

B̃ ,

where the intersection runs over all generalized bornologies B on X containing A.

We can describe B〈A〉 explicitly. We will assume that
⋃
A∈AA = X. Since singletons

belong to every bornology (see Example 1.3) we can enlarge A by singletons without
changing B〈A〉 in order to ensure this condition.

Lemma 1.6. Assume that
⋃
A∈AA = X. Then a subset B in PX belongs to B〈A〉 if and

only if of there exists a finite family (Ai)i∈I in A such that B ⊆
⋃
i∈I Ai.
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Proof. We consider the subset B′ of P of subsets B of X such that there exists a finite
family (Ai)i∈I in A with B ⊆

⋃
i∈I Ai.

One checks that B′ is a bornology which contains A. Therefore B〈A〉 ⊆ B′. On the
other hand, B′ is contained in any other bornology which contains A. This implies that
B′ ⊆ B〈A〉.

Remark 1.7. The generalized bornology B̃〈A〉 has a similar description. We let Xb :=⋃
A∈AA. Then A generates a bornology B′ on Xb whose elements are described as in

Lemma 1.6. We have B̃〈A〉 = B′.

Example 1.8. If X is a set, then it has the minimal bornology Bmin of finite subsets and
the maximal bornology Bmax of all subsets.

It has the empty generalized bornology.

Example 1.9. Let X be a topological space. The set Bqc of subsets of quasi-compact
subsets of X is a bornology.

The set Brc of relatively quasi compact subsets (subsets whose closures are quasi compact)
is a generalized bornology. It might happen that the closure of a point is not quasi compact.
This can happen of X is not Hausdorff.

If we replace the condition “quasi compact” by “compact”, then in general we do not get
a bornology since the union of two compact subsets is not necessarily compact. Again this
can happen since compactness includes the condition of being Hausdorff and a union of
two Hausdorff subsets need not be Hausdorff.

Example 1.10. Let d be a quasi-metric (infinite distances are allowed) on X. Then the
metrically bounded subsets generate a bornology Bd. Note that we must say “generate”
since the union of two bounded sets might be unbounded.

But if d is a metric, then the bounded sets form a bornology since Condition 2 follows
from the triangle inequality for the metric.

The bornology Bd is generated by the set of balls {B(x, r) | x ∈ X r ∈ [0,∞)}.

Example 1.11. Let Y be a topological space, A be a subset, and X := Y \ A.

Let B := {Z ⊆ X | Z̄ ∩ A = ∅}. This is a generalized bornology. If Y is Hausdorff then it
is a bornology.

Example 1.12. Recall that a filter on a set X is a subset F of PX with the following
properties:

1. ∅ /∈ F and X ∈ F .

2. F is closed under forming finite intersections.
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3. F is closed under taking supersets.

If F is a filter on X, then the set of complements

F c := {X \ F | F ∈ F}

is a generalized bornology on X. Vice versa the complements of a generalized bornology
B is a filter if and only if X 6∈ B, i.e., B is not the maximal bornology.

The generalized bornology F c is a bornology if and only if the filter is free, i.e., if and only
if
⋂
F∈F F = ∅. Hence, upon taking complements, non-maximal bornologies correspond to

free filters on X.

Example 1.13. Let F be a subset of PX . Then

F⊥ := {Y ⊆ X | (∀L ∈ F | |L ∩ Y | <∞}

is a bornology. It is called the dual bornology to F . We have an obvious inclusion
F ⊆ (F⊥)⊥.

Definition 1.14. A (generalized) bornological space is a pair (X,B) of a set with a
(generalized) bornology.

Usually we write X for generalized bornological spaces and let BX denote its generalized
bornology.

Example 1.15. For a set X we write Xmin and Xmax for X equipped with the minimal
and maximal bornology. We write X∅ for the generalized bornological space with the
empty bornology.

Example 1.16. We consider a bornological space X and a subset L:

Definition 1.17. L is called locally finite if |L ∩B| <∞ for all B in BX .

We let LF(X) denote the set of locally finite subsets of X. By Example 1.13, the subset
LF(X) of PX is a bornology on X.

We write (X,LF(X)) =: X⊥. With this notation we have (Xmin)⊥ = Xmax and (Xmax)
⊥ =

Xmin.

Let f : X → Y be a map between the underlying sets of generalized bornological spaces.

Definition 1.18. f is called:

1. proper if f−1(BY ) ⊆ BX .

2. bornological, if f(BX) ⊆ BY .
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Let A be a subset of PY . By the following lemma we can check properness of a map on
generators.

Lemma 1.19.

1. We assume that Y =
⋃
A∈AA and BY = B〈A〉. Then the map f is proper if and

only if f−1(A) ∈ BX for all A in A.

2. We assume that BY := B̃〈A〉. Then the map f is proper if and only if f−1(A) ∈ BX
for all A in A.

Proof. We show Assertion 1. If f is proper, then f−1(A) ∈ BX for all A in A since A ⊆ BY .

For the converse we assume that B is in BY . Then by Lemma 1.6 there exists a finite family
(Ai)i∈I in A such that B ⊆

⋃
i∈I Ai. Then f−1(B) ⊆ f−1(

⋃
i∈I Ai) =

⋃
i∈I f

−1(Ai) ∈ BX
since f−1(Ai) ∈ BX for every i in I and BX is closed under forming finite unions.

For Assertion 2 we argue similarly using Remark 1.7. We do not have to assume that A
covers Y .

Example 1.20. Let f : X → Y be a proper map between bornological spaces. Let A be a
group. Then the pull-back f ∗ : AY → AX restricts to a homomorphism f ∗ : CBY (Y,A)→
CBX (X,A). This follows from the relation supp(f ∗φ) ⊆ f−1(supp(φ)) for all φ in AY .

Example 1.21. Let f : X → Y be a map between the underlying sets of bornological
spaces. If f : X → Y is proper, then f : X⊥ → Y ⊥ is bornological. Indeed, let L be in
LF(X) and B be in BY . Then f(L)∩B = f(L∩ f−1(B)) is the image under f of a finite
subset of X and hence finite. We see hat f(L) ∈ LF(B).

Example 1.22. Let X be a bornological space, Y be a set, and f : Y → X be a map.
We set

f−1(BX) := {f−1(B) |B ∈ BX} .
Then B〈f−1(BX)〉 is called the induced bornology. It is the minimal bornology on Y such
that f : X → Y becomes a proper map of bornological spaces.

Similarly one can define the induced generalized bornology B̃〈f−1(BX)〉. It is the minimal
generalized bornology such that f becomes a proper map of generalied bornological spaces.
If Y contains unbounded points, then the inclusion B̃〈f−1(BX)〉 ⊆ B〈f−1(BX)〉 might be
proper.

Example 1.23. Let X be a (generalized) bornological space and f : X → Y be a map
of sets. Then we can consider the maximal (generalized) bornology on Y such that f
becomes a proper map. This bornology is given by

f∗BX := {B ⊆ Y | f−1(B) ∈ BX} .

We call this bornology the coinduced bornology.
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We let Born denote the category of bornological spaces and proper maps. Furthermore,

we write B̃orn for the category of generalized bornological spaces and proper maps. Our
next goal is to study these categories and various functors relating them with the category
of sets.

We have a forgetful functors S : Born→ Set and S : B̃orn→ Set.

Proposition 1.24. We have an adjunctions

(X 7→ Xmax) : Set � Born : S , (X 7→ Xmax) : Set � B̃orn : S .

Proof. For the case of Born on checks the equality

HomBorn(Xmax, Y ) = HomSet(X,S(Y ))

for all sets X and bornological spaces Y .

The argument for B̃orn is similar.

Proposition 1.25. We have an adjunction

S : B̃orn � Set : (X 7→ X∅) .

Proof. One checks the equality

Hom
B̃orn

(S(Y ), X) = HomSet(Y,X∅)

for all sets X and generalized bornological spaces Y .

Note that there is no such adjunction in the case of Born.

Proposition 1.26. The categories Born and B̃orn are cocomplete.

Proof. Let X : I→ Born be a small diagram. We then define the set Y := colimI S(X).
It comes with a family (ei : S(X) → Y )i∈I of maps of sets exhibiting Y as a colimit of
S(X) in Set. We equip Y with the intersection of the coinduced bornologies

BY :=
⋂
i∈I

ei,∗BXi
.

In other words a subset A of Y belongs to BY if and only e−1
i (A) is bounded for all i in I.

From now on Y denotes the bornological space (Y,BY ). Then ei : X → Y are morphisms
in Born. We now check that (Y, (ei)i∈I) is a colimit of X in Born. Let T be in Born
arbitrary. By construction the family of maps (ei)i∈I induces a bijection

HomSet(S(Y ), S(T ))
∼=→ lim

Iop
HomSet(S(X), S(T )) , g 7→ (g ◦ ei)i∈I
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Since ei is a morphisms Born for every i in I one first observes that this bijection restricts
to a (necessarily injective) map

HomBorn(Y, S)→ lim
Iop

HomBorn(X,T ) .

In order to show surjectivity assume that (fi : X → T )i∈I represents an element in
limI HomBorn(X,T ) and let g : S(Y ) → S(T ) be the corresponding map of underlying
sets. We must show that g ∈ HomBorn(Y, S), i.e., that g is proper. If B is in BT , then
f−1
i (B) = e−1

i (g−1(B)) is in BXi
for all i in I. By the definition of BY we conclude that

g−1(B) ∈ BY . Hence g is proper.

The same argument works for generalized bornological spaces.

Example 1.27. Let (Xi)i∈I be a family of bornological spaces. Then we can describe
its coproduct X :=

∐
i∈I in Born explicitly. The underlying set is the disjoint union

S(X) :=
⊔
i∈I S(Xi) of the underlying sets of the Xi. We consider the sets Xi as subsets

of X. A subset B of X is bounded if and only if B ∩Xi is bounded in Xi for all i in I.

For example, for a set Y we have Ymax ∼=
⊔
y∈Y {y}.

Proposition 1.28. The category B̃orn is complete.

Proof. Let X : I→ B̃orn be a diagram. We define the set Y := limI S(X). It comes with
a family of maps (pi : Y → S(X))i∈I exhibiting Y as a limit of S(X). We equip Y with
the generalized bornology

BY := B̃〈
⋃
i∈I

p−1
i (BXi

)〉 .

Then pi : Y → X becomes a morphism in B̃orn for every i in I. One now checks that

(Y, (pi)i∈I) is a limit of X. Let T be in B̃orn. By construction the family (pi)i∈I induces a
bijection

HomSet(S(T ), S(Y ))
∼=→ lim

I
HomSet(S(T ), S(X)) , g 7→ (pi ◦ g)i∈I

Since pi is a morphism in B̃orn for every i in I it restricts to a (necessarily injective) map

Hom
B̃orn

(T, Y )→ lim
I

Hom
B̃orn

(T,X) .

In order to show surjectivity we consider a family (fi : T → Xi)i∈I in limI HomB̃orn
(T,X)

and let g : S(T )→ S(Y ) be the corresponding map of underlying sets.

We must show that g is proper. We use Lemma 1.19 in order to check properness on
generators. Fix i in I and assume that B is bounded in Xi. Then p−1

i (B) is a typical
enerator of the generalized bornology of Y . Then g−1(p−1

i (B)) = f−1
i (B) is bounded in T

since fi is proper.

We conclude that g is proper.
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The empty limit in B̃orn is a final object ∗∅. It does not belong to Born.

Proposition 1.29. The category Born admits all non-empty limits.

Proof. The same argument as for Proposition 1.28 works. In this case BXi
is a bornology for

every i in I. The condition I 6= ∅ ensures that every point in Y belongs to B̃〈
⋃
i∈I p

−1
i (BXi

)〉
so that this generalized bornology is a bornology.

Example 1.30. Let (Xi)i∈I be a family of bornological spaces. Then we can describe
its cartesian product X :=

∏
i∈I Xi explicitly. The underlying set of the product is the

cartesian product S(X) :=
∏

i∈I S(Xi) of underlying sets. The bornology on X is generated
by the cylinder sets p−1

i (B) for all i in I and B in BXi
.

The categories Born and B̃orn have a symmetric monoidal structure which will be denoted
by ⊗. It will be obtained from the cartesian product of the underlying sets by equipping
the products with bornology specified as follows:

Definition 1.31. We define the functor

−⊗− : B̃orn× B̃orn→ B̃orn

such that it sends X,X ′ in B̃orn to the set X×X ′ with the bornology generated by B×B′
for all B in BX and B′ in BX′.

If f : X → Y and f ′ : X ′ → Y ′ are proper, then f ⊗ f ′ : X ⊗X ′ → Y ⊗ Y ′ is again proper
since it is obvious that preimages of generators are again generators. The space {∗}max is
the tensor unit of this structure.

The tensor structure on B̃orn restricts to a structure on Born.

We have a morphism X ×X ′ → X ⊗X ′ given by the identity of the underlying sets, but
this map is general not a morphism except if both X ′ and X ′ are bounded.

Example 1.32. For sets X, Y we have Xmin ⊗ Ymin ∼= (X × Y )min.

We have X ⊗ {∗}∅ ∼= S(X)∅ which shows that {∗}∅ does not act as a tensor unit.

2 Coarse spaces

In this section we introduce the category of coarse spaces and proper map. We show that
it is complete and cocomplete. We explain various ways how coarse structures can appear,
and how they are used to define subalgebras of matrix algebras.
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Let X be a set. We call subsets U of X × X entourages. The diagonal diag(X) is an
example of an entourage. For an entourage U of X we define its inverse by

U−1 := {(y, x) ∈ X ×X | (x, y) ∈ U} .

If V is a second entourage, then we define the composition of V and U by

V ◦ U := {(x, z) ∈ X ×X | (∃y ∈ X | (x, y) ∈ V and (y, z) ∈ U} .

We have the relations

diag(X) ◦ U = U ◦ diag(X) = U , (W ◦ V ) ◦ U = W ◦ (V ◦ U) .

Let U be an entourage of X and B be a subset of X. Then we call the subset

U [B] := {x ∈ X | (∃b ∈ B | (x, b) ∈ U)}

of X the U -thickening of B.

Write x ∼U y if (x, y) ∈ U . So U [Y ] consists of all points x in X such that x ∼U y.

Let Y, Z be subsets of X and U be an entourage on X.

Definition 2.1. We say that Y is U-separated from Z if Y ∩ U [Z] = ∅.

This means that there is no pair of points y in Y and z in Z such that y ∼U z.

Example 2.2. Let X be a set with subsets Y and Z. Let U and V be entourages of X.
Then we have the following assertions.

If Y is U -separated from Z, then Z is U−1-separated from Y . Indeed y ∼U z is equivalent
to z ∼U−1 y.

If Y is V ◦ U -separated from Z, then Y is V -separated from U [Z]. If Y were not V -
separated from U [Z], then there exists y in Y , x in X and z in Z such that y ∼V x and
x ∼U z. But then y ∼V ◦U z.

Example 2.3. Let U be an entourage on X. Then U is an equivalence relation if and
only if

1. diag(X) ⊆ U

2. U = U−1

3. U ◦ U = U .

In this case, for x in X the set U [{x}] is the equivalence class of x.
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Example 2.4. Let f : X → X be a map. Then the graph of f

graph(f) := {(f(x), x) | x ∈ X}

is an entourage. We have the relations

graph(f ′ ◦ f) = graph(f ′) ◦ graph(f)

and if f−1 exists, also
graph(f−1) = graph(f)−1 .

Note that
graph(idX) = diag(X) .

Entourages can be considered as generalized maps, which may be multivalued and not
everwhere defined.

Let C be a subset of PX×X .

Definition 2.5. C is called a coarse structure if it has the following properties:

1. diag(X) ∈ C.

2. C is closed under finite unions and taking subsets.

3. If U, V are in C, then V ◦ U ∈ C.

4. If U is in C, then U−1 ∈ C.

The elements of C are called the coarse entourages of X.

Remark 2.6. The notion of a coarse structure and the main ideas of coarse geometry as
presented here have been invented by John Roe [Roe93].

Example 2.7. Let X be a set. Let R be a ring, and consider the R-module R[X]. We let
[x] denote the basis element corresponding to x in X. For every subset Y of X we can
consider a projection µ(Y ) in End(R[X]) determined by the condition that

µ(y)[x] :=

{
[x] x ∈ Y
0 x 6∈ Y .

Let A be in End(R[X]) and U be an entourage of X.

Definition 2.8. We say that A is U-controlled if for all pairs of subsets Y, Z of X such
that Y is U-separated from Z we have µ(Y )Aµ(Z) = 0.
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Let now C be a coarse structure on X.

We consider the subset

EndC(R[X]) := {A ∈ End(R[X]) | (∃U ∈ C | A is U -controlled)} .

The first three axioms of a coarse structure for C imply that EndC(R[X]) is a subalgebra
of End(R[X]).

1. The identity 1R[X] is diag(X)-controlled and belongs to EndC(R[X]).

2. If A,B are in EndC(R[X]) and A is U -controlled and B is V -controlled, then A+B
is U ∪ V controlled. Indeed, if Y is U ∪ V -separated from Z, then it is U - and
V -separated from Z. Hence

µ(Y )(A+B)µ(Z) = µ(Y )Aµ(Z) + µ(Y )Bµ(Z) = 0 + 0 = 0 .

3. If A,B are in EndC(R[X]) and A is U -controlled and B is V -controlled, then A ◦B
is U ◦ V -controlled. Assume that Y is U ◦ V -separated from Z. Let W := V [Z].
Then Y is still U -separated from W , and X \W is V -separated from Z. Hence using
1R[X] = µ(W ) + µ(X \W ) we get

µ(Y )(A ◦B)µ(Z) = µ(Y )Aµ(W )Bµ(Z) + µ(Y )Aµ(X \W )Bµ(Z) = 0 + 0 = 0 .

Example 2.9. Note that the Example 2.7 does not yet motivate the fourth condition
that a coarse structure is stable under taking inverses. This is achieved with the following
related example.

Let X be a set. We equip X with the counting measure. Then we consider the Hilbert
space L2(X). We have an orthonormal basis ([x])x∈X . For a subset Y of X we can define
the orthogonal projections µ(Y ) in B(L2(X)) as before such that

µ(y)[x] :=

{
[x] x ∈ Y
0 x 6∈ Y .

We define the notion of U -control as in Definition 2.8. Let now C be a coarse structure.
We let

BC(L2(X)) := {A ∈ B(L2(X)) | (∃U ∈ C | A is U -controlled)} .
We claim that BC(L2(X)) is a ∗-subalgebra. It is a subalgebra by the same argument as
in Example 2.7. Furthermore, it is closed under taking adjoints since if A is U -controlled,
then A∗ is U−1-controlled. This follows from the fact that for subsets Y, Z of X we have:
Y is U -separated from Z if and only if Z is U−1-separated from Y .

Note that in general BC(L2(X)) is not (topologically) closed, i.e., a C∗-algebra. But it is
so if C has a maximal entourage, i.e., if it is generated by an equivalence relation.
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Definition 2.10. The C∗-algebra C∗u(X, C) := BC(L2(X)) obtained by forming the closure
of BC(L2(X)) in B(L2(X)) is called the uniform Roe algebra of the coarse space (X, C).

We now turn to examples and constructions of coarse structures. Let X be a set and
(Ci)i∈I be a family of coarse structures on X.

Lemma 2.11. The intersection
⋂
i∈I Ci is a coarse structure.

Proof. We set C :=
⋂
i∈I Ci.

Since diag(X) ∈ Ci for every i in I we conclude that diag(X) ∈ C.

Assume that U and V are in C, and that W is a subset of U . Then for every i in I we
have U ∈ Ci and V ∈ Ci. This implies W in Ci, U ∪ V ∈ Ci, V ◦ U ∈ Ci and U−1 ∈ Ci for
every i in I. Hence W in C, U ∪ V ∈ C, V ◦ U ∈ C and U−1 ∈ C.

Let A be a subset of PX×X . Then there is a smallest coarse structure containing A is
given by

C〈A〉 =
⋂
C,A⊆C

C ,

where the intersections runs over the coarse structures on X containing A.

Let X be a set an A be a subset of PX×X . We can describe the elements of C〈A〉 explicitly.
Since any coarse structure contains diag(X) we can add diag(X) to A without changing
the coarse structure generated by A. Furthermore with U in A we have U ∪ U−1 ∈ C〈A〉.
So by enlarging the generators without changing C〈A〉 we can assume that all elements in
A are symmetric.

Lemma 2.12. For simplicity we assume that diag(X) ∈ A and that A consists of
symmetric entourages. An entourage V of X belongs to C〈A〉 if and only if there exists a
finite family of families ((Uj,i)i∈1,...,nj

)j∈J of elements of A such that

V ⊆
⋃
j∈J

Uj,1 ◦ · · · ◦ Uj,nj
.

Proof. Let C ′ be the subset of PX×X of entourages V such that there exists a finite family
of families ((Uj,i)i∈1,...,nj

)j∈J of elements of A such that

V ⊆
⋃
j∈J

Uj,1 ◦ · · · ◦ Uj,nj
.

13



Then C ′ is a coarse structure. Indeed, diag(X) ∈ C ′ since diag(X) ∈ A. Furthermore, by
construction C ′ is closed under taking subsets and finite unions.

If V ⊆
⋃
j∈J Uj,1 ◦ · · · ◦Uj,nj

and V ′ ⊆
⋃
j∈J Uj′,1 ◦ · · · ◦Uj′,nj

for families ((Uj,i)i∈1,...,nj
)j∈J

and ((U ′j′,i)i∈1,...,n′
j′

)j′∈J ′ , then

V ◦ V ′ ⊆
⋃

j∈J,j′∈J ′
Uj,1 ◦ · · · ◦ Uj,nj

◦ U ′j′,1 ◦ · · · ◦ U ′j′,n′
j′
.

It is clear that C ′ contains A and therefore C〈A〉 ⊆ C ′. On the other hand C ′ is contained
in every coarse structure containing A, hence C ′ ⊆ C〈A〉.

Example 2.13. Coarse structure generated by a single entourage are particularly easy to
describe. Let U be an entourage. We set U0 := diag(X) and

Un := U ◦ · · · ◦ U︸ ︷︷ ︸
n×

for all positive integers. Then we consider the coarse structure CU := C〈{U}〉.

Assume that U = U−1. Then an entourage V belongs to C〈{U}〉 if and only if there exists
n in N such that V ⊆ Un.

If U is an equivalence relation, then CU = {V ∈ PX×X | V ⊆ U}.

Example 2.14. Let X be a set. It has a minimal coarse structure Cmin consisting of all
subsets of diag(X). We have Cmin = C〈∅〉.

The set Cmax := PX×X is the maximal coarse structure.

Example 2.15. Let (X, d) be a quasi-metric space. Then for r in [0,∞) we define the
metric entourage

Ur := {(x, y) ∈ X ×X | d(x, y) ≤ r}
of width r.

The coarse structure Cd := C〈(Ur)r∈[0,∞)〉 is called the metric coarse structure on X.

The triangle inequality for the quasi-metric implies that Ur ◦Us ⊆ Ur+s. In view of Lemma
2.12 an entourage V of X belongs to Cd if and only if there exists an r in [0,∞) such that
V ⊆ Ur.

The Ur-thickening of a point is given by the r-ball centered at this point: Ur[{x}] = B(x, r).

Example 2.16. Let U be an entourage of X with U = U−1. Then we can define a
quasi-metric on X as follows:

dU(x, y) := inf{n ∈ N | (x, y) ∈ Un} .
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It can happen that dU (x, y) =∞, namly if the argument of inf above is empty. We verify
the axioms of a distance.

1. dU(x, x) = 0 since (x, x) ∈ U0 = diag(X).

2. dU(x, y) = dU(y, x) since Un = (Un)−1 for every n in N.

3. If dU(x, y) = m and dU(y, z) = n, then (x, y) ∈ Um and (y, z) ∈ Un. Hence
(x, z) ∈ Um ◦ Un = Um+n. Hence dU(x, y) ≤ m+ n = dU(x, y) + dU(y, z).

We then have the relation
CU = CdU .

Example 2.17. The space Rn is a coarse space with the coarse structure induced by the
usual metric. If not said differently we will consider subsets of Rn like Zn, Rn

+ or Qn as
coarse spaces with respect to the induced metric.

Example 2.18. Let X̄ be a topological space and Y be a subset of X̄. We consider
X := X̄ \ Y .

A subset U of X × X is called continuously controlled (w.r.t (X̄, Y )) if for every net
((xi, x

′
i))i∈I in U the condition xi → y ∈ Y implies that x′i → y and U−1 satisfies the same

condition.

The set of continuously controlled entourages forms a coarse structure called the continu-
ously controlled coarse structure. We verify the axioms:

1. It is clear that the diagonal is continuously controlled.

2. It is also clear that if U is continuously controlled and V is a subset of U , then
V is continuously controlled. Assume that U and V are continuously controlled.
We must show that U ∪ V is continuously controlled. Let ((xi, x

′
i))i∈I be a net

in U ∪ V such that xi → y ∈ Y . We can find subsets IU and IV of I such that
I = IU ∪ IV and (xi, x

′
i) ∈ V for i in IV and (xi, x

′
i) ∈ U for i in IU . If IU is cofinal

in I, then we conclude that limi∈IU x
′
i = y, and similarly, if UV is cofinal in I, we

have limi∈IV x
′
i = y. This implies limi∈I x

′
i = y.

3. Assume that U and V are continuously controlled. We show that U ◦V is continuously
controlled. The main argument is as follows. Let ((xi, x

′
i))i∈I be a net in U ◦ V

such that limI xi = y ∈ Y . For every i in I we find x′′i such that (xi, x
′′
i ) ∈ U and

(x′′i , x
′
i) ∈ V . We first conclude that limi∈I x

′′
i = y since U is continuously controlled,

and then limi∈I x
′
i = y since V is continuously controlled.

4. If U is continuously controlled, then U−1 is continuously controlled by definition.
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Example 2.19. Let C be a coarse structure on X. Then

R :=
⋃
U∈C

U

is an equivalence relation on X. For x, y in X we have x ∼ y if and only of (x, y) ∈ C.
Definition 2.20. The equivalences classes for R are called the coarse components of X.

We let πC0 (X) denote the set of coarse components.

Definition 2.21. A coarse space is a pair (X, C) of a set with a coarse structure.

We usually write X for a coarse space and CX for the corresponding coarse structrure.

Example 2.22. For a set X we write Xmin := (X, Cmin) and Xmax := (X,PX).

Let X, Y be coarse spaces and f : X → Y be a map between the underlying sets. We
write f(U) := (f × f)(U).

Definition 2.23. The map f is called controlled if f(CX) ⊆ CY .

In details this means that for every coarse entourage U of X the set f(U) is a coarse
entourage of Y . We obtain the category Coarse of coarse spaces and controlled maps.

Let A be a family in PX×X and assume that CX = C〈A〉.
Lemma 2.24. Then the map f : X → Y is controlled if and only if f(A) ∈ CY for all A
in A.

Proof. If f is controlled, then f(A) ∈ CY for all A in A since A ⊆ CX .

We now consider the converse. Since f(diag(X)) ⊆ diag(Y ) we know that f(diag(X)) ∈
CY . Furthermore f(U ∪ U−1) ⊆ f(U) ∪ f(U−1). Hence we can assume that A contains
diag(X) and consists of symmetric entourages.

We consider V in CX . By Lemma 2.12 there exists a finite family of families ((Uj,i)i∈1,...,nj
)j∈J

of elements of A such that
V ⊆

⋃
j∈J

Uj,1 ◦ · · · ◦ Uj,nj
.

Then
f(V ) ⊆ f(

⋃
j∈J

Uj,1 ◦ · · · ◦ Uj,nj
) ⊆

⋃
j∈J

f(Uj,1) ◦ · · · ◦ f(Uj,nj
)

belongs to CY .

Here we used the relations f(U ◦ U ′) ⊆ f(U) ◦ f(U ′) and f(U ∪ U ′) = f(U) ∪ f(U ′).

16



Example 2.25. Assume that X and Y are metric spaces and have the metric coarse
structures.

Lemma 2.26. A map f : X → Y is controlled if and only if for all S in [0,∞) there exist
R in [0,∞) such that dX(x, x′) ≤ S implies dY (f(x), f(x′)) ≤ R.

Proof. Assume that f is controlled. If S is in [0,∞), then UX,S ∈ CX and there-
fore f(UX,S) ∈ CY . As explained in Example 2.15 there exists R in [0,∞) such that
f(US) ⊆ UY,R. This inclusion is equivalent to the assertion that dX(x, x′) ≤ S implies
dY (f(x), f(x′)) ≤ R.

We now consider the converse. Let V be in CX . Again by Example 2.15 there exists
S in [0,∞) such that V ⊆ UX,S. The condition on f says that there exist R in [0,∞)
with f(UX,S) ⊆ UY,R. Since UY,R ∈ CY and f(V ) ⊆ f(UX,S) ⊆ UY,R we conclude that
f(V ) ∈ CY .

If f is Lipschitz with Lipschitz constant C, then we can take R := CS. In particular,
Lipshitz maps are controlled. More generally maps which satisfy

d(f(x), f(x′)) ≤ Cd(x, x′) + C ′

(quasi-Lipschitz) for some C,C ′ and all x, x′ in X are controlled.

The map
R→ Z , t 7→ nearest integer to t

satisfy this with C ′ = 1 and C = 1.

The map x 7→ x+ 1 on R is controlled.

The map x 7→ −x on R is controlled.

The map
N→ N , n 7→ n2

is not controlled.

Example 2.27. Let X be a coarse space and f : Y → X be a map of sets. Then
C〈f−1(CX)〉 is the induced coarse structure on Y . It is the largest coarse structure on Y
for which f becomes controlled map.

Example 2.28. Let X be a coarse space and f : X → Y be a map of sets. Then C〈f(CX)〉
is the coinduced coarse structure on Y . It is the smallest coarse structure on Y such that
f becomes a controlled map.

We now study the category Coarse and its relation with the category Set of sets.

Let S : Coarse→ Set be the forgetful functor.
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Lemma 2.29. We have adjunctions

S : Coarse � Set : (X 7→ Xmax)

and
(X 7→ Xmin) : Set � Coarse : S .

Proof. We have equalities for all sets X and coarse spaces Y

HomCoarse(Xmin, Y ) = HomSet(X,S(Y ))

and
HomCoarse(Y,Xmax) = HomSet(S(Y ), X) .

By Lemma 2.29 the underlying set of a limit or colimit is the limit or colimit of the
underlying sets.

Proposition 2.30. The category Coarse admits all limits and colimits.

Proof. We start with colimits. Let X : I → Coarse be a diagram. We consider the
colimit of sets Y := colimI S(Y ) with the family of structure maps (ei : Xi → Y )i∈I. We
equip Y with the smallest coarse structure such that ei is controlled for all i, i.e., with
CY := C〈

⋃
i∈I ei(CXi

)〉.

We claim that (Y, (ei)i∈I) is the colimit of the diagram X. Let T be a coarse space. Then
we have a bijection

Hom(S(Y ), S(T ))
∼=→ lim

Iop
Hom(S(X), S(T )) .

It restricts to an injective map

HomCoarse(Y, T )→ lim
Iop

HomCoarse(X,T ) .

We must show that it is surjective. Let (fi : X → T )i∈I represent an element in the limit
and assume that g : Y → T is the corresponding map of underlying sets. We must show
that g is controlled. It is enough to consider generating entourages. Let U be an entourage
of Y . Let Ui be an entourage of Xi and ei(Ui) be the corresponding generating entourage
of Y . Then g(ei(U)) = fi(Ui) is a coarse entourage of T since fi is controlled.

We now consider limits. We form the limit Z := limI S(X) of underlying sets with
canonical projections pi : Z → S(Xi). We equip Z with the maximal coarse structure such
that all pi become controlled. This is the intersection of the coarse structures induced by

18



the pi. We claim that (Z, (pi)i∈I) has the required universal property of a limit of X. For
T in Coarse we have a bijection

Hom(S(T ), S(Z))
∼=→ lim

I
Hom(S(T ), S(Z)) .

It restricts to an injective map

HomCoarse(T, Z)→ lim
I

Hom(T,X) .

In order to show that this map is surjective we consider a family (fi : T → Xi)i∈I in the
limit and the corresponding map of underlying sets g : T → Z. We must show that g is
controlled. Let U be an entourage of T . Then fi(U) = pi(g(U)) is a coarse entourage of
Xi for every i in I. This implies by construction of the coarse structure of Y that g(U) is
a coarse entourage of Z.

Example 2.31. Let (Xi)i∈I be a family of coarse spaces. Then we can describe its
coproduct

∐
i∈I Xi explicitly. The underlying set of the coproduct is the disjoint union

S(X) :=
⊔
i∈I S(Xi) union of the underlying sets. An entourage U of X is coarse in X for

all i in I, and if U ∩ (Xi ×Xi) is coarse in Xi and U ∩ (Xi ×Xi) = diag(Xi) for all but
finitely many i in I.

Example 2.32. Let (Xi)i∈I be a family of coarse spaces. Then we can describe its
cartesian product

∏
i∈I Xi explicitly. The underlying set of the product is the cartesian

product S(X) :=
∏

i∈I S(Xi) union of the underlying sets. The coarse structure on X is
generated by entourages (Ui)i∈I of X where Ui is a coarse entourage of Xi for every i in I.

In the following we will introduce various concepts of coarse geometry.

Let f, g : X → Y be two maps between sets and U be an entourage of Y .

Definition 2.33. We say that f and g are U -close to each other if (f, g)(diag(X)) ⊆ U .

We also write f ∼U g.

Let f, g : X → Y be two maps into a coarse space.

Definition 2.34. f and g are close to each other if f ∼U g for some U in CY .

Remark 2.35. Let X be a set and Y be a coarse space. The condition that f, g : X → Y
are close to each other is equivalent to the condition that map h : {0, 1}max ×Xmin → Y
with h(0, x) := f(x) and h(1, x) := g(x) is a morphism of coarse spaces.

Example 2.36. The map
R→ R , x 7→ x+ 1

is close to idR. The map
R→ R , x 7→ −x

is not close to idR.
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Lemma 2.37.

1. Closeness is an equivalence relation on morphisms of Coarse.

2. Closeness is compatible with composition.

Proof. We use the symbol ∼ in order to denote the relation of closeness. We consider
maps from X to Y . We first show that closeness is an equivalence relation.

1. Since (f, f)(diag(X)) ⊆ diag(Y ) it is clear that f ∼ f .

2. We have (f, g)(diag(X)) = (g, f)(diag(X))−1. Then the coarse structure CY is
closed under taking inverses conclude that f ∼ g if and only g ∼ f .

3. For three maps f, g, h from X to Y we have

(f, h)(diag(X)) ⊆ (f, g)(diag(X)) ◦ (g, h)(diag(X)) .

Since the coarse structure CY is closed under forming compositions we conclude that
f ∼ g and g ∼ h implies f ∼ h.

We next show that closeness is compatible with compositions. Let h : Y → Z be a
morphism. If f ∼ g, then using that h is controlled we see that

(h ◦ f, h ◦ g))(diag(X)) = h((f, g)(diag(X)))

is a coarse entourage of Z. Hence h ◦ f ∼ h ◦ g.

Let l : W → X be a morphism. Then

(f ◦ l, g ◦ l)(diag(W )) ⊆ (g, f)(l(diag(W )) ⊆ (f, g)(diag(X))

is a coarse entouarge of Y . Hence f ◦ l ∼ g ◦ l.

We can form the category Coarse with the same objects as Coarse and closeness classes
of maps.

Definition 2.38. A morphism f : X → Y in Coarse is a coarse equivalence if it
is invertible in Coarse. Two coarse spaces are called coarsely equivalent if they are
isomorphic in Coarse.

Remark 2.39. Explicitly, f : X → Y is a coarse equivalence if and only if there exists a
morphism g : Y → X such that f ◦ g ∼ idY and g ◦ f ∼ idX .

It is an overall idea in coarse geometry that one should study coarse spaces up to coarse
equivalence.

20



Example 2.40. The embedding Z→ R (where Z has the induced coarse structure) is a
coarse equivalence. An inverse up to closeness is the map x 7→ [x] (integer part of x)

Example 2.41. Let (X, dX) and (Y, dY ) be metric spaces and f : X → Y be a map
between the underlying sets.

Definition 2.42. The map f is a quasi-isometry if there are constants C,C ′ in (0,∞)
such that

C−1dX(x′, x)− C ′ ≤ dY (f(x), f(x′)) ≤ Cd(x, x′) + C ′ (2.1)

for all x, x′ in X.

We have already seen in Example 2.26 that a quasi-isometry induces a morphism f : Xd →
Yd in Coarse. This only uses the second inequality in (2.1). Let r be in (0,∞).

Definition 2.43. We say that f(X) is r-dense if
⋃
x∈X B(f(x), r) = Y .

Lemma 2.44. If f is a quasi-isometry and f(X) is r-dense for some r in (0,∞), then f
is a coarse equivalence.

Proof. We define g : Y → X by choosing for every y in Y some x in X such that y in
B(f(x), y). Then g is controlled. Note that dY (f(g(y)), y) ≤ r for all y in Y . By the first
inequality in (2.1) we have

dX(g(y), g(y′)) ≤ CdY (f(g(y)), f(g(y′))) + CC ′

≤ CdY (y, y) + C(2r + C ′)

for all y, y′.

Furthermore f ◦ g is close to idY since dY (f(g(x)), y) ≤ r for all y in Y and g ◦ f is close
to idX since

dX(g(f(x)), x) ≤ CdY (f(g(f(x), f(x)) + CC ′ ≤ Cr + CC ′

for all x in X.

Let (X, d) be a metric space. Then we can define a new metric by

d′(x, y) := ln(1 + d(x, y)) .

The identity of the underlying sets is a coarse equivalence between Xd and Xd′ . But if X
is unbounded, then it is not a quasi-isometry provided X.

So in general the condition of being quasi-isometric is stronger than the condition of being
coarsely equivalent.
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Example 2.45. The embedding Zn → Rn is an isometry, hence in particular a quasi
isometry. Furthermore, Zn is

√
n/2-dense in Rn.

The coarse spaces Z and R are equivalent, but Z is much smaller. It is often convenient to
represent coarse spaces up to equivalence but small models. To this end the notion of a
dense subset of a coarse space is useful. This notion extends the notion of r-density in the
metric case.

Let X be a set and L be a subset. Let U be an entourage of X.

Definition 2.46. L is U-dense if U [L] = X.

Explicitly this means that for every point x of X there exists a point l in L such that
(x, l) ∈ U .

Let X be a coarse space and L be a subset of X.

Definition 2.47. L is dense in X if it is U-dense for some coarse entourage U of X.

Example 2.48. The subset Z is U1-dense in R.

The subset {n2 | n ∈ N} is not dense in N.

Let X be a coarse space and L be a subset equipped with the induced coarse structure.

Lemma 2.49. If L is dense, then the inclusion f : L→ X is a coarse equivalence.

Proof. Let U be a coarse entourage of X such that L is U -dense. In order to construct an
inverse define a map g : X → L by choosing for every x in X the point g(x) in L such that
x ∈ U [{g(x)}]. Then f ◦ g and idX are U -close and g ◦ f and idL are U ∩ (L× L)-close
to each other.

It remains to check that g is controlled. LetW be in CX . If (x, y) is inW , then (g(x), g(y)) ∈
U−1 ◦W ◦ U since g(x) ∼U−1 x ∼W y ∼U g(y). Hence g(W ) ⊆ (U−1 ◦W ◦ U) ∩ (L× L).

This shows that g(W ) ∈ CL.

Let X be a set, U be an entourage of X containing the diagonal and L be a subset.

Definition 2.50. We say that L is U-separated, if for every l, l′ with l 6= l′ we have
l′ 6∈ U [{l}].

In other words, we have U ∩ (L× L) ⊆ diag(L).
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Lemma 2.51. If U is symmetric, then X admits a U-dense and U-separated subset.

Proof. We consider the poset of U -separated subsets with respect to inclusion. We check
that any totally ordered chain (Lα)α∈A in this poset is bounded by

⋃
α∈A Lα. Indeed, this

subset is also U -separated.

By the lemma of Zorn there exists a maximal U -separated subset L̄. We claim that it is
U -dense. Assume that it is not. Then there exists x in X with x 6∈ U [L̄]. But then L̄∪{x}
is still U -separated. In order to see that U [{x}] ∩ L = ∅ we use that U is symmmetric.
We obtain a contradiction to the maximality of L̄.

Let X be a coarse space.

Definition 2.52.

1. X is uniformly locally finite if for every entourage U of X we have supx∈X |U [{x}]| <
∞.

2. X has bounded geometry if it is coarsely equivalent to a uniformly locally finite coarse
space.

Bounded geometry is preserved under coarse equivalences by definition. This is not true
for uniform local finiteness.

Example 2.53. The inclusion Z→ R is a coarse equivalence. Z is uniformly locally finite,
but R is not.

Let X be a set and U be in PX×X . Let B be a subset of X.

Definition 2.54. The subset B is called U-bounded if B ×B ⊆ U .

Example 2.55. If X is a metric space, then B is Ur-bounded if and only if diam(B) ≤ r.

Example 2.56. For a set X let P (X) denote the space of finitely supported functions
µ : X → [0, 1] such that

∑
x∈X µ(x) = 1. If f : X → X ′ is a map of sets, then we define

the map P (f) : P (X)→ P (X ′) by

P (f)(µ(x′)) :=
∑

x∈f−1(x′)

µ(x) .

We have
P (X) ∼= colim

F⊆X
P (F )

as sets where F runs over all finite subsets of X. Note that the structure maps are injective
so that this can also be interpreted as forming a union of subets.
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As a topological space we identify P (F ) with a subspace of RF . Then we equip P (X) with
the topology of the colimit. The map P (f) : P (X)→ P (X ′) is then continuous.

Note that P (F ) is a standard simplex of dimension |F | − 1, and P (X) is a simplicial
complex. The map P (f) is a morphism of simplicial complexes.

Let now U be an entourage of X. Then we consider the closed subspace PU(X) of P (X)
of functions which have U -bounded support. Note that PU(X) is a subcomplex of P (X).
If XU has bounded geomety, then PU (X) is finite-dimensional. If U ′ is an entourage of X ′

and f(U) ⊆ U ′, then by restriction we get a continuous map P (f) : PU(X) → PU ′(X
′).

Indeed, if (x′, y′) are in suppf∗(µ), then there exist x, y in X such that f(x) = x′ and
f(y) = y′. Then (x, y) ∈ U and hence (x′, y′) = (f(x), f(y)) ∈ f(U) ⊆ U ′.

This construction is functorial on the category of pairs (X,U) (the Grothendieck construc-
tion of the functor Coarse→ Set, X 7→ CX).

Assume now that f, g : X → X ′ are morphisms such that f(U) ⊆ U ′, g(U) ⊆ U ′ and f
and g are V ′-close to each other for some further entourage V ′. Then P (f) is homotopic
to P (g) as maps from PU(X) to PW ′(X

′) for any entourage W ′ of X ′ such that U ′ ⊆ W ′

and V U ′−1 ⊆ W ′. The homotopy is given by convex interpolation:

h(u, µ) := (1− u)P (f)(µ) + uP (g)(µ) .

One first checks continuity by observing that for every finite subset F of X the restriction
of this map to PU (F ) factors over the obviously continuous map PU (F )→ P (f(F )∪ g(F ))
given by the same formula. It remains to check that the support of h(u, µ) is U ′-bounded
for every u in [0, 1].

If x′, y′ are in supp(h(u, µ)) then we have one of the following cases:

1. x′, y′ are in suppP (f)(µ): In this case (x′, y′) ∈ U ′ since the support of P (f)(µ) is
U ′-bounded.

2. x′, y′ are in suppP (g)(µ): In this case (x′, y′) ∈ U ′ since the support of P (g)(µ) is
U ′-bounded.

3. x′ is in suppP (f)(µ) and y′ is P (g)(µ): Then x′ = f(x) and y′ = g(y) for some x, y
in supp(µ). Then (x, y) ∈ U . This implies that (x′, y′) ∈ V ◦ U ′. To this end we
consider the chain x′ = f(x) ∼V g(x) ∼U ′ g(y) = y′

4. x′ is in suppP (g)(µ) and y′ is P (g)(µ): This is analoguous to the previous case.

Let F : Top→M be any functor to a cocomplete target. Then we can define a functor

FP : Coarse→M , FP(X) := colim
U∈CX

F (PU(X)) .

24



If F is homotopy invariant, then FP is coarsely invariant and hence factorizes over a
functor

FP : Coarse→M .

For example, we can consider π0 : Top→ Set. Then

πcoarse0 (X) ∼= π0P(X) .

Another example of a homotopy invariant functor is Hsing
n (−) : Top→ Ab. But observe

(Excercise!) that for n ≥ 1 we have Hsing
n P(X) ∼= 0 for every coarse space X. We will

learn later how to modify the functor Hsing
n to get non-trivial answers.

Using this construction we can use homotopy invariant functors from algebraic topology
to get invariants of coarse spaces up to equivalence.

Example 2.57. This example is the combinatorial version of Example 2.56. Let X be
a coarse space. Let U be an entourage containing the diagonal. Then we can define a
simplicial set P •U(X) as follows. A point (x0, . . . , xn) in

∏n
i=0 X is called U -bounded if

(xi, xi′) ∈ U for all i, i′ in {0, . . . , n}.

We consider the simplicial set X• with the set of n-simplices Xn =
∏n

i=0 X. The faces are
the projections, and the degenerations are diagonal insertions. Thus

∂i(x0, . . . , xn) := (x0, . . . , x̂i, . . . , xn)

and
si(x0, . . . , xn) := (x0, . . . , xi, xi, . . . xn) .

The complex P •U(X) is the simplicial subset of X• consisting of all U -bounded simplices.
It is clear that it is preserved by the faces and degenerations.

Definition 2.58. The simplicial set P •U(X) is called the Rips complex of X for U .

If f : X → X ′ is a map and f(U) ⊆ U ′, then we get an induced map P (f) : P •U(X) →
P •U ′(X

′).

The dimension of a simplicial set is the supremum of the dimensions of its non-degenerated
simplices.

If X has uniformly locally bounded geometry, then P •U(X) is finite-dimensional for every
coarse entourage U containing diag(X).

Seien f, g : X → X ′ be morphisms of coarse spaces such that f(U) ⊆ U ′ and g(U) ⊆ U ′

and f and g are V ′-close. Let W ′ be an entourage of X ′ such that U ′ ⊆ W ′ and U ′V ′ ⊆ W ′.
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Lemma 2.59. P •(f) and P •(g) are simplicially homotopic as morphisms P •U(X) →
P •W ′(X

′).

Proof. For all n in N and i in {0, . . . , n} we define maps hi : P n
U (X)→ P n+1

W ′ (Y ) as follows:

hi(x0, . . . , xn) := (f(x0), . . . , f(xi), g(xi), . . . , g(xn)) .

One checks the following defining relations:

dihj =


hj−1di i < j
dihi−1 i = j 6= 0
hjdi−1 i > j + 1

and

sihj =

{
hj+1si i ≤ j
hjsi−1 i > j

.

Consider a functor F : sSet→M to some target. Then we can consider

FP•(X) := colim
U∈CX

F (P •U(X)) .

Then X 7→ FP•(X) is a functor

FP• : Coarse→M .

If F is homotopy invariant, then FP• sends coarse equivalences to equivalences (equalities)
and hence factorizes over a functor

FP• : Coarse→M .

3 Bornological coarse spaces

Let X be a set with a coarse structure C and a (generalized) bornological structure B.

Definition 3.1. C and B are compatible if for every B in B and U in C we have U [B] ∈ B.

Compatibility means that the bornology B is stable under U -thickening for all coarse
entourages U of X.

Let X be a coarse space. Let B be a subset of PX .

Lemma 3.2. The following are equivalent.
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1. B is the minimal bornology compatible with CX .

2. B = B〈{U [{x}] | x ∈ X and U ∈ CX}〉.

3. B = B〈{B |B is U-bounded for some U in CX}〉

Proof. 1 ⇔ 2 : Let B as in 1. and B′ := B〈{U [{x}] | x ∈ X&U ∈ CX}〉. Since {x} is
bounded in any bornology we have {x} ∈ B. Since B is compatible with CX we have
U [{x}] ∈ B for all U in CX and x in X. Hence B′ ⊆ B. We show that B′ is compatible
with CX and conclude B′ = B by minimality of B. Let A be in B′ and U ∈ CX . Then there
exist finite families (Ui)i∈I in CX and (xi)i∈I such that A ⊆

⋃
i∈I Ui[xi] (see Example 1.6).

We conclude that U [A] ⊆
⋃
i∈I(U ◦ Ui)[xi]. Since U ◦ Ui ∈ CX for all i in I this implies

that U [A] ∈ B′.

2⇔ 3 : Let B′′ := B〈{B |B is U -bounded for some U in CX}

We first show that B′ ⊆ B′′. Let x be in X and U be in CX . Then we have [U{x}]×U [{x}] ⊆
U ◦U−1. Since for U in CX also U ◦U−1 ∈ CX we conclude that [U{x}]×U [{x}] is bounded
by a coarse entourage of X. Hence [U{x}]× U [{x}] ∈ B′′. This implies that B′ ⊆ B′′.

We now show that B′′ ⊆ B′. Let B be in B′′ and not empty. Then there exists a finite
family (Bi)i∈I of non-empty subsets of X such that B =

⋃
i∈I Bi and Ui := Bi ×Bi ∈ CX .

Then for every i in I we have Bi = Ui[{bi}] for some point bi of Bi. This implies Bi ∈ B′
for all i in I and hence B ∈ B′.

Example 3.3. The minimal generalized bornology compatible with a coarse structure is
the empty bornology.

Every (generalized) bornology is compatible with the minimal coarse structure.

The maximal bornology is compatible with any coarse structure.

Example 3.4. Show by example that in general {B |B is U -bounded for some U in CX}
is not a bornology.

Remark 3.5. Let X be a bornological space and A be a subset of PX×X . In order to
check that CX := C〈A〉 is compatible with BX it suffices to show that A[B] ∈ BX and
A−1[B] ∈ BX for all A in A and B in BX .

In order to see this we will use the notation from Lemma 2.12. If V is in CX , then
V ⊆

⋃
j∈J
⋃
i=1,...,nj

Aj,i. We then use that (W ◦W ′)[B] = W [W ′[B]] and (W ∪W ′)[B] ⊆
W [B] ∪W ′[B] for any two entourages W and W ′ of X.

Definition 3.6. A bornological coarse space is a triple (X, C,B) of a set with a coarse
and a bornological structure which are compatible.
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Example 3.7. This example generalizes 1.4 and 2.7 at the same time. Let X be a
bornological coarse space. We assume that Bmin is compatible with CX . This means that
U [{x}] is finite for every x in X and U in CX .

We consider the R-module

A(X) := {A ∈ RX×X | supp(A) ∈ CX} .

This R-module has an associative algebra structure defined by matrix multiplication:

A′′(x, y) := (A′ ◦ A)(x, y) :=
∑
z∈X

A′(x, z)A(z, y) .

Indeed, the sum runs over the finite set supp(A′)−1[{x}] ∩ supp(A)[{y}]. Note that
supp(A) ⊆ supp(A′) ◦ supp(A).

We consider the R-module Clf(X,R) of functions f : X → R whose support is locally
finite (Definition 1.17). Thus for f in Clf(X,R) we have |supp(f) ∩B| is finite for every
B in BX .

We can define an action of A(X) on Clf(X,R) as follows:

(Af)(x) =
∑
y∈X

A(x, y)f(y) .

This sum is finite. Let B be bounded in X. Then B ∩ supp(Af) ⊆ A[supp(A)−1[B] ∩
supp(f)]. Since [supp(A)−1[B] is bounded the intersection with supp(f) is finite, and
hence A[supp(A)−1[B]∩ supp(f)] is finite. This shows that Af belongs to Clf(X,R).

Example 3.8. If (X, d) is a metric space, then Bd and Cd are compatible. We get a
bornological coarse space Xd := (X, Cd,Bd).

Example 3.9. Let X be a Hausdorf space and A be a subset. We set X := X \A. Then
the continuously controlled coarse structure C and the bornology B of subsets B with
B̄ ∩ A = ∅ are compatible.

We check the compatibility. Let B be in B and U in C. Assume that U [B] 6∈ B. Then
U [B]∩A contains a point a. Then there exists a net (xi, bi)i∈I in U such that limi∈I xi = a.
Then also limi∈I bi = a and hence B̄ ∩ A 6= ∅. This is a contradiction.

We call the structure (C,B) the continuously controlled bornological coarse structure on
X.

If we omit the Hausdorff assumption then the same works for generalized bornologies.

By BornCoarse we denote the category of bornological coarse spaces and proper and
controlled maps. We can apply the above definitions to generalized bornologies and obtain
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the notion of a generalized bornological coarse space. We get the category ˜BornCoarse
of generalized bornological coarse spaces and a fully faithful inclusion

BornCoarse→ ˜BornCoarse .

Example 3.10. If X is a generalized bornological coarse space, then we have a canonical
coarsely disjoint decomposition X = Xb tXu into the subsets of bounded and unbounded
points. Assume that b is in Xb and u is in Xu and b and u belong to same coarse component,
then {(u, b)} would be a coarse entourage of X. But then u ∈ U [{b}] and hence {u} would
be bounded, which is a contradiction.

Example 3.11. Let f : X → Y be a map of sets and assume that Y has a bornological
coarse structure (CY ,BY ). Then we can equip X with the maximal coarse structure CX
such that f : X → Y is controlled and the minimal bornology BX such that f : X → Y is
proper.

We check that these structures are compatible. Let U be in CX and B be in BX . Then
there exists a finite family (Bi)i∈I in BY such that B ⊆

⋃
i∈I f

−1(Bi). We then have
U [B] ⊆

⋃
i∈I U [f−1(Bi)]. We now check that U [f−1(Bi)] ⊆ f−1((f × f)(U)[Bi]). By

construction of CX we know that (f × f)(U) is controlled in Y and hence (f × f)(U)[Bi]
is bounded in Y . But then f−1((f × f)(U)[Bi]) is bounded in X for all i in I and hence
also U [B] is bounded.

We call the bornological coarse structure on X the induced structure. Note that f : X → Y
is then a morphism in BornCoarse.

Example 3.12. Let G be a group. we equip G with the minimal bornology Bmin
consisting of the finite subsets. Furthermore we consider the canonical coarse structure
Ccan := C〈{G(B ×B) |B ∈ Bmin}〉. Then Ccan and Bmin are compatible. Indeed, if A is in
Bmin and U = G(B ×B), then

U [A] ⊆
⋂

{g∈G | gB∩A 6=∅}

gB ∩ A .

This set is finite since {g ∈ G | gB ∩A 6= ∅} is finite and gB ∩A is finite for every g in G.

Definition 3.13. We write Gcan,min for the bornological coarse space G with the structures
Ccan and Bmin.

Note that G acts on Gcan,min by automorphisms of bornological coarse spaces from the
left. Furthermore the set of G-invariant entourages CGcan is cofinal in Ccan. This condition
characterizes G-bornological coarse spaces among bornological coarse spaces with G-action.

Many groups admit a finite description by generators and relations G ∼= 〈S|R〉. Going
over to Gcan,min we obtain a description of interesting bornological coarse spaces (with
high symmetry) in finite terms.
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Note that Zncan,min is equivalent to Zn with the metric structures from Rn. The group
Qn
can,min is completely different from Qn with the metric structure.

Let X, Y be in BornCoarse.

Definition 3.14. A morphism f : X → Y is called an equivalence if there exists a
morphism g : Y → X such that f ◦ g is close to idY and g ◦ f is close to idX .

Example 3.15. We consider R with the standard bornological coarse structure from the
metric. We consider Z with the bornological coarse structure induced from R. Then
Z → R is a coarse equivalence. If we equip Z with the maximal bornology, then this
map is no longer an equivalence in BornCoarse since any potential inverse R→ Z is not
proper.

The category BornCoarse has a symmetric monoidal structure ⊗. Let X and Y be in
BornCoarse.

Definition 3.16.

We define X ⊗ Y as follows:

1. The underlying set of X ⊗ Y is X × Y .

2. The coarse structure on X ⊗ Y is generated by the entourages U × V for all U in
CX and V ∈ CY .

3. The bornology of X ⊗ Y is generated by the subsets A×B, where A is in BX and B
is in BY .

One checks that BX is compatible with CX . The unit, associativity and symmetry
constraints are induced from the cartesian symmetric monoidal structure on Set.

Example 3.17. The underlying coarse space of X ⊗ Y is the cartesian product of the
underlying coarse spaces. The underlying bornological space of X ⊗ Y is the bornological
tensor product from Definition 1.31.

Example 3.18. We have an equivalence Rn+m ' Rn ⊗ Rm.

Example 3.19. There are functors

(−)min,max, (−)max,max : Set→ BornCoarse

which send a set X to the bornological coarse space Xmin,max (or Xmax,max) with the
minimal (or maximal) coarse and the maximal bornological structure.

There are no such functors which equip X with the minimal bornology.
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Lemma 3.20. We have an adjunction

(X 7→ (X, Cmin,BX)) : Born � BornCoarse : forget .

Proof. We write Xmin,BX := (X, Cmin,BX). For every T in BornCoarse we have an
equality

HomBornCoarse(Xmin,BX , T ) = HomBorn(X,T ) .

The same argument gives:

Lemma 3.21. We have an adjunction

(X 7→ (X, Cmin,BX)) : B̃orn � ˜BornCoarse : forget .

Remark 3.22. Note that there is no adjunction

forget : ˜BornCoarse � B̃orn : (X 7→ (X, Cmax,BX))

generalizing the adjunction from Lemma 2.29. The problem is that Cmax is not compatible
with a general bornology.

Lemma 3.23. We have an adjunction

(X 7→ (X, CX ,Bmax)) : Coarse � BornCoarse : forget .

Proof. We write XCX ,max := (X, CX ,Bmax). For every T in BornCoarse we have an
equality

HomBornCoarse(XCX ,max, T ) = HomCoarse(X,T ) .

Lemma 3.24. We have an adjunctions

(X 7→ (X, CX ,Bmax)) : Coarse � ˜BornCoarse : forget

and
forget : ˜BornCoarse � Coarse : (X 7→ (X, CX , ∅))

Proof. The first case is as in Lemma 3.23. For the second we write XCX ,∅ := (X, CX , ∅).
For every T in ˜BornCoarse we have an equality

Hom ˜BornCoarse
(T,XCX ,∅) = HomCoarse(X,T ) .
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Proposition 3.25. The category ˜BornCoarse is complete and cocomplete.

Proof. It is clear from the adjunctions above that the underlying coarse spaces of colimits

and limits in ˜BornCoarse are the limits and colimits of the underlying diagrams in
Coarse. The same applies to the underlying bornological space of a limit. As suggested
by the observation in Remark 3.22 the bornology of a colimit is more complicated.

Let X : I → ˜BornCoarse be a diagram. Then we equip the limit Y of the diagram of
underlying sets with the coarse structure and generalized bornology such that the resulting

coarse and generalized bornological space represent the limit in Coarse and B̃orn. We
first check that the coarse structure and the generalized bornology on Y are compatible so

that Y becomes an object of ˜BornCoarse. We check the compatibility on the generators
of the coarse structure with the bornology.

For i in I let pi : Y → Xi be the canonical projection. By construction pi is a morphism in
˜BornCoarse for every i in I. An entourage U of X is coarse if pi(U) is coarse in Xi for all

i in I. The generators of the bornology of X are the subsets p−1
i (B) for i in I and bounded

subsets B in Xi. For such a generator we have U [p−1(B)] ⊆ p−1
i (pi(U)[B]). Since pi(U)[B]

is again bounded by the compatibility of structures on Xi we conclude that U [p−1(B)] is
bounded in X.

We now show that (Y, (pi)i∈I) is a limit of the diagram X. Let T be in ˜BornCoarse. By
construction we have bijections

Hom
B̃orn

(T, Y )
∼=→ lim

I
Hom

B̃orn
(T,X) , HomCoarse(T, Y )

∼=→ lim
I

HomCoarse(T,X)

which immediately implies Hom ˜BornCoarse
(T, Y )→ limiI Hom ˜BornCoarse

(T,X).

For cocompleteness we show the existence of coproducts and coequalizers.

Let (Xi)i∈I be a family in ˜BornCoarse. We consider the coproduct of sets X :=
∐

i∈I Xi

and the embeddings ei : Xi → X. We equip X with the minimal coarse structure such
that ei is controlled for all i in I and the maximal generalized bornology such that ei is
proper for all i in I. This the coarse structure generated by the entourages ei(U) for i in I
and coarse entourages U of Xi, and a subset B is bounded if e−1

i (B) is bounded for every
i in I. We check compatibility on generators. We have

e−1
i (ej(U)[B]) ⊆

{
∅ i 6= j

U [e−1
i (B)] i = j

.

This set is bounded for every i by the compatibility of structures on Xi. Hence ej(U)[B]
is bounded in X.

We claim that the generalized bornological coarse space X with the family of embeddings

(ei)i∈I represents the coproduct in ˜BornCoarse. Let T be in ˜BornCoarse together with
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a family of morphisms ti : Xi → Ti. There exists a unique map of sets t : X → T such
that t ◦ ei = ti for all i in I. This map is controlled and proper. Indeed, for a bounded B
in T the set e−1

i (t−1(B)) = t−1
i (B) is bounded for every i in I. Hence t−1(B) is bounded

in X. For a coarse entourage U of Xi the entourage t(ei(U)) = ti(U) is coarse in Xi. This
implies that t is controlled.

We now show the existence of coequalizers. Let f, g : X → Y be two morphisms in
˜BornCoarse. Then we consider the coequalizer q : Y → Q of the two maps on the

level of underlying sets. We equip Y with the minimal coarse structure structure such
that this map is controlled and the maximal compatible genberalized bornology such that
this map is proper. If U is an entourage of Y and B is a subset of Q, then we have
U(q−1[B]) ⊆ q−1(q(U)[B]). Even if q−1(B) is bounded this does in general not imply that
q−1(q(U)[B]) is bounded. The generalized bornology of Q is given by subsets B such that
q−1(q(U)[B]) is bounded for all U in CY .

We claim that Y → X represents the coequalizer of f and g. Let t : Y → T be a morphism
such that t ◦ f = t ◦ g. Then there is a unique factorization over a map of sets c : Q→ T .
One checks that this map is a morphism. The coarse structure of Q is generated by the
entourages q(U) for coarse entouragesq of Y . Since c(q(U)) = t(U) we conclude that t is
controlled. Let now B be bounded in T . Then t(U)[B] is also bounded for every coarse
entourage U of Y . This implies that t−1(t(U)[B]) is bounded. Now

q−1(q(U)[c−1(B)]) ⊆ q−1c−1(c(q(U))[B]) = t−1(t(U)[B])

implies that q−1(q(U)[c−1(B)]) is bounded. We conclude that c−1(B) is bounded in Q.

Example 3.26. Consider the two projections pr0, pr1(X ×X)min,max → Xmin,min. If X
is infinite, then the coequalizer of this diagram is the unbounded point.

Note that BornCoarse is a full subcategory of ˜BornCoarse. It therefore inherits all limits

and colimits taken in ˜BornCoarse of diagrams in BornCoarse which are represented
by objects of BornCoarse.

Proposition 3.27. The category BornCoarse has all non-empty limits.

Proof. If X− : I → BornCoarse is a diagram such that I is non-empty, then limIXi

consists of bounded points. Indeed let x be such a point. Then pi(x) is bounded for every
i in I. Hence x is a point in the bounded subset

⋂
i∈I p

−1
i ({x}).

Proposition 3.28. The category BornCoarse has all coproducts.

Proof. Exercise.
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Example 3.26 shows that BornCoarse does not have all colimits.

Example 3.29. The square
{∗} //

��

N

��

−N // Z
is a push-out in BornCoarse.

Example 3.30. We consider subsets of N given by

Y :=
⋃
n∈N

[(2n)2, (2n+ 1)2] , X :=
⋃
n∈N

[(2n+ 1)2, (2n+ 2)2] .

The square
Y ∩ Z //

��

Y

��

Z // N
(all subspaces have the induced structure) is not a push-out. The coarse structure of N
is generated by a single entourage U1 and |πcoarse0 (N)| = 1. But the coarse structure of
the push-out is not generated by a single entourage. Indeed, for any entourage U of the
push-out structure we have |πcoarse0 (NU)| =∞.

4 Coarse homology theories

Let E : BornCoarse→M be a functor.

Definition 4.1. E is coarsely invariant if E sends coarse equivalences to equivalences
(isomorphisms).

Lemma 4.2. The following are equivalent.

1. E is coarsely invariant.

2. E sends pairs of close map to pairs of equivalent (equal) maps.

3. E({0, 1}max,max ⊗X)→ X is an equivalence (isomorphism) for all X in C.

Proof.

1⇒ 2

We observe that p : {0, 1}max,max ⊗ X → X is coarse equivalence. Inverses are the
inclusion i0, i1 : X → {0, 1}max,max⊗X given by i0(x) := (0, x) and i1(x) := (1, x). Indeed,
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p ◦ i0 = idX and i0 ◦ p is close to id since (i0 ◦ p, id)(x, x) ∈ {0, 1} × {0, 1} × diag(X) for
all x in X, and {0, 1} × {0, 1} × diag(X) is a coarse entourage of {0, 1}max,max ⊗X. A
similar argument applies to i1.

Now assume that f, g : X → Y are morphisms which are close to each other. Then we
define

h : {0, 1} ⊗X → Y , h(i, x) :=

{
f(x) i = 0
g(x) i = 1

.

This is a morphism. If B is bounded in Y , then h−1(B) ⊆ {0, 1} × (f−1(B) ∪ g−1(B)).
This shows that h is proper.

Assume that f ∼V g for some entourage V of Y . Let U be an entourage of X and set
W := {0, 1} × {0, 1} × U . Then h(W ) ⊆ V ∪ f(U) ∪ g(U).

Since E is coarsely invariant we have E(i0) = E(i1) since both are inverse to E(p). We
have f = h ◦ i0, g = h ◦ i1. By functoriality, E(f) = E(h)E(i0) = E(h)E(i1) = E(g).

2⇒ 1

Let f : X → Y be a coarse equivalence. Then there exists a morphism g : Y → X
such that f ◦ g ∼ idY and g ◦ f ∼ idX . We have E(f) ◦ E(g) = E(idY ) = idE(Y ) and
E(g) ◦ E(f) = E(idX) = idE(X).

1⇒ 3

We have already seen that p is a coarse equivalence. Hence E(p) : E({0, 1} ⊗X)→ X is
an equivalence.

3⇒ 2

Let f, g : X → Y be two morphisms which are close to each other. Then we form
h : {0, 1}max,max⊗X → Y as above. Since E(p) is an equivalence and p ◦ i0 = p ◦ i1 = idX
we conclude that E(i0) = E(i1) since both are right inverse to E(p). Then we calculate,
using functoriality, that E(f) = E(h)E(i0) = E(h)E(i1) = E(g)

Example 4.3. The functor X 7→ πcoarse0 (X) is coarsely invariant. Indeed

πcoarse0 ({0, 1}max,max ⊗X)→ πcoarse0 (X)

is isomorphism. In order to see this note that [i, x] ' [j, y] in πcoarse0 ({0, 1}max,max ⊗X) if
and only if [x] = [y] in πcoarse0 (X).
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Example 4.4. For every Y in BornCoarse the functor

X 7→ HomCoarse(Y,X)

is coarsely invariant.

Definition 4.5. A bornological coarse space is flasque if it admits an endomorphisms
f : X → X satisfying:

1. f is close to idX .

2. For every U in CX we have
⋃
n∈N f

n(U) ∈ CX .

3. For every B in BX there exists n in N such that fn(X) ∩B = ∅.

We say that f witnesses flasqueness of X.

Example 4.6. For X in BornCoarse the space N⊗X is flasque with f : N⊗X → Xgiven
by f(n, x) := (n+ 1, x).

We check the axioms.

1. We have (id, f)(diag(N⊗X) ⊆ U1 × diag(X).

2. We have for an entourage Ur × V of N⊗X that
⋃
n∈N f

n(Ur × V ) ⊆ Ur × V .

3. Finally, if B is bounded in N × X, then B ⊆ [0, n] ⊗ X for some n in N. Since
fn+1(N×X) ⊆ [n+ 1,∞)×X we conclude that fn+1(N×X) ∩B = ∅.

Note that also [0,∞)⊗X is flasque.

On the other hand Z×X is not flasque. The map (n, x) 7→ (n+ 1, x) does not work since
the third axiom is not fullfilled. We will use coarse homology theories to see that there is
no other map implementing flasqueness.

Definition 4.7. X is flasque in the generalized sense if X → N ⊗X, x 7→ (0, x) has a
retract r : N⊗X → X.

Remark 4.8. The retract in Definition 4.7 is the datum of a family (fn)n∈N of maps
fn : N→ X such that

1. f0 = idX (retract property).

2. There exists a coarse entourage V of X such that fn ∼V fn+1 for all n in N, and
every coarse entourage U of X the entourage

⋃
n∈N f

n(U) is coarse (r is controlled).
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3. For every bounded subset B in X there exists n0 in N such that fn(X) ∩B = ∅ for
all n in N with n ≥ n0 (r is proper).

Lemma 4.9. If X is flasque, then it is flasque in the generalized sense.

Proof. Let f : X → X witnesses flasqueness of X. We define r : N ⊗ X → X by
r(n, x) := fn(x). The family of functions (fn)n∈N satisfies the conditions listed in Remark
4.8.

A pointed category is a category in which initial and final objects coincide. We write 0
for such objects. A morphism in a pointed category is a zero morphism if it admits a
factorization over a zero object. The composition of a zero morphism with any morphism
is again a zero morphism. Between any two objects there exists a unique zero morphism.

Example 4.10. The category of pointed sets Set∗ and base-point preserving maps is
pointed with zero object ∗.

Ab is pointed by 0.

Let E : C→M be a functor to a pointed category.

Definition 4.11. E vanishes in flasques if for every flasque X the canonical map 0 →
E(X) is an equivalence (isomorphism).

Lemma 4.12. The following assertions are equivalent.

1. E vanishes on generalized flasques.

2. E vanishes in flasques.

3. 0→ E(N⊗X) is an equivalence for every X in BornCoarse.

Proof.

1⇒ 2

This is clear since clear since flasques are generalized flasques by Lemma 4.9.

2⇒ 3

This is clear since since N⊗X is flasque by Example 4.6.
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3⇒ 1

By assumption we have a retract r : N ⊗X → X of i0 : X → N ⊗X. Then E(idX) =
E(r) ◦ E(i0). E(X) is retract of 0 and hence 0 since N

Recall that for X in BornCoarse and U in CX we write XU for the bornological space
X equipped with the coarse structure CU := C〈{U}〉. Since CU ⊆ CX this structure is
compatible with the bornology.

If U ′ is in CX and U ⊆ U ′, then the identity of X induces a map XU → XU ′ . We have a
map XU → X.

Definition 4.13. We say that E is u-continuous if the canonical map colimU∈CX E(XU )→
E(X) is an equivalence.

Example 4.14. The functor

P : C→ sSet , X 7→ colim
U∈CX

PU(X)

is u-continuous. The composition of P with any filtered colimit-preserving functor is again
u-continuous, e.g. Z[P ] : BornCoarse→ sAb.

Example 4.15. The functor X 7→ πcoarse0 (X) is u-continuous. It is clear that the canonical
maps πcoarse0 (XU)→ πcoarse0 (XU ′)→ πcoarse0 (X) are surjective for every U , U ′ in CX with
U ⊆ U ′. This implies that colimU∈CX π

coarse
0 (XU)→ πcoarse0 (X) is surjective. In order to

show injectivity let x, x′ be in X and assume that [x]X = [x′]X in πcoarse0 (X). Then x ∼ x′

for some U in CX . But then [x]XU
= [x′]XU

in πcoarse0 (XU).

Example 4.16. Let Y be in BornCoarse such that CY = CV for some entourage V of
Y . Then the corepresented functor

HomBornCoarse(Y,−) : BornCoarse→ Set

is u-continuous. Indeed, HomBornCoarse(Y,XU) → HomBornCoarse(Y,X) is obviously the
inclusion of a subset for every U in CY . If f is in HomBornCoarse(Y,X), then we have
f ∈ HomBornCoarse(Y,Xf(V )). This shows that

colim
U∈CX

HomBornCoarse(Y,XU) = HomBornCoarse(Y,X) .

Without the condition of the coarse structure of Y this assertion is wrong in general. For
example, let X := {n2 | n ∈ N} with the structures induced from the inclusion into N.
Then idX 6∈ colimU∈CX HomBornCoarse(X,XU ) since otherwise X = XU for some entourage
U of X. But one can show that the coarse structure on X is not generated by any finite
set of entourages.
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Let X be in BornCoarse.

Definition 4.17. A big family in X is a filtered subposet Y of PX such that for every
member Y in Y and U in CX there exists a member Y ′ in Y such that we have U [Y ] ⊆ Y ′.

We say that Y is complete if Y in Y and Y ′ ⊆ Y imply that Y ′ ∈ Y. We can form the
completion Ȳ by adding all subsets of members of Y .

Example 4.18. The bornology of X is a complete big family.

Example 4.19. Let Y be a subset of X in BornCoarse. Then we can form the big
family {Y } := {U [Y ] | U ∈ CX} generated by Y . This big family has the property that all
members U [Y ] with diag(X) ⊆ U are coarsely equivalent to Y . In fact Y is an U -dense
subset of U [Y ]. The inclusion Y → U [Y ] is a coarse equivalence.

For a map f : X → X ′ we write f(Y) = {f(Y ) | Y ∈ Y}. In general this is not a big
family.

We consider pairs (X,Y) of X in BornCoarse and a big family Y on X.

Definition 4.20. A morphism f : (X,Y) → (X ′,Y ′) is a morphism f : X → X ′ such
that f(Y) ⊆ Ȳ ′.

We get the category BCpair of pairs and morphisms.

We have a functor
BornCoarse→ BCpair , X 7→ (X, ∅) .

If E : BCpair →M is a functor, then we can restrict E to a functor

uE : BornCoarse→M , X 7→ E(X, ∅) ,

called the underlying functor. We will use the notation uE in order to denote the underlying
functor, but if we insert an argument, then we will omit usince it is clear from that fact
that the argument has one entry that we mean the underlying functor. So we write E(X)
instead of uE(X).

We have a functor
BCpair → BornCoarse , (X,Y) 7→ X .

Any functor E : BornCoarse→M extends to a functor

E : BCpair →M , E(X,Y) := E(X) .

Extending and then restricting reproduces the initial functor.
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If E : BCpair →M is a functor to a target which admits filtered colimits, then we define
a functor

∂E : BCpair →M , ∂E(X,Y) := E(Y) := colim
Y ∈Ȳ

E(Y ) .

On morphisms f : (X,Y) → (X ′,Y ′) the inclusion f|Y : E(Y ) → E(f(Y )) induces a
compatible family of morphisms

E(Y )→ E(f(Y ))→ colim
Y ′∈Ȳ ′

uE(Y ′)

for all Y in Y . We finally get a morphism

E(Y) = colim
Y ∈Ȳ

E(Y )→ colim
Ȳ ′

E(Y ′) = E(Y ′) .

This finishes the construction of ∂E up to straightforward verifications.

The inclusion morphisms Y → X for all Y in Y induce compatible morphisms uE(Y )→
uE(X) and finally a morphism

E(Y)→ E(X) .

These morphisms for all (X,Y) in BCpair fit into a natural transformation of functors

∂E ⇒ uE : BCpair →M .

Let (X,Y) be in BCpair and Z be a subset of X.

Definition 4.21. We say that (Z,Y) is a complementary pair on X if X \ Z ∈ Ȳ.

Note that Z ∩ Y = {Z ∩ Y | Y ∈ Y} is a big family on Z. This follows from the inclusion
UZ [Y ∩ Z] ⊆ U [Y ] ∩ Z for all U in CX , where UZ = U ∩ (Z × Z). We get an canonical
morphism (Z,Z ∩ Y)→ (X,Y).

Example 4.22. We consider the space X = Z, the subspace Z = [0,∞), and we let Y
be the family of subsets {(−∞, n] | n ∈ N}. This family is big. Note that Ur[(−∞, n]] ⊆
(−∞, n + r] for every r in N. The closure of this family consists of all upper bounded
subsets. Note that Ȳ = {(−∞, 0]}.

Note that every member of Y is flasque. This is not true for the members of Ȳ. For
example {−n2 | n ∈ N} is not flasque.

The pair (Z,Y) is complementary in Z.

Example 4.23. Let Y be a Hausdorff topological space, A be a subset, and X := Y \A be
equipped with the continuously controlled structure. We let Z be any open neighbourhood
of A and Y := BX . We know that Y is a big family by Example 4.18. Furthermore,
X \ Z belongs to Y . Indeed, X \ Z ∩ A = (X \ Z) ∩ ∅. Hence (Z,Y) is a complementary
pair. Note that every member of Y is equivalent to Ymax,max and hence to a point. This
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will be used to reduce the study of the coarse homotopy theory X to arbitrary small
neighbourhoods of A.

We consider functor F : BCpair →M.

Definition 4.24. The functor F is called excisive if for every complementary pair (Z,Y)
on X in BornCoarse the canonical functor induces an equivalence (isomorphism)

E(Z,Z ∩ Y)→ E(X,Y) .

Example 4.25. Let R be a ring. Then we have a functor BornCoarse → Mod(R)op

given by

X 7→ Clf(X,R) , (f : X → X ′) 7→ (f ∗ : Clf(X
′, R)→ Clf(X,R)) .

Here f ∗ preserves local finiteness since f preserves locally finite subsets by properness (see
Example 1.21). We have a functor

(X,Y) 7→ Clf(X,Y , R) := colim
Y ∈Y

Clf(X,R)/Clf(Y,R) .

We claim that this functor is excisive.

The map Clf(X,R) → Clf(Z,R) is surjective since we can extend any φ in Clf(Z,R)
by zero in order to obtain a preimage in Clf(X,R). This implies that Clf(X,Y , R) →
Clf(Z,Z ∩ Y , R) is surjective. We now show injectivity. Assume that [φ] is in Clf(X,Y , R)
such that [φ|Z ] = 0. Then supp(φ|Z) ∈ Z ∩ Y. Hence supp(φ) ⊆ (X \ Z) ∪ supp(φ|Z)
belongs to Y . Hence [φ] = 0.

Remark 4.26. The Definition 4.24 is adapted to its usage in connection with δ-functors
below. A better definition would start, as initial data, with the underlying functor
uE : BornCoarse → M whose target is cocomplete. Then we would define ∂E by
∂E(Y) := colimY ∈Y E(Y ).

We call uE excisive if for every complementary pair (Z,Y) the square

∂E(Z ∩ Y) //

��

uE(Z)

��

∂E(Y) // uE(X)

is a push-out square in M.

If M is pointed, then we can define E(X,Y) := Cofib(E(Y)→ E(X)). If the square above
is a push-out, then the indued map of cofibres of the horizontal morphisms E(Z,Z ∩Y)→
E(X,Y) is an equivalence. Under additional assumptions on M (e.g. stable ∞-category)
the two conditions are equivalent.
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Example 4.27. Let T be in BornCoarse and consider the functor HomBornCoarse(−, T ) :
BornCoarse→ Setop.

Lemma 4.28. The functor HomBornCoarse(−, T ) is excisive in the sense of Remark 4.26.

Proof. Homework. (solution appears later)

Let (Z,Y) be a complementary pair on X and f : X → T be a map of sets. In order
to check that f is a morphism it suffices to check that f|Z is a morphism and f|Y is a
morphism for every member Y in Y .

It is important to work with complementary pairs. To this end consider the following
example with underlying bornological coarse space Z. We consider the entourage V :=
(U1 ∩ ((−∞, 0]× (−∞, 0]))∪ (U1 ∩ ([0,∞)× [0,∞))). The identity map f : Z→ ZU is not
a morphism. Note that |πcoarse0 (ZU)| = 2, while |πcoarse0 (Z)| = 1. But f|(−∞,0] and f|[1,∞)

are morphisms.

We let AbZgr denote the category of Z-graded abelian groups. Let G be in AbZgr. Then
we write Gn for the degree-n-component. Let [k] : AbZgr → AbZgr be the shift functor
given by (G[k])n = Gn+k. given by

Definition 4.29. A coarse δ-functor is a pair (E, δ) of a functor E : BCpair → AbZgr

and a natural transformation δ : E → ∂E[−1] such that for every pair (X,Y) the sequence

E(Y)→ E(X)→ E(X,Y)
δ→ E(Y)[−1]

is exact.

Definition 4.30. A coarse δ-functor (E, δ) is a linear coarse homology theory if

1. E is excisive.

2. The underlying functor E : BornCoarse→M is coarsely invariant.

3. The underlying functor E : BornCoarse→M vanishes on flasques.

4. The underlying functor E : BornCoarse→M is u-continuous.

Example 4.31. We calculate that En(Zk) ∼= En+k(∗) by induction.

The case k = 0 is clear.

Assume for k − 1. Then consider pair (Z,Y) on Zk where

Z := {(n1, . . . , nk) ∈ Zk | n1 ≥ 0}
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and
Y := {Yr := {(n1, . . . , nk) ∈ Zk | n1 ≤ r} | r ∈ N} .

We have Z ∼= N⊗ Zk−1 and also Yr ∼= N⊗ Zk−1. These spaces are flasque. Furthermore
Z ∩ Yr = [0, r]× Zk−1 is coarsely equivalent to Zk−1.

The long exact sequence for (Zk,Y) and ∂E(Y) ' 0 gives the first isomorphism in

E(Zk)
∼=→ E(Zk,Y)

excision∼= E(Z,Z ∩ Y)
∼=,δ→ ∂E(Z ∩ Y)[−1] = E(Zk−1)[−1] .

Hence
En(Zk) ∼= En−1(Zk−1) .

Let X be in BornCoarse and Y , Z be subsets such that Y ∪ Z = X.

Definition 4.32. The pair (Y, Z) is called coarsely excisive if for every U in CX there
exists V in CX such that

U [Y ] ∩ U [Z] ⊆ W [Y ∩ Z] .

Example 4.33. The pair (−N,N) in Z is coarsely excisive. Note that {0} = −N ∩ N. If
U is in CZ, then there exists r in N such that U ⊂ Ur. Then

U [−N] ∩ U [N] ⊆ [−r, r] = Ur[−N ∩ N] .

The pair (−N, 1 + N) is not coarsely excisive.

Example 4.34. Let (X.d) be a path metric space and (Y, Z) be a pair of closed subsets
such that Y ∪ Z = X.

Lemma 4.35. The pair (Y, Z) is coarsely excisive.

Proof. If U is in CX , then U ⊆ Ur for some r in N. We claim that

U [Y ] ∩ U [Z] ⊆ U2r[Y ∩ Z] .

Let x be a point in U [Y ] ∩ U [Z]. Then there exist points y in Y and z in Z such that
d(x, y) ≤ r and d(x, z) ≤ r. Hence d(y, z) ≤ 2r. There exists a path γ from y to z of
length 2r. Since γ is connected, X = Y ∪ Z, and Y and Z are closed, there exists a point
m ∈ γ∩Z∩Y . Then d(m,x) ≤ r+min(d(m, y), d(m, z)) ≤ 2r. Hence x ∈ U2r[Y ∩Z].

Let (E, δ) be a linear coarse homology theory and (Y, Z) be a coarsely excisive pair on
X.
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Proposition 4.36. We have a long exact Mayer-Vietoris sequence

E(Y ∩ Z)
i⊕j→ E(Y )⊕ E(Z)

k−l→ E(X)
∂MV

→ E(Y ∩ Z)[−1] . (4.1)

Where i : Y ∩ Z → Y , j : Y ∩ Z → Z, k : E(Y ) → E(X) and l : E(Z) → E(X) are
induced by the embeddings.

Proof. The boundary map ∂MV will be constructed in the proof. We have a complementary
pair (Z, {Y }). This gives a map of exact sequences

E(Z ∩ Y)
j̃
//

ĩ
��

E(Z) //

l
��

E(Z,Z ∩ Y)
δ(Z,Z∩Y)

//

b ∼=
��

E(Z ∩ Y)[−1]

��

E(Y) k̃ // E(X) a // E(X,Y)
δ(X,Y)

// E(Y)[−1]

. (4.2)

This diagram gives the long exact sequence

E(Z ∩ Y)
ĩ⊕j̃→ E(Y)⊕ E(Z)

k̃−l→ E(X)
∂̃MV

→ E(Z ∩ Y)[−1] (4.3)

where ∂̃MV := δ(Z,Z∩Y) ◦ b−1 ◦ a.

The canonical map E(Y )→ E(Y) is an isomorphism since the inclusion of Y into every
sufficiently large member of Y is a coarse equivalence.

We claim that E(Y ∩ Z) → E(Z ∩ Y) is also an isomorphism. Indeed, since (Y, Z) is
coarsely excisive, for every U in CX (with diagX ⊆ X) there exists V in CX such that

Z ∩ Y ⊆ Z ∩ U [Y ] ⊆ V [Z ∩ Y ] .

This shows that these inclusion maps are coarse equivalences. In particular, we can conclude
that E(Z ∩ Y ) → E(Z ∩ {Y }) is an isomorphism. After replacing the corresponding
entries in (4.3) appropriately we obtain the exact sequence (4.1).

Let (Xi)i∈I be a family in BornCoarse.

Definition 4.37. We define the free union
⊔free
i∈I Xi as follows:

1. The underlying set of the free union is
⊔
i∈X.

2. The coarse structure is generated by the entourages
⋃
i∈I Ui for all (Ui)i∈I in

∏
i∈I CXi

.

3. The bornology is generated by
⋃
i∈I Bi.

Note that in general the coarse structure of the free union is bigger than the coarse
structure of the coproduct of the family (Xi)i∈I . On the other hand the bornology of the
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free union is smaller than the bornology of the coproduct. The identity of the underlying
set is a morphism ∐

i∈I

Xi →
free⊔
i∈I

Xi ,

but in general not an isomorphism. The family subsets (Xi)i∈I is a coarsely disjoint
decomposition of

⊔free
i∈I Xi.

Example 4.38. For a set X we have Xmin,min
∼=
⊔free
x∈X{x}min,min, while Xmin,max

∼=∐
i∈I{x}min,min.

For every j in I, from the Mayer-Vietoris sequence for the decomposition (Xj,
⊔free
i∈I\{j}Xi)

we have a projection

pj : E(
free⊔
i∈I

Xi) ∼= E(Xj)⊕ E(
free⊔

i∈I\{j}

Xi)
pr→ E(Xj) .

Definition 4.39. E is called:

1. strongly additive if for every family (Xi)i∈I the family of projections (pi)i∈I induces

an isomorphism E(
⊔free
i∈I Xi)

∼=→
∏

i∈I E(Xi).

2. additive, if for every set X the family of projections (px)x∈X induces an isomorphism

E(Xmin,min)
∼=→
∏

x∈X E({x}).

If E is additive, then its values on spaces of the form Xmin,min for sets X are determined
by the value E(∗) on the one-point space. If E is strongly additive, then it is additive.

Example 4.40. We consider the square numbers

Sq := {n2 | n ∈ N}

as a bornological coarse space with the structures induced from the embedding into N. We
assume that (E, δ) is a strongly additive coarse homology theory. Then we can calculate:

E(Sq) := E(∗)⊕
∏
n∈N

E(∗)/
⊕
n∈N

E(∗) .

For r in (0,∞) let nr be the smallest integer such that (nr + 1)2 − n2
r > r, i.e. nr >

r−1
2

.
Let Ur be the metric entourage of size r. Then we have an isomorphism

SqUr
∼= (Sq ∩ [0, nr])max,max t (Sq ∩ (nr,∞))min,min .

Note that (Sq ∩ [0, nr])max,max → ∗ is a coarse equivalence. From the strong additivity of
E we get an isomorphism

E(SqUr)
∼= E(∗)⊕

∏
Sq∩(nr,∞)

E(∗) .

45



If r′ is in (0,∞) and r′ > r, then the map E(SqUr)→ E(SqUr′
) is given by the map

E(∗)⊕
∏

Sq∩(nr,∞)

E(∗) ∼= E(∗)⊕
⊕

Sq∩(nr,nr′ ]

E(∗)⊕
∏

Sq∩(nr′ ,∞)

E(∗)→ E(∗)⊕
∏

Sq∩(nr′ ,∞)

E(∗) ,

where the second map takes the sum of the entries of the first two summands. We can
identify ∏

Sq∩(nr,∞)

E(∗) ∼=
∏
Sq

E(∗)/
⊕

Sq∩[0,nr]

E(∗) .

We now use u-continuity of E in order to deduce that

E(Sq) ∼= E(∗)⊕ colim
r∈(0,∞)

∏
Sq

E(∗)/
⊕

Sq∩[0,nr]

E(∗) ∼= E(∗)⊕
∏
Sq

E(∗)/
⊕
Sq

E(∗) .

From the long exact sequence we see that

E(Sq, {0}) ∼=
∏
Sq

E(∗)/
⊕
Sq

E(∗) .

5 Coarse ordinary homology

In this section we construct a linear coarse homology theory (HX (−), δ). We first construct
a coarse δ-functor (HX (−), δ) and then verify the axioms. This δ-functor is derived from
a functor which sends a pair (X,Y) in BCpair to a short exact sequence

0→ CX (Y)→ CX (X)→ CX (X,Y)→ 0

of chain complexes. We start with the construction of the functor

CX (−) : BornCoarse→ Ch .

Let X be in BornCoarse. For n in N we consider the abelian group

Ĉn(X) := ZXn+1

of functions from the n + 1-fold product of X with itself to Z. Often we will consider
elements in Ĉn(X) as infinite linear combinations of basis elements (x0, . . . , xn).

For c in Ĉn(X) we define its support by

supp(c) := {x ∈ Xn+1 | c(x) 6= 0} .

We now use the coarse structure and the bornology on X in order to define a subgroup of
Ĉn(X). To this end we introduce the following notions.

Let U be an entourage of X, and let B be a subset of X.
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Definition 5.1.

1. We say that a point (x0, . . . , xn) in Xn+1 is U-controlled if (xi, xj) ∈ U for all i, j
in {0, . . . , n}.

2. We say that a point (x0, . . . , xn) in Xn+1 meets B if there exists i in {0, . . . , n} such
that xi ∈ B.

Let now c be in Ĉn(X).

Definition 5.2.

1. We say that c is U-controlled if every x in supp(c) is U-controlled.

2. We say that c is controlled if it is U-controlled for some U in CX .

3. We say that c is locally finite if for every B in BX the set {x ∈ supp(c) | x meets B}
is finite.

Definition 5.3. We define CXn(X) to be the subgroup of Ĉn(X) of all functions which
are locally finite and controlled.

We now define a differential

d : CXn(X)→ CXn−1(X)

as the linear extension of the map determined by

(x0, . . . , xn) 7→
n∑
i=0

(−1)i(x0, . . . , x̂i, . . . , xn) .

More precisely,

(dc)(x0, . . . , xn−1) :=
n∑
i=0

(−1)i
∑
x∈X

c(x0, . . . , xi−1, x, xi, . . . , xn) .

We must show that the inner sum is finite for every i. Consider e.g. i ≥ 1. The condition
c(x0, . . . , x, . . . , xn) 6= 0 implies that (x0, . . . , x, . . . , xn) meets the bounded set {x0}. Since
c is locally finite there only finitely many points x which can contribute non-trivially.
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One checks that d2 = 0. This indeed follows by linear extension from

d2(x0, . . . , xn) =
n∑
i=0

(−1)id(x0, . . . , x̂i, . . . , xn)

=
n∑
i=0

i−1∑
j=0

(−1)i+j(x0, . . . , x̂j, . . . x̂i, . . . , xn)

+
n∑
i=0

n∑
j=i+1

(−1)i+j−1(x0, . . . , x̂i, . . . x̂j, . . . , xn)

=
n∑
i=0

i−1∑
j=0

(−1)i+j(x0, . . . , x̂j, . . . x̂i, . . . , xn)

+
n∑
j=0

j−1∑
i=0

(−1)i+j−1(x0, . . . , x̂i, . . . x̂j, . . . , xn)

= 0

If f : X → X ′ is a morphism of bornological coarse spaces, then we have an induced
map

f∗ : CXn(C)→ CXn(X ′) .

It is the linear extension of the map

f∗(x0, . . . , xn) = (f(x0), . . . f(xn)) .

The precise formula is

(f∗c)(x
′
0, . . . , x

′
n) =

∑
x0∈f−1({x′0}),...,xn∈f−1({x′n})

c(x0, . . . , xn) .

We next argue that f∗ is well-defined.

Since f is proper and c is locally finite we see that the sum is finite. Indeed, all points
contributing to this sum belong to the set f−1({x0}) ∩ supp(c) which is finite since f is
proper and therefore f−1({x0}) is bounded.

We now argue that f∗c is again controlled and locally finite. If U is in CX and (x0, . . . , xn)
is U -controlled, then f∗(x0, . . . , xn) is obviously f(U)-controlled. This implies that if c is
U -controlled, then f∗c is f(U)-controlled.

Let B′ be a bounded subset of X ′. If (x′0, . . . , x
′
n) is in the support of f∗c and meets B′,

then it is of the form f∗(x0, . . . , xn) = (x′0, . . . , x
′
n) where (x0, . . . , xn) meets f−1(B′) and

is in the support of c. There only finitely many such points. This shows that f∗c is again
locally finite.
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We finally check that f∗ is compatible with the differential. Indeed,

df∗(x0, . . . , xn) = d(f(x0), . . . f(xn))

=
n∑
i=0

(−1)i(f(x0), . . . , f̂(xi), . . . f(xn))

= f∗

n∑
i=0

(−1)i(x0, . . . x̂i, . . . xn)

= f∗d(x0, . . . , xn)

This finishes the construction of the functor

CX (−) : BornCoarse→ Ch .

We now consider a pair (X,Y). Then we can identify the chain complex CX (Y) :=
colimY ∈Y CX (Y ) with the subspace of CX (X) consisting of chains which are supported
on some member of Y . We get a functorial exact sequence

0→ CX (Y)→ CX (X)→ CX (X,Y)→ 0 , (5.1)

where the last complex is defined as a quotient

CX (X,Y) :=
CX (X)

CX (Y)
.

In this way we define the functor

CX : BCpair → Ch , (X,Y) 7→ CX (X,Y) .

Definition 5.4. We define

HX := H ◦ CX : BCpair → AbZgr

and let δ : HX ⇒ ∂HX [−1] be indued by the exact sequence (5.1).

This finites the construction of the coarse δ-functor (HX , δ).

The main theorem of the present section is the following.

Theorem 5.5. The coarse δ-functor (HX , δ) is a linear coarse homology theory.

Proof. The proof of this theorem is given by the combination of the following four Lemmas
5.6, 5.7, 5.8, and 5.6.

Lemma 5.6. The functor HX is excisive.
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Proof. We must show that for every complementary pair (Z,Y) on some X in BornCoarse
the map

HX (Z,Z ∩ Y)→ HX (X,Y)

is an isomorphism. We show the stronger statement that

i : CX (Z,Z ∩ Y)→ CX (X,Y)

is an isomorphism.

We show that i is injective. Let c be in CX (Z) and [c] be its class in CX (Z,Z ∩ Y). If
i([c]) = 0, then c ∈ CX (Y) ∩ CX (Z) = CX (Z ∩ Y) and hence [c] = 0.

We now show that i is surjective. Let d be in CX (X) and [d] be its class in CX (X,Y).
Let d|Z be its restriction to Z. We claim that i([d|Z ]) = [d]. Assume that d is U -controlled.
Then d − d|Z is supported on U [X \ Z]. Indeed, if d(x) − d|Z(x) 6= 0, then at least one
component of x belongs to X \Z. But then all components of x belong to U [X \Z]. Since
Y is big and X \ Z ∈ Ȳ , we also have U [X \ Z] ∈ Ȳ . This implies that [d] = i([d|Z ]).

Lemma 5.7. The functor HX is coarsely invariant.

Proof. We show that HX sends close morphisms to equal maps and appeal to Lemma 4.2.
Assume that f, g : X → Y are close to each other, then we will show that f∗ and g∗ are chain
homotopic by giving an explicit homotopy. To this end we define h : CX (X)→ CX (X)[1]
as the linear extension of the map determined by

h(x0, . . . , xn) :=
n∑
i=0

(−1)i(f(x0), . . . , f(xi), g(xi), . . . , g(xn)) .

We now argue that h indeed takes values in controlled and locally finite chains.

Assume that f ∼V g and and that c is U -controlled. If x, y are components of (x0, . . . , xn),
then we have (f(x), f(y)) ∈ f(U), (g(x), g(y)) ∈ g(U) and (f(x), g(y)) ∈ f(U) ◦ V since
f(x) ∼V g(y) ∼U g(y), and similarly (g(x), f(y)) ∈ V ◦ f(U). Hence h(x0, . . . , cn) is
controlled by g(U) ∪ f(U) ∪ V ◦ g(U) ∪ V −1 ◦ f(U).

If B is a bounded subset of Y and (y0, . . . , yn) ∈ supp(h(c)) ∩B, then (y0, . . . , yn), then
there exists a point in supp(c) which meets f−1(B) ∪ g−1(B). There are only finitely may
such points. Hence h(c) is locally finite.

We claim that
dh+ hd = g∗ − f∗ .

This is checked by a direct, but tedius calculation. It is a standard formal consequence of
the fact that the map h in Lemma 2.59 is a simplicial homotopy. We consider the first
two degrees. In degree 0 we have

dh(x) + hd(x) = d(f(x), g(x)) = (g(x))− (f(x)) = (g∗ − f∗)(x) .
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In degree 1 we have

dh(x, y) + hd(x, y) = d[(f(x), g(x), g(y))− (f(x), f(y), g(y))] + h[(y)− (x)]

= (g(x), g(y))− (f(x), g(y)) + (f(x), g(x))

−(f(y), g(y)) + (f(x), g(y))− (f(x), f(y))

+(f(y), g(y))− (f(x), g(x))

= (g∗ − f∗)(x, y)

The map h is therefore a chain homotopy equivalence between f∗ and g∗. It follows that
HX (f) = HX (g).

Lemma 5.8. The functor HX vanishes on flasques.

Proof. We show that HX (X) = 0 for every flasque X in BornCoarse. Let f : X → X
witnesses the flasqueness of X. We define a map S : CX (X)→ CX (X) by

S :=
∞∑
k=0

fk∗ .

In order to see that S is well-defined we observe that S is point-wise finite, i.e. for
c in CXn(X) and x in Xn+1 the sum

∑∞
k=0(f

k
∗ c)(x) is finite. Here we use that the

image of fk eventually misses every bounded set, so in particular
⋃n
i=0 f

−1({xi}), where
x = (x0, . . . , xn). The same property and a similar reasoning implies that S preserves
locally finite chains. We use the property that f is non-expanding in order to see that
S preserves controlled chains. Indeed, if c is U -controlled, then S(c) is controlled by⋃
n≥0 f

n(U) which is a coarse entourage by assumption.

We obviously have
idCX (X) + f∗ ◦ S = S .

Applying H and using that HX (f) = id since f ∼ idX and HX is coarsely invariant
we get the equality idHX (X) + HC(S) = HC(S). This implies idHX (X) = 0 and hence
HX (X) = 0.

The map S in the proof above is also called an Eilenberg-swindle.

Lemma 5.9. The functor HX is u-continuous.

Proof. Every chain in CX is controlled by some entourage. We therefore have

colim
U∈CX

CX (XU) ∼= CX (X)

where the colimit amounts taking a union of subspaces in CX (X). Since taking homology
is compatible with filtered colimits this implies

colim
U∈CX

HX (XU) ∼= HX (X) .
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Example 5.10. We have HX (∗) ∼= Z. Indeed, CX is the complex

· · · 1→ Z 0→ Z 1→ Z 0→ Z 1→ Z 0→ Z→ 0

where the last Z is in degree 0.

Hence HX (Zn) ∼= Z[−n], i.e.

HXk(Zn) =

{
0 k 6= n
Z k = n

.

In particular we conclude that Zn (and therefore also Rn) is not flasque.

Example 5.11. We consider the action of C2 on Z by multiplication by −1. Let ε denote
the non-trivial element in C2. We claim that

HX1(ε) = −1

on HX1(Z) ∼= Z.

In order to show this we exhibit an explicit representative of the generator of this group.
We consider the chain c : Z× Z→ Z in CX1(Z) given by

c :=
∑
n∈Z

(n, n+ 1) .

This chain is U1-controlled and locally finite. We have ∂c =
∑

n∈Z((n+ 1)− (n)) = 0.

We claim that [c] 6= 0. To this end we calculate ∂MV ([c]). We set

c+ :=
∑
n∈N

((n+ 1)− (n)) .

The class of c+ in CX (N)/CX ({0}) is send to the class of c in CX (Z)/CX (−N). Conse-
quently, by the construction of the Mayer-Vietoris boundary, ∂MV ([c]) = δ(N,{0})[c+] = [∂c+]
in HX0({0}). Note that [∂c+] = (0). This generates HX0({0}). Since ∂MV : HX1(Z)→
HX0({0}) is an isomorphism we can conclude that [c] is the generator of HX1(Z).

We now have ε∗c = −c. This shows the assertion.

More generally, by the functoriality of the MV-sequence the matrix (1, . . . , 1,−1) : Zn → Zn
acts by −1 on HXn(Zn).

Lemma 5.12. HX is strongly additive.

Proof. Let (Xi) be a family in BornCoarse and set X :=
⊔free
i∈I Xi. For every j in I and

n in N we have an embedding X×nj → X×n. We call the complement X×n \
⋃
j∈I X

×n
j the

52



mixed part of X×n. Note that CXn(X) consists of functions X×(n+1) → Z. We claim that
the restrictions along the embeddings X×nj → X×n induce an isomorphism

CX (X) ∼=
∏
i∈I

CX (Xi) .

We fix j in I. Then c 7→ c|X×•j
is a chain map CX (X)→ CX (Xj). This follows from the

fact c in CX (X) is controlled and therefore vanishes on the mixed part. If c is U -controlled
for U in CX , then cXj

is controlled by U ∩ (Xj ×Xj) in CXj
. If B is bounded in Xj , then it

is bounded in X. Since supp(c) meets only finitely many points in B, so does the support
of c|Xj

. This finishes the justification of the chain map.

Putting all restriction maps together we get a chain map

CX (X)→
∏
i∈I

CX (Xi) .

This map is injective. Indeed, if c|Xj
= 0 for all j in I, then c = 0, again since c vanishes on

the mixed part. We now show that it is surjective. Let (cj)j∈I be a family in
∏

i∈I CX (Xi).
Then we define c in CX (X) such that c|Xj

= cj for all j in I and c vanishes on the mixed
part. Assume that cj is Uj-controlled for all j in I. Then c is

⋃
j∈J Uj-controlled, and this

is a coarse entourage of the free union X. We check locally finiteness of c on generators.
Let j be in I and B be bounded in Xj . Then the points in supp(c) which meet B are the
points in supp(cj) which meet B. This set is finite by the local finiteness of cj . This shows
that c in CX (X) is well-defined. It is clearly a preimage of the family (cj)j∈I .

We finally use that for a family of chain complexes Ci we have H(
∏

i∈I Ci)
∼=
∏

i∈I H(Ci).

Example 5.13. For a set X we have

HX (Xmin,min) ∼=
∏
X

Z .

We have
HX (Sq) ∼= Z⊕

∏
N

Z/
⊕
N

Z

by Example 4.40.

Example 5.14. If Γ is a group and S be a G-set, then we can consider abelian group Z[S]
with the induced action of Γ. We can consider group cohomology of Γ with coefficients in
this representation.

Proposition 5.15. We have an isomorphism HX∗(Γcan,min ⊗ Smin,max) ∼= H∗(Γ,Z[S]).
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This is shown by an explicit identification of the chain complex CX (Γcan,min ⊗ Smin,max)
with the standard chain complex calculating H∗(Γ,Z[S]).

Remark 5.16. The coarse homology HX has another remarkable property. Let I be a
filtered poset and (Xi)i∈I be a decreasing family of subsets of X in BornCoarse. The we
consider the set-theoretic intersection

⋂
i∈I Xi in X equipped with the induced bornological

coarse structures. Then
CX (

⋂
i∈I

Xi)→ lim
i∈I

CX (Xi)

is an isomorphism. Indeed, we can consider CX (Xi) as a subcomplex of CX (X) of chains
supported on Xi, and the limit on the right-hand side is realized as the intersection of
these subcomplexes.

Taking homology does not commute with filtered limits. In general we have a spectral
sequence with second term

limrHXq+r(Xi)⇒ HXq(
⋂
i∈I

Xi) .

If I = N, then this reduces to the lim1-sequence

0→ lim1
i∈NHXq+1(Xi)→ HXq(

⋂
i∈N

Xi)→ lim
i∈N

HXq(Xi)→ 0 . (5.2)

6 Coarse homotopy

We consider a bornological coarse space X. Let p = (p+, p−) be a pair of functions
p+ : X → [0,∞) and p− : X → (−∞, 0]. We assume that the maps p± are bornological.

Definition 6.1. The coarse cylinder associated to p is the subspace Ip of R⊗X given by

IpX := {(t, x) ∈ R×X | p−(x) ≤ t ≤ p+(x)} .

Lemma 6.2. The projection π : IpX → X is a morphism of bornological coarse spaces.

Proof. We must check that π is proper. Let B be bounded in X. Then p+(B) and p−(B)
are bounded. Assume that p+(B)∪p−(B) ⊆ [−r, r] for r in R. Then π−1(B) ⊆ [−r, r]×B.
Hence p−1(B) is bounded.

Example 6.3. The projection π : IpX → X is an equivalence of bornological coarse
spaces if and only if p+ and p− are bounded. In this case the map X → IpX, x 7→ (0, x)
is an inverse. In this case E(π) : E(IpX)→ E(X) is an isomorphism for every coarsely
invariant functor. For coarse homology theories we have the much stronger statement
Lemma 6.4.
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Assume that (E, δ) is a linear coarse homology theory.

Lemma 6.4. The projection π : IpX → X induces an isomorphism E(π) : E(IpX) →
E(X).

Proof. We consider the subspaces

W := (−∞, 0]×X ∪ IpX , [0,∞)×X ∩ IpX

of R⊗X. Thus W is the lower half space over X together with the positive part of the
cyclinder, and Z is the positive part of the cylinder. Note that Z ⊆ W .

We let furthermore let Y be the big family in W generated by the lower half space
(−∞, 0] × X. We let Yn := W ∩ (−∞, n] × X. The family Y ′ := (Yn)n∈N is cofinal in
Y. Then (Z,Y) is complementary pair on W . The map (t, x) 7→ (t − 1, x) implements
flasqueness of every member of Y ′ and of W . Hence E(W ) = 0 and E(Y) = 0 since
E vanishes on flasques. From the long exact sequence for the pair (W,Y) we get the
isomorphism 0 = E(W,Y). We now use excision for the complementary pair (Z,Y).

E(Z,Z ∩ Y) ∼= E(W,Y) ∼= 0 .

From the long exact sequence of the pair (Z,Z ∩ Y) we now get the isomorphism

E(Z ∩ Y) ∼= E(Z) .

We now observe that the restriction of the projection πZ∩Yn : Z ∩ Yn → X is a coarse
equivalence with inverse x 7→ (0, x). It follows by coarse invariance of E that we have an
isomorphism E(Z ∩ Y) ∼= E(X). Hence also E(Z) ∼= E(X).

We now consider the subsets

V := IpX ∪ [0,∞)×X , U := [0,∞)×X

of R⊗X. Thus U is the upper half space, and V is the upper half space with the negative
part of the cylinder added. Note that both spaces are flasque with flasqueness implemented
by (t, x) 7→ (t + 1, x). The long exact sequence for (V, {U}) yields E(V, {U}) = 0. By
excision for the complementary pair (V, IpX ∩ {U}) on IpX we get

E(IpX, IpX ∩ {U}) ∼= E(V, {U}) ∼= 0 .

From the long exact sequence of the pair (IpX, IpX ∩ {U}) we get the isomorphism
E(IpX ∩{U}) ∼= E(IpX). The family (Un)n∈N of subsets Un := V ∩ [−n,∞)×X is cofinal
in {U}. We now observe that Z → IpX ∩ Un is a coarse equivalence for every n. We
conclude that E(Z) ∼= E(IpX ∩ {U}). In view of the commuting diagram

E(Z ∩ Y)
∼=

%%

∼= // E(Z)

��

∼= // E(Ip(X) ∩ {U})
∼= //

ww

E(IpX)

!
ss

E(X)

we conclude that the marked arrow is an isomorphism. All vertical maps are induced by
restrictions of π.
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The idea is now to define the notion of a coarse homotopy using the cylinders. To this end
we must ensure that the maps

i± : X → IpX , x 7→ (x, p±(x))

are morphisms in BornCoarse. Since any bounded subset of IpX is contained in R×B
for a bounded subset B of X and i−1

± (R×B) = B it is clear that i± are bornological. If
p± are controlled, then so are i±.

Assume that that p± are controlled, and that (E, δ) is a linear coarse homology theory.

Corollary 6.5. We have E(i+) = E(i−).

Proof. Indeed, E(π) is an isomorphism and

E(π) ◦ E(i−) = E(π ◦ i−) = idE(X) = E(π ◦ i+) = E(π) ◦ E(i+) .

Let f± : X → Y be two morphisms in BornCoarse.

Definition 6.6. We say that f± are coarsely homotopic if there exists a pair p = (p+, p−)
of controlled and bornological maps and a morphism h : IpX → Y such that f± = h ◦ i±.

Problem 6.7. Show that coarse homotopy is an equivalence relation.

Corollary 6.8. If f± are coarsely homotopic, then for every coarse homology theory (E, δ)
we have E(f+) = E(f−).

Proof. We have

E(f+) = E(h ◦ i+) = E(h) ◦ E(i+) = E(h) ◦ E(i−) = E(h ◦ i−) = E(f−) .

Example 6.9. Let A be an invertible matrix in Mat(n, n;R).

Lemma 6.10. Then A : Rn → Rn is coarsely homotopic to idRn iff det(A) = 1.

Proof. Let γ : [0, 1] → GLn(R) be a Lischitz continuous path. We consider the coarse
cylinder Ip(Rn) for p− = 0 and p+(x) := 1 + ‖x‖. This map is bornological and controlled.
We now define h : Ip(Rn)→ Rn by

h(t, x) := γ((1 + ‖x‖)−1t)x .

We claim that this map is proper and controlled.
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Let C := supt∈[0,1](‖γ(t)‖+ ‖γ(t)−1‖). Furthermore, let L be the Lipschitz constant of γ.

For every r in (0,∞) the set h−1(Br) is contained in the bounded subset ([0, rC]×BrC)∩
Ip(Rn) of Ip(Rn). This shows that h is proper.

Furthermore

‖h(t′, x)− h(t, x)‖ ≤ L(1 + ‖x‖)−1|t− t′|‖x‖ ≤ L|t− t′| .

Similarly,
‖h(t, x)− h(t, x′)‖ ≤ C‖x− x′‖ .

These two estimates show that h is controlled.

If det(A) > 0, the there exists a Lipschitz path from A to idRn . Consequently A is coarsely
homotopy to the identity.

If det(A) < 0, then A is coarsely homotopic to diag(1, . . . , 1,−1). We know that
(1, . . . , 1,−1) and hence A acts on HXn(Rn) ∼= Z by multiplication with −1, see Ex-
ample 5.11.

7 Continuous controlled cones and homology of compact
spaces

Let Y by a Hausdorff topological space with a subset A. We call (Y,A) a pair. To a pair
(Y,A) we associate the set X := Y \ A with the continuously controlled structure.

A map of pairs f̃ : (Y,A) → (Y ′, A′) is a map f̃ : Y → Y such that f̃(A) ⊆ A′ and
f̃(X) ⊆ X ′. We get a category Toppair

Hausd of pairs and morphisms. We write f := f̃|X .

Lemma 7.1. If X is compact, then f : X → X ′ is a morphism in BornCoarse.

Proof. We first check that f is proper. Let B′ be a bounded subset of X ′. We must
show that f−1(B′) is bounded in X. We assume the contrary. Then there exists a in

f−1(B′)
Y
∩ A. Hence there exists a net (xi)i in f−1(B′) such that limi xi = a. But then

(f(xi))i is a net in B′ and limi f(xi) = f̃(a) ∈ A′ by continuity of f̃ . This is impossible

since B
Y ′ ∩ A′ = ∅ by the assumption that B is bounded. For this part of the argument

compactness of Y is irrelevant.
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We now show that f is controlled. Let U be an entourage of X. We must show that f(X)
is controlled.

We consider a net ((yi, zi))i in U and assume that limi f(yi) = a belongs to A′. We must
show that then also limi f(zi) = a. Assume the contrary. By the compactness of Y , there
exists a subnet ((yi′ , zi′))i′ with limi′ zi′ = z, limi′ yi = y in Y and such that f̃(z) 6= a.
Note that f̃(y) = a ∈ A′, hence y ∈ A. This implies that z = y and therefore f̃(z) = a, a
contradiction.

We let Toppair
c,Hausd denote the full subcategory of Toppair

Hausd of pairs (X,A) such that X is
compact.

Corollary 7.2. We have a functor Toppair
c,Hausd → BornCoarse sending (Y,A) to X :=

Y \ A with the continuously controlled structure, and f̃ : (Y,A) → (Y ′, A′) to f := f̃|X :
X → X ′.

We next construct for every X in TopHausd a bornological coarse space Oc(X). Restricting
to compact spaces we even get a functor

Oc : Topc,Hausd → BornCoarse .

Let X be in TopHausd.

1. The underlying set of Oc(X) is [0,∞)×X.

2. The coarse structure on Oc(X) consists of entourages U such that U is a coarse
entourage of [0,∞)⊗Xmax,max and U is continuously controlled with respect to the
pair ([0,∞]×X, {∞} ×X).

3. The bornology of Oc(X) is the bornology of [0,∞)⊗Xmax,max.

One easily checks that the coarse structure is well-defined. Since it is contained in the
coarse structure of [0,∞)⊗Xmax,max it is compatible with the bornology.

Remark 7.3. In addition to continuous control we thus require that an entourage U of
Oc(X) in addition satisfies

sup
((t,x),(t′,x′))∈U

|t− t′| <∞ . (7.1)

If X is compact, then a subset of Oc(X) is bounded if and only if it belongs to the
continuously controlled bornology of the pair ([0,∞]×X, {∞} ×X).

If f : X → X ′ is a morphism in Topc,Hausd between non-empty spaces, then we define

Oc(f) : Oc(X)→ Oc(X ′) , (t, x) 7→ (t, f(x)) .
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This map is obviously proper and preserves continuously controlled entourages by Lemma
7.1. Since it preserves the t-variable it also preserves the additional condition for entourages
of Oc(X) explained in (7.1).

Definition 7.4. We call the functor Oc : Topc,Hausd → BornCoarse the continuously
controlled cone functor.

Let X be in Topc,Hausd.

Proposition 7.5. If X is contractible, then Oc(X) is flasque in the generalized sense.

Proof. Let h : [0,∞]×X → X be the contraction such that h(0,−) = idX and h(∞,−) =
constx0 . We define f : [0,∞)⊗Oc(X)→ Oc(X) by

f(s, t, x) := (s+ t, h(
s

1 + t
, x)) .

We check that the map f is proper. Let B be bounded in Oc(X). Then there exists r in
[0,∞) such that B ⊆ [0, r]×X. But then f−1(B) ⊆ [0, r]× [0, r]×X. This is a bounded
subset of [0,∞)⊗Oc(X).

We check that the map f is controlled.

Let U be an entourage of Oc(X) and let ((si, tt, xi), (s
′
i, t
′
i, x
′
i))i be some net in U1 × U .

Assume that limi f(si, ti, xi) = (∞, x) for some x in X. Then we must show that
limi f(s′i, t

′
i, x
′
i) = (∞, x).

We assume the contrary. Then by compactness of [0,∞]× [0,∞]×X there exists a subnet
with the following properties:

1. limi′(si′ , ti′ , xi′) = (u, v, y) and limi′(s
′
i′ , t
′
i′ , x

′
i′) = (u′, v′, y′)

2. limi′
si′

1+ti′
= r and limi′

s′
i′

1+t′
i′

= r′.

3. limi′ f(s′i′ , t
′
i′ , x

′
i′) exists, but is not equal to (∞, x).

We know that the entries of the pairs (u, u′) and (v, v′) are either both ∞ or both finite.
Furthermore, u + v = u′ + v′ = ∞. We have by assumption x = h(r, y) 6= h(r′, y′). We
must exclude the following cases.

1. Case: v = ∞: Then y = y′ since U is continuously controlled, and also r = r′

since the differences |si′ − s′i′ | and |ti′ − t′i′| are uniformly bounded. In fact, the first
difference is bounded by 1 since we consider the entourage U1 × U . The second
difference is bounded by the condition (7.1) on U .
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Hence h(r, y) = h(r′, y′) which is impossible.

2. Case: v < ∞: Then u′ = u = ∞ and v′ < ∞. In this case r = r′ = ∞, and
h(r′, y′) = x0 = h(r, y). This is impossible.

In the upshot we have shown that f is controlled.

Lemma 7.6. The functor Oc : Topc,Hausd → BornCoarse sends closed subspaces to
subspaces.

Proof. Let Y be a closed subspace of X. Then we must show that Oc(Y )→ Oc(X) is a
coarse embedding.

This amounts to show the equalities

BOc(Y ) = Oc(Y ) ∩ BOc(X) and COc(Y ) = (Oc(Y )×Oc(Y )) ∩ CX .

Since the map Oc(Y )→ Oc(X) is a morphism we clearly have

BOc(Y ) ⊇ Oc(Y ) ∩ BOc(X) and COc(Y ) ⊆ (Oc(Y )×Oc(Y )) ∩ COc(X) .

In the following we verify the reverse inclusions.

Let B be in BOc(Y ). Then B ⊆ [0, r]× Y for some r in [0,∞). But then B ⊆ [0, r]×X
and hence B ∈ BOc(X).

Let U be in COc(X). We show that then (Oc(Y )×Oc(Y )) ∩ U ∈ COc(Y ). First of all

sup
((t,x),(t′,x′))∈(Oc(Y )×Oc(Y ))∩U

|t− t′| ≤ sup
((t,x),(t′,x′))∈U

|t− t′| <∞ .

If ((ti, yi), (t
′
i, y
′
i)) is a net in (Oc(Y )×Oc(Y )) ∩ U with limi(ti, yi) = (∞, y). Then since

((ti, yi), (t
′
i, y
′
i)) is a net in U we can conclude that limi(t

′
i, y
′
i) = (∞, y).

Remark 7.7. In Lemma 7.6 it is important to assume that Y is closed. If Y is not closed
then it is not clear that COc(Y ) ⊆ (Oc(Y )×Oc(Y ))∩COc(X). In order to locate the problem,
let U be in COc(Y ). Let ((ti, yi), (t

′
i, y
′
i))i be a net in U such that limi(ti, yi) = (∞, x). If

Y is not closed, then we do not know that x ∈ Y . If x 6∈ Y , then we do not have any
information about convergence of the net ((t′i, y

′
i))i.

Let h : [0, 1] × X → Z be a map in Topc,Hausd. We consider the functions p− ≡ 0 and
p+(t) := 1 + t. We consider the coarse cylinder Ip(Oc(X)) over Oc(X) associated to
p = (p−, p+).

Lemma 7.8. The map

f : Ip(Oc(X))→ Oc(Z) , (s, t, x) 7→ (t, h(
s

1 + t
, x))

is a morphism.
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Proof. We show that f is proper. Let B be a bounded subset of Oc(Z). Then there exists
r in [0,∞) such that B ⊆ [0, r]× Z. Then f−1(B) ⊆ ([0, r + 1]× [0, r]×X) ∩ Ip(Oc(X)).
Consequently, f−1(B) is bounded.

We show that f is controlled. It suffices to show that the image under f of any entourage
of Ip(Oc(X)) of the form Ur × U for r in (0,∞) and U a coarse entourage of Oc(X) is
again a coarse entourage of Oc(X).

First of all we have

sup
((s,t,x),(s′,t′,x′))∈Ur×U

|t− t′| = sup
((t,x),(t′,x′))∈U

|t− t′| <∞

by (7.1) since U is a coarse entourage of Oc(X). It remains to show that (f × f)(Ur × U)
is continuously controlled.

Let ((si, ti, xi), (s
′
i, t
′
i, x
′
i))i be a net of points in Ur ×U and assume that limi f(si, ti, xi) =

(∞, x). Then we must show that limi f(s′i, t
′
i, x
′
i) = (∞, z).

Assume the contrary. Then there exists a subnet such that

1. limi′(si′ , ti′ , xi′) = (u, v, y) and limi′(s
′
i′ , t
′
i′ , x

′
i′) = (u′, v′, y′)

2. limi′
si′

1+ti′
= a and limi′

s′
i′

1+t′
i′

= a′

3. limi′ f(s′i, t
′
i, x
′
i) exists but is not equal to (∞, x).

We have v =∞. Since U is continuously controlled this implies that v′ =∞. Consequently,
limi′ f(s′i, t

′
i, x
′
i) = (∞, z′) for some z′ different from z. Since |si′ − s′i′ | and |ti′ − t′i′| are

uniformly bounded we conclude that a = a′. We further conclude that y = y′ since
U is continuously controlled, again. But then z = h(a, y) = h(a′, y′) = z′. This is a
contradiction.

Let (Z, Y ) be a closed decomposition of X. Then pair (Oc(Z), {Oc(Y )}) is a complementary
pair. Note that if Z ∩ Y = ∅, then every member of Z ∩ {Oc(Y )} is bounded and hence
coarsely equivalent to a point.

We consider the category of pairs Top2
c,Hausd of pairs (X,A) of compact Hausdorff spaces and

closed subspaces. A morphism f : (X,A)→ (X ′, A′) in Top2
c,Hausd is a map f : X → X ′

such that f(A) ⊆ A′.

We have a functor

Oc : Top2
c,Hausd → BCpair , (X,A) 7→ (Oc(X), {Oc(A)}) .
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Let (E, δ) be a linear coarse homology. Then we consider the δ-functor EOc(−,−) :
BCpair →M obtained by precomposing with Oc(−).

Proposition 7.9.

1. For every pair (X,A) we have a long exact sequence

EOc(A)→ EOc(X)→ EOc(X,A)
δ→ EOc(A)[−1]

2. If X is contractible, then EOc(X) ∼= 0.

3. The functor EOc is homotopy invariant.

4. If (A,B) is a non-disjoint closed decomposition of X, then we have a Mayer-Vietoris
sequence

EOc(A ∩B)→ EOc(A)⊕ EOc(B)→ EOc(X)→ EOc(A ∩B)[−1] .

5. If (A,B) is a disjoint closed decomposition of X, then we have a Mayer-Vietoris
sequence

E(∗)→ EOc(A)⊕ EOc(B)→ EOc(X)→ E(∗)[−1] .

6. For a finite family of pointed compact Hausdorff spaces ((Xi, xi))i∈I we have E(
∨
i∈I Xi) ∼=⊕

i∈I E(Xi).

7. We have EOc(∗ t ∗) ' E(∗)[−1]

Proof.

Assertion 1: The exact sequence is the exact sequence of the pair (Oc(X), {Oc(A)}).

Assertion 2: This follows from Proposition 7.5.

Assertion 3: Let f, g : X → Z be homotopic maps with homotopy h : IX → Z. Then the
map Ip(Oc(X))→ Oc(Z) from Lemma 7.8 is a coarse homotopy from Oc(f) to Oc(g). It
follows that EOc(f) = EOc(g).

Assertion 4 and Assertion 5: This follows from splicing the exact sequences for the pairs
(Oc(X), {Oc(A)}) and (Oc(B),Oc(B) ∩ {Oc(A)}).

Assertion 6: We use the Mayer-Vietoris sequence and that E(∗) ∼= 0.

Assertion 7: We use the Mayer-Vietoris sequence (5).
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Example 7.10. As in ordinary topology one can calculate inductively the homology of
spheres and of pairs (Dn, Sn−1). We have EOc(Sn) ' E(∗)[−n− 1]. We get from the long
exact sequence that EOc(Dn, Sn−1) ∼= EOc(Sn−1)[−1] ' E(∗)[−n− 1].

Assume that f : Sn → Sn is a map. Then HXOc(f) is multiplication by the degree of f .
To see this for n ≥ 0 it suffices to consider the map standard example

Sn →
n∨
i=1

Sn
∨ni=1id→ Sn

of a degree n-map which induces

EOc(Sn)
diag→

n⊕
i=1

EOc(Sn)
+→ EOc(Sn) .

We now consider the case of E = HX . If X is a finite CW-complex, then we get the
cellular complex

→ HXOc,3(X2, X1)→ HXOc,2(X1, X0)→ HXOc,1(X0)→ Z

(with Z in degree 0) calculating HXOc,n(Xn, Xn−1) ∼=
⊕

Zn(X) Z, where Zn(X) is the set
of n-cells of X. Note that this chain group lives in degree n+ 1. This allows to calculate
HXOc(X) for finite CW-complexes. We get

HXOc,n(X) ∼=


Hn−1(X) n ≥ 0

ker(H0(X)→ Z) n = 1
0 else

,

i.e.
HXOc(X) ∼= Ĥ(X)[−1] ,

where Ĥ denotes the reduced homology.

Remark 7.11. Let ((Xi, xi))i∈I be an infinite family of pointed compact Hausdorff spaces.
Then we can define the strong wegde

∨str
i∈I Xi as a subspace of

∏
i∈I Xi of tuples with at

most one non-base points. It is an interesting question whether, possibly under additional
assumptions on E, e.g. strong additivity, we have

EOc(
str∨
i∈I

Xi) ∼=
∏
i∈I

EOc(Xi) .

Let X be in Topc,Hausd. Let (Xi)i∈N be a decreasing family of closed subspaces of X. We
consider the set-theoretic intersection

⋂
i∈I Xi in X with the subspace topology.
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Lemma 7.12. We have an exact sequence

0→
1

lim
i∈N

HXOc(Xi)[1]→ HXOc(
⋂
i∈N

Xi)→ lim
i∈N

HXOc(Xi)→ 0 .

Proof. We note that the underlying set of Oc(
⋂
i∈NXi) is the intersection of the subsets⋂

i∈I Oc(Xi) in Oc(X). The inclusion into Oc(X) induces a bornological coarse structure
on
⋂
i∈I Oc(Xi). We must check that this structure coincides with the intrinsic structure

of Oc(
⋂
i∈NXi). But this follows from Lemma 7.6 since

⋂
i∈NXi is a closed subspace of X.

The short exact sequence now follows from (5.2).

Remark 7.13. Using the argument of [?, Sec.6.6. Thm. 8] one can show that a morphism
between homotopy invariant excisive δ-functors satisfying the conclusion of Lemma 7.12 is
an isomorphism. The idea is that any pair (X,A) of compact spaces can be written as
the intersection of a decreasing family of compact pairs which have the homotopy type of
finite polyhedral pairs.

Lemma 7.14. HXOc satisfies the cluster axiom.

Proof. (for countable families) Let (Xi, xi)i∈N be a family in Tophc. For every n in N we
have by Mayer-Vietoris for the decomposition of

∨str
i∈NXi into

∨n
i=0 Xi and

∨str
i≥n+1 Xi with

intersection
∨n
i=0Xi ∩

∨str
i≥n+1Xi = ∗ and HXOc(∗) ∼= 0 and Proposition 7.9.6 that

HXOc(
str∨
i≥0

Xi) ∼= HXOc(
str∨

i≥n+1

Xi)⊕
n⊕
i=0

HXOc(Xi) .

Applying limn∈N we get

HXOc(
str∨
i≥0

Xi) ∼= lim
n∈N

HXOc(
str∨

i≥n+1

Xi)⊕
∏
i∈N

HXOc(Xi) .

By Lemma 7.12 we have exact sequence

0→
1

lim
n∈N

HXOc(
str∨

i≥n+1

Xi)[1]→ HXOc(
⋂
n∈N

str∨
i≥n

Xi)→ lim
n∈N

HXOc(
str∨

i≥n+1

Xi)→ 0 .

Using that
⋂
n∈N

∨str
i≥nXi

∼= ∗ we conlcude that limn∈NHXOc(
∨str
i≥n+1 Xi) = 0.

For uncountable families the argument is similar. In the last step one uses the lim-spectral
sequence instead.

Example 7.15. We consider the standard Cantor set defined by

C :=
⋂
i∈N

Xi ,
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where the subspaces Xi of [0, 1] are defined inductively by X0 := [0, 1] and

Xi+1 := 1/3Xi ∪ (2/3 + 1/3Xi)

for i ≥ 1. The subset Xi consists of 2i disjoint intervals and is therefore homotopy
equivalent to a set of 2i points. We have

HXOc(Xi) ∼= ker(
∑

:
2i−1⊕
k=0

Z→ Z)[−1] .

The connecting map is
HXOc(Xi+1)→ HXOc(Xi)

is given by
(ni)

2i+1−1
i=0 7→ (n2i + n2i+1)2i−1

i=0 .

One can calculate that

HX (Oc(C)) ∼= lim
i∈N

HXOc(Xi) ∼=
∏
N

Z .

To this end use the coordinate change

2i⊕
i=0

Z
∼=→

2i⊕
i=0

Z , (n0, . . . , 2
i − 1) 7→ (

2i−1∑
i=0

ni,
2i−1∑
i=1

ni, . . . , . . . , n2i−1) .

Under this identification HXOc(Xi) is the subgroup characterized by the equation n0 = 0,
and the transition maps HXOc(Xi+1)→ HXOc(Xi) are given by

(0, n1, . . . , n2i+1−1) 7→ (0, n2, n4, . . . , n2i−2) .

There is no lim1-contribution since HXOc,1(Xi) = 0 for all i.

Example 7.16. Let G be the Sierpinski gasket. It is defined as G :=
⋂∞
i=0 Xi where Xi

is the subset of [0, 1]× [0, 1] inductively defined by X0 := {t0 + t1 ≤ 1} and

Xi+1 := 1/2X0 ∪ ((1/2, 0) + 1/2X0) ∪ ((0, 1/2) + 1/2X0) .

One can calculate using Mayer-Vietoris of the CW-structure and Example 7.10 that

HXOc(Xi) ∼= (Z⊕ Z3 ⊕ · · · ⊕ Z3i)[−2] .

The connecting map
HXOc(Xi+1)→ HXOc(Xi)

is the obvious projection

(Z⊕ Z3 ⊕ · · · ⊕ Z3i+1

)[−2]→ (Z⊕ Z3 ⊕ · · · ⊕ Z3i)[−2] .

It is surjective. The Mittag-Leffler condition is satisfied and excludes lim1-terms. We
conclude that

HXOc(G) ∼=
∏
N

Z[−2] .
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Example 7.17. We consider the Hawaian earring space R. It is defined as the compact
subset

R :=
∞⋃
i=0

[(0, 2−i) + 2−iS1]

of R2.

We let
Xn := R ∪ [(0, 2−n) + 2−nD2] ,

i.e., we fill the n+ 1th circle by a disc. Then we have an equality

R =
⋂
n∈N

Xn .

Using Mayer-Vietors we calculate that have

HXOc(Xn) ∼= Zn[−2] .

The connecting map HXOc(Xn+1) → HXOc(Xn) is given by the projection onto the
first n-components Zn+1[−2]→ Zn[−2]. It is surjective. The Mittag-Leffler condition is
satisfied and excludes lim1-terms. We conclude that

HXOc(R) ∼=
∏
N

Z[−2] .

Example 7.18. Let Z be the mapping cylinder of the map f : D2 → D2 given by
z 7→ 1/2z2. We have Z = [0, 1] ×D2 ∪f D2. We call {0} ×D2 the base and the second
copy of D2 the top. We form the infinite telescope by glueing the top of the i+ 1th copy
of Z with the base of the ith copy. We let X be the one-point compactification of this
telescope. This telescope is contractible. The subset [0, 1]×S1 ∪f D2 \ int(1/2D2) is called
the boundary of Z. For n in N we let Xn be the subspace of X obtained by replacing
the first n-copies of Z by their boundaries. Let A :=

⋂
n∈NXn. We are interested in

calculating HXOc(A).

Note that Xn is homotopy equivalent to the mapping cylinder of the map S1 → D2 given
by z 7→ z2n .

We calculate using the Mayer-Vietoris sequence

HXOc(Xn) ∼= (Z/2nZ)[−2] .

The inclusion HXOc(Xn+1) → HXO(Xn) induces the projection (Z/2n+1Z)[−2] →
(Z/2nZ)[−2].

We have

lim
n∈N

(Z/2nZ)[−2] ∼= Z2[−2] ,
1

lim
n∈N

(Z/2nZ)[−2] ∼= 0 ,

where Z2 denotes the p-adic integers. Consquently we get

HXOc,i(A) ∼=
{

Z2 i = 2
0 else
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8 Controlled objects in additive categories

We start with the notion of an additive category. The typical example is the category of
abelian groups Ab. The main goal of the present section the construction of a functor

A(−) : BornCoarse→ Add

which associates to a bornological coarse space X the additive category of X-controlled
objects in an additive category A. We then study the basic properties of this functor.

Let A be a category. It is called pointed if it has a zero-object, i.e. an object 0 which is
both final and initial.

We assume that A is pointed and admits finite coproducts and products. Then for every
two objects A,A′ we have a canonical map

A t A′ → A× A′

given by a 7→ (a, 0) and a′ 7→ (0, a′).

Let A be a category.

Definition 8.1. A is called semiadditive if it is pointed, admits finite coproducts and
products, and if the canonical map A t A′ → A × A′ is an isomorphism for all objects
A,A′ in A.

In a semiadditive category we call the coproduct, or equivalently the product, of objects
the sum.

Given two maps f, f ′ : A→ A′ we can define their sum as the composition

f + f ′ : A
diag→ A× A (f,f ′)→ A′ × A′ ∼= A′ t A′ fold→ A′ .

One can check that this defines the structure of commutative monoids on the sets
HomA(A,A′) such that the composition is bilinear.

Definition 8.2. A functor between semiaddive categores is called additive if it preserves
finite coproducts.

An additive functor then preserves zero objects (empty coproducts) and induces homo-
morphisms between the morphism sets (is enriched in abelian monoids).

Let A be semiadditive.

Definition 8.3. A is called additive if HomA(A,A′) is a group for all A,A′ in A.
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We get the category Add of additive categories and additive functors.

Example 8.4. If Â is an additive category and A is a full subcategory which is closed
under isomorphisms and forming finite sums, then A is also additive.

Example 8.5. The typical example of an additive category is the category Mod(R) of left
R-modules for a ring R. The category of abelian groups Ab = Mod(Z) is a special case.

For modules A,A′ the direct sum A ⊕ A′ with the canonical inclusions represents the
coproduct, and the same object A ⊕ A′ with the canonical projections represents the
product. The canonical map turns out to be the identity, and the monoid structure on the
morphism sets is the usual sum of morphisms.

Subexamples are the categories Modfg(R) and Modfg,proj(R) of finitely generated projective
modules.

Let A be an additive category and A be an object of A.

Definition 8.6.

1. An idempotent on A is an element p in End(A) such that p2 = p.

2. It is called split of we have an isomorphism A ∼= A′ ⊕ A′′ under which p corresponds
to idA′ ⊕ 0.

In Point 2 the object A′ is unique up to isomorphism. The datum of A′ (or better
A′ → A→ A′) is called an image of p. It is unique up to (unique) isomorphism.

We let Idem(A) denote the set of idempotents on an object A. We say that A is idempotent
complete if every idempotent in A is split.

Example 8.7. Let R be a ring. Then the additive categories Mod(R) and Modfg,proj are
idempotent complete.

Let A be an additive functor. Then the sum can be conidered as a functor ⊕ : A×A→ A.
Let S, T : A→ A′ be two functors between additive categories, then we can define their
sum by

S ⊕ T : A
diag→ A×A

(S,T )→ A′ ×A′
⊕→ A′ .

Let A be an additive category.

Definition 8.8. A is called flasque, if it admits an additive endofunctor S : A→ A such
that there exists an equivalence S ⊕ id ' S.
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Example 8.9. The category Mod(R) is flasque. We define the functor S : Mod(R) →
Mod(R) such that S(A) :=

⊕
NA.

In general, the category Modfg,proj is not flasque. If we have non-trivial a rank function

rk : Modfg,proj → N

which is additive under sums, then the equivalence S ⊕ id ' S would imply

rk(S(A)) + rk(A) = rk(S(A))

and hence rk(A) = 0 for all objects A. This is a contradiction.

We fix an idempotent complete category Â which admits all sums together with a full
additive subcategory A. The typical example is

Â = Mod(R) , A = Modfg,proj .

Let X be a set.

Definition 8.10.

1. An X-controlled object in Â is a pair (M,µ), where

a) M is an object of Â.

b) µ is a finitely additive projection-valued measure on X, i.e. a map µ : PX →
Idem(M) such that

i. For all subsets Y, Z in PX with Y ⊆ Z we have µ(Y ) + µ(Z \ Y ) = µ(Z).

ii. µ(X) = idM .

2. A morphism a : (M,µ)→ (M ′, µ′) is simply a morphism a : M →M ′ in Â.

We obtain the category Â(X) of X-controlled objects in Â. It is again additive. The sum
of two objects is represented by

(M,µ)⊕ (M ′, µ′) ∼= (M ⊕M ′, µ⊕ µ′) ,

and the sum of morphisms a, a′ : (M,µ) → (M ′, µ′) is given by the morphism a + a′ :
M →M ′.

Let X → X ′ be a map of sets. Then we define functor

f∗ : Â(X)→ Â(X ′)
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by f∗(M,µ) := (M, f∗µ), where (f∗µ)(Y ′) := µ(f−1(Y ′)) for all Y ′ in PX′ . On morphisms
we set f∗(a) := a. This functor is obviously additive. If g : X ′ → X ′′ is a second functor,
then we have an equality (g ◦ f)∗ = g∗ ◦ f∗ of functors Â(X)→ Â(X ′′).

We get a functor
Â(−) : Set→ Add

which associates to a set X the additive category of X-controlled objects in Â.

Recall that we have fixed the additive subcategory A which we assume to be closed under
isomorphisms. Note that Â is assumed to be idempotent complete. We now assume that
X is in Born. Let (M,µ) be in Â(X). We define the support of (M,µ) by

supp(M,µ) := {x ∈ X | µ({x}) 6= 0} .

We will write Mx or M(Y ) for the choice of an image of the idempotents µ({x}) or µ(Y ).

Definition 8.11. An object (M,µ) is called locally finite if:

1. For every x in X we have Mx ∈ A.

2. supp(M,µ) is locally finite.

3. For every subset Y of X the canonical map
⊕

x∈Y Mx →M(Y ) is an isomorphism.

Let f : X → X ′ be a morphism in Born. Then f∗ preserves locally finite objects. Indeed
let (M,µ) be locally finite in Â(X).

1. If B′ is bounded in X’, then (f∗µ)(B′) = µ(f−1(B)) implies Im((f∗µ)(B′)) ∼=
Im(µ(f−1(B′))). Since f is proper the set f−1(B′) is bounded in X. Hence
Im(µ(f−1(B′))) ∈ A, and therefore also Im((f∗µ)(B′)).

2. If Y ′ is a subset of X ′, then⊕
x′∈Y ′

Im(f∗µ({x′})) ∼=
⊕
x′∈Y ′

Im(µ(f−1({x′})) ∼=
⊕

x∈f−1({x′})

⊕
x′∈Y

Im(µ({x})) ∼=
⊕

x∈f−1(Y ′)

Im(µ({x})) ∼= Im(f∗µ)(Y ′) .

The sum of locally finite objects in Â(X) is again locally finite. Consequently, the
full subcategory Âlf(X) of A(X) of locally finite objects is again additive. We get a
subfunctor

Âlf(−) : Born→ Add .

We now assume that X is in BornCoarse. If U is an entourage of X and Y, Y ′ are subsets,
then we say that Y ′ is U -separated from Y if Y ′ ∩ U [Y ] = ∅.

Let (M,µ) and (M ′, µ′) be in Âlf(X) and a : (M,µ)→ (M ′, µ′) be a morphism.
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Definition 8.12. a is controlled if there exists a coarse entourage U of X such that
µ(Y ′)aµ(Y ) = 0 for all subsets Y ′, Y such that Y ′ is U-separated from Y .

If we want to stress the choice of U , then say that a is U -controlled.

Lemma 8.13. The composition and the sum of controlled morphisms is again controlled.

Proof. If a, a′ : (M,µ)→ (M ′, µ′) are U , respectively U ′-controlled, then a+ a′ is U ∪ U ′-
controlled.

If a : (M,µ)→ (M ′, µ′) is U -controlled and a′ : (M ′, µ′)→ (M ′′, µ′′) is U ′-controlled, then
a′ ◦ a is U ′ ◦ U -controlled.

Let f : X → X ′ be a morphism between bornological coarse spaces. Let a : (M,µ) →
(M ′, µ′) be controlled.

Lemma 8.14. f∗(a) : f∗(M,µ)→ f∗(M
′, µ′) is controlled.

Proof. If a is U -contrrolled, then f∗ is f(U)-controlled. Indeed, if Y ′ is f(U)-separated
from Y , then f−1(Y ′) is U -separated from f−1(Y ).

We let A(X) denote the wide subcategory of Âlf(X) of controlled morphisms. This
category is again additive. To this end we observe that the structure maps of sums in
Âlf(X) are diag(X)-controlled.

We have thus defined a functor

A(−) : BornCoarse→ Add

which sends X to the additive category of locally small X-controlled objects in Â and
controlled morphisms.

In the following we study the basic properties of the functor A(−).

Lemma 8.15. The functor A(−) is u-continuous.

Proof. Let X be in BornCoarse. We note that A(XU) is a wide subcategory of A(X)
consisting of morphisms which are controlled by entourages in CXU

. We can calculate
colimU∈CX A(XU) as the union of the subcategories A(XU) inside A(X). Since ev-
ery morphism in A(X) is controlled by some entourage we actually have an equality
colimU∈CX A(XU) = A(X).

Lemma 8.16. The functor A sends close maps to equivalent functors.

71



Proof. Let f, g : X → Y be morphisms such that g ∼V f for some coarse entourage V of
Y . We define a natural transformation u : f∗ → g∗ by the family u = (u(M,µ))(M,µ)∈A(X)

with uM : f∗(M,µ) → g∗(M,µ) given by idM : M → M for all (M,µ) in A(X). We
must show that uM : f∗(M,µ) → g∗(M,µ) is a morphism in A(Y ). We claim that it is
V -controlled. Assume that Y ′ is V -separated from Y . Then

(g∗µ)(Y ′)uMµM(f∗µ)(Y ) = µ(g−1(Y ′))µ(f−1(Y )) = µ(g−1(Y ′) ∩ f−1(Y )) = 0 .

since g−1(Y ′) ∩ f−1(Y ) = ∅. Ideed, if there exists a point x in this intersection, then
g(x) ∈ Y ′ ∩ V [Y ]. But Y ′ ∩ V [Y ] = ∅ by assumption.

Lemma 8.17. If X is flasque, then A(X) is flasque.

Proof. Assume that f : X → X implements flasqueness. We define S : A(X)→ A(X) by

S(M,µ) := (
⊕
n∈N

M,⊕n∈Nf∗µ)

and
S(a) := ⊕n∈Nf∗(a) = ⊕n∈Na .

We must show that S(M) ∈ Âlf(X). Let B be a bounded subset of B. Then there exists
n0 in N such that fn)−1(B) = ∅ for all n in N with n ≥ n0. Hence for n ≥ n0 we have
(fn∗ µ)(B) = 0.

If B = {x}, then we conclude that S(M,µ)x ∼=
⊕n0−1

n=0 Mx ∈ A. Furthermore, if a is
U -controlled, then S(a) is

⋃
n∈N f

n(U)-controlled.

Finally we have an isomorphism of functors f∗ ◦ S ⊕ id ' S. Since f is close to idX we
have f∗ ' idA(X) by Lemma 8.16. Consequently S ⊕ id ' S.

Let C→ D be the inclusion of a full additive subcategory. Then we can define the quotient
category D/C as follows. We first define an equivalence relation on the morphism sets
HomD(D,D′) of D by declearing f ∼ f ′ provided there exists a factorization

D
f−f ′

//

��

D′

C

>> .

for some object C of C. It is clear that this relation is compatible with the composition.
We can therefore define the quotient category D/C with the same objects as D, and with
the morphism sets

HomD/C(D,D′) := HomD(D,D′)/ ∼ .
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The equivalence relation is compatible with the group structure on the morphism sets.
Indeed assume that f ∼ f ′ and g ∼ g′. Then we must show that f + g ' f ′ + g′. By
assumption we have factorizations

D
f−f ′

//

p

��

D′

C

i

>> , D
g−g′

//

q

  

D′

C ′

j
>> .

Then get the factorization

D
f+g−f ′−g′

//

p⊕q

##

D′

C ⊕ C ′

i+j
;; .

This implies that the enrichment of D in abelian groups descends to D/C. The existence
of finite sums in D/C is inherited from D.

If the bold
C //

��

C′

��

D //

��

D′

��

D/C //D′/C′

diagram of additive functors is given, then we get the extension indicated by the dotted
arrow in the natural way.

Let X be in BornCoarse and let Y be a big family on X. Then we define

A(Y) ⊆ colim
Y ∈Y

A(Y ) .

This colimit can be realized as the full subcategory of A(X) of objects which are supported
on some member of Y . We can therefore form A(X)/A(Y). We actually have a functor

BCpair → Add , (X,Y) 7→ A(X)/A(Y) .

Lemma 8.18. The functor A is excisive in the sense that for every X in BornCoarse
and complementary pair (Z,Y) the canonical functor

i : A(Z)/A(Z ∩ Y)→ A(X)/A(Y)

is an equivalence.

Proof. We define an inverse equivalence p : A(X)/A(Y)→ A(Z)/A(Z∩Y) as follows. For
every object (M,µ) in A(X)/A(Y) we choose p(M,µ) := (M(Z), µZ) in A(Z)/A(Z ∩ Y).
For every morphism [a] : (M,µ)→ (M ′, µ′) we set p([a]) := [aZ ].
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One must check that (M(Z), µZ) is locally finite. Furthermore, one must check that aZ is
controlled.

Furthermore this construction is compatible with the composition because of the rule

(a′ ◦ a)Z − a′Z ◦ aZ = µ′′(Z)a′′µ′(X \ Z)aµ(Z) .

If a′ is U -controlled, then

µ′′(Z)a′µ′(X \ Z)aµ(Z) = µ′′(Z ∩ U [X \ Z])a′µ′(X \ Z)aµ(Z) .

Consequently the composition has a factorization over the object

(M(Z ∩ U [X \ Z]), µZ∩U [X\Z])

which belongs to A(Z ∩Y). By construction p◦ i ∼= id. On the other hand i◦ p ∼= id since

a− aZ = a− µ(Z)aµ(Z) = µ′(X \ Z)aµ(Z) + µ′(Z)aµ(X \ Z) .

Both summands have obvious factorizations over objects of A(Y). Hence [a] = i(p([a])).

Definition 8.19. The inclusion C→ D is called a Karoubi filtration if for every diagram
C → D → C ′ in D with C,C ′ in C there exists an extension to a diagram

C //

��

D

∼=
��

// C ′

C ′′
incl // C ′′ ⊕D′ pr

// C ′′

OO

for some C ′′ in C.

Lemma 8.20. The inclusion A(Y)→ A(X) is a Karoubi filtration.

Proof. We consider a diagram

(M,µ)
a→ (N, ν)

b→ (M ′, µ′)

in A(X) where (M,µ) and (M ′, µ′) belong to A(Y).

Then Y := supp(M,µ) belongs to Ȳ. We assume that a is U -controlled and b is V -
controlled. We define Z := (V −1 ∪ U)[Y ]. Then we consider the decomposition

(N, ν) ∼= (N(Z), νZ)⊕ (N(X \ Z), νX\Z) .

We let i : N(Z) → N and p : N → N(Z), q : N → N(X \ Z) be the inclusion and
projections. Since Y is big we have Z ∈ Ȳ . We consider the diagram

(M,µ) a //

u

��

(N, ν)

p⊕q ∼=
��

b // (M ′, µ′)

(N(Z), νZ) incl // (N(Z), νZ)⊕ (N(X \ Z)
pr
// (N(Z), νZ)

v

OO
.
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with u = p ◦ a and v := b ◦ i. In order to show that it commutes we must check that
(p⊕ q) ◦ a = (u⊕ 0) and b = v ◦ p. The first equality is equivalent to q ◦ a = 0 and the
second equality is equvalent to b ◦ j = 0. By construction X \ Z is U -separated from Y .
Since a is U -controlled we get q ◦ a = 0. Furthermore Y is V -separated from X \ Z, and
this implies that b ◦ j = 0.

Let (Y, Z) be a coarsely disjoint partition of X in BornCoarse.

Then we have functors i∗ : A(Y ) → A(X) and j∗ : A(Z) → A(X) induced by the
inclusions i : Y → X and j : Z → X and can define

i⊕ j : A(Y )×A(Z)→ A(X) .

This is an isomorphism. Indeed we can define an inverse functor A(X)→ A(Y )×A(Z)
by

(M,µ) 7→ (M(Y ), µY ), (M(Z), µZ) , a 7→ (a|M(Y ), a|M(Z)) .

The point here is that the mixed terms µ′(Z)aµ(Y ) = 0 and µ′(Y )aµ(Z) = 0 vanish for
all morphisms a : (M,µ)→ (M ′, µ′) in A(X).

Let (Xi)i∈I be a family in BornCoarse and form the free union X :=
⊔free
i∈I Xi. Then we

have projections A(X)→ A(Xi) for all i in I.

Lemma 8.21. The induced map

A(X)→
∏
i∈I

A(Xi) , (M,µ) 7→ ((M(Xi), µXi
)i∈I

is an equivalence of categories.

Proof. The inverse functor sends ((Mi, µi)i∈I to (
⊕

i∈IMi,
⊕

i∈I µi) and (ai)i∈I to
⊕

i∈I ai.
It is straightforward to check that this functor is well-defined and an inverse equivalence.

9 Coarse algebraic K-homology

We fix a pair Â of an idempotent complete additive category and an additive subcategory
A.

Example 9.1. The typical example is Â = Mod(R) and A = Modfg,proj for some ring R.

In the present section we construct the (linear ) coarse algebraic K-homology theory with
coefficients in A, a delta functor (KAX , δ) with

KAX : BCpair → AbZgr .
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It will be obtained from A(−) : BornCoarse → Add by post-composeing with an
algebraic K-theory functor.

We let Addpair denote the category of pairs C → D of full inclusions of subcategories
which are Karoubi filtrations.

Definition 9.2. An algebraic K-theory functor is a pair (K, δ) of a functor

K : Add→ AbZgr

together with a map
δ : K(D/C)→ K(C)[−1]

for every Karoubi filtration C→ D such that

1. the sequence

K(C)→ K(D)→ K(D/C)
δ→ K(C)[−1]

is natural in (C→ D) in Addpair and exact for every Karoubi filtration C→ D.

2. K sends isomorphic functors to equal maps.

3. K preserves filtered colimits.

4. K is additive on morphisms.

We will use the following results as a black-box.

Theorem 9.3 (M. Schlichting). There exists a K-theory functor with the property that
K0(A) is the Grothendieck group of the monoid of isomorphism classes of objects of A
provided A is idempotent complete.

Lemma 9.4. An algebraic K-theory functor annihilates flasque additive categories.

Proof. Assume that C is a flasque additive category. Let S : C→ C implement flasqueness,
i.e. S ⊕ idC ∼= S. Then using the additivity of the K-theory functor on functors and its
invariance under isomorphisms of functors we get

K(S) +K(idC) = K(S ⊕ idC) = K(S) .

This implies K(idC) = 0 and hence K(C) = 0.

Example 9.5. The last condition implies non-triviality. For example K0(Mod(k)fg) ∼= Z
for any field k.

For a ring R we have
Ki(Modfg,proj(R)) ∼= Ki(R)

for all i ≥ 0 where Ki(R) := πi(K0(R)×BGL(R)+) is Quillen’s K-theory for rings. If R
is regular, then Ki(Modfg,proj(R)) ∼= 0 provided i < 0.
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Theorem 9.6 (G. Carlsson). The K-theory functor in addition preserves products.

Definition 9.7. We define the coarse algebraic K-homology (KAX , δ) by

KAX : BCpair → AbZgr , KAX (X,Y) := K(A(X)/A(Y))

and
δ : K(A(X)/A(Y))→ K(A(Y))[−1]

(induced by the Karoubi filtration A(Y)→ A(X)).

Theorem 9.8. (KAX , δ) is a strongly additive coarse homology theory.

Proof. For every complementary pair (X,Y) we have functially the Karoubi filtration
A(Y) ⊆ A(X) and hence the functorial exact sequence

KAX (Y)→ KAX (X)→ KAX (X,Y)
δ→ KAX (Y)[−1] .

In view of Lemma 8.16 and since K sends isomorphic functors to equal maps the functor
KAX is coarsely invariant. In view of Lemma 8.15 and since K preserves filtered colimit
the functor KAX is u-continuous. If X is flasque, then by Lemma 8.17 A(X) is flasque,
and hence KAX (X) = 0 by Lemma 9.4.

Proposition 9.9. KAX is strongly additive.

Proof. This follows from Theorem 9.6 and 8.21.

Example 9.10. One can use coarse geometry in order to give a geometric model for
the negative K-groups of an additive category. Note that A(∗) ' A and therefore
KAX (∗) ∼= K(A). We have

KAXk(Zn) ∼= KAXk−n(∗) ∼= Kk−n(A) .

In particular
K−n(A) ∼= KAX0(Zn) .

Thus K−n(A) is the Grothendieck group of isomorphism class of objects in the additive
category A(Zn).

10 The equivariant case

Let G be a group. Then we can consider the category Fun(BG,BornCoarse) of bornolog-
ical coarse spaces with an action of G by automorphisms.
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Example 10.1.

We consider G = Z. It acts on R by (n, x) 7→ x+ n (shift).

It can also act by (n, x) 7→ 2nx (scaling).

Both actions are fundamentally different

Definition 10.2. A G-bornological coarse space is a bornological coarse space X with an
action by automorphisms such that for every entourage U of X also

⋃
g∈G(g× g)(U) ∈ CX .

Equivalently one can require that the set of G-invariant entourages CGX is cofinal in the set
of all entourages CX .

Example 10.3.

R with the shift action is a G-bornological coarse space.

R with the scaling action is not.

Example 10.4. If G acts on a metric space (X, d) by quasi-isometries, then it acts on
the underlying G-bornological coarse space Xd. Recall that this means that for every g
there are constants C,C ′ such that

C−1d(gx, gx′)− C ′ ≤ d(x, x′) ≤ Cd(gx, gx′) + C ′

for all x, x′ in X.

But Xd is a G-bornological coarse space if one can choose the constants independently of
g in G. This is the case in particular if G acts by isometries.

Example 10.5. The group G gives rise to the G-coarse space Gcan. The coarse structure
is generated by the subsets G{(g, e)} for all g in G. Note that πcoarse0 (Gcan,min) = ∗.

The coarse structure on Zcan,min is the metric coarse coarse structure of Z.

If G is finitely generated, then Gcan is the coarse structure associated to any choice of
word metricl

Since thickenings of points are finite it is compatible with the miminal bornology.

The coarse structure on Rcan is much smaller than the metric coarse structure. But R
(with the translation action) is also a R-bornological coarse spaces,

Definition 10.6. We let GBornCoarse be the full subcategory of Fun(BG,BornCoarse)
of G-bornological coarse spaces and equivariant morphisms.
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Example 10.7. We have a functor

GSet→ GBornCoarse , S 7→ Smin,max .

The definition of an equivariant coarse homology theory we must adopt the following
modifications of definitions from the non-equivariant case.

1. flasqueness: The morphism implementing flasqueness must be equivariant.

2. u-continuity: We must replace CX by CGX as the index category of the index colimit.
The equivariant condition is colimCGX E(XU )→ E(X) is an isomorphism. Indeed, if

U is in CGX , then XU ∈ GBornCoarse.

3. equivariant big family: We consider families of G-invariant subsets.

4. Excision: We consider excisive pairs (Z,Y) of invariant subsets and equivariant big
families.

In the definition of coarse cylinders it is natural to require the components pf p = (p+, p−)
to be G-invariant.

We now modify the construction of HX in order to define the equivariant coarse homology
(HXG, δ). To this end we replace the complex CX (X) by the subcomplex CXG(X)
of G-invariant chains. Recall that c in CXn(X) is a function c : Xn+1 → Z which is
controlled and locally finite. It belongs to the subgroup CXG(X) of CXn(X) if and only
if c(gx0, . . . , gxn) = c(x0, . . . , gxn) for all g in G and (x0, . . . , xn) in Xn+1. We get a chain
complex

(CXG(X, ∂) .

By repeating the construction of HX with this replcaement we get the equivariant coarse
homology theory (HXG, δ). The verification of the axioms is by the same arguments.

Theorem 10.8. (HXG, δ) is an equivariant coarse homology theory.

Example 10.9. We have a canonical isomorphism

HXG(Gmin,min ⊗X) ∼= HX (ResGX) .

The follows from the explicit isomorphism

CXG(Gmin,min ⊗X)→ CX (X)

given by
CXG

n (Gmin,min ×X) 3 c 7→ (c((1, x0), . . . , (1, xn)) ∈ CXn(X)

The inverse is given by

c̃ 7→ ((g0, x0), . . . , (gn, xn)) 7→ c(x0, . . . , xn) .
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There are situations where one starts with an equivariant coarse homology theory EG.
One can define an associated non-equivariant one by E(X) := EG(Gmin,min ⊗X).

Remark 10.10. The following is a reminder on group homology. It starts with the
observation that abelian groups with a G-action are the same as left Z[G]-modules.
Expressed in categorical terms, we have an equivalence

Fun(BG,Ab) ' Modl(Z[G]) .

The classical home for group homology is the derived category D(Mod(Z[G])) of the
abelian category Mod(Z[G]). If M is in Modr(Z[G]), then we can define the functor

−⊗Z[G] M : Modl(Z[G])→ Ab , N 7→ N ⊗Z[G] M .

This functor is right-exact and preserves projectives and is therefore left derivable. The
derived version of this functor is usually denoted by

M ⊗LZ[G] − : D(Mod(Z[G]))→ D(Ab) .

We consider Z as an object of Modl(Z[G]). By definition, the group homology of G with
coefficients in M is defined by

H∗(G,M) := H∗(M ⊗LZ[G] Z) .

We let G• be the simplicial G-set induced by the G-map G→ ∗. The G-set ofn-simplices
of G• is the G-set Gn+1. We get a simplicial G-module Z[G•] and let (C∗(G), ∂) be the
associated chain complex. Since Gn+1 is a free G-set the Z[G]-module Cn(G) is free.
Indeed, if X is a free G-set, then fixing a base point in each orbit we get an equivariant
bijection X ∼=

⊔
G\X G. Hence Z[X] ∼=

⊕
G\X Z[G]. The map G → ∗ induces a map

C0(G)→ Z. One can check that the induced map C(G)→ Z[0] is a quasi-isomorphism.
Hence it is a free resolution of Z. Consequently, we can calculate group homology using
the so called standard complex

H∗(G,M) := H∗(M ⊗Z[G] C(G) .

If H is a subgroup of G, then the inclusion H → G induces a homomorphism Z[H]→ Z[G].
We consider the induction functor

IndGH : Modr(Z[H])→ Modr(Z[G]) , N 7→ N ⊗Z[H] Z[G] .

Here we consider Z[G] as a left-module over Z[H] using the left multiplication and as
a right Z[G]-module. Note that G is a free H-set and therefore Z[G] is free as a right
Z[H]-module. Hence IndGH is exact and descends to the derived category.

We have the following induction isomorphism. Let M be in Modr(Z[H])
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Lemma 10.11. We have a canonical isomorphism

H∗(H,M) ∼= H∗(G, Ind
G
H(M)) .

Proof. We can consider the complex C(H) as a free resolution of Z in Modl(Z[H]) since
Gn+1 is a free H-set for every n. Then

H∗(H,M) ∼= H∗(M ⊗Z[H] C(G)) ∼= H∗((M ⊗Z(H) Z[G])⊗Z[G] C(G)) ∼= H∗(G, Ind
G
H(M)) .

Proposition 10.12. We have natural (in S) isomorphism

HXG
∗ (Smin,max ⊗Gcan,min) ∼= H∗(G,Z[S]) .

In particular, for a subgroup K of G we have

HXG
∗ ((G/K)min,max ⊗Gcan,min) ∼= H∗(K,Z) .

Proof. We claim that there is a natural isomorphism between CXG(Gcan,min ⊗ Smin,max)
and the standard complex C(G,Z[S]). We first note that S is a right G-set by the action
(g, s) := g−1s. To do so, we identify

Z[Gn+1] ∼= Z[Gn+1 × S] ,

where Gn+1 × S carries the diagonal G-action. Then we define the homomorphism

φn : Cn(G,Z[S]) ∼= Z[S]⊗Z[G] Z[Gn+1]→ CXG(Gcan,min ⊗ Smin,max) (10.1)

as the linear extension of

[s]⊗ [g0, g1, . . . , gn] 7→
∑
g∈G

((gg0, gs), . . . , (ggn, gs)) . (10.2)

Note that all summands are different points on (G × S)n+1 so that the infinite sum
makes sense, and it is G-invariant by construction. Furthermore this map sends [h−1s]⊗
[g0, g1, . . . , gn] and [s]⊗ [hg0, hg1, . . . , hgn] to the same element. Hence it factorizes over
⊗Z[G].

Every ((gg0, gs), . . . , (ggn, gs)) is controlled by the entourage G{(gi, gj) | 0 ≤ i, j ≤
n} × diagS of the G-bornological coarse space Gcan,min ⊗ Smin,max. To show that this
chain is also locally finite, it suffices to check that there are only finitely many points in
the support of the chain (10.2) which meet bounded sets of the form B × S, where B
is some finite subset of G. This is clear since G acts freely on Gn+1. This finishes the
argument for the assertion that (10.1) is well-defined.
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It is straightforward to check that the collection {φn}n is a chain map. The boundary is
defined by the same formula on both sides.

We now argue that the map (10.1) is an isomorphism. To this end we define an inverse

ψ : CXn(Gcan,min ⊗ Smin,max)→ Z[S]⊗Z[G] Z[Gn+1] ∼= Cn(G,Z[S]) .

Let
c =

∑
x∈(G×S)n+1

nxx

be an invariant, controlled and locally finite n-chain on Gcan,min ⊗ Smin,max. We then
define

ψ(c) :=
∑

(g1,...,gn,s)∈Gn×S

n((1,s),(g1,s)...,(gn,s))[s]⊗ [1, g1, . . . , gn] .

Assume that c is U -controlled. Then only summands with {g1, . . . , gn} ⊆ U [{1}] contribute
to the sum. Since U [{1}] is bounded and c is locally finite we see that the number of
non-trivial summands is finite. This implies that ψ(c) is well-defined.

It is straightforward to check that φ and ψ are inverse to each other: To see that ψ◦φ = id,
use that

[s]⊗ [g0, g1, . . . , gn] = [g−1
0 s]⊗ (1, g−1

0 g1, . . . , g
−1
0 gn)

in ⊗Z[G]. The equality φ ◦ ψ = id follows from the G-invariance of a chain c =∑
x∈(G×S)n+1 nxx together with the observation that n((g0,s0),...,(gn,sn)) = 0 unless s0 =

· · · = sn. The latter fact is due to S carrying the minimal coarse structure.

One easily checks that φ is natural for maps between G-sets.

The second assertion follows from the induction isomorphism Lemma 10.11. To this end
we note that Z[G/K] = IndGK(Z).

Remark 10.13. It turns out that in applications often the evaluation of the coarse
homology theory at the objects of the form X ⊗Gcan,min is the most relevant one.

For the following assume that G is finite.

For the following example we will use a better cone functor

O∞c : Topc,Hausd → BornCoarse .

The underlying set of O∞(X) is R×X. An entourage U is controlled if it is continuously
controlled for R×X → (−∞,∞]×X and U is contained in Ud× (X×X) for some coarse
entourage Ud of R.

Lemma 10.14. O∞(X) is a G-bornological coarse space
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Proof. It is clear that O∞(X) ∈ Fun(BG,BornCoarse). Since G is finite we have
GBornCoarse = Fun(BG,BornCoarse).

Remark 10.15. For infinite groups G we need another definition of cones using uniform
structures. We will discuss this later.

One then shows for an equivariant coarse homology theory E : GBornCoarse→M (by
the same proofs as non-equivariant and for O):

1. EO∞c (−) is homotopy invariant

2. EO∞c (−) is satisfies closed excision

Lemma 10.16. EO∞c (Zdisc) ∼= E(Zmin,min)[−1] for finite G-set Z.

Proof. By the long exact sequence for (O∞(Zdisc), ((−∞, n]× Z)n∈N) and flasqueness of
the members of the family we get an isomorphism

EO∞c (Zdisc) ∼= E(O∞c (Zdisc), ((−∞, n]× Z)n∈N) .

We now use u-continuity and get

E(O∞c (Zdisc), ((−∞, n]× Z)n∈N)) ∼= colim
U

E((R× Z)U , ((−∞, n]× Z)n∈N) .

For every sufficiently large U we have Ud′ × diag(Z) ⊆ U . Then the decomposition
((−∞,m] × Z, [m,∞) × Z) is coarsely excisive. We further can fix m in N so large
U|[m,∞)×Z ⊆ Ud × diag(Z) since U is contiuously controlled and Z is finite. We use
excision and get

E(O∞c (Zdisc), ((−∞, n]× Z)n∈N) ∼= E(([m,∞)× Z)U , ([m,m+ n]× Z)n∈N) .

Now ([m,∞)× Z)U ∼= [0,∞)⊗ Zmin,min. Do the same steps backwards with the coarse
structure of R⊗ Zmin,min we get

E(([m,∞)× Z)U , ([m,m+ n]× Z)n∈N) ∼= E(R× Zmin,min) ' ΣE(Zmin,min) .

Example 10.17. A G-CW -complex a topological G-space X with a filtration

∅ = X−1 ⊆ X0 ⊆ X1 ⊆ . . . X

such that

1. X ∼= colimn∈NXn
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2. For every n in N there is a push-out

Zn × Sn−1 //

��

Xn−1

��

Zn ×Dn // Xn

where Zn is some G-set.

Since Zn is a union of G-orbits we can build X iteratively by attaching G-cells of the form
G/K ×Dn for subgroups K of G.

If X is a finite G-CW -complex, then X belongs to GTopc,Hausd.

We want to calculate HXG
∗ (O∞c (X)). This goes by induction on cells.

Assume that X is obtained from Y by attaching the cell G/K × Dn. Then we have a
push-out

G/K × Sn−1 //

��

Y

��

G/K ×Dn // X

.

This gives a Mayer-Vietoris sequence

HXG(O∞c (G/K × Sn−1)⊗Gcan,min)

→ HXG(O∞c (G/K ×Dn)⊗Gcan,min)⊕HXG(O∞c (Y )⊗Gcan,min)

→ HXG(O∞c (X)⊗Gcan,min)→ HXG(O∞c (G/K × Sn−1)⊗Gcan,min)[−1]

The usual calculations for spheres show

HXG(O∞c (G/K × Sn−1)⊗Gcan,min) ∼= H(K,Z)[−1]⊕H(K,Z)[−n]

and
HXG(O∞c (G/K ×Dn))⊗Gcan,min) ∼= H(K,Z)[−1] .

The Mayer-Vietoris sequence therefore gives

H(K,Z)[−n]→ HXG(O∞c (Y )⊗Gcan,min)→ HXG(O∞c (X)⊗Gcan,min)→ H(K,Z)[−n−1] .
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Example 10.18. We consider the group C2 and Sn with the action by the antipodal map.
We obtain Sn from Sn−1 (equator) by attaching a cell C2 ×Dn (pair of upper and lower
hemisphere). We get

Z[−n]→ HXC2(O∞c (Sn−1)⊗ C2,can,min)→ HXC2(O∞c (Sn)⊗ C2,can,min)→ Z[−n− 1]

One must calculate boundary operators. Or by general groups, since C2 acts freely,

HXC2(O∞c (Sn) ∼= HX (O∞c (RPn)) ∼= H(RPn;Z)[−1]

Example:

HXC2(O∞c (S3)) HXC2(O∞c (S4)) Z[5]
5 0 0 Z
4 Z C2 0
3 0 0 0
2 C2 C2 0
1 Z Z 0
0 0 0 0

The only non-trivial map is multiplication by 2

HXC2(O∞c (S4)) HXC2(O∞c (S5)) Z[6]
6 0 Z Z
5 0 0 0
4 C2 C2 0
3 0 0 0
2 C2 C2 0
1 Z Z 0
0 0 0 0

Example 10.19. We consider X with trivial action. If H∗(X;Z) is free, then

HXG(O∞c (X)) ∼= H∗(X;Z)⊗H∗(G,Z)[−1]

Otherwise we have a Künneth formula with Tor-terms.

Remark 10.20. The following is good to know. If one works with the ∞-category
D∞(Ab), then one can consider HXG as a functor GBornCoarse→ D∞(Ab) (by not
taking the homology of the complex CXG but viewing it as an object of D∞(Ab)). It
gives rise to the functor

GOrb 3 S 7→ HXG(O∞c (Smin,max)⊗Gcan,min) ∈ D∞(Ab) .

The theorem of Elmendorf says that any functor GOrb→ D∞(Ab) determines an up to
equivalence unique equivariant homology theory GTop→ D∞(Ab). Above we calculated
the value of this functor on X.
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Next we extend the construction of X-controlled objects in an additive category to the
equivariant case. Let Â be an additive category with a strict G-action, i.e., an object of
Fun(BG,Add). We assume that the underlying category of Â is idempotent complete
and admits all sums.

Example 10.21. We can consider categories with the trivial G-action.

Let R be a ring with G-action. Then we can consider ModG(R).

The objects are R-modules with G-action (M,κ) such that κ(g)(mr) = κ(g)(m)g(r).
Morphisms are equivariant maps. The group G acts on this category by sending (M,κ) to
g(M,κ) = (M, (h 7→ κ(g−1hg)) and the new R-module structure is given m · r := mg−1r.
This action fixes morphisms.

Let X be in GBornCoarse.

Definition 10.22. An equivariant X-controlled A-module is a triple (M,ρ, µ) where
(M,µ) is in A(X) and ρ = (ρg)g∈G is a family of morphisms ρg : M → g(M) such that:

1. cocycle condition: g(ρh)ρh = ρgh for all g, h in G.

2. measure is invariant: µ(g(Y )) = ρ−1
g ◦ g(µ(Y )) ◦ ρg.

If (M,ρ, µ) and (M ′, ρ′, µ′) are two equivariant X-controlled A-objects, then for a morphism
a : M →M ′ we set g · a := g(ρ−1

g ) ◦ g(a) ◦ ρg : M →M ′.

Definition 10.23. A morphism a : (M,ρ, µ) → (M ′, ρ′, µ′) between equivariant X-
controlled A-objects is a morphism a : M →M ′ such that g · a = a for all g in G.

We get the additive category AG(X) of equivariant X-controlled A-objects and morphisms.
If f : X → X ′ is a morphism in GBornCoarse, then we have the additive functor

f∗ : AG(X)→ AG(X ′) , f∗(M,ρ, µ) = (M,ρ, f∗µ) .

Proposition 10.24. The functor AG(−) is

1. coarsely invariant

2. u-continuous

3. annihilates flasques

4. excisive.

5. It sends Y → X to a Karoubi filtration AG(Y)→ AG(X).
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Proof. The arguments are the same as in the non-equivariant case.

We define the equivariant coarse algebraic K-homology with coefficients in A by (KAXG, δ)
such that

KAXG(X) ∼= K(AG(X)) .

It is again interesting to calculate some values of KAXG. In order to state a nice result
we restrict to the case A = Modfg,proj(R) with the trivial G-action.

For a group K we consider the group ring R[K]. Furthermore, for Fun(BK,Modfg,proj) is
the category of finitely generated projective R-modules with an action of G.

Theorem 10.25. We have

KAXG((G/K)min,max ⊗Gcan,min) ∼= K(Modfg,proj(R[K]))

and
KAXG((G/K)min,min) ∼= K(Fun(BK,Mod(R)fg,proj) .

Proof. [BEKW]

11 Uniform bornological coarse spaces

Our first goal is to introduce the category of uniform bornological coarse spaces. The new
notion is that of a uniform structure, which we introduce in the following. A uniform
structure is a structure which is more special than a topology but more general than a
metric.

Let X be a set.

Definition 11.1. A uniform structure on X is a subset U of X with the following
properties.

1. If U is in U , then diag(X) ⊆ U .

2. U is closed under forming supersets.

3. U is closed under forming inverses.

4. U is closed under forming finite intersections.

5. For every U in U there exists V in U with V 2 ⊆ U .
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Example 11.2. If X is a set, then we have the discrete uniform structure Udisc which is
characterized by diag(X) ∈ Udisc.

We also have the chaotic uniform structure Uchaot := {X ×X}.

Example 11.3. Let (X, d) be a quasi metric space. Then we define the metric uniform
structure

Ud := {U ∈ PX×X | (∃r ∈ (0,∞) | Ur ⊆ U)} .

Lemma 11.4. U is a uniform structure.

Proof. We check that axioms.

1. If U is in Ud, then diag(X) ⊆ X since there exists r in (0,∞) such that Ur ⊆ U and
diag(X) ⊆ Ur.

2. It is immediate from the definition that Ud is closed under forming supersets

3. Ud is closed under forming inverses since U−1
r = Ur for all r in (0,∞).

4. Ud is closed under forming finite intersections. Indeed, if (Ui)i∈I is a finite family in
Ud, then we choose a family (ri)i∈I in (0,∞) such that Uri ⊆ Ui for all i in I. Let
s := mini∈I ri. Then s ∈ (0,∞) and Us ⊆

⋂
i∈I Ui. Hence

⋂
i∈I Ui ∈ Ud as required.

5. Let U be in Ud and choose r in (0,∞) such that Ur ⊆ U . Set s := r/2 and V := Us.
Then V 2 ⊆ Ur ⊆ U and V ∈ Ud.

The topology TU is Hausdorff exactly if⋂
U∈U

U = diag(X) .

A uniform space is a pair (X,U) of a set and a uniform structure.

Let (X,U) be a uniform space.

Definition 11.5. The underlying topology TU of X is determined as follows: A subset W
of X belongs to TU if for every w in W there exists U in U such that U [{w}] ⊆ W .

Lemma 11.6. The topology associated to a uniform structure is well-defined.
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Proof. The set TU contains ∅ and X. It is closed under arbitrary unions. If (Wi) is a finite
family in TU and w is in W :=

⋂
i∈IWi, then we can choose a family (Ui)i∈I such that

Ui[{w}] ⊆ Wi for all i in I. Then U :=
⋂
i∈I Ui ∈ U and U [{w}] ⊆ W .

Example 11.7. On a compact Hausdorff space there exists exactly one uniform structure
determining the topology.

Remark 11.8. Quasi metric spaces are always Hausdorff. Furthermore, the uniform
structure of a metric space has a countable cofinal set e.g. (Un−1)n∈N.

General uniform structures may not have these properties.

Let (X,U) and (X ′,U ′) be uniform spaces and f : X → X ′ be a map between the
underlying sets.

Definition 11.9. f is uniformly continuous if f−1(U ′) ⊆ U .

We obtain a category Uniform of uniform spaces and uniformly continuous maps.

Let f : (X,U)→ (X ′,U ′) be uniformly continuous.

Lemma 11.10. f is continuous as a map between the underlying topological spaces.

Proof. Let W ′ be open in X ′. We consider w in f−1(W ′). We choose U ′ in U ′ such that
U ′[{f(w)}] ⊆ W ′. Then f−1(U ′)[w] ⊆ f−1(W ′) and f−1(U ′) ∈ U .

Example 11.11. For maps between metric spaces the notion of uniform continuity reduces
to the classical one. Let (X, d) and (X ′, d′) be metric spaces. A map f : X → X ′ is
uniformly continuous if and only if for every ε in (0,∞) there exists δ in (0,∞) such that
d(x, y) ≤ δ implies d′(f(x), f(y)) ≤ ε.

Lemma 11.12. We have adjunctions

(−)disc : Set � Uniform : forget

and
forget : Uniform �: Set : (−)chaot .

Proof. We observe the obvious equalities

HomUniform(Xdisc, Y ) = HomSet(X, Y )

and
HomSet(Y,X) = HomUniform(Y,Xchaot)

for all sets X and all uniform spaces Y .
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Let A be a subset of PX×X which has the property that for every A in A there exists B in A
such that B2 ⊆ A. Then we can form a uniform structure U〈A〉 which consists of supersets
of finite intersections of elements of A and their inverses. Note that if (Ai)i∈I is a finite
family in A and (Bi)i∈I is a family in A such that B2

i ⊆ Ai, then (
⋂
i∈I Bi)

2 ⊆
⋂
i∈I Ai.

Example 11.13. Let (X,U) be a uniform space and f : Y → X be a map of sets. Then
f ∗U := 〈f−1U〉 is the uniform on Y induced via f . Note that f−1U has the required
conditions since f−1(V )◦f−1(V ) ⊆ f−1(V ◦V ). The map f : Y → X becomes a uniformly
continuous.

Proposition 11.14. The category Uniform is complete and cocomplete.

Proof. In view of the adjunctions in Lemma 11.12 the underlying sets of potential limits
or colimits are calculated in Set.

We describe (co)products and (co)equalizers.

Let (Xi)i∈I be a family in Uniform. Then we set X :=
∏

i∈I Xi and let pi : X → Xi be
the projection. We form the uniform structure UX generated by the set

⋃
i∈I p

−1
i (UXi

). The
uniform space (X,UX) together with (pi)i∈I has the required properties of the product.

For the coproduct we consider Y :=
⊔
i∈I Xi and the inclusions ei : Xi → Y . We define

the uniform structure on Y consistsing of the subsets
⊔
i∈I Ui for families (Ui)i∈I with

Ui ∈ UXi
. Then (Y,UY ) together with the family (ei)i∈I has the required properties of a

coproduct.

If

X

f

  

g

@@Y

is an equalizer diagram, then the subset

Z := {x ∈ X | f(x) = g(x)} → X

with the induced uniform structure has the required universal property.

If we consider the diagram as a coequalizer diagram, then we equip the coequalizer
Y → Q in Set with the uniform structure characterized as follows. For every uniform
map f : Y → Z equalizing f and g we get a set map f̄ : Q→ Z. We then let UQ be the
uniform structure generated by the set f̄−1(UZ) for all such maps. One checks that this
has the required properties of the coequalizer.

A homotopy between uniformly continuous maps f, g : X → Y is given by a map
h : [0, 1]×X → Y such that h|{0}×X = f and h|{1}×X = g. Note that this notion is more
restrictive as being homotopic in the sense of continuous maps between the underlying
topological spaces.

90



Example 11.15. The identity of R and the constant map with value zero are homotopic
as continuous maps. But they are not homotopic as uniformly continuous maps.

In fact, if h : [0, 1]×R→ R is a map, then by uniform continuity there exists a δ in (0,∞)
such that |s− t| < δ implies |h(s, x)− h(t, x)| ≤ 1 for all x in X and s, t in [0, 1]. But that
|h(0, x)−h(1, x)| ≤ δ−1 for all x. This is incompatible with h(0, x) = x and h(1, x) = 0 for
all x in R if h would be a potential homotopy between the identity and the zero map.

We now combine coarse and uniform structures. Let X be a set with a uniform structure
U and a coarse structure C.

Definition 11.16. We say that U and C are compatible if C ∩ U 6= ∅.

Example 11.17. The metric uniform and coarse structures of a metric space are compatible.

Definition 11.18. A uniform bornological coarse space is a quadrupel (X, C,B,U) such
that (X, C,B) is a bornological coarse space and U is a uniform structure which is compatible
with C.

A morphism of uniform bornological coarse spaces is a morphism of bornological coarse
spaces which is in addition uniformly continuous.

We let UBC denote category of uniform bornological coarse spaces and morphisms. We
have a forgetful functors UBC→ BornCoarse and UBC→ Top.

Example 11.19. We consider Rn and its subsets as uniform bornological coarse spaces
with the structures induced by the standard metric.

In UBC we have a symmetric monoidal structure. We define X ⊗ Y such that the
underlying bornological coarse space is given by the tensor product of bornological coarse
spaces, and the underlying uniform space is the cartesian product. One checks easily that
the compatibility condition is preserved under taking products.

We want to consider homology theories on UBC. The appropriate notion is that of a
local homology theory. In order to formulate the excision axiom we need the notion of a
uniformly excisive descomposition.

Let X be in UBC. Let (A,B) be a decomposition of X into two subsets. Recall that it is
coarsely excisive if for every entourage W in CX there exists U in CX such that

W [A] ∩W [B] ⊆ U [A ∩B] .

Coarse homology theories have Mayer-Vietoris sequences for coarsely excisive decomposi-
tions. The notion of a uniformly excisive decomposition is similar.
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Definition 11.20. (A,B) is uniformly excisive if there exists a uniform entourage U and
a function κ : P⊆UX×X → PX×X which is

1. monotone: if W,W ′ ∈ P⊆UX×X and W ⊆ W ′, then κ(W ) ⊆ κ(W ′).

2. cofinal: for every V in UX here exists W in P⊆UX×X such that for all W ′ ∈ P⊆WX×X we
have κ(W ′) ⊆ U .

3. excisive: for every W in P⊆UX×X we have W [A] ∩W [B] ⊆ κ(W )[A ∩B].

Remark 11.21. Note that in contrast to the notion of being coarsely excisive the notion
of being uniformly excisive involves the choice of a function κ. This seems to be stronger
than the condition that for every W in P⊆UX×X there exists W ′ such that W [A] ∩W [B] ⊆
κ(W )[A ∩B]. The point is that want that W ′ becomes small if W is small.

Example 11.22. Assume that (X, d) is a path quasi-metric space.

Lemma 11.23. Then every closed decomposition is uniformly excisive.

Proof. We set U = U1. For every W in P⊆UX×X we define k(W ) := inf{r ∈ [0, 1] |W ⊆ Ur}
and κ(W ) := Uk(W ). This function is monotonous by construction. Furthermore, since
κ(Ur) = Ur it is cofinal. Assume that x is a point in W [A]∩W [B]. Then there exist paths
γ and σ of length ≤ k(W ) from some a in A to x, and from x to some b in B, respectively.
The concatenation σ]γ is a path from a to b of length ≤ 2k(W ). Then there exists a point
on this path in A ∩B at distance at most k(W ) from x. Hence x ∈ κ(W )[A ∩B].

We now let UBC2 be the categories of pairs (X,A) in UBC where A is a closed subset.

Definition 11.24. A δ-functor on UBC is a pair (E, δ) of a functor E : UBC2 → AbZ

and a natural transformation δ : E(X,A)→ E(A)[−1] such that

E(A)→ E(X)→ E(X,A)
δ→ E(A)[−1]

is exact for every pair (X,A) in UBC2.

Here as usual we write E(X) := E(X, ∅).

In the following we consider a δ-functor (E, δ) on UBC2.

Definition 11.25. We say that E is homotopy invariant if the projection [0, 1]×X → X
induces an isomorphism E([0, 1]⊗X)→ E(X).

Let X be in UBC.
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Definition 11.26. X is called flasque if it admits a selfmap f : X → X such that f
implements flasqueness of the underlying bornological coarse spaces and f is homotopic to
the identity.

Definition 11.27. We say that E vanishes on flasques E(X) ∼= 0 for all flasque X in
UBC.

Let X be in UBC. Then there exists V in CX ∩ UX . If U is in CX such that V ⊆ U , then
C〈U〉 is compatible with U . We write XU for the objects of UBC obtained from X by
replacing the coarse structure by C〈U〉. Therefore the following definition makes sense
since we can form the colimit over all sufficiently large coarse entourages.

Definition 11.28. We say that E is u-continuous if for all X in UBC we have

colim
U∈CX

E(XU) ∼= E(X) .

Definition 11.29. We say that E satisfies closed excision if for every X in UBC and
closed coarsely and uniformly excisive decomposition (A,B) we have an isomorphism

E(B,B ∩ A)
∼=→ E(X,A)

induced by the map (B,B ∩ A)→ (X,A) in UBC2.

Definition 11.30 ([BEa]). A local homology theory is a δ-functor (E, δ) on UBC which
is:

1. homotopy invariant

2. u-continuous

3. vanishing on flasques

4. excisive.

Remark 11.31. The name local comes from the stronger condition of being locally finite
which we actually wanted to axiomatize. The condition of vanishing on flasques is weaker,
but much easier to handle.

In [BEb] we axiomatize the notion of a locally finite homology theory on the category
TopBorn of topological bornological spaces. There is a forgetful functor

FU/2,C : UBC→ TopBorn .

The pull-back of a locally finite homology theory on TopBorn (with closed excision) yields
a local homology theory in the sense above.
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Example 11.32. We have a forgetful functor FU : UBC2 → BornCoarse2. It sends
(X,A) to (X, {A}). Note that in the case of BornCoarse the second entry always was a
big family.

Let (E, δ) be a coarse homology theory. Then we can consider the functor

EF := E ◦ FU : UBC2 → AbZ .

Lemma 11.33. (EF , δ) is a local homology theory.

Proof. We check the axioms.

1. Homotopy invariance is implied by coarse invariance.

2. u-continuity is the same condition.

3. Vanishing on flasques is implied by the corresponding condition for E. When
f : X → X is homotopic to the identity, then it is close to the identity.

4. Excision follows from the excisiveness of E since we require that (A,B) is coarsely
excisive. We further use that E(A) ∼= E({A}).

Example 11.34. Here are some basic calculations for any local homology theory E.

1. We have E([0,∞)⊗X) ∼= 0. Indeed [0,∞)⊗X is flasque with flasqueness imple-
mented by (t, x) 7→ (t+ 1, x).

2. We have E(Rn ⊗X) ∼= E(X)[−n]. We argue by induction. We use excision for the
decomposition ((−∞, 0]×X, [0,∞)×X) of R⊗X and Case 1 in order to show that
E(R⊗X) ∼= E(X)[−1].

We now construct the cone functor

O∞ : UBC→ BornCoarse .

Let X be a set. The underlying bornological space of O∞(X) will be the one of R⊗X.
The coarse structure is the so-call hybrid structure introduced by N. Wright, see [BEb] for
references.

Definition 11.35. A scale for X is a pair (κ, φ), where

1. κ : R→ [0, 1] is monotonously decreasing and satisfies limt→∞ κ(t) = 0.
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2. φ : R→ PX×X is monotonously decreasing such that for every U in U there exists t
in R such that φ(t) ⊆ U .

Remark 11.36. If the uniform structure U does not admit a cofinal sequence, and if
(κ, φ) is a scale, then φ(t) = diag(X) for large X.

Metric uniform structure spaces always admit countable cofinal sets.

For a scale (κ, φ) we define the entourage

U(κ,φ) := {((s, x), (t, y)) ∈ (R×X)2 | |s− t| ≤ κ(s ∨ t) & (x, y) ∈ φ(s ∨ t)}

The coarse structure of O∞(X) is generated by the entourages U ∩U(κ,φ) for all U in CR×X
and scales (κ, φ).

This finitshes the construction of the cone.

Lemma 11.37. If f : X → X ′ is a morphism in UBC, then

O∞(f) : O∞(X)→ O∞(X ′) , (t, x) 7→ (t, f(x))

is a morphism in BornCoarse.

Proof. The only non-trivial point is show that for every scale (κ, φ) of X there is a scale
(κ′, φ′) such that f(U ∩ U(κ, φ)) ⊆ U(κ′,φ′). It suffices to set κ′ = κ and φ′(t) := f(φ(t′)).
This function is decreasing. If W ′ is in U ′, then by the uniform continuity of f we have
f−1(W ′) ∈ U . Hence there exists t in R such that φ(t) ⊆ f−1(W ′). Then f(φ(t)) ⊆ W ′.

We let O(X) denote the subspace [0,∞)×X of O∞(X) with the induced structures.

Definition 11.38. We define the cone-at-∞ functor

O∞(−) : UBC→ BornCoarse .

We further define the functor

O : UBC→ BornCoarse .

The cone sequence is the sequence of natural transformations

FU(−)→ O(−)→ O∞(−)
∂cone→ R⊗FU(−)

of functors UBC → BornCoarse, where ∂cone is the identity on underlying sets. It is
called the cone boundary.
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Let E be a coarse homology theory. We define the functors

EO := E ◦ O , EO∞ := E ◦ O∞ : UBC : UBC→ AbZ .

Let X X be in UBC and note that EF(R ⊗ X) ∼= EF(X)[−1]. The isomorphism is
given by the Mayer-Vietoris boundary for the decomposition ((−∞, 0]⊗X, [0,∞)⊗X) of
R⊗X. This identification will be used implicitly in the last term of the sequence in the
following statement.

Proposition 11.39. The cone sequence induces a long exact sequence

EF(X)→ EO(X)→ EO∞(X)
∂cone→ EF(X)[−1] .

Proof. We consider the coarsely excisive decomposition ((−∞, 0] × X, [0,∞) × X) of
O∞(X). The subspace (−∞, 0]×X with the induced structures is flasque with flasqueness
implemented by (t, x) 7→ (t − 1, x). Furthermore {0} × X ∼= X. The Mayer-Vietoris
sequence gives

EF(X)→ EO(X)→ EO∞(X)
∂MV

→ EF(X)[−1] .

From the naturality of Mayer-Vietoris sequences we have a commutative diagram

EO∞(X) ∂MV
//

∂cone

��

EF(X)[−1]

EF(R⊗X) ∂MV
// EF(X)[−1]

which shows that the boundary operator is the correct one.

Note that (−∞, 0]×X is a flasque subset of O∞. Using the exact sequence of the pair
(O∞(X), ((−∞, n]×X)n∈N) and excision we get an isomorphism

EO∞(X)
∼=→ E(O∞(X), ((−∞, n]×X)n∈N)

∼=← E(O(X), ([0, n]×X)n∈N) .

The cone sequence is isomorphic to the pair sequence for E and (O(X), ([0, n]×X)n∈N).

The proof of the following theorem is quite technical. This in particular applies to the
homotopy invariance. We therefore refrain from giving a proof and use it as a black box.

Let E be a coarse homology theory.

Theorem 11.40 ([BEKW, Sec. 9.4 & 9.5]). The functors EO and EO∞ are homotopy
invariant and excisive.

In order to ensure that EO and EO∞ vanish on flasques we need an additional assumption
on E.
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Remark 11.41. If f : X → X implements flasqueness of X, then O∞(f) : O∞(X) →
O∞(X) does not implement flasqueness of O∞(X). The problem is that f is in general
not close to the identity. So we can not simply conclude that EO∞(X) ∼= 0.

Definition 11.42. We say that X in BornCoarse is weakly flasque if it admits a selfmap
f : X → X such that

1. For every coarse homology theory E we have E(f) = E(idX).

2. For every U in CX we have
⋃
n∈N f

n(U) ∈ CX .

3. For every B in BX there exists n in N such that fn(X) ∩B = ∅.

So we changed the first condition. Surprisingly we can check this condition for cones.

Proposition 11.43. If X in UBC is flasque, then O(X) and O∞(X) are weakly flasque.

Proof. Assume that f implements flasqueness of X. Let E be any coarse homology theory.
Since f is homotopic to the identity EO(f) = EO(idX) and EO∞(f) = EO∞(idX).

Definition 11.44. A coarse homology theory is called strong if it annihilates weakly
flasques.

Corollary 11.45. If E is a stong coarse homology theory, then EO and EO∞ vanish on
flasques.

Lemma 11.46. The coarse chomology theories HX and KAX are strong.

Proof. Let E be one of these. In the verification of the fact that E vanishes on flasques
(see Lemma 5.8 and Lemma 9.4) we have constructed an endomorphism S : E(X)→ E(X)
such that idE(X) + E(f) ◦ S = S. Since E is strong we know that E(f) = idE(X). The
resulting equation idE(X) + S = S implies idE(X) = 0.

In order to discuss u-continuity of EO∞ and EO we introduce the notion of a coarsening.

Definition 11.47. A map X → X ′ in UBC is called a coarsening if it is an isomorphism
of the underlying uniform and bornological spaces.

Proposition 11.48. If X → X ′ is a coarsening, then we have an isomorphism EO∞(X)
∼=→

EO∞(X ′)

Proof. We let X ′n be the big family in [n,∞)×X ′ generated by {n} ×X ′. We start with
the isomorphism

EO∞(X ′) ∼= E(O(X ′),X ′0) .
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We use u-continuity in order to get

E(O(X ′),X ′0) ∼= colim
U∈CO(X′)

E([0,∞)⊗X ′)U ,X ′0) .

Then we can write by excision

colim
U∈CO(X′)

E([0,∞)⊗X)U ,X ′0) ∼= colim
m

colim
U∈CO(X′)

E([m,∞)⊗X)U ,X ′m) .

We now interchange the order of colimis:

colim
m

colim
U∈CO(X′)

E([m,∞)⊗X)U ,X ′m) ∼= colim
U∈CO(X′)

colim
m

E([m,∞)⊗X)U ,X ′m) .

Note that the generating entourages of CO(X′) are of the form V ′ ∩ V(κ,φ) with V ′ in
CR⊗X′ . There exists W in UX ∩ CX . There exists m in N such that φ(m) ⊆ W . But then
(V ′ ∩ V(κ,φ))|[m,∞)⊗X is the restriction of φ(m) ∩ V ′ ∩ V(κ,φ) which belongs to CO(X). Hence
we can replace the index poset U ∈ CO(X′) of the colimit by the subset U ∈ CO(X). Doing
all steps backwards we get the desired isomorphism.

Corollary 11.49. The functors EO and EO∞ are u-continuous.

Proof. We use that a filtered colimit of exact sequences is exact. We consider the map of
exact sequence sequence

colimU∈X EO∞(XU )[1]
//

∼=

��

colimU∈X EF(XU )

∼=

��

//
colimU∈X EO(XU )

��

//
colimU∈X EO∞(XU )[−1]

∼=

��

//
colimU∈X EF(XU )[−1]

∼=

��
EO∞(X)[1]

//
EF(X)

//
EO(X)

//
EO∞(X)

//
EF(X)[−1]

The vertical arrows for EF is an isomorphism by Lemma 11.33. The vertical morphisms at
EO∞ are isomorphisms since XU → X is a coarsening provided U is large enough. We now
conclude by the Five Lemma that the vertical arrow for EO is also an isomorphism.

We now have finished the proof of the following theorem.

Theorem 11.50. If E is a strong coarse homology theory, then EO and EO∞ are local
homology theories.

Let X be in UBC. We let XCmin
be the space obtained from X by replacing the coarse

structure by the minimal one. It is only compatible with the uniform structure if the latter
is discrete.

Corollary 11.51. If X is discrete as a uniform space, then we have an isomorphism

EO∞(X) ∼= EF(XCmin
)[−1] .
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Proof. If X is discrete as a uniform space, then the discrete coarse structure on X
is compatible with the uniform structure. Hence XCmin

→ X is a coarsening. Since
furthermore O(XCmin

) is flasque we have from the cone sequence that

∂cone : EO∞(Xmin)
∼=→ EF(XCmin

)[−1] .

Our main examples of objects in UBC are given by simplicial complexes with their
spherical path metric.

Let X be a set. By Pfin
X we denote the set of finite subsets of X.

Definition 11.52. An abstract simplicial complex is pair (X,S) of a set X and a subset
S of Pfin

X which is closed under taking subsets and contains all singletons.

A map between abstract simplicial complexes f : (X,S) → (X ′,S ′) is a map of sets
f : X → X ′ such that f(S) ⊆ S ′.

We get a category aSimpl of abstract simplicial complexes and maps.

Let (X,SX) be in aSimpl. Usually we only write X. The set S is the set of simplices of
X. We let Xn := {B ∈ SX | |B| = n+ 1} be the set of n-simplices. Note that X = X0.

Definition 11.53. We define the dimension of X by

dim(X) := max{|B| |B ∈ S} − 1 .

Example 11.54. If X is finite, then we can take S = PX .

In general, we can take S to be the set of all finite subsets.

We let |X| be the set of probability measures µ on X such that supp(µ) ∈ S. Any such
measure is given by ∑

x∈X

µ({x})δx ,

where δx is the Dirac measure at x.

Example 11.55. Any point x of X gives rise to a point δx in |X|. In this way we get a
canonical map δ : X → |X|.

If B is in S, then µB := 1
|B|
∑

b∈B δb in |X| is the center of mass (barycenter) of B.
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We want to equip the set |X| a metric which will then induce a topology. The metric we
are going to construct is called the spherical path metric.

We first recall the definition of the length of a path γ : [0, 1]→ Y in a general metric space
(Y, d). It is defined by

`(γ) := sup
n∈N,0=t0≤t1≤···≤tn=1

n∑
i=1

d(γ(ti), γ(ti−1)) .

Note that the length can be infinite.

Let X be in aSimpl. Consider a finite subset F of X. We consider F as the basis of RF .
We equip RF with the euclidean metric such that this basis is orthonormal.

We let |F | be the subset of |X| of measures supported on F . Then we define a map

|F | → S(RF ) , µ 7→
∑
f∈F

√
µ({f})f .

Here S(RF ) denotes the unit sphere.

Let γ : [0, 1]→ |X| be a map. We say that γ is continuous if there exists a finite subset of
X such that γ([0, 1]) ⊆ |F | and the composition

[0, 1]
γ→ |F | → S(RF )

is continuous. Continuity does not depend on the choice of F .

The length `(γ) of γ is the length of this composition. This length does not depend on the
choice of the finite subset F .

Definition 11.56. We define the spherical path quasi-metric on |X| such that

d(µ, µ′) = inf
γ,γ(0)=µ,γ(1)=µ′

`(γ) .

It is clear d is symmetric. Since we concatenate path’s γ, γ′ with γ(0) = γ′(1) (written as
γ]γ′ and `(γ]γ′) = `(γ)+`(γ′) we have the triangle identity. Since d(µ, µ′) is bounded from
below by the distance of the images of µ and µ′ in S(RF ) we conclude that d(µ, µ′) = 0 if
and only if µ = µ′.

Note that the diameter of a simplex in this metric is π/2 independent of the dimension.
We now define the uniform bornological coarse structure on |X| as the structure induced
by d. Later we will also consider different bornologies.

If f : X → X ′ is a map of abstract simplicial complexes, then |f | : |X| → |X ′| is given by
the push-forward of measures. We have

f∗(µ) =
∑
x′∈X′

∑
x∈f−1(x′)

µ({x})δx′ .
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One can check that
d(f∗µ, f∗µ

′) ≤ d(µ, µ′) ,

i.e., that this map is 1-Lipschitz. In general it is not proper.

Example 11.57. Let X be finite and S = PX . Then we have |X| ∼= ∆|X|−1 with
the metric induced by its identification with the positive quadrant of S(RX). We have
dim(X) = |X| − 1

Example 11.58. Let X := Z and S := Z ∪ {(n, n + 1) | n ∈ Z}. Then |X| ∼= Rπ/2 as
metric spaces such that the unit interval has length π/2. We have dim(X) = 1.

In the following we explain how one can calculate the local homology of |X| for X in
aSimpl. In order to avoid spectral sequences we stick to the case where E(∗) is supported
in a single degree. So the basic example is E(−) = HXO∞(−)[1]. We shift by one in
order to get the usual formulas without shift later.

We now calculate HXO∞(|X|)[1] using the cellular complex. We start with finite simplicial
complexes. We use that HXO∞ is homotopy invariant and excisive for cell attachements
and satisfies HXO∞[1](∗) ∼= Z. This suffices to construct the cellular chain complex in
the standard way

C(X) : · · · → Cn(X)→ Cn−1(X)→ · · · → C0(X)

where Cn := Z[Xn]. In this case, since Xn is finite, we have isomorphisms

Z[Xn] ∼=
⊕
Xn

Z ∼=
∏
Xn

Z .

We have
HXO∞(|X|)[1] ∼= H(C(X)) .

This allows to import all calculations of the homology of finite CW-complexes from
topology.

For us the interesting case are infinite complexes. The construction of the cellular chain
complex above used the Mayer-Vietoris sequence for cell attachements. If we attach
infnitely many cells in a dimension, then in usual algebraic topology we use the wedge
axiom saying that H∗(Tdisc) =

⊕
T Z.

Note that HXO∞ does not satisfy the wedge axioms. In order to control what happes if
we attach ininitely many cells in a dimension we assume that any bounded subset meets
only finitely many cells.

Definition 11.59. We call the simplicial set X proper, if every bounded subset of |X|
only contains finitely may points of X.
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Remark 11.60. Properness is equivalent to the requirement that for every x in X the
set {y ∈ X | {x, y} ∈ X1} is finite. It implies that X is locally finite-dimensional.

Furthermore it implies that |X| is a proper metric space, i.e., that balls are compact.

We can consider the disjoint union of X =
⊔
n∈N([n],P[n]). Then is is proper, but not

globally finite-dimensional.

If X is proper, then the set of barycenters of the n-simplices has the minimal induced
bornology. Consequently we get the group of n-chains

Ĉn(X) :=
∏
Xn

Z .

Since the (geometric) boundary of every simplex meets only finitely many other simplices
the boundary map of the cellular chain complex is still well-defined. We get a chain
complex

Ĉ(X) : · · · → Ĉn(X)→ Ĉn−1(X)→ · · · → Ĉ0(X)

The standard argument from algebraic topology yields:

Proposition 11.61. If X is a finite-dimension simplicial complex, then

HXO∞(|X|)[1] = H∗(Ĉ(X)) .

If X is finite, then of course Ĉ(X) = C(X).

Example 11.62. We consider the simplicial complex from Example 11.58. It is proper.

We have Ĉ0(X) =
∏

Z Z and Ĉ1(X) =
∏

Z Z, where the component with index n corre-
sponds to the interval [n, n+ 1]. The boundary map is given by∏

Z

Z→
∏
Z

Z , (an) 7→ (an−1 − an)n .

We calculate the homology:

Hi(Ĉ(X)) ∼=
{

Z i = 1
0 else

Indeed we have H1(Ĉ(X)) ∼= Z realized as constant sequences. In order to see that
H0(Ĉ(X)) ∼= 0 we note that given a sequence (bn)n we can solve the recursion an−1−an = bn
for an inductively in both directions starting with a0 := 0.

Of course, we expected this result since HXO∞(R) ∼= HXO∞(∗)[−1] ∼= Z[−2] and hence
HXO∞(R)[1] = Z[−1].
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Note that in contrast

Hi(C(X)) ∼=
{

Z i = 0
0 else

.

We modify the example and consider the complex X = N with S = N∪{(n, n+ 1) |n ∈ N}.
Then |X| ∼= [0,∞). The chain complex is given by∏

N

Z→
∏
N

Z , (an) 7→
(
an−1 − an n ≥ 1
−a0 n = 0

)
n

.

We get H∗(Ĉ(X)) ∼= 0. The argument for H0(Ĉ(X)) ∼= 0 is the same as above. If (an) in
Ĉ1(X) is a cycle, then a0 = 0 and then inductively an = 0 for all n ∈ N.

We again expected this since HXO∞([0,∞)) ∼= 0.

Remark 11.63. If E is a general additive strong coarse homology theory, then we have
an Atiyah-Hirzebruch spectral sequence with first term

E1
p,q
∼=
∏
Xp

Eq−1(∗) .

and boundary map
E1
p,q → E1

p−1,q

calculating an associated graded of EO∞(|X|). The difference to the usual spectral
sequence is again the appearance of the product.

Note that we do not claim that H(Ĉ(X)) has anything to do with HXO∞(|X|) if X is
not finite-dimensional.

We now construct abstract simplicial complexes from coarse spaces. Let X be a set and
U be an entourage such that diag(X) ⊆ U . Then we can define a simplicial complex
XU := (X,SU), where SU is the set of all U -bounded finite subsets. We let

PU(X) := |XU |

denote its realization. Note that we have a canonical map of sets i : X → PU(X) which
sends x in X to δx.

Lemma 11.64. The canonical inclusion XU → PU(X) is a coarse equivalence.

Proof. If (x, y) is in U , then d(i(x), i(y)) = π/2. This shows that i(U) ⊆ Uπ/2.

Since the diameters of the simplices are bounded by π/2 we furthermore have Uπ/2[i(X)] =
PU(X). On the other hand, if d(i(x), i(y)) ≤ kπ/2, then (x, y) ∈ Uk1. Hence i is a coarse
equivalence.

1Exercise!
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We now assume that X is in BornCoarse. Then we equip X with the bornology such that
XU → PU (X) is an equivalence. This bornology is generated by the subsets B considered
as subsets of PU (X) for all bounded subsets of X. In this way we get an object PU (X) in
UBC together with a coarse equivalence map

X → FU(PU(X)) .

If f : X → X ′ is a map such that f(U) ⊆ U ′, then we get a map XU → X ′U ′ by x 7→ f(x).
It induces a map PU(f) : PU(X)→ PU ′(X

′).

If X is in BornCoarse, then we get the ind-system P (X) := (PU(X))U∈CX in UBC. A
morphism f : X → X ′ induces a map of ind-objects P (X)→ P (X ′) given by PU(X)→
Pf(U)(X

′) for every U in CX . Similarly, if Y is a big family in X, then we can form the
system P (Y) := (PU(Y ))U∈CX ,Y ∈Y . We get the familiy of pairs

(P (X), P (Y)) := (PU(X), PU(Y ))U∈CX ,Y ∈Y .

We get a functor
P : BornCoarse→ Ind(UBC2) .

Definition 11.65. If E : UBC2 → AbZ is a functor, then we define

EP : BornCoarse2 → AbZ , EP(X,Y) := colimE(P (X), P (Y)) .

Proposition 11.66. If E is a local homology theory, then EP is a coarse homology theory.

Proof. u-continuity essentially holds true by definition:

EP(X) ∼= colim
U∈CX

E(PU(X))

∼= colim
V ∈CX

colim
U∈CXV

E(PU(X))

∼= colim
V ∈CX

EP(XV )

We now show coarse invariance. Let f, g : X → Y be U -close maps. If U−1V U , then then
f∗, g∗ : PV (X)→ PU−1V U(X) are are linearly homotopic by h(t, µ) := (1− t)f∗µ+ rg∗µ.

If f : X → X implements flasqueness, that f ∼U idX . Set V :=
⋃
n f

n(U). Then
f(V ) ⊆ V . Then f∗ : PV (X) → PV (X) is defined. One observes that f∗ implements
flasqueness of PV (X). Indeed f∗ is homotopic to idPV (X) by the linear homotopy. This
implies EP(X) ∼= 0.

Finally we show excision. Let (Z,Y) be a complementary pair on X. Fix U in CX .
If Y is so large that every U -bounded subset of X is in Y or Z, then we know that
(PU (Z), PU (Y )) is a closed coarsely and uniformly excisive decomposition fo PU (X). Using
that PU(Z) ∩ PU(Y ) = PU(Z ∩ Y ) we get and isomorphism

E(PU(Z)), PU(Z ∩ Y ))
∼=→ E(PU(X), PU(Y )) .

104



Taking the colimit over Y and then over U we get

EP(Z,Z ∩ Y)
∼=→ EP(X,Y) .

Definition 11.67. The coarse homology theory EP is called the coarsification of the local
homology theory E.

Example 11.68. Let E be a coarse homology theory. Then we have a natural transfor-
mation E → EFP. On X in BornCoarse it is given by the map

E(iX) : E(X)→ EF(PU(X))

induced by the coarse equivalence iX : X → PU(X) for any U in U . This transformation
is an isomorphism.

Definition 11.69. We call the natural exact sequence exact sequence

E(X)→ EOP(X)→ EO∞P(X)
µE,X→ E(X)[−1]

the fundamental sequence and the map µE,X the coarse Baum-Connes assembly map for
X and E.

Remark 11.70. Every strong coarse homology theory E gives rise to a cone sequence

EF → EO → EO∞ → EF [−1] .

1. EF factorizes over the forgetful functor FU which fits into an adjunction

(−)disc : BornCoarse � UBC : FU .

The counit of this adjunction is the canonical map

FU(Xdisc)→ X .

The value EF(X) does not depend on the uniform structure of X. In particular,
the counit of the adjunction induces an isomorphism

EF(Xdisc) ∼= EF(X) .

2. EO is a local homology theory. As a special p̈roperty, it vanishes on a point.

3. EO∞ is a local homology which is almost independent of the coarse structure
in the sense that it is coarsening invariant. For discrete X we have EO∞(X) ∼=
EF(Xmin)[−1].
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Remark 11.71. In this remark we discuss the question whether the cone sequence can
be characterized by a universal property. We take H = EO as the starting point and ask
how one can reconstruct the analogs of EF and EO∞.

Let H be a local homology theory. One could ask whether there is coarse homology theory
HX and a natural transformation HXF → H which is the best approximation of H by a
local homology of this form. One could then construct a long exact sequence

HXF → H → H∞ → HXF [−1]

and ask whether H is coarsening invariant or what else properties it has.

We have pull-back
H(Xdisc) //

��

H∞(Xdisc)

��

H(X) // H∞(X)

.

One could also try the other way and construct a best approximation

H → HO∞

by a coarsening invariant local homology and a fibre sequence

HF → H → HO∞ → HF [−1] .

Then one can ask whether HF comes from a coarse homology theory. Using homotopy
theoretic techniques (Bousfield localization) one can construct best approximations by
functors with these properties and exact sequences. The problem is that one does not stay
in homology theories.

Remark 11.72. Here we discuss the properties of P.

Given a local homology theory H we can construct a coarse homology theory HP. If
H = EF , then HP ∼= EFP ∼= E, so the construction reproduces E.

One could ask what the universal property of this construction has. The local homology
theory HPF is a version of H which factorizes F . But it is not clear how construct a
comparison morphism between HPF and H.

If X is nice (e.g. finite-dimensional simplicial complex) then for some U we have map
X → PU(FU(X)) which induces H(X)→ HPF(X).

Definition 11.73. We say that X is coarsifying if there exists such a map an H(X)→
HPF(X) is an equivalence for any local homology theory.
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If G is a group and EG is a G-finite simplicial model for the classifying space, then EG
is coarsifying by a result of Gromov. Note that in this case the coarse Baum-Connes
assembly map is isomorphic to the map

EO∞(X)→ E(X)[−1] .

Remark 11.74. One can ask for a universal property of the Baum-Connes assembly map.
Its domain is given by

EO∞P(X) = colim
U

EO∞(PU(X))

and EO∞(PU (X)) is as a local homology theory applied to a simplicial complex computable
by means of algebraic topology.

The values E(X) are mystery.

The Baum-Connes conjecture for the coarse homology theory E and the space X is
the question whether it is an isomorphism. If it holds true, then one can calculate the
mysterious E(X) in terms of algebra topology via EO∞P(X).

In view of the exact cone sequence the coarse Baum-Connes conjecture holds true for X
and E exactly the case if

EOP(X) ∼= 0 .

Remark 11.75. This is a disclaimer for the moment. What we have defined above is
a homotopy theoretic version of the classical Baum-Connes assembly map as a natural
transformation defined for all spaces and strong coarse homology theories.

The classical Baum-Connes assembly map is only considered for topological coarse K-
theory and constructed using analytic methods. For nice spaces (essentially all of classical
interest) on can identify our homotopy theoretic version version with the classical one.
But this is non-trivial will be worked out in future paper by B-Engel-Land.

Remark 11.76. The classical coarse Baum-Connes conjecture for E = KX is of particular
importance since it implies the Novikov conjecture (by a rather complicated argument).

Similarly, for E = KAX it implies the injectivity of Farell-Jones assembly map for algebraic
K-theory stating e.g. that for a discrete torsion-free group the assembly map

KR∗(BG)→ K∗(R[G]) .

is injective.

We now now discuss the question whether µE,X is an isomorphism in greater detail.
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Note that
µX : EO∞P→ EP

is a natural transformation of coarse homology theories. This makes it possible to apply
uniqueness results about coarse homology theories a la Eilenberg-Steenrod.

Definition 11.77. We say that X satisfies the coarse Baum-Connes conjecture motivically
if µE,X is an isomorphism for any strong coarse homology theory.

Proposition 11.78. If X is discrete, then it satisfies the coarse Baum-Connes conjecture
motivically.

Proof. If X is discrete, then diag(X) is the maximal coarse entourage of X. Then
Pdiag(X)(X) ∼= Xmin,B,disc as a uniform bornological coarse space. Since O(Xmin,B,disc) is
flasque we conclude

EOP(X) ∼= colim
U∈CX

EO(PU(X)) ∼= EO(Xmin,B,disc) ∼= 0 .

Definition 11.79. We say that E satisfies the coarse Baum-Connes conjecture if µE,X is
an isomorphism for all X.

Theorem 11.80. HX satisfies the coarse Baum-Connes conjecture.

Proof. This is an extended exercise which could lead to a master thesis.

In the following we will describe larger class of spaces which satisfy the coarse Baum-Connes
conjecture motivically.

Let V be a covering of X by subsets and U be some entourage of X. Recall that a subset
Y of X is U -bounded if Y × Y ⊆ U .

Definition 11.81.

1. U is a Lebesgue entourage of V if every U -bounded subset of X is contained in some
member of V.

2. U is a bound of V if all members of V are U-bounded.

Example 11.82. If V is the collection of all U -bounded subsets, then U is a Lebesgue
entourage of V and a bound at the same time.

Let V := (Vi)i∈i be a family of coverings indexed by a partially ordered set I.

Definition 11.83. V is called an anti-Čech system if the following are true:
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1. For every i, j in I with i < j there exists a bound of Vi which is Lebesgue for Vj.

2. Every U in CX is Lebesgue entourage for some member of V.

Note that a covering V of X gives rise to a simplicial set N(V) whose underlying set is I
and whose simplices are the finite subsets F of I such that

⋂
V ∈V V 6= ∅. In particular

dim N((Vj)j∈J) = {|F | ∈ Pfin
J |

⋂
j∈F Vj 6= ∅} − 1.

Definition 11.84. X has finite asymptotic dimension if it admits an anti-Čech system
(Vi∈I)i such that supi∈I dim N(Vi) <∞.

Example 11.85. Rn has finite asymptotic dimension. Consider the covering of Rn given
by V1 := (Br(n))n∈Zn for r sufficiently large ≥

√
n. Then take Vk := (Bkr(rk))n∈Zn . Then

dim N(Vk) = dim N(V1). Then V̂ := (Vk)k∈N is an anti-Čech system.

Remark 11.86. We define the asymptotic dimension a− dim(X) of X as the minimum
of the the numbers supi∈I dim N(Vi) <∞ for all anti Čech systems (Vi)i∈I . For example
a− dim(Zn) = n.

Remark 11.87. The asymptotic dimension of X is a coarse invariant. So also a −
dim(Rn) = n.

Let X be in UBC.

Definition 11.88. We say that X has weakly finite asymptotic dimension if there exists
a cofinal set of U in CX such that XU has finite asymptotic dimension.

Theorem 11.89 (B-Engel). If X has weakly finite asymptotic dimension, then X satisfies
the coarse Baum-Connes conjecture motivially.

Remark 11.90. The condition can be weakend to finite decomposition complexity, but
this notion is more difficult to define and check.

Problem 11.91 (Open). Does EO∞P satisfy the coarse Baum-Connes conjecture? Is
EO∞P the best approximation of E which satisfies the coarse Baum-Connes conjecture?

12 Topological K-theory

We explain the case of equivariant coarse K-homology with coefficients in the C∗-category
Hilb(C). Everything easily generalizes to a general C∗-category which is idempotent
complete, countably additive and may have a non-trivial G-action.

Let X be in GBorn. For a Hilbert space H we let Proj(H) denote the set of orthogonal
projections on H.

109



Definition 12.1. An equivariant X-controlled Hilbert space is a pair (H, ρ, µ), where:

1. H is a Hilbert space

2. ρ : G→ U(H) is a homomorphism of groups

3. µ : P(X)→ Proj(H) is a function satisfying:

a) µ(Y ) = µ(Z) + µ(Y \ Z) for all subsets Z, Y of X such that Z ⊆ Y .

b) µ(gY ) = ρ(g)−1µ(Y )ρ(g)

We let H(Y ) := im(µ(Y )) for any subset Y of X. We let

supp(H, ρ, µ) := {x ∈ X |H(x) 6= 0} .

Definition 12.2. We call (H, ρ, µ) locally finite if

1. supp(µ) is a locally finite subset of X.

2. dim(H(x)) <∞ for every x in X.

3. H ∼=
⊕

x∈X H(x).

Example 12.3. Let X be a G-set. Then (L2(X), ρ, µ) with ρ(g) = g∗ and µ the counting
measure is a locally finite X-controlled Hilbert space on Xmin.

The X-controlled Hilbert space (L2(X)⊗ `2, ρ⊗ 1, µ⊗ 1) is not locally finite on Xmin.

On Gmax there is a non-trivial locally finite equivariant controlled Hilbert space only if G
is finite.

We now assume that X is in GBornCoarse. Let (H, ρ, µ) and (H ′, ρ′, µ′) are equivariant
X-controlled Hilbert spaces, A : H → H ′ be a bounded operator, and U be an entourage.

Definition 12.4.

1. A is equivariant if ρ′(g)A = Aρ(g) for all g in A.

2. A is U -controlled, if µ′(Z)Aµ(Z) = 0 for all Z,Z ′ in PX such that Z ′ is U -separated
from Z. We say that A is controlled if it is U-controlled for some U in CX .

3. A is locally compact if µ(B)A,Aµ(B) ∈ K(X) for every B in BX .

We construct the Roe category VG(X) as follows:
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1. objects: equivariant X-controlled Hilbert spaces

2. morphisms: HomV(X)((H, ρ, µ), (H ′, ρ′, µ′)) is the closure w.r.t the norm induced from
B(H,H ′) of the set of bounded, controlled and equivariant operators.

3. involution: adjoint

The following is clear by definition:

Proposition 12.5. VG(X) is a C∗-category.

We let VG
lc(X) be the ideal generated by the locally compact controlled operators.

If f : X → X ′ is a morphism in GBornCoarse we get an induced functor f∗ : V(X)→
V(X ′) given by

f∗((H, ρ, µ)) := (H, ρ, f∗µ) , f∗(A) = A .

One easily checks that f∗ is well-defined. Since is controlled and proper one checks that f∗
preserves controlled and locally compact operators.

This construction yields a functor

VG : GBornCoarse→ C∗Catnu .

Definition 12.6. The algebra C∗(X, (H, ρ, µ)) := EndVG(X)((H, ρ, µ)) is the Roe algebra
associated to X.

Definition 12.7. We let VG
lf (X) be the full subcategory of locally finite objects.

Morphisms between locally finite objects are automatically locally compact. In particular,
VG

lf (X) is unital. We get a subfunctor

VG
lf : GBornCoarse→ C∗Cat .

Example 12.8. We calculate VG
lf (Gmin,min) and VG

lf (Gman,min). Let (H, ρ, µ) be in
VG

lf (Gmin,min). Then we have H =
⊕

g∈GH(g). We have isomorphism ρ(g) : H(e)→ H(g).

Let (H, ρ, µ) and (H ′, ρ′, µ′) be in VG
lf (Gmin,min). Then a morphism is given by a ma-

trix (ρ′(h)Ah,gρ(g
−1))h,g∈G with Ah,g : H(e) → H(e). Thereby Ah,g = 0 if h 6= g abd

A`h,`g = Ah,g for all ` in G by equivariance.

Hence we have a functor VG
lf (Gmin,min) → Hilb(C)fin given by (H, ρ, µ) 7→ H(e) and

A 7→ Ae,e. It is an equivalence of categories.

Lemma 12.9. If f, g : X → X ′ are close, then f∗, g∗ : Vlf(X) → Vlf(X
′) are unitarily

isomorphic.
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Proof. The unitary equivalence is given on (H, ρ, µ) by

idH : (H, ρ, f∗µ)→ (H, ρ, g∗µ) .

The fact that f is close to g translates into the statement that idH is controlled.

Lemma 12.10. VG
lf is u-continuous.

Proof. We must show that

colim
U∈CGX

VG
lf (XU) ∼= VG

lf (X) .

The whole system and the r.h.s. have the same sets of objects. Moreover, all morphism
spaces of the system are subspaces of the morphism spaces of the r.h.s. So the colimit is
simply given by the closure of the union of the morphism spaces. The assertion follows
since every generator of the morphisms of VG

lf (X) is controlled.

A C∗-category C is called flasque if it is additive and admits an endofunctor S such that
id⊕ S ∼= S.

Example 12.11. If C admits countable sums, the C is flasque. Indeed, let S : C→ C
be given by S(C) :=

⊕
NC and S(f) := ⊕Nf . Then S ⊕ id ∼= S,

Lemma 12.12. If X is flasque, then Vlf(X) is flasque.

Proof. One checks that S : VG
lf (X)→ VG

lf (X) given by

S(H, ρ, µ) := (
⊕
N

H,⊕Nρ,⊕n∈Nfn∗ µ)

and
f∗(A) :=

⊕
N

A

is well-defined. Furthermore, id⊕ f∗ ◦ S ∼= S (unitary isomorphism). Finally f∗ ∼= id so
that id⊕ S ∼= S. So S implements flasqueness of VG

lf (X).

A C∗-subcategory I of C is called an ideal if it is wide and it is closed under left- and right
composition with morphisms from C.

An exact sequence of C∗-categories is a sequence

A→ B→ C

where the functors induce bijections on objects and short exact sequences on morphism
spaces. Then A is an ideal in B.
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Example 12.13. Let Hilb(C)c be the subcategory of Hilb(C) with the same objects, but
with morphisms H → H ′ the compact operators. Then Hilb(C)c is an ideal in Hilb(C)
and we have an exact sequence

Hilb(C)c → Hilb(C)→ Q(C) .

The C∗-category Q(C) is the Calkin category. The C∗-algebra Q(`2) := EndQ(C)(`
2) is

called the Calkin algebra. It fits into the exact seqence

0→ K(`2)→ B(`2)→ Q(`2)→ 0 .

Let Y be an invariant subset of X. Then we define VG
lf (Y ⊆ X) as the wilde subcategory of

VG
lf (X) with morphisms (H, ρ, µ)→ (H ′, ρ′, µ′) of the form µ′(Y )Aµ(Y ) for A : (H, ρ, µ)→

(H ′, ρ′, µ′) in VG
lf (X).

Note that VG
lf (Y ⊆ X) is unital.

Lemma 12.14. i : VG
lf (Y )→ VG

lf (Y ⊆ X) is a unitary equivalence.

Proof. An inverse functor p sends (H, ρ, µ) to (H(Y ), ρ|H(Y ), µ|Y ) and A to A. Then
p ◦ i = id and i ◦ p→ id is given by H(Y )→ H on (H, ρ, µ).

Let Y be an invariant big family in X. We define the subcategory VG
lf (Y ⊆ X) of VG

lf (X)
generated by the morphisms µ(Y )Aµ(Y ) for all Y in Y. Note that this involves taking
closures. A general element of VG

lf (Y ⊆ X) is not of the form µ(Y )Aµ(Y ) for some Y , but
can be approximated by those. Note that

VG
lf (Y ⊆ X) ∼= colim

Y ∈Y
VG

lf (Y ⊆ X) .

Lemma 12.15. VG
lf (Y ⊆ X) is an ideal in VG

lf (X).

Proof. Assume that B is U -controlled and diag(X) ⊆ U . Then µ(U [Y ])Bµ(Y ) = Bµ(Y ).
Hence

Bµ(Y )Aµ(Y ) = µ(U [Y ])Bµ(Y )Aµ(Y )µ(U [Y ]) = µ(Y ′)BAµ(Y ′)

for some Y ′ in Y with U [Y ] ⊆ Y ′. Therefore multiplication by B sends generators to
generators.

Thus a pair (X,Y) gives rise to an exact sequence

0→ VG
lf (Y ⊆ X)→ VG

lf (X)→ VG
lf (X,Y)→ 0 . (12.1)

Assume that (Z,Y) is an equivariant complementary pair in X.

113



Lemma 12.16. The canonical functor

i : VG
lf (Z,Z ∩ Y)→ VG

lf (X,Y)

is a unitary isomorphism.

Proof. An inverse functor is given as follows. It sends (H, ρ, µ) in VG
lf (X,Y) to (H(Z), ρ|H(Z), µ|Z)

and [A] to [µ(Z ′)Aµ(Z)]. In the discussion of algebraic K-theory we have shown: If A
and B are controlled generators of the ideal, then ZAZBZ − ZABZ is in VG

lf (Y ) for
Y suifficiently large. Hence p([A])p([B]) = p([AB]). This extends by continuity to the
closures. This shows that p is well-defined.

We have p ◦ i = id. We have a natural inclusion H(Z) → H. Again, in the algebraic
K-theory case we have seen that if A is a controlled generator of the ideal ZAZ − A is in
VG

lf (Y ) for Y suifficiently large. Hence i(p([A])) = [A].

We set
VG

lf (Y) := colim
Y ∈Y

VG
lf (Y ) .

We can consider this as a full subcategory of VG
lf (X) of objects supported on members of

Y .

In order to define the coarse homology theory we need a K-theory functor for C∗-
categories.

We consider a functor
K : C∗Catnu → AbZ

with the following properties:

1. K sends unitarily isomorphic functors to equal maps (and hence unitary equivalences
to isomorphisms).

2. K sends exact sequences
0→ A→ B→ C→ 0

to long exact sequences

K(A)→ K(B)→ K(C)
∂→ K(A)[−1] .

3. K preserves filtered colimits.

Theorem 12.17. There exists a K-theory functor for C∗-categories.
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Here is a construction of such a functor from the standard K-theory functor for C∗-algebras.
We use the adjunction

Af : C∗Catnu ↔ C∗Algnu : incl .

Proposition 12.18 (M.Joachim, B-Engel). If K is the usual K-theory functor for C∗-
algebras, then

K ◦ Af : C∗Catnu → AbZ

is a K-theory functor for C∗-categories.

We discuss further properties of the K-theory functor.

Let 0[X] be a zero category with object set X. We have K(0[X]) ∼= 0. In order to see this
we note that

0→ 0[X]→ 0[X]→ 0[X]→ 0

is an exact sequence of C∗-categories. Hence

K(0[X])→ K(0[X])→ K(0[X])→ K(0[X])[−1]

is exact. Since the two maps induced by the identity are isomorphisms it follows that
K(0[X]) ∼= 0. We say that K is reduced.

Let K : C∗Catnu → AbZ be a K-theory functor. Then if φ, ψ : C→ D and additive D
we have

K(φ⊕ ψ) = K(φ) +K(ψ) .

This is an exercise using exactness and reducedness. As a consequence, if D is flasque, then
K(D) ∼= 0. Indeed, if S : D→ D implies flasqueness, then the relation K(S) +K(id) =
K(S ⊕ id) = K(S) implies the assertion.

We now define the δ-functor (KX , ∂). We let

KXG : BornCoarse2 → AbZ , KXG(X,Y) := K(VG
lf (X,X )) .

For every (X,Y) in BornCoarse2 we have a natural exact sequence

K(VG
lf (Y ⊆ X)) // KXG(X) // KX (X,Y) ∂ // K(VG

lf (Y ⊆ X))[−1]

KXG(Y)

∼=

OO

KXG(Y)[−1]

∼=

OO

which we take as the long exact sequence of the δ-functor

Theorem 12.19. The pair (KXG, δ) of is an equivariant coarse homology theory.
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Proof. If f ∼ g, then f∗ and g∗ are unitarily isomorphic. Hence K(f∗) = K(g∗). Hence
KXG is coarsely invariant.

Since K preserves filtered colimits we have

colim
U∈CGX

K(VG
lf (XU)) ∼= K(colim

U∈CGX
VG

lf (XU)) ∼= K(VG
lf (X)) .

Hence KXG is u-continuous.

If X is flasque, then VG
lf (X) is flasque and hence K(VG

lf (X)) ∼= 0. Hence KXG vanishes
on flasques.

Excision follows from Lemma 12.16 by applying K.

For simplicity we consider the case of a trivial group G, but the following discussion has
an equivariant generalization.

Let (H,µ) be in V(X).

Definition 12.20. We say that (H,µ) is determined on points if H ∼=
⊕

x∈X H(x).

Definition 12.21. We say that (H,µ) is locally separable if µ(B)H is separable for every
B in BX .

Let (H,µ) be in V(X) be locally separable and determined on points. Then we have the
classical Roe algebra C∗lc(X, (H,µ)) = EndVlc(X)((H,µ)).

Example 12.22. Let X be a separable proper metric space. Let ν be a regular Borel
measure. Interesting operators often life on H := L2(M,B, ν). We want to turn H into
a locally countable X-controlled Hilbert space. We choose a 1-dense countable subset L
in X. Then we choose a measurable partition (Bl)l∈L of X by subsets Bl with Bl ⊆ U [l].
Then we define the measure

µ :=
∑
l∈L

χBl
δl .

Then (H,µ) is a locally separable (by regularity of ν) controlled Hilbert space which is
determined on points.

The Roe algebra C∗lc(X, (H,µ)) is independet of the choice of µ and only depends on ν.

Definition 12.23. We say that (H,µ) is ample if it is determined on points and for every
other locally separable X-controlled Hilbert space (H ′, µ′) determined on points there exists
an isometry u : (H ′, µ′)→ (H ′, µ′) in V(X).

116



Definition 12.24. X is locally countable if there exists an entourage V of X such that
every V -separated subset L is locally countable.

Proposition 12.25. X admits an ample X-controlled Hilbert space if and only if X is
locally countable.

Proof. Let V be an entourage such that every V -separated subset is locally countable. We
then choose a V 2-dense V -separated subset L. We then set H := L2(L)⊗ `2 and let µ be
the counting measure. Then (H,µ) is locally separable.

We now show that it is ample. Let (H ′, µ′) be any other X-controlled Hilbert space which
is determined on points and locally separable. Then supp(H ′, µ′) is locally countable.
We can find a map f : supp(H ′, µ′) → L such that (f(x), x) ∈ V 2 for every x in
X. Then f has countable fibres. For every l in L we choose an isometric embedding
ul :

⊕
x∈f−1(x) H

′(x)→ H(l). Then ⊕l∈Lul : H ′ → H is V 2-controlled and isometric.

For the converse see [BEb, Prop.8.20]

The classical definition of the coarse K-homology is as

K(C∗(X, (H,µ)))

for some ample X-controlled Hilbert space. This definition works if X is locally countable.

Definition 12.26. An morphism A is in V(X) is called locally finite if it is of the form

(H,µ)
u∗→ (H0, µ0)

A′→ (H ′0, µ
′
0)

u′→ (H ′, µ′)

for (H0, µ0) and (H ′0, µ
′
0) in Vlf(X) and isometries u, u′ in V(X) and a morphism A in

Vlf(X).

Note that locally finite operator is locally compact. We let V(lf)(X) be the wide subcategory
of Vlc(X) generated by the locally finite operators. In particular we have an inclusion

C∗(lf)(X, (H,µ)) ⊆ C∗lc(X, (H,µ))

of Roe algebras.

Let X be in BornCoarse.

Definition 12.27.

1. X is locally finite if there exists an entourage V of X such that every V -separated
subset L is locally finite.
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2. X is called separable, if it admits an entourage V such that there exists a countable
V -dense subset.

Example 12.28. If X is coarsely equivalent to X ′ then X is locally finite iff X ′ is locally
finite. So local finiteness is a coarsely invariant notion.

If X has the minimal bornology, then X is locally finite. So Rmin,min is locally finite. Any
space X ′ coarsely equivalent to X is the also locally finite.

If X is a proper metric space, then X is locally finite. Indeed, if L is 1-separated and B is
compact, then L ∩B must be finite since otherwise L ∩B would have an accumulation
point.

An infinite dimensional Hilbert space with metric structures is not locally finite. Let
(ek)k∈N be an orthonormal family. Then (nek)k∈N is 2n− 1-separated. But the bounded
subset B(n+1)(0) contains the whole family.

Example 12.29. If X is coarsely equivalent to X ′, then X is separable iff X ′ is separable.
So local finiteness is a coarsely invariant notion.

A separable metric space (i.e., a metric space containing a countable ε-net for every ε in
(0,∞) is separable.

A Hilbert space is separable.

Rmin,min is not separable.

Proposition 12.30 ([BEb, Prop.8.40]). Assume:

1. (H,µ) locally separable and determined on points.

2. X is separable and locally finite.

Then
C∗(lf)(X, (H,µ)) = C∗lc(X, (H,µ)) .

Proof. We considerA in C∗lc(X, (H,µ)). We must appximateA by elements from C∗(lf)(X, (H,µ)).

Let L be a U -separated and U2 dense countable subset. We choose a partition (Bl)l∈L of
X by U2-bounded subsets such that Bl ⊆ U2[l].

First we approximate A by A1 with controlled propagation up to ε/2.

We set B′l := supp(A1)[Bl] for every l in L. Since A1 is locally compact we can choose a
finite-dimensional Pl on H(B′l) for every l such that

‖PlB′lA1BlPl − A′Bl‖ ≤ ε2−l−2 .
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We well-order L. Then we define H ′l :=
∑

l′≤l im(Pl′) and H ′ :=
⋃
l∈LHl. Then we define

Ql as the projection onto Hl 	Hl−1. We define µ′ :=
∑

l∈LQlδl. Then (H ′, µ′) is locally
finite.

We set A′ :=
∑

l∈L PlB
′
lA1BlPl. Then A′′ has controlled propagation and

‖A′ − A1‖ ≤ ε/2 .

We have ‖A− A′‖ ≤ ε and A′ factorizes over H ′ which is locally finite.

Thus if X is separable and locally finite then can identify the classical definition of coarse
K-theory with K(C∗(lf)(X, (H,µ)).

The following theorem holds true for the classical K-theory functor for C∗-categories. Its
proof uses more properties than just the axioms.

Theorem 12.31 ([BEb, Cor. 8.96]). We assume that X is separable and locally finite.
Then there exists a canonical isomorphism and that (H,µ) is ample.

KX (X) ∼= K(C∗(lf)(X, (H,µ))) .

Proof. (Sketch) We consider the category Vlf(X)U of triples (H ′, µ′, U), where U :
(H ′, µ′)→ (H,µ) is an isometry. We have a fully faithful functor

F : Vlf(X)U → Vlf(X) , (H ′, µ′, U) 7→ (H ′, µ′) .

Since (H,µ) is ample this functor is essentially surjective. Hence it is a unitary equivalence
of C∗-categories. In particular it induces an isomorphism

K(F ) : K(Vlf(X)U) ∼= K(Vlf(X)).

We have a functor

I : Vlf(X)U → C∗(lf)(X, (H,µ)) , (A : (H ′0, µ
′
0, U0)→ (H ′1, µ

′
1, U1)) 7→ U ′AU∗

(note that the action on objects is clear).

Since C∗(lf)(X, (H,µ)) is generated by locally finite operators one can show that

K(I) : Vlf(X)U → K(C∗(lf)(X, (H,µ)))

is an isomorphism, too.

At this point we use more than the axioms. See the next remark.
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Remark 12.32. In order to show this we use the picture where K-theory classes are given
by homotopy classes of projections and unitaries.

If p is a projection in C∗(lf)(X, (H,µ)), then there exists p′ on an object in Vlf(X)U such

that ‖Up′U∗ − p‖ < 1/10 by density of locally finite operators. But then we can find a
projection p′′ on the same object with ‖p′′ − p‖ ≤ 1/4. This projection is unique up to
homotopy.

In this way we show the isomorphism on K0. On K1 we argue with unitaries in a similar
way.

The desired isomorphism is the the composition

K(Vlf(X))
∼=← K(Vlf(X)U)

∼=→ K(C∗(lf)(X, (H,µ))) .

Example 12.33. Let M be a complete Riemannian manifold. Let D be a formally
selfadjoint Dirac type operator on a hermitean bundle L2(M,E). Then D is essentially
selfadjoint, i.e. D̄ is selfadjoint.

Then we consider H = L2(M,E). We choose a locally finite control µ using a measurable
U1-bounded partition. If dim(M) > 0, then (H,µ) is ample.

We have the Roe algebra C(M, (L2(M,E), µ)). The coarse index indexX (D) is a class in
K1(C(M, (L2(M,E), µ))). In order to define it we consider the homomorphism

C0(R)→ C(M, (L2(M,E), µ)) , f 7→ f(D̄)

of C∗-algebras.

The observation that f(D̄) belongs to the Roe algebra is due to J. Roe. Here is the rough
argument. Let f̂ be the Fouriertansform of f . If supp(f̂) ⊆ [−R,R], then supp(f(D̄)) ⊆ Ur
(this is the finite propagation property). A general f can be uniformly approximated by
functions with compactly supported Fourier transform.

This gives
iD : Z ∼= K1(C0(R)) → K1(C(M, (L2(M,E), µ)))

and we define
indexX (D) := iD(1) .

This particular simple way to define the coarse index is due to R. Zeidler. A modification
including gradings works in the even case.

Using our comparision isomorphism we get a well-defined class

indexX (D) ∈ KX1(M) .
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We now discuss continuously controlled Hilbert spaces. We consider a locally compact
space X.

Definition 12.34. A continuously X-controlled Hilbert space is a pair (H, κ) where
κ : C0(X)→ B(H) is a C∗-homomorphism.

Example 12.35. Let X be a proper metric space with a regular measure µ. Then we let
H := L2(X,µ) and κ : C0(X)→ B(H) be the action by multiplication operators. This of
course extends to an action of L∞(X,µ).

This is in fact a general observation. By spectral theory the homomorphism κ extends to
a homomorphism κ : L∞(X)→ B(H).

Definition 12.36.

1. We say that (H, κ) is locally separable if κ(χB)H is separable for every relatively
compact subset B.

2. We say that (H, κ) is ample if κ(f) is not compact for every f in C0(X).

Example 12.37. If X is second countable and L is a dense countable subset, then (H, κ)
H = L2(X)⊗ `2 with κ(f) = f ⊗ id`2 is ample.

Example 12.38. Let X be a locally compact uniform bornological space and (H,µ) be
an ample O(X)-controlled Hilbert space. Let [0,∞) × X → X be the projection. We
define κ : C0(X)→ B(H) be defined by

κ(f) :=
∑

(t,x)∈O(X)

f(x)µ(x) .

Then (H, κ) is an ample continuously X-controlled Hilbert space.

Definition 12.39.

1. An operator A from (H, κ) to (H ′, κ′) is called pseudo-local of κ(f)A − Aκ(f) is
compact.

2. An operator A from (H, κ) to (H ′, κ′) is locally compact if κ(f)A and Aκ(f) are
compact for all f in C0(X).

We let Ψ1(X) be the C∗-category with objects (H, κ) and locally compact operators. We
let Ψ0(X) be the C∗-category with the same objects and the pseudo-local operators. We
get an exact sequence of C∗-categories

0→ Ψ−1(X)→ Ψ0(X)→ Σ(X)

where Σ(X) is defined as the quotient. If f : X → X ′ is proper continuous, then it gives
rose to functors

f∗(H, κ) := (H, f∗κ) , f∗(A) := A ,

where f∗κ := κ ◦ f ∗.
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Definition 12.40. We define the analytic locally finite K-homology of X by Kan
∗ (X) :=

K∗+1(Σ(X)).

Assume that X → X ′ is a proper map. Then we define the continuously X ′-controlled
Hilbert space f∗(H, κ) := (H, κ ◦ f ∗).

One can show [HR00]:

1. Kan is homotopy invariant.

2. Kan satisfies closed excision.

3. Kan([0,∞)×X) ∼= 0.

The following uses deep functional analytic results (Voiculescu’s theorem).

Proposition 12.41. There exists a pseudolocal isometry u : f∗(H, κ)→ (H, κ).

Proposition 12.42. The canonical map K∗(EndΣ(X)(H,µ))→ K∗(Σ(X)) is an isomor-
phism

In other words, it suffices to consider a single ample X-controlled H-Hilbert space.

Let us now assume that X is a bornological coarse space.

Definition 12.43. A coarse structure and a topology are compatible if there exists an
open entourage.

We assume that the bornology of X consists of the relatively compact subsets and that
the topology of X is compatible with the bornology.

We let C(X) be the category with the objects (H, κ) and the morphisms generated by the
locally compact and controlled operators. We furthermore let D(X) be the C∗-category
with the objects (H, κ) and morphisms generated by controlled and pseudolocal operators.
Then we get an exact sequence of C∗-categories

0→ C(X)→ D(X)→ Q(X)→ 0 .

We have a map of exact sequences

0 // C(X) //

��

D(X) //

��

Q(X)

��

// 0

0 // Ψ−1(X) // Ψ0(X) // Σ(X) // 0
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Lemma 12.44. We have KX (X) ∼= K(C(X)).

Proof. The verification is similar as the comparison with Roe algebra.

Lemma 12.45. We have an isomorphism Q(X)
∼=→ Ψ(X).

Proof. Here is the idea. Let A be in Ψ(X). Choose locally open covering by U -controlled
subsets and partition of unity (χ2

i )i∈I . Then show that A−
∑

i χiAχi is locally compact.
This shows [A] = [

∑
i χiAχi]. But

∑
i χiAχi is controlled.

We can now consider the index map

indexX : Kan
∗ (X) ∼= K∗+1(Σ(X)) ∼= K∗+1(Q(X))

δ→ K∗(C(X)) ∼= KX∗(X) .

This is the map which sends a locally symbol class of a differential operator to the coarse
index.

The classical definition of the Baum-Connes assembly map is

µCBC : colim
U

Kan
∗ (PU(X))

colimU indexX→ colim
U

KX∗(PU(x)) ∼= KX∗(X) .

For comparison we need the square

KX (O∞(W )) ∂ //

��

KX (W )[−1]

Kan(W ) index // KX (W )[−1]

The left vertical map is given by the inclusion using the construction from Example
12.38.

Proposition 12.46. This square commutes and the left vertical map is an isomorphism
for nice W .
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