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1 Algebras over C

In this lecture course all algebras are over the field of complex numbers C. We let VectC
denote the category of C-vector spaces with the usual tensor product ⊗. We start with
the definition of not necessarily unital algebras in VectC.

Let A be in VectC.

Definition 1.1. An associative product on A is a map µ : A⊗ A→ A such that

A⊗ A⊗ A idA⊗µ //

µ⊗idA
��

A⊗ A
µ

��

A⊗ A µ
// A

commutes.

In view of the universal property of the tensor product we can interpret the product in A
equivalently as a bilinear map µ : A× A→ A.

Definition 1.2. An algebra is a pair (A, µ) of A in VectC and an associative product µ.

Note that we do not require the existence of a unit element.

Let (A, µ) be a algebra. For a, a′ in A we will use the notation aa′ instead of µ(a ⊗ a′).
Usually we will denote algebras simply by a symbol like A or similar.
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Example 1.3. If V is in VectC, then its set of endmorphisms End(V ) has again a structure
of an object of VectC. The composition of endomorphisms defines an associative and
bilinear product. Hence End(V ) becomes an algebra.

For V = Cn, using the standard basis, we identify End(V ) with the n-by-n-matrices Mat(n)
with the usual matrix multiplication.

Example 1.4. If A is an algebra and X is a set, then we can form a new algebra AX of
functions from X to A with the pointwise vector space structure and product.

Example 1.5. Let G be a magma (a set with an associative product). Then we consider
the vector space C[G] generated by G. The element in C[G] corresponding to g in G will
be denoted by [g]. The associative product G×G→ G induces an associative product

C[G]⊗ C[G] ∼= C[G×G]→ C[G] .

We have [g][g′] = [gg′]. The algebra C[G] is called the magma ring of G.

We have C[∅] = 0.

We can identity C[N] with the polynomial ring C[x] by sending [n] to xn. Similarly we
have C[Z] ∼= C[x, x−1].

Example 1.6. Let A be an algebra with product µ and I be a subvectorspace of A. If
the composition I ⊗ I → A⊗A µ→ A takes values in I, then we get a subalgebra (I, µ|I⊗I).

Definition 1.7.

1. A linear subspace I of A is called a left ideal if for all a in A and i in I we have
ai ∈ I.

2. A linear subspace I of A is called a right ideal if for all a in A and i in I we have
ia ∈ I.

3. A linear subspace I of A is called an (two-sided) ideal if it is a left- and right ideal.

If I is a (possibly one-sided) ideal in an algebra A, then it is in particular a subalgebra.

Example 1.8. Let V be in VectC. Then the subset Endfr(V ) of End(V ) of finite rank
endomorphisms is an ideal.

Example 1.9. Let (Ai)i∈I be a family of algebras. Then we can form the sum
⊕

i∈I Ai of
underlying vector spaces. It carries an algebra structure with the component wise product
⊕iai ⊕i a′i := ⊕iaia′i.

If (A)x∈X is a constant family indexed by a set X, then
⊕

x∈X A can be identified with
the ideal in the algebra AX consisting of the functions with finite support.
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Example 1.10. Let A be an algebra with product µ. If I is an ideal in A, then the
quotient vector space A/I has an algebra structure which will be denoted by µ̄. It is given
by the unique factorization

A⊗ A µ
//

��

A

��

A/I ⊗ A/I µ̄
// A/I

of µ which is easily seen to exist by the condition on I being a two-sided ideal. Here we
use the identification A/I ⊗ A/I ∼= A⊗ A/(A⊗ I + I ⊗ A).

Example 1.11. Let H be a Hilbert space. The bounded operators B(H) form an algebra
with respect to the composition of operators. The subspace of compact operators K(H) is
an ideal in B(H). The quotient algebra Q(H) := B(H)/K(H) is called the Calkin algebra
of H.

Example 1.12. We can consider the algebraD(C) of differential operators with polynomial
coefficients on C. Typical elements are x (multiplication by x) and ∂ (differentiation by
x). The element e = x∂ is called the Euler operator. We have the relations ∂x− x∂ = 1
and exn − xne = nxn.

We now describe the category of algebras. We consider two algebras A,B with products
µA and µB.

Definition 1.13. A homomorphism f : A → B of algebras is morphism f : A → B in
VectC such that

A⊗ A µA //

f⊗f
��

A

f
��

B ⊗B µB // B

commutes.

We get the category Algnu
C of algebras and homomorphisms. The superscript nu stands

for non-unital since we do not require the existence of units nor that maps preserve units,
if they exist.

Example 1.14. Let V ′, V ′′ be in VectC and consider their sum V := V ′ ⊕ V ′′. Then we
get a homomorphism of algebras End(V ′)→ End(V ) which sends φ to φ⊕ 0. This is called
the left-upper-corner inclusion.

For n,m in N with n ≥ m we have Cn ∼= Cm ⊕ Cn−m. This gives the left-upper-corner
inclusion Mat(m)→ Mat(n).

Example 1.15. Let A be an algebra and f : X → Y be a map of sets. We get a
homomorphism f ∗ : AY → AX given by restriction of functions along f .
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Example 1.16. If G→ H is a morphism of magmas, then the induced map C[G]→ C[H]
is a homomorphism of algebras.

The inclusion N→ Z induces an inclusion C[N]→ C[Z] which can be identified with the
inclusion C[x]→ C[x, x−1].

Example 1.17. Let f : A → B be a homomorphism, I be an ideal in A and J be an
ideal in B such that f(I) ⊆ J . Then the natural factorization f̄ in

A
f

//

��

B

��

A/I
f̄
// B/J

is a homomorphism. On elements it is given by [f ]([a]) := [f(a)].

Let A be in Algnu
C

Definition 1.18. A is called unital if it admits an element 1A such that 1Aa = a = a1A
for all a in A.

Such an element 1A is called a unit of A.

Lemma 1.19. If A is unital, then the unit of A is uniquely determined.

Proof. Let 1A and 1′A be two units. Then using the defining relation for 1′A and 1A we
have 1A = 1A1′A = 1A′ .

So units in algebras are a property, not data.

Example 1.20. If V is in VectC, then End(V ) is unital with unit 1End(V ) = idV . If
dim(V ) =∞, then the algebra of finite rank endmorphisms Endfr(V ) is not unital.

Example 1.21. If A is unital and X is a set, then AX is unital, where the unit 1AX is
the constant function with value 1A.

If X is infinite, then the subalgebra
⊕

x∈X A of AX is not unital.

Example 1.22. The algebra D(C) is unital with unit 1.

Example 1.23. A monoid is a magma with an identity element. For a magma G the
magma algebra C[G] is unital if and only of G is a monoid. In this case the unit is given
by 1C[G] := [e], where e is the unit of G.

Example 1.24. For a Hilbert space H the algebra B(H) is unital. The algebra K(H) is
unital if and only if H is finite-dimensional.

5



Let A and B be unital algebras and f : A→ B be a homomorphism of algebras.

Definition 1.25. f is called unital if f(1A) = 1B.

We get the category AlgC of unital algebras and unital homomorphisms.

Example 1.26. Note that Mat(n) and Mat(n+ 1) are unital. But the left upper corner
inclusion Mat(n)→ Mat(n+ 1) is a morphism between algebras which does not preserve
units.

We have an inclusion functor

incl : Algnu
C → AlgC .

This functor is faithful, but not full and not essentially surjective. In the following lemma
we show that it has a left-adjoint. The latter will be called the unitalization functor.

Lemma 1.27. We have an adjunction (−)u : Algnu
C � AlgC : incl.

Proof. We show the existence of the adjunction by providing an explicit construction of
the left adjoint and of the unit and counit of the adjunction. We start with constructing
the unitalization functor (−)u.

1. objects: Let A be in Algnu
C . Then the underlying vector space of Au is A⊕ C. The

product is defined by

(a, λ)(a′, λ′) := (aa′ + λa′ + aλ′, λλ′) .

One checks associativity by calculation. The algebra Au has a unit which is given by
1Au = (0, 1).

2. morphisms: If f : A → B is a homomorphism, then we define fu : Au → Bu by
fu(a, λ) := (f(a), λ). One checks by calculation that this is a unital homomorphism.

One checks by calculation that this construction defines a functor.

In order to define the adjunction we provide the unit and counit transformations:

1. unit: A→ incl(Au) is given by a 7→ (a, 0).

2. counit: incl(B)u → B is given by (b, λ) 7→ b+ λ1B.

One checks that these formulas define morphisms in the respective categories and are
natural. One further checks by calculation that the following map of sets

HomAlgC(Au, B)
incl→ HomAlgnu

C
(incl(Au), incl(B))

unit∗→ HomAlgnu
C

(A, incl(B))
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is a bijection with inverse

HomAlgnu
C

(A, incl(B))
(−)u→ HomAlgC(Au, incl(B)u)

counit∗→ HomAlgC(Au, B) .

For now on we will usually omit incl from the notation.

Remark 1.28. For A in Algnu
C we have a split exact sequence

0→ A
unit→ Au

(a,λ) 7→λ→ C→ 0

with split C → Au given by λ 7→ (0, λ). If A is unital, then we have an isomorphism of
algebras

Au ∼= A⊕ C , (a, λ) 7→ (a+ λ1A, λ) .

We have a functor U : Algnu
C → VectC which forgets the product and takes the underlying

vector space. It restricts to a functor U : AlgC → Vect.

Lemma 1.29. We have adjunctions

T : VectC � AlgC : U

and
T≥1 : VectC � AlgC : U .

Proof. (sketch) We again provide explicit constructions of the left-adjoints and the units
and counits. The functor T associates to a vector space V the tensor algebra

T (V ) :=
⊕
n≥0

V n⊗

with the concatenation product. The unit V → U(T (V )) of the adjunction is the inclusion
V → T (V ) into the summand for n = 1, and the counit T (U(A))→ A sends a1 ⊗ · · · ⊗ an
in the n’th summand to the product a1 . . . an in A. It further sends λ in the 0’th summand
C = V 0⊗ to λ1A.

The functor T≥1 is the subfunctor of T which sends V to

T≥1(V ) :=
⊕
n≥1

V n⊗ .

The unit and counit are given by the same description. One checks that for A in AlgC

HomVectC(V, U(A))
T→ HomAlgC(T (V ), T (U(A))

counit∗→ HomAlgC(T (V ), A)

and for A in Algnu
C

HomVectC(V, U(A))
T≥1

→ HomAlgnu
C

(T≥1(V ), T≥1(U(A))
counit∗→ HomAlgnu

C
(T≥1(V ), A)

are bijections. The inverses can be constructed explicitly using the units.
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Let S : VectC → Set be the functor which takes the underlying set. We have an
adjunction

C[−] : Set � VectC : S ,

where the right-adjoint takes the underlying set of a vector space. The vector space C[X] is
the vector space generated by the set X. Composing this adjunction with the adjunctions
in Lemma 1.29 we get:

Corollary 1.30. We have adjunctions

Free : Set � AlgC : S , Freenu : Set � Algnu
C : S , (1.1)

where
Free(X) := T (C[X]) and Freenu(X) := T≥1(C[X])

The right-adjoints take the underlying sets of an algebra.

The algebras Free(X) and Freenu(X) are called the free unital and non-unital algebras
generated by the set X.

Recall that a category is complete if it admits limits for all small diagrams. Similarly it is
called cocomplete if it admits colimits for all small diagrams.

Proposition 1.31. The categories AlgC and Algnu
C are complete and cocomplete.

Proof. (sketch) In view of the adjunctions (1.1) the forgetful functor from algebras to sets
preserves limits. Thus limits in AlgC and Algnu

C are obtained by forming the limits in Set
and equipping the results with the induced vector space and algebra structures. In order
to show completeness it suffices to show the existences of products of small families and
equalizers. We discuss products and equalizers in the Examples 1.32 and 1.33 below.

The explicit description of colimits is more complicated. But to show cocompleteness it
suffices to show the existence of coproducts of small families and coequalizers which are
discussed in Examples 1.34 and 1.35 below.

Example 1.32. Let (Ai)i∈I be a family of algebras. Then the product of the family is
given by the product of the underlying sets

∏
i∈I Ai with the factorwise operations. The

structure maps are the projections to the factors.

If the family consists of unital algebras, then (1Ai)i∈I is the unit of the product.

If (Ai)i∈I is a finite family, then
∏

i∈I Ai
∼=
⊕

i∈I Ai.

If (A)x∈X is a constant family, then
∏

x∈X A
∼= AX .
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Example 1.33. Let

A

f

  

g AAB

be a diagram in Algnu
C . The limit of this diagram is called the equalizer of f and g and

given by the subalgebra

Eq(f, g) := {a ∈ A | f(a) = g(a)}

of A. The structure map is the canonical inclusion Eq(f, g)→ A.

If A,B are unital and f and g preserve units, then 1A ∈ Eq(f, g) so that the equalizer is
unital.

Example 1.34. In this example we describe coproducts in Algnu
C . For every A in Algnu

C
we have an exact sequence

0→ IA → Freenu(S(A))
counit→ A→ 0 ,

where the ideal IA is defined as the kernel of the counit.

Let A,B be in Algnu
C . Then we form Freenu(S(A)tS(B)). The map S(A)→ S(A)tS(B)

induces a map
IA → Freenu(S(A))→ Freenu(S(A) t S(B))

and similarly for B. We let I be the two-sided ideal in Freenu(S(A) t S(B)) generated by
the images of IA and IB. Then we have factorizations

Freenu(S(A)) //

counit

��

Freenu(S(A) t S(B))

��

A // Freenu(S(A) t S(B))/I

and Freenu(S(B)) //

counit

��

Freenu(S(A) t S(B))

��

B // Freenu(S(A) t S(B))/I

These maps present Freenu(S(A) t S(B))/I as the coproduct A tB in Algnu
C .

It is often denoted by A ∗B and called the free product of A and B.

Note that for commutative algebras A,B the coproduct A∗B in Algnu
C is non-commutative

and differs from the coproduct in commutative algebras which is given by the vector space
A⊗B with the induced algebra structure.

E.g. in C[x] ∗ C[y] we have xy 6= yx.

A similar construction works for AlgC and for coproducts of arbitrary families of objects.
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Example 1.35. In this example we describe coequalizers. Let

A

f

  

g AAB

be a coequalizer diagram in Algnu
C . Then the elements f(a)− g(a) for all a in A generate

a two-sided ideal I in B. The projection B → B/I presents B/I as the coequalizer
Coeq(f, g).

The same construction works in the unital case.

Example 1.36. The initial algebra in Algnu
C is the coproduct of the empty family. It is

the zero algebra 0. Note that the zero algebra happens to be unital with unit 10 = 0. But
it is not the initial object in AlgC. E.g. there is no unital morphism 0→ C. In fact, C is
an initial algebra in AlgC.

The zero algebra is the final algebra in Algnu
C and AlgC.

Example 1.37. An exact sequence 0→ I → A→ A/I → 0 of algebras in Algnu
C can be

interpreted as diagram
I //

��

A

��

0 // A/I

which is a push-out and a pull-back at the same time.

We finally introduce the concept of the spectrum of an element in an algebra. Let A be in
AlgC and a be in A.

Definition 1.38. a is invertible if there exists and element b in A such that ba = 1A and
ab = 1A.

The element b is called and inverse of a.

Lemma 1.39. An inverse is uniquely determined.

Proof. Let b, b′ be two inverses of a. Then we have b = b1A = bab′ = 1Ab
′ = b′.

We usually use the notation a−1 for the inverse of a.

Let f : A→ B be a morphism in AlgC and a be in A.

Lemma 1.40. If a is invertible, then f(a) is invertible and f(a)−1 = f(a−1).
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Proof. We calculate f(a)f(a−1) = f(aa−1) = f(1A) = 1B and similarly f(a−1)f(a) =
1B.

Note that we use in this proof that f preserves units.

In the following for A in AlgC we use the notation

λ := λ1A

Let a be in A.

Definition 1.41. The spectrum of a is the set

σ(a) := {λ ∈ C | (λ− a) is not invertible in A} .

The complement ρ(a) := C \ σ(a) is called the resolvent set.

Example 1.42. Let a be in Mat(n). Then the spectrum σ(a) is set of eigenvalues of a.

Example 1.43. For a in CX we have σ(a) = a(X)

Let A be in AlgC and a be in A. Let p be in C[x]. Then we can form p(a) in A in the
obvious way.

Lemma 1.44. We have p(σ(a)) ⊆ σ(p(a)).

Proof. Since p(λ) − p(x) vanishes at x = λ we can write p(λ) − p(x) = (λ − x)q(x) for
some q in C[x]. The equality

p(λ)− p(a) = (λ− a)q(a)

implies that if the left-hand side is invertible, so the two factors on the right-hand side.

Let f : A→ B be morphism in AlgC and a in A.

Lemma 1.45. We have σ(f(a)) ⊆ σ(a).

Proof. Consider λ in C. If λ 6∈ σ(a), then (λ− a)−1 exists in A and hence f((λ− a)−1) =
(λ− f(a))−1 exists in B. Hence λ 6∈ σ(f(a))

Example 1.47 shows that σ(f(a)) can be strictly smaller than σ(a).

We consider A in AlgC and a in A.
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Definition 1.46. We define the spectral radius r(a) := sup |σ(a)|.

It is an element of [−∞,∞]. We have −∞ iff σ(a) = ∅ and ∞ if σ(a) is unbounded

Example 1.47. We consider x in C[x]. Then σ(x) = C. We have r(x) =∞.

If we consider x in C(x) (the quotient field of C[x]), then σ(x) = ∅. In this case r(x) = −∞.

We consider a morphism f : A→ B in AlgC and a in A. The following is immediate from
Lemma 1.45.

Corollary 1.48. r(f(a)) ≤ r(a)

By Example 1.47 the inequality in Corollary 1.48 can be strict.

The notion of the spectrum is extended to the non-unital case as follows. Let A be in
Algnu

C and a be in A. Then we consider (a, 0) ∈ Au

Definition 1.49. We define σu(a) := σ((a, 0)).

We always have 0 ∈ σu(a).

Lemma 1.50. If A is unital, then σu(a) = σ(a) ∪ {0}.

Proof. We use that Au ∼= A⊕C is given by (a, λ) 7→ (a+λ1A, λ). Under this identification
λ1Au − (a, 0) 7→ (λ1A − a, λ). We read off that λ in σu(a) iff λ ∈ σ(a) or λ = 0

2 Banach algebras

We consider a norm ‖ − ‖ on a vector space V . The pair (V, ‖ − ‖) is called a normed
vector space. The norm induces a metric d(v, v′) := ‖v− v′‖ on V . A normed vector space
is called complete if it is complete (in the sense of metric spaces) with respect to this
metric.

A Banach space is a topological vector space whose topology is induced from a norm and
which is complete with respect to the induced metric. This condition does not depend on
the choice of the metric. In other words, when we talk about Banach spaces, then we only
care about the topology, but not about the specific norm generating the topology.

For a Banach space we let B∗ denote the space of continuous linear maps B → C. It will
be equipped with the topology of uniform convergence on bounded subsets of B (defined
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using some norm). It is again a Banach space. By the Hahn-Banach theorem we know
that the canonical map B → (B∗)∗ is injective.

Let B be a Banach space, U be an open subset of C, and f : U → B be a continuous
function. We consider a curve γ : [0, 1]→ U . Then we can consider the Riemann integral∫

γ

f(z)dz .

It is an element of B defined as the limit over Riemann sums
n∑
i=1

f(γ(ti))(ti − ti−1)

over the filtered poset of finite partitions of the interval [0, 1] here given as sequences

0 = t0 ≤ t1 ≤ · · · ≤ tn−1 ≤ tn = 1 .

Thereby the partitions are are partially ordered by refinement. One shows convergence
using uniform continuity of f ◦ γ in the same way as in scalar case. Note that here we use
the completeness of B in order to ensure existence of the limit.

If A : B → B′ is a linear continuous map between Banach spaces, then it preserves
integrals:

A(

∫
γ

f(z)dz) =

∫
γ

A(f(z))dz .

One can talk about holomorphic functions f : U → B. But for simplicity in the course we
will only use the notion of weak holomorphy which reduces everything to the scalar case.

Definition 2.1. f is called weakly holomorphic if φ(f) : U → C is holomorphic for every
continuous functional φ in B∗

Lemma 2.2. If f is weakly holomorphic and γ is closed and contractible in U , then we
have

∫
γ
f(z)dz = 0.

Proof. Since B → (B∗)∗ is injective it suffices to show that

φ(

∫
γ

f(z)dz) = 0

for all φ in B∗. Since φ is continuous we have

φ(

∫
γ

f(z)dz) =

∫
γ

φ(f(z))dz .

Finally by the Cauchy integral theorem we have∫
γ

φ(f(z))dz = 0 .
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We now consider the interplay between norms and the product on an algebra. Let A be in
Algnu

C and ‖ − ‖ be a norm on the underlying vector space.

Definition 2.3. We say that ‖ − ‖ is sub-multiplicative if ‖aa′‖ ≤ ‖a‖‖a′‖ for all a, a′ in
A.

Definition 2.4. A normed algebra (A, ‖−‖) is pair of an algebra and a sub-multiplicative
norm.

We add the adjective unital in order to express the compatibility of the norm with the
unit of the algebra.

Definition 2.5. A unital normed algebra (A, ‖−‖) is a normed algebra such that A ∈ AlgC
and ‖1A‖ = 1.

Example 2.6. Let (V, ‖ − ‖V ) be a finite-dimensional normed vector space. Then End(V )
has the operator norm given by

‖A‖ := sup
v∈V,‖v‖V =1

‖Av‖V .

Note that we use finite-dimensionality in order to ensure that the norm is finite. Then
(End(V ), ‖ − ‖) is a unital normed algebra.

If V is not finite-dimensional, then the set of endomorphisms with finite norm forms a
unital subalgebra of End(V ) which is unitally normed.

Example 2.7. We consider a normed algebra (A, ‖ − ‖) and assume that A is unital. We
explicitly do not require that A is unitally normed. In general we then have

‖1A‖ ≥ 1 .

In order to see this we start with
1nA = 1A .

Using the sub-multiplicativity of the norm we get

‖1A‖ = ‖1nA‖ ≤ ‖1A‖n .

We insert n = 2 and conclude the desired inequality. In Example 2.8 we show that this
inequality may be strict.

Example 2.8. We consider a unital normed algebra (A, ‖−‖). Then we set ‖−‖′ := 2‖−‖.
Then (A, ‖ − ‖′) is normed algebra, but ‖1A‖ = 2 6= 1

Recall that two norms ‖ − ‖ and ‖ − ‖′ on a vector space V are called equivalent if there
exists C in (0,∞) such that

C−1‖v‖ ≤ ‖v‖′ ≤ C‖v‖
for all v in V . The equivalence class of norms defining the topology of a Banach space is
uniquely determined.

Let (A, ‖ − ‖) be a normed algebra and A be unital.
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Lemma 2.9. There is an equivalent sub-multiplicative norm ‖ − ‖′ on A with ‖1A‖′ = 1.

Proof. We have a map

A→ EndVectC(A) , b 7→ (a 7→ ba) .

The operator norm on EndVectC(A) induces a sub-multiplicative seminorm (i.e. we allow
that ‖a‖′ = 0 for non-zero a) ‖ − ‖′ on A such that ‖1A‖′ = 1.

We must show that ‖− ‖′ and ‖− ‖ are equivalent. This also implies that ‖− ‖′ is a norm.

For all b in A we have
‖b‖′ = sup

a,‖a‖=1

‖ba‖ ≤ ‖b‖

and
‖b‖ = ‖b1A‖ ≤ ‖b‖′‖1A‖ .

Definition 2.10. A (unital) Banach algebra is a (unital) algebra A with admits a norm
‖ − ‖ such that the underlying normed vector space is a Banach space.

Example 2.11. Let H be a Hilbert space. Then B(H) (with the operator norm) is a
unital Banach algebra.

If we specialize H to Cn with the standard scalar product and associated norm, then we
see that Mat(n,C) ∼= B(Cn) is a Banach algebra.

Example 2.12. We consider a topological space X and a Banach algebra A with norm
‖ − ‖. The subalgebra Cb(X,A) of the space C(X,A) of bounded continuous functions
from X to A is a Banach algebra with respect to sup-norm

‖f‖∞ := sup
x∈X
‖f(x)‖ .

If A is unital, then so is Cb(X,A).

We can also consider the closure Cc(X,A) of the compactly supported functions with
respect to ‖ − ‖∞. If X is not compact, then this a is non-unital Banach algebra. Note
that if X is not locally compact, then Cc(X,A) might be very small.

Next we show that unitalization preserves Banach algebras. Let A be in Algnu
C .

Lemma 2.13. If A is Banach, then Au is unital Banach.

Proof. We define a norm ‖(a, λ)‖ := ‖a‖+ |λ| and check the submultiplicativity

‖(a, λ)(a′, λ′)‖ = ‖aa′ + λa′ + λ′a‖+ |λλ′| ≤ (‖a‖+ |λ|)(‖a′‖+ |λ′|) .
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It is clear that Au with this norm is Banach.

Furthermore we have ‖(0, 1)‖ = 1

We now study the spectrum of elements in a Banach algebra using analytic arguments.
Let A be a unital Banach algebra.

Lemma 2.14. The set GL1(A) of invertible elements in A is open. Furthermore the map
a 7→ a−1 is continuous.

Proof. Let a be in GL1(A) and set r := ‖a−1‖. If b is in A such that ‖a− b‖ < r, then b
is in GL1(A). In order to see this we write

b = a+ (b− a) = a(1A + a−1(b− a)) .

Then
b−1 = (1A + a−1(b− a))−1a−1 ,

where

(1A + a−1(b− a))−1 =
∞∑
n=0

(−1)n[a−1(b− a)]n .

The sum (Neumann series) converges absolutely since ‖a−1(b− a)‖ ≤ r‖b− a‖ < 1. The
identity

(1A + a−1(b− a))
n∑
n=0

(−1)n[a−1(b− a)]n = 1A + (−1)n[a−1(b− a)]n+1

shows by considering the limit as n→∞ that the infinite sum represents the inverse of
1A + a−1(b− a).

We furthermore get

b−1 − a−1 =
∞∑
n=1

(−1)n[a−1(b− a)]na−1 .

As long as ‖b− a‖ ≤ r/2 this gives an estimate

b−1 − a−1 ≤ ‖b− a‖C

for some constant which does not depend on b. This shows the continuity of the inverse
map.

We consider a unital Banach algebra A with norm ‖−‖ and a in A. Recall from Definition
1.46 that r(a) denotes the spectral radius of a.

Corollary 2.15. r(a) ≤ ‖a‖.
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Proof. Assume that λ is in C and |λ| > ‖a‖. Then λ− a = λ(1− λ−1a) is invertible since
‖λ−1a‖ < 1.

We consider a unital Banach algebra A and a in A.

Lemma 2.16. ρ(a) is open and

ρ(a) 3 λ 7→ (λ− a)−1 ∈ A

is continuous and weakly holomorphic.

Proof. The map
C 3 λ 7→ λ− a ∈ A

is continuous. Hence the set ρ(a) is open since it is the preimage of the open subset GL1(A)
of A under this map. Furthermore, λ 7→ (λ− a)−1 is continuous on ρ(a). It remains to
show weak holomorphy. Let φ be in A∗. Then for µ in ρ(a) and λ close to µ the Neumann
series implies the formula

(λ− a)−1 =
∞∑
k=0

(µ− a)−k−1(µ− λ)k

and hence

φ((λ− a)−1) =
∞∑
k=0

φ((µ− a)−k−1)(µ− λ)k

where we have used the continuity of φ in order to bring it inside of the sum. We already
know from the proof of Lemma 2.14 that this sum converges absolutely for λ near µ and
therefore defines a holomorphic function in λ.

We consider a non-zero unital Banach algebra A and a in A.

Lemma 2.17 (Formula for spectral radius). We have the equality

r(a) = lim
n→∞

‖an‖1/n .

Proof. Note that this includes the assertion that the limit exists.

If λ is in σ(a), then λn ∈ σ(an) by Lemma 1.44 applied to p(x) = xn. This implies

|λ|n ≤ ‖an‖

for all n in N and hence
|λ| ≤ lim inf

n∈N
‖an‖1/n .
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We conclude that
r(a) ≤ lim inf

n∈N
‖an‖1/n . (2.1)

We now take s in (0,∞) and use the notation Bs := {|z| < s} for the s-ball and Ss := ∂Bs

for its boundary. We assume that r(a) < s. Then λ 7→ (λ− a)−1 exists and is continuous
and weakly holomorphic on an open neighbourhood of C \Bs. We claim that

an =
1

2πi

∫
Ss′

λndλ

λ− a
(2.2)

for all s′ in (0,∞) with s′ ≥ s. Indeed, the right-hand side is independent of s′ (apply
arbitrary φ in A∗ and the Cachy integral theorem) and for s′ > lim supn→∞ ‖an‖1/n it is
equal to

1

2πi

∫
Ss′

∞∑
k=0

λn−1−kakdλ = an .

We estimate the norm of the integral by the integral of the norm of the integrand. Then
we get the estimate

‖an‖ ≤ sup
z∈Ss
‖ 1

z − a
‖s′,n

We now take the n’th root and consider the limit of the right-hand side as n→∞. Since
we can choose s′ arbitrary close to s we get

lim sup
n→∞

‖an‖1/n ≤ s .

We now vary s and get
lim sup
n→∞

‖an‖1/n ≤ max{0, r(a)} . (2.3)

We exclude the case r(a) = −∞ as follows. In this case (λ− a)−1 is holomorphic on all
of C. By (2.2) for n = 1 get get a = 0. But in this case, since A 6= 0, we get r(0) = 0 a
contradiction.

Combining (2.1) and (2.3) we get the desired assertion.

Corollary 2.18. If A is a non-zero unital Banach algebra and a is in A, then σ(a) 6= ∅

Proof. This follows from 0 ≤ r(a).

Example 2.19. If A = 0, then r(0) = −∞ since σ(0) = ∅. In view of Corollary 2.18 the
zero algebra is the only Banach algebra which contains elements with empty spectrum.

Corollary 2.20 (Gelfand-Mazur). Assume that A is unital Banach algebra such that
every non-zero element is invertible. Then A ∼= C.
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Proof. We argue by contradiction. Let a be in A and assume that a 6= λ for all λ in C.
Then λ− a is invertible for all λ in C This implies that σ(a) = ∅ and hence r(a) = −∞.
This is a contradiction.

We consider a unital Banach algebra A and an ideal I in A. Then also Ī is an ideal.

Lemma 2.21. If I is proper, then also Ī.

Proof. We show that for every b in I we have ‖1A− b‖ ≥ 1. This then implies that 1A 6∈ Ī.

Assume by contradiction that ‖1− b‖ < 1. Then b is invertible and I = A, a contradiction.

3 ∗-algebras and C∗-algebras

In this section in consider algebras with an involution called ∗-algebras. We investigate
the categories unital and non-unital of ∗-algebras. We then introduce the condition
of compatibility of a norm with the involution called the C∗-equality and study its
consequences.

Let A be in AlgC.

Definition 3.1. An involution on A is a complex antilinear map ∗ : A→ A (written on
elements as a 7→ a∗) such that:

1. ∗ ◦ ∗ = id

2. (aa′)∗ = a′∗a∗

Definition 3.2. A ∗-algebra is an algebra over C with an involution. A ∗-homomorphism
between ∗-algebras is a homomorphism between algebras which preserves the involution.

A ∗-homomorphism f between ∗-algebras is thus a homomorphism between algebras
which in addition satisfies the identity f(a∗) = f(a)∗. By ∗AlgC and ∗Algnu

C we de-
note the categories of unital and not-necessarily unital ∗-algebras and corresponding
∗-homomorphisms.

Example 3.3. Complex conjugation is an involution on the algebra C turning it into a
unital ∗-algebra.
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If A is a ∗-algebra and X is a set, then AX is a ∗-algebra with the involution defined
pointwise by (a∗)(x) := a(x)∗.

If B is a subalgebra of a ∗-algebra which is invariant (as a set) by the involution, then B
with the restriction of the involution to B is a ∗-algebra.

Example 3.4. If H is a Hilbert space, then B(H) is a ∗-algebra with the involution which
sends an operator to its adjoint. The algebra of compact operators K(H) is a ∗-subalgebra.

For H = Cn we get an involution on Mat(n). In this case a∗ = āt, the complex conguate
of the transposed matrix.

Example 3.5. If G is a group, then on the group ring C[G] we have the involution given
by

(
∑
g∈G

λg[g])∗ :=
∑
g∈G

λ̄g[g
−1] .

Note that here we need inverses in G and this definition does not work for general monoids.

Example 3.6. The polynomial ring C[z] has an involution extending z∗ = z. This extends
further to the quotient field C(z)

The differential operators D(C) have the involution determined by ∂∗ := −∂ and z∗ := z.
Indeed the defining relation ∂z − z∂ = 1 is preserved:

1∗ = 1 , (∂z − z∂)∗ = z∗∂∗ − ∂∗z∗ = −z∂ − (−∂z) = ∂z − z∂ .

Let I be a two-sided ideal in a ∗-algebra A. For a subset S of A we write S∗ = {s∗ |s ∈ S}.

Definition 3.7. I is a ∗-ideal if I = I∗.

Example 3.8. If I is a ∗-subalgebra and a left or right-ideal, then it is automatically a
∗-ideal. Assume that I is right ideal and a ∗-subalgebra. Then for every a in A we have
ai = (i∗a∗)∗ ∈ I∗ = I, hence I is also a left ideal.

Example 3.9. Let A be in ∗Algnu
C and I be a ∗-ideal in A. Then A/I is ∗-algebra with

involution given [a]∗ := [a∗]. The map A→ A/I is initial for ∗-homomorphisms from A to
∗-algebras which send the elements of I to zero.

Example 3.10. If S is a a subset of A, then we can form the smallest ∗-ideal

∗(S) :=
⋂
S⊆I

I

containing S, where the intersection runs over all ∗-ideals I of A containing S. In generaal
∗(S) can be larger than the two-sided ideal (S) generated by S. It is easy to see that
∗(S) = (S ∪ S∗). The quotient map

A→ A/∗(S)

20



is initial for ∗-homomorphisms from A to ∗-algebras which send the elements of S to zero.

The unitalization adjunction extends to ∗-algebras.

Lemma 3.11. We have an adjunction

(−)u : ∗Algnu
C � ∗AlgC : incl

Proof. Let A in ∗Algnu
C . Then Au has an involution given by (a, λ)∗ := (a∗, λ̄). One checks

that the unit and counit of the adjunction from Lemma 1.27 are morphisms of ∗-algebras.
This implies the assertion.

The underlying set S(A) of a ∗-algebra carries an action of the group C2 such that the
non-trivial element σ in C2 acts by σa := a∗. We therefore have a forgetful functor
S : ∗AlgC → C2Set.

Lemma 3.12. We have adjunctions

Free∗,nu : C2Set � ∗Algnu
C : S , Free∗ : C2Set � ∗AlgC : S .

Proof. (sketch) We give an explicit construction of the left-adjoinst. For X in C2Set we
first consider the vector space C[X] in with the anti-linear action of C2 which extends the
action on X. So

σ(λ1[x1] + · · ·+ λn[xn]) = λ̄1[σx1] + · · ·+ λ̄n[σxn] .

Then we equip the tensor algebra T (C[X]) with the anti-linear involution characterized by

(v1 ⊗ · · · ⊗ vn)∗ := σ(vn)⊗ · · · ⊗ σ(v1)

The resulting ∗-algebra in ∗AlgC will be denoted by Free∗(X). It is the free unital ∗-algebra
generated by the set X. It is straightforward to extend this construction to morphisms of
C2-sets so that we obtain the functor Free∗ : Set→ ∗AlgC.

The unit of the adjunction is given by the canonical inclusion of C2-sets X 7→ S(Free∗(X))
sending x in X to the basis vector [x] of C[X] considered as a summand of Free∗(X). One
then checks that for every A in ∗AlgC the composition

Hom∗AlgC(Free∗(X), A)
S→ HomC2Set(S(Free∗(X)), S(A))

unit∗→ HomC2Set(X,S(A))

is a bijection.

The non-unital case is similar with Free∗,nu := T≥1(C[X]).
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Let F : ∗AlgC → AlgC or Fnu : ∗Algnu
C → Algnu

C denote the functors which forget the
∗-operation.

Lemma 3.13. We have adjunctions

L : AlgC � ∗AlgC : F , Lnu : Algnu
C � ∗Algnu

C : Fnu .

Proof. (sketch) Let A be in AlgC and consider the exact sequence

0→ I → Free(A)→ A→ 0 .

We form the C2-set A t A with the action of C2 flipping the components. Let i0, i1 : A→
A t A denote the two inclusions. We have a homomorphisms

Free(i0) : Free(A)→ Free(A t A)

induced by the inclusion of the first copy of A.

We now note that Free(A tA) has the structure of a ∗-algebra Free∗(A tA) as in Lemma
3.12. We let J be the ∗-ideal generated by Free(i0)(I) and form L(A) := Free(A t A)/J .
We then have the diagram in C∗Alg

0 // I

��

// Free(A)

Free(i0)
��

// A //

unit
��

0

0�� // F(J) // F(Free∗(A t A)) // F(L(A)) // 0

defining the unit map.

It is straightforward to define L on morphisms so that one gets a functor L : AlgC → ∗AlgC.
Finally one checks that for every B in ∗AlgC the composition

Hom∗AlgC(L(A), B)
F→ HomAlgC(F(L(A)),F(B))

unit∗→ HomAlgC(A,F(B))

is a bijection.

The non-unital case is analoguous using Freenu.

Proposition 3.14. The categories ∗AlgC and ∗Algnu
C are complete and cocomplete.

Proof. By Lemma 3.13 and Corollary 1.30 the forgetful functors ∗AlgC → Set and
∗Algnu

C → Set are right-adjoints. Therefore limits in ∗AlgC and ∗Algnu
C are calculated on

the level of underlying sets, respectively. The results then equipped with an involution
induced by functoriality.

The argument for colimits and is similar as in Prop. 1.31. It is enough to show the existence
of coequalizers and coproducts. This is done in Examples 3.15 and 3.16 below.
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Example 3.15. Let (Ai)i∈I be a family in ∗AlgC. Then we consider for every i the exact
sequence

0→ Ii → Free∗(Ai)→ Ai → 0 .

Then we form the ∗-algebra Free∗(
⊔
i∈I Ai) and the ∗-ideal J generated by the images

of the ideals Ii. The quotient Free∗(
⊔
i∈I Ai)/J together with the family (ei)i∈I of ∗-

homomorphisms ei : Ai → Free∗(
⊔
i∈I Ai)/J induced by

0 // Ii

��

// Free∗(Ai)

��

// Ai //

ei
��

0

0�� // J // Free∗(
⊔
i∈I Ai)

// Free∗(
⊔
i∈I Ai)/J

// 0

represent the coproduct of the family.

The same construction works in ∗Algnu
C using Free∗,nu in place of Free∗.

Example 3.16. Let

A

f

  

g AAB

be a coequalizer diagram in ∗Algnu
C or ∗AlgC. Then the elements f(a)− g(a) for all a in

A generate a ∗-ideal I in B. The projection B → B/I presents B/I as the coequalizer
Coeq(f, g) in ∗Algnu

C or ∗AlgC, respectively.

We consider an algebra A with involution ∗ and a norm ‖ − ‖.

Definition 3.17. (A, ∗, ‖ − ‖) is a normed ∗-algebra if ‖a∗‖ = ‖a‖ for all a in A.

In other words, for a normed ∗-algebra we require that ∗ acts isometrically.

Example 3.18. If ‖ − ‖ is any norm on a ∗-algebra, then we can form a new norm ‖ − ‖′
by

‖ − ‖′ = max{‖a‖, ‖a∗‖} .

Then (A, ∗, ‖ − ‖′) is a normed ∗-algebra.

In general it is not clear that ‖ − ‖′ is equivalent to ‖ − ‖. But if A is a Banach algebra
with norm ‖ − ‖ and ∗ is continuous, then ‖ − ‖′ is equivalent to ‖ − ‖.

Usually we use the symbol A in order to denote a ∗-algebra or a normed ∗-algebra.

Let A be a normed ∗-algebra

Definition 3.19. ‖ − ‖ has the C∗-property if ‖a∗a‖ = ‖a‖2 for all a in A.
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We call such a norm a C∗-norm

Definition 3.20. A C∗-∗-algebra is a ∗-algebra which admits a norm turning it into a
normed Banach algebra and which satisfies the C∗-property.

Remark 3.21. Being C∗-algebra is property of a ∗-algebra. Note that the norm is not
part of the data for a C∗-algebra. We just require existence. But it will turn out later
that it is actually uniquely determined.

In order to show that a given ∗-algebra is a C∗-algebra one usually produces a norm and
shows that it has the required properties.

Our definition is not the standard definition of a C∗-algebra, but equivalent to it, as we
shall see below.

We let C∗Algnu be the full subcategory of ∗Algnu
C of C∗-algebras and C∗Alg be the full

subcategory of ∗AlgC of unital C∗-algebras.

Example 3.22. If A is a C∗-algebra and B is ∗-subalgebra of A which is closed w.r.t a
norm exhibiting A as a C∗-algebra, then B is a C∗-algebra, too.

Any closed ∗-subalgebra of B(H) is a C∗-algebra.

Actually, one classical definition of the notion of a C∗-algebra is as a closed ∗-subalgebra
of B(H) form some Hilbert space H. One can show that every C∗-algebra is isomorphic
to such a subalgebra.

Example 3.23. Let X be a topological space and A be a C∗-algebra. Then Cb(X,A)
is again a C∗-algebra exhibited by the norm ‖a‖∞ := supx∈X ‖a(x)‖A. Furthermore,
Cc(X,A) is a closed subalgebra of Cb(X,A) and hence a C∗-algebra.

We consider a C∗-algebra with norm ‖ − ‖. Let a be in A. Note that r(a∗a) (the spectral
radius of a∗a) only depends on the algebra A and not on the norm.

Lemma 3.24 (C∗-norm completely determined by ∗-algebra structure). We have ‖a‖2 =
r(a∗a) for all a in A.

Proof. We use the formula for the spectral radius of a∗a given in Lemma 2.17. For k in N,
using the C∗-property repeatedly, we have

‖a‖2k+1 = ‖a∗a‖2k = ‖(a∗a)2‖2k−1

= · · · = ‖(a∗a)2k‖ .

This gives ‖a‖2 = ‖(a∗a)2k‖2−k for all k in N. We take the limit as k → ∞ and get
‖a‖2 = r(a∗a).

Corollary 3.25. A C∗-algebra has a unique C∗-norm.
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We now consider a morphism f : A → B in C∗Algnu. Note that by definition f is just
a homomorphism of algebras which is compatible with the ∗-operation. The following
Lemma shows that it is a contraction (in particular continuous) provided we equip the
algebras with their unique C∗-norms ‖ − ‖A and ‖ − ‖B.

Corollary 3.26 (automatic continuity of morphisms). For all a in A we have ‖f(a)‖B ≤
‖a‖A.

Proof. We use Corollary 1.48 and Lemma 3.24 in order to calculate

‖f(a)‖2
B = r(f(a)∗f(a)) = r(f(a∗a)) ≤ r(a∗a) = ‖a‖2

A .

Next we show that unitalization is compatible with C∗-algebras.

Lemma 3.27. We have an adjunction

(−)u : C∗Algnu � C∗Alg : incl .

Proof. We restrict the adjunction from Lemma 3.11 to C∗-algebras. It suffices to show
that (−)u preserves C∗-algebras.

First assume that A is unital. Then we have an isomorphism of ∗-algebras Au
∼=→ A⊕ C

given by (a, λ) 7→ (a+ λ1A, λ). Therefore the norm ‖(a, λ)‖ := max{|λ|, ‖a+ λ1A‖A} is a
C∗-norm on Au.

We now assume that A is non-unital. Note that the obvious norm on Au is not a C∗-norm:
We have

‖(a, λ)∗(a, λ)‖ = ‖(a∗a+ λ̄a+ λa∗, |λ|2)‖ = ‖a∗a+ λ̄a+ λa∗‖+ |λ|2

which is in general not equal to

(‖a‖+ |λ|)2 = ‖a∗a‖+ 2|λ|‖a‖+ |λ|2 .

Note that Au acts on A be left multiplication (b, λ)a = (ba + λa). We let ‖ − ‖′ be the
operator norm, i.e.

‖(b, λ)‖′ := sup
a∈A ,‖a‖=1

‖ba+ λa‖ .

It is a ∗-norm.
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We first verify the C∗-property for ‖ − ‖′. We have

‖(b, λ)∗(b, λ)‖′ = sup
‖a‖=1

‖b∗ba+ λ̄ba+ λb∗a+ |λ|2a‖

= sup
‖a‖=1

‖a∗‖‖b∗ba+ λ̄ba+ λb∗a+ |λ|2a‖

≥ sup
‖a‖=1

‖a∗(b∗ba+ λ̄ba+ λb∗a+ |λ|2a)‖

= sup
‖a‖=1

‖(a∗b∗ + a∗λ̄)(ba+ λa)‖

= sup
‖a‖=1

‖ba+ λa‖2 = ‖(b, λ)‖′,2.

We get the reverse inequality

‖(b, λ)∗(b, λ)‖′ ≤ ‖(b, λ)‖′,2

using the sub-multiplicativity of the norm ‖− ‖′ (a general property of the operator norm)
and the fact that it is a ∗-norm.

It remains to show that ‖ − ‖ is equivalent to the obvious norm. This implies that Au is
complete w.r.t to ‖ − ‖′. The inequality

‖(a, λ)‖′ ≤ ‖a‖+ |λ|

is clear. We claim that ‖(a, λ)‖′ = 0 implies (a, λ) = 0. This claim implies that ‖ − ‖′ is
equivalent to ‖ − ‖. Indeed, if A′ denotes the Banach-closure of A with respect to ‖ − ‖′,
then the map A → A′ is a continuous surjective map of Banach spaces. The condition
implies injectivity. Hence A→ A′ is an isomorphism by the bounded inverse theorem.

We now show the claim. Assume that λ 6= 0 . Then ab+ λb = 0 for all b in A implies λ−1a
is a unit of A. Since A was non-unital this is impossible.

If λ = 0, then in particular aa∗ = 0 and hence ‖a‖2 = ‖aa∗‖ = 0 which implies that
a = 0.

Let A be in ∗Algnu
C and a be in A.

Definition 3.28. a is called:

1. selfadjoint if a∗ = a

2. normal if [a∗, a] = 0

3. a projection if a2 = a

4. an orthogonal projection if a2 = a and a∗ = a
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5. a partial isometry if a∗a and aa∗ are (necessarily orthogonal) projections

6. an isometry if a∗a = 1A (for A in ∗AlgC)

7. a unitary if a∗a = 1A and aa∗ = 1A (for A in ∗AlgC)

Let A be a C∗-algebra and a be in A.

Lemma 3.29. If a is a partial isometry or an orthogonal projection, then ‖a‖ ∈ {0, 1}.

Proof. Let a be an orthogonal projection. Then we have

‖a‖2 = r(a∗a) = r(a) = lim
n→∞

‖an‖1/n = lim
n→∞

‖a‖1/n ∈ {0, 1} .

Assume now that a is a partial isometry. Then

‖a‖2 = ‖a∗a‖ ∈ {0, 1}

by the first case since a∗a is an orthogonal projection.

Let A be in C∗Alg and u be in A.

Lemma 3.30. If u is unitary, then σ(u) ⊆ U(1).

Proof. We consider λ in C. We first assume that |λ| > 1. Then we have

(λ− u) = λ(1− λ−1u)

and the right-hand side is invertible since ‖λ−1u‖ < 1. We now assume that |λ| < 1. Then

(λ− u) = −u(1− λu∗)

and the right-hand side is invertible since ‖λu∗‖ < 1.

In both cases we see that λ ∈ ρ(u).

Example 3.31. We consider the C∗-algebra B(L2(R)) and u in B(L2(R)) given by
(uf)(x) = f(x+ 1). This operator is unitary. In order to calculate the spectrum of u we
use the Fouriertransformation F : L2(R)→ L2(R) given by

F(f)(ξ) :=
1√
2π

∫
R
e−ixξf(x)dx

(this formula makes sense for f in Cc(R) and extends by continuity). Then F is a unitary
isomorphism with inverse given by

F−1(f̂)(x) :=
1√
2π

∫
R
eixξf̂(ξ)dξ .

One calculates that F ◦ u ◦ F−1 is the multiplication operator by the function x 7→ e−ix.
The image of this function is all of U(1). It follows that σ(u) = U(1).
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Example 3.32. We consider u in B(L2(S1)) given by (uf)(z) = f(ze2πiα). We let
F : L2(S1)→ L2(Z) be the Fouriertransformation given by

F(f)(n) :=
1

2π

∫ 2π

0

e−inxf(eπix)dx .

The inverse is given by

F−1(f̂)(x) :=
∑
n∈Z

e2πinxf̂(ξ) .

The operator F ◦ u ◦ F−1 is the multiplication by the function n 7→ e−2πinα. The closure
of its image is U(1) if α is irrational or a finite subset of U(1) if α is rational. Hence σ(u)
is U(1) or a finite subset of U(1), respectively.

Let A be in C∗Algnu and a be in A.

Lemma 3.33. If a is self-adjoint, then σ(a) ⊆ R.

Proof. By considering the image (a, 0) of a in Au we can assume that A is unital. We
assume that λ in σ(a). Then we can define eia by a convergent power series. We claim
that eiλ ∈ σ(eia) and that eiλ ∈ U(1). These two assertions imply that λ ∈ R.

We now show the claim. We consider

b :=
∞∑
n=1

in(a− λ)n

n!
.

Then
eia − e−λ = eiλ(ei(a−λ) − 1) = (a− λ)eiλb

Since (a− λ) not invertible also eia − e−λ is not invertible. Hence eiλ ∈ σ(a).

In general, if c, d are in A and [c, d] = 0, then we have eced = ec+d by a calculation with
the power series. We furthermore have the relation(ec)∗ = ec

∗
.

We have (eia)∗ = e−ia. This implies that eia(eia)∗ = 1A = (eia)∗eia. Thus eia is unitary and
we have σ(eia) ⊆ U(1) by Lemma 3.30. Hence eiλ ∈ U(1) as claimed.

4 Gelfand duality

In this section we consider the structure of the subcategory of C∗Alg of commutative
C∗-algebras.

Let L : C → D be a functor.
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Definition 4.1. We say that L is a reflective localization if it fits into an adjunction

L : C � D : R

where R is fully faithful.

Example 4.2. Here we present some examples of reflective localizations for the purpose
of illustration.

Let Metr be the category of metric spaces and isometries, and Metrcompl be the full
subcategory of complete metric spaces. Then

compl : Metr � Metrcompl : incl

is a reflective localization, where compl sends a metric space to its completion.

Let Hausd be the full subcategory of Top of Hausdorff spaces. Then we have a reflective
localization

(−)Hausd : Top � Hausd : incl ,

where for X in Top we denote by XHausd is the maximal Hausdorf quotient of X.

We have a reflective localization

K0 : Monoids � Groups : incl ,

where K0 sends a monoid to its group completion (Grothendieck construction).

For every topological space X we have a commutative C∗-algebra Cb(X) of continuous
bounded C-valued functions on X. If f : X → X ′ is a continuous map, then we have a
homomorphism

f ∗ : Cb(X
′)→ Cb(X) , a 7→ a ◦ f .

Let C∗Algcomm and C∗Algnu,comm be the full subcategories of C∗Alg and C∗Algnu of unital
and not necessarily unital commutative C∗-algebras. Then this construction determines a
functor

Cb : Topop → C∗Algcomm .

The main theorem of this section is:

Theorem 4.3. There is a reflective localization

Cb : Top � (C∗Algcomm)op : G

where G identifies (C∗Algcomm)op with the full subcategory of Hausdcomp of Top of compact
Hausdorff spaces.
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The functor G is called the Gelfand transformation. It sends a commutative C∗-algebra A
to its space G(A) of characters, i.e., the space of non-zero homomorphisms A→ C. The
proof of the theorem will be given after some preparations about characters.

Let A be in Algnu
C .

Definition 4.4. A character of A is a homomorphism A→ C.

The set of characters of A is thus the morphism set HomAlgnu
C

(A,C). We actually have a
functor

HomAlgnu
C

(−,C) : (Algnu
C )op → Set

represented by C.

Non-zero characters on a unital algebra are automatically unital. Assume that A is in
AlgC and that φ : A→ C is a character.

Lemma 4.5. If φ 6= 0, then φ(1A) = 1.

Proof. Indeed, let a in A be such that φ(a) 6= 0. Then we have φ(a) = φ(1Aa) = φ(1A)φ(a).
This implies that φ(1A) = 1.

Characters of C∗-algebras are automatically morphisms of ∗-algebras. Indeed, let A be in
C∗Algnu and ψ be a character on A.

Lemma 4.6. ψ is a ∗-homomorphism.

Proof. We can extend ψ to a homomorphism ψu : Au → C such that ψu(a, 0) = ψ(a). We
have ψu(a, 0) ∈ σ(a, 0) by Lemma 1.45.

First assume that a is selfadjoint. Then (a, 0) is selfadjoint in Au. Using Lemma 3.33
(this lemma applies since we assume that A is C∗-algebra and not only a ∗-algebra) we
get ψ(a) = ψu(a, 0) ∈ σ(a, 0) ⊆ R.

If a is general, then we write a as a sum of selfadjoints

a =
a+ a∗

2
+ i

a− a∗

2i
.

We then have

ψ(a) = ψ(
a+ a∗

2
) + iψ(

a− a∗

2i
) , ψ(a∗) = ψ(

a+ a∗

2
) + iψ(

a∗ − a
2i

) = ψ(a)
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Recall that ∗-homomorphisms between C∗-algebras are automatically continuous (Corollary
3.26). So characters on a C∗-algebra are automatically continuous.

Let A be in C∗Algnu. By A∗ we denote the dual of A in the sense of Banach spaces. The
C∗-norm on A induces a norm in A∗.

On A∗ we also have the weak topology generated by the maps (φ 7→ φ(a)) : A∗ → C for
all a in A. The unit ball B(A∗) is compact w.r.t. to the weak topology by the theorem of
Banach-Alaoglou.

We let Â denote the set of non-zero characters of A. If φ in Â, then φ ∈ B(A∗), since a
∗-homomorphism is contractive by Corollary 3.26. We equip Â with the weak topology
induced from the weak topology on A∗. The set Â ∪ {0} is a closed subset of B(A∗). In
fact, if (φi)i∈I is a converging net in Â, then limi∈I φi is again a character. Indeed, for a, b
in A we have

lim
i∈I

φi(ab) = lim
i∈I

φi(a)φi(b) = lim
i∈I

φi(a) lim
i∈I

φi(b) .

Note that it may happen that limi∈I φi = 0.

It follows that Â ∪ {0} is compact. Consequently, Â is locally compact.

Lemma 4.7. If A is unital, then Â is compact.

Proof. For every φ in Â we have φ(1A) = 1. Hence any limit point of Â in B(A∗) satisfies
this condition, too. It follows that 0 is isolated in Â ∪ {0} and hence Â itself is closed and
hence compact.

Let A be in C∗Algnu and consider a in A. Then we define a function

gA(a) : Â→ C , φ 7→ gA(a)(φ) := φ(a) .

Definition 4.8. The function gA(a) : Â→ C is called the Gelfand transform of a.

Lemma 4.9. We have gA(a) ∈ Cb(Â) and ‖gA(a)‖∞ ≤ ‖a‖.

Proof. The function gA(a) is continuous by the very definition of the weak topology.
Furthermore, since a ∗-homomorphism between C∗-algebras is contractive by Corollary
3.26 we have

‖gA(a)‖∞ = sup
φ∈Â
|φ(a)| ≤ sup

φ∈Â
‖φ‖‖a‖ ≤ ‖a‖ .

Let A be in C∗Algnu and consider a in A. Then we consider the set of values of the
Gelfand transformation gA(a). Recall that σu(a) = σ(a, 0), where (a, 0) is the image of a
in the unitalization Au of A.
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Lemma 4.10. We have gA(a)(Â) ∪ {0} ⊆ σu(a). If A is commutative, then this is an
equality.

Proof. We have already seen (in the proof of Lemma 4.6) that

gA(a)(Â) ⊆ σu(a) .

Indeed, by Lemma 1.45 for φ in Â we have gA(a)(φ) = φ(a) = φu(a, 0) ∈ σ(a, 0) = σu(a).

We now assume that A is commutative and show that

σu(a) ⊆ gA(a)(Â) ∪ {0} .

We assume that λ is in C \ {0} and λ ∈ σu(a). Then (λ− (a, 0))Au is proper ideal in Au

since otherwise (λ− (a, 0)) would be invertible. Here we use commutativity in order to
conclude that the ideal is two-sided. Using Zorn’s Lemma we find a maximal proper ideal
I with (λ− (a, 0))Au ⊆ I

We claim that I is closed. If it is not closed, Ī would larger and also proper by Lemma 2.21.
Then Au/I is a field and a Banach algebra. It follows from Corollary 2.20 (Gelfand-Mazur)
that Au/I ∼= C. We define the character

ψ : A→ Au → Au/I = C .

By construction ψ(a) = λ 6= 0 so that ψ ∈ Â. Hence λ ∈ ga(Â).

We consider A in C∗Algcomm . The following is the key result leading to the main theorem
of this section.

Theorem 4.11 (Gelfand). The Gelfand transform gA : A→ Cb(Â) is an isomorphism of
C∗-algebras .

Proof. We first show that gA is a homomorphism of ∗-algebras. It is linear since

gA(a+ λb)(φ) = φ(a+ λφ) = φ(a) + λφ(b) = (gA(a) + λgA(b))(φ)

and multiplicative since

gA(ab)(φ) = φ(ab) = φ(a)φ(b) = gA(a)(φ)gA(b)(φ) = (gA(a)gA(b))(φ) .

Finally we show that gA is compatible with the involution:

gA(a∗)(φ) = φ(a∗) = φ(a) = gA(a)∗(φ) .

Next we show that gA is isometric. We indeed have

‖gA(a)‖2
∞ = sup

φ∈Â
|φ(a)|2 = sup

φ∈Â
|φ(a)∗φ(a)| = sup

φ∈Â
|φ(a∗a)| !

= r(a∗a)
!!
= ‖a‖2 .
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Here we use the equality assertion in Lemma 4.10 at the equality marked by !, and Lemma
3.24 at the equality marked by !!.

This implies that gA is injective.

We now show that gA is surjective. We are going to apply the Stone-Weierstrass theorem
to the compact space Â (at this be use the assumption that A is unital). We observe that
gA(A) is C∗-subalgebra of Cb(Â). It clearly separates points. Finally for every φ in Â there
exists a in A such that gA(a)(φ) = φ(a) 6= 0 (since Â consists of non-zero characters). By
the Stone-Weierstrass we conclude that gA(A) is dense in Cb(Â). Since gA is an isometry
we have gA(A) = Cb(Â).

Proof of Theorem 4.3. We define the functor

G : (C∗Algcomm)op → Top , G(A) := Â .

If f : A → B is a morphism in C∗Algcomm, then f ∗ : B∗ → A∗ is continuous for the
weak topology. Indeed, for every a in A the function f ∗(−)(a) = (−)(f(a)) : B∗ → C is
continuous. Since f(1A) = 1B the pull-back preserves non-zero characters. This implies
that the restriction of f ∗ to non-zero characters is a continuous map G(f) : G(B)→ G(A).

In order to construct the adjunction claimed in Theorem 4.3 we construct the unit and
counit.

The counit u : Cb ◦ G → id will be given by the family (gop
A )A∈(C∗Algcomm)op . Note that

without opping we have gA : A → Cb(G(A)), where gA sends a in A to its Gelfand
transformation gA(a) ∈ Cb(Â).

We check naturality of u. Let f : A→ B be a morphism in C∗Algcomm. We must check
that

A
f

//

gA
��

B

gB
��

Cb(G(A))
Cb(G(f))

// Cb(G(B))

commutes. For a in A and φ in G(B) we indeed have

gB(f(a))(φ) = φ(f(a)) = G(f)(φ)(a) = gA(a)(G(f)(φ)) = (Cb(G(f))(gA)(a))(φ) .

The unit of the adjunction is h : id→ G ◦ Cb given by the family (hX)X∈Top, where

hX : X → G(Cb(X)) , hX(x) := (a 7→ a(x)) .

We must check that hX is continuous. To this end we observe that for every a in Cb(X)
the function x 7→ hX(x)(a) = a(x) is continuous. In view of the definition of the weak
topology on G(Cb(X)) this implies that X → G(Cb(X)) is continuous.
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We check naturality of h. Let f : X → Y be a morphism in Top. Then we must check
that

X
f

//

hX
��

Y

hY
��

G(Cb(X))
G(Cb(f))

// G(Cb(Y ))

commutes. For x in X and b in Cb(Y ) we have

hY (f(x))(b) = b(f(x))

and
G(Cb(f))(hX(x))(b) = hX(x)(Cb(f)(b)) = b(f(x)) .

We next show that u, h define an adjunction. To this end we consider the maps

α : Hom(C∗Algcomm)op(Cb(X), B)
G→ HomTop(G(Cb(X)), G(B))

h∗X→ HomTop(X,G(B)) .

β : HomTop(X,G(B))
Cb→ Hom(C∗Algcomm)op(Cb(X), Cb(G(B)))

uB,∗→ Hom(C∗Algcomm)op(Cb(X), B) .

We show that these maps are inverse to each other. We have for r : B → Cb(X), b in B,
and x in X that

(β(α(r))(b))(x) = (Cb(α(r)) ◦ uB)(b)(x)

= Cb(α(r))(uB(b))(x)

= uB(b)(α(r)(x))

= α(r)(x)(b)

= (G(r) ◦ hX)(x)(b)

= r(b)(x) ,

hence β ◦ α = id. We furthermore calculate for s : X → G(B), x in X and b in B

α(β(s))(x)(b) = (G(β(s)) ◦ hX)(x)(b)

= G(β(s))(evx)(b)

= β(s)(b)(x)

= (Cb(s) ◦ uB)(b)(x)

= Cb(s)(uB(b))(x)

= uB(b)(s(x)) = s(x)(b),

hence α ◦ β = id. This finishes the construction of the adjunction. By Theorem 4.11
the counit of the adjunction is an isomorphism. Consequently, the right-adjoint is fully
faithful.

Its image consists of compact Hausdorff spaces. We must show that all compact Hausdorff
spaces belong to the essential image.
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Let X be a compact Hausdorff space. Then we have a map hX : X → G(Cb(X)). In order
to show that it is an isomorphism it suffices to show that it is a bijection.

We first show that hX is injective. Let x, x′ be X be distinct points. Since Cb(X) separates
points (by the Urysohn Lemma since compact Hausdorff spaces are normal) there exists
f in Cb(X) such that f(x) 6= f(x′). Then hX(x)(f) = f(x) 6= f(x′) = hX(x′)(f). Hence
hX(x) 6= hX(x′).

We now show surjectivity of hX . We consider a non-zero character ψ : Cb(X)→ C. Then
ker(ψ) is a proper closed ∗-subalgebra of Cb(X). This subalgebra also separates points.
Indeed let x, x′ in X be distinct and choose a in Cb(X) such that a(x) 6= a(x′). Then
a− ψ(a) ∈ ker(ψ) and separates x, x′.

By the Stone-Weierstraß Theorem and since ker(ψ) is a closed proper ideal of Cb(X)
there exists a point x in X such that a(x) = 0 for all a in ker(ψ) (because otherwise
ker(ψ) = Cb(X) by SWT). We now show that ψ = hX(x). Let f be in Cb(X). Then we
have f = ψ(f) + (f − ψ(f)), where f − ψ(f) ∈ ker(ψ) and hence (f − ψ(f))(x) = 0. We
get

f(x) = ψ(f) + (f − ψ(f))(x) = ψ(f) .

This finishes the verification that hX is an isomorphism for compact Hausdorff spaces X.
This finishes the proof of Theorem 4.3.

Corollary 4.12 (Gelfand duality). The functors Cb restricts to an equivalence of categories

Cb : Hausdcomp '→ (C∗Algcomm)op

with inverse G.

5 The non-unital case

We extend Gelfand duality to the non-unital case.

For a category C and object c in C we can consider the slice category C/c. An object in
C/c is a morphism c′ → c in C. A morphism (c′ → c)→ (c′′ → c) in C/c is a commutative
triangle

c′

��

// c′′

��
c

.

Analoguously we define Cc/ such that Cc/ ∼= (Cop
/c )op. We extend the unitalization functor

to a functor
U : C∗Algnu → C∗Alg/C , A 7→ (Au → C) .

Lemma 5.1. The functor U is an equivalence of categories.
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Proof. The inverse K : C∗Alg/C → C∗Algnu sends (φ : B → C) to ker(φ). A morphism
in C∗Alg/C is a commuting triangle

B h //

φ
��

B′

φ′~~

C

.

We get an induced morphism K(h) : K(φ)→ K(φ′), where K(h) is the restriction of h to
ker(φ) considered as a homomorphism with values in ker(φ′).

We now provide the natural isomorphisms α : id→ K ◦ U and β : U ◦K → id exhibiting
U and K as inverses to each other. The canonical inclusion A → Au identifies A with
K(U(A)). We let αA : A→ K(U(A)) be this canonical inclusion.

For φ : B → C in C∗Alg/C we have the canonical inclusion K(φ)→ B. Since B is unital we
can extend it uniquely to U(K(φ))→ B. Then we let βB : (ker(φ)u → C)→ (φ : B → C)
be the resulting morphism in the slice category.

An object in (Hausdcomp)∗/ is a pointed compact Hausdorff space (X, x). We let

Hausdlcomp be the a category whose objects are the locally compact topological spaces,

and whose morphisms are partially defined proper maps X ⊇ U
f→ X ′. Here the con-

dition that f is proper means that preimages of compact subsets of X ′ are compact in
U , or equivalently, that f has a continuous extension f+ : U+ → X+ to the one-point

compactifications. The composition of such a map with X ′ ⊇ U ′
f ′→ X ′′ is given by

X ⊇ (U ∩ f−1(U ′))
f ′◦f→ X ′′. Using the characterization with preimages of compact subsets

it is easy to check that this map is proper.

We can define a functor

R : (Hausdcomp)∗/ → Hausdlcomp , (X, x) 7→ X \ {x} .

A morphism f : (X, x)→ (X ′, x′) is send by R to a partially defined map

L(f) : X ⊇ (X \ f−1(x′))→ X ′ \ {x} .

Lemma 5.2. The functor L fits into an equivalence of categories

((−)+,+) : Hausdlcomp � (Hausdcomp)∗/ : R ,

Proof. The left-adjoint ((−)+,+) sends a locally compact space X to its one-point com-
pactification (X+,+) pointed by the additional point. If U → X ′ is a map defined on
an open subset U of X, then its image under the left-adjoint is its extension to a map
X+ → U+ → X ′,+ under +, where the first map is the collapse map sending every point
outside U to +.
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On the one hand, we have a natural isomorphism L(X+,+) ∼= X. On the other hand,
the canonical map (X \ {x}) → X extends to a map (X+,+) → (X, x). This map is a
bijection between compact Hausdorff spaces and hence an isomorphism.

Note that Cb(∗) ∼= C.

We consider the functor

C0 : Hausdlcomp X 7→(X+,+)→ Hausdcomp
∗/

Cb→ (C∗Algcomm
/C )op K' (C∗Algnu,comm)op .

Thus C0(X) is the algebra of the continuous functions on X+ which vanish at +.

Remark 5.3. In general C0(X) is bigger than the closure of the subsspace of Cb(X) of
functions of compact support.

We let

G0 : (C∗Algnu,comm)op U→ (C∗Algcomm
/C )op G→ Hausdcomp

∗/
(X,x)7→X\{∗})→ Hausdlcomp

be the functor which sends A to G(Au) \ {εA}, where εA : Au → C is the canonical
character. All functors in these compositions are equivalences.

Corollary 5.4. We have an equivalence of categories

C0 : Hausdlcomp � C∗Algnu,comm : G0

Example 5.5. We consider the functor

(−)u : C∗Algnu,comm U→ C∗Algcomm
/C

(B→C)7→B→ C∗Algcomm .

This functor sends a commutative C∗-algebra to its unitaliztion Au considered as an
object in C∗Algcomm. Under Gelfand duality this functor of C∗Algnu,comm → C∗Algcomm

corresponds to the functor

(−)+ : Hausdlcomp ((−)+,+)→ Hausd∗/
(X,x)7→X→ Hausdcomp .

This functor sends a locally compact topological space X to its one-point compactification
X+.

We consider the functor

β : Top
Cb→ C∗Algcomm G→ Hausdcomp .

The unit of the adjunction from Theorem 4.3 is a natural transformation

ι : id→ β .

Its evaluation at X is given by the map

X → β(X) = G(Cb(X)) , x 7→ (a 7→ a(x)) .
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Definition 5.6. The map X → β(X) is called the Stone-Čech compactification of X.

The following is an immediate consequence of Theorem 4.3. We just compose the functor
Cb with the equivalence G|Hausdcomp .

Corollary 5.7. We have a reflective localization

β : Top→ Hausdcomp : incl

whose unit is given by β.

Example 5.8. Assume that X is locally compact. Then the natural map X → X+

extends uniquely to a map β(X)→ X+ such that the composition X → β(X)→ X+ is
the canonical inclusion. This shows that X → β(X) is injective. Thus X can be considered
as a subspace of β(X). Since the restriction of functions along X → β(X) is the identity
Cb(β(X)) = Cb(X)) the subspace X is dense in β(X).

A C∗-algebra is separable A if it has a countable dense subset A0. We assume that A is
separable. We call a topological space second countable if its topology has a countable
base.

Note that the weak topology on A∗ is generated by the functions eva : B(A∗)→ C for all
a in A. Since a uniform limit of continuous functions is continuous and the functions eva
for a0 in A0 are dense in all such evaluation functions the topology is also generated by
the countable family functions (eva)a∈A0 . Since the topology of C is second countable it
follows that the weak topology on B(A∗) is second countable. On the other hand if X is
in Hausdcomp and has a countable base, then Cb(X) is separable.

We let Hausdcomp
sep denote the full subcategory of Hausdcomp of second countable compact

Hausdorff spaces and C∗Algcomm
sep be the full subcategory of C∗Algcomm of separable

algebras.

Corollary 5.9. The Gelfand duality restricts to an equivalence

Cb : Hausdcomp
sep � (C∗Algcomm

sep )op : G .

A locally compact Hausdorff space X is second countable if and only if its one-point
compactification X+ is second countable.

Similarly A in C∗Algnu,comm is separable if and only if A+ is separable.

Corollary 5.10. Gelfand duality restricts to an equivalence of categories

C0 : Hausdlcomp
sep � (C∗Algnu,comm

sep )op : G0 .
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6 Function calculus, positivity, and approximate units

Let A be a unital C∗-algebra and consider a in A. We let CA(a) be the sub-C∗-algebra of
A generated by a.

Definition 6.1. a is called normal if [a∗, a] = 0.

Lemma 6.2. If a is normal, then CA(a) is commutative.

Proof. We describe CA(a) explicitly. We consider C[x, y] as a ∗-algebra with the involution
determined by x∗ = y. Formally we have C[x, y] := Free∗({x, y})/I, where {x, y} is a
C2-set with the flip action, and I is generated by [x, y]. By the universal property of
C[x, y] we have a unique ∗-homomorphism C[x, y] → A which sends x to a and y to a∗.
A general element p in C[x, y] is then sent to p(a, a∗). Since C[x, y] is commutative, the
image of this homomorphism is a commutative ∗-subalgebra of A. Then

CA(a) = {p(a, a∗) | p ∈ C[x, y]} .

It is a closure of a commutative subalgebra and hence itself commutative.

We define a continuous map

c : ĈA(a)→ σ(a) , φ 7→ φ(a) .

.

Lemma 6.3. The map c : ĈA(a)→ σ(a) is a homeomorphism.

Proof. c is a continuous map between compact Hausdorff spaces. It suffices to show that
it injective and surjective.

Surjectivity follows from Lemma 4.10. If φ, φ′ are in ĈA(a) and φ(a) = φ′(a), then φ = φ′

on the image of C[x, y] which is dense in CA(a). Hence φ = φ′ by continuity.

Corollary 6.4. We have an isomorphism c∗ : Cb(σ(a))
∼=→ CA(a).

Let A be in C∗Alg and a be in A normal.

Definition 6.5 (continuous function calculus). For f in Cb(σ(a)) we define f(a) := c∗f ∈
CA(a).

Proposition 6.6.

1. (calculus) For f, g in Cb(σ(a)) and λ in C we have (f + λg)(a) = f(a) + λg(a) and
(fg)(a) = f(a)g(a), f(a)∗ = f̄(a).
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2. (spectral mapping principle) For f in Cb(σ(a)) we have σ(f(a)) = f(σ(a)).

3. (composition rule) For f in Cb(σ(a)) and g in Cb(σ(f(a)) we have g(f(a)) = (g ◦
f)(a).

Proof. The calculus properties follow from the fact that c∗ is a homomorphism.

Since c∗ is an isomorphism we have σ(f(a)) = σ(f) = f(σ(a)).

For the composition rule we argue as follows. Since f(a) ∈ CA(a) we have CA(f(a)) ⊆
CA(a). Consequently, g(f(a)) ∈ CA(a). For every ψ in ̂CA(f(a)) we have ψ(g(f(a)) =

g(ψ(f(a)). Now assume that ψ = φ|CA(f(a)) for some φ ∈ ĈA(a) Then

φ(g(f(a))) = g(φ(f(a))) = g(f(φ)) = (g ◦ f)(φ) = φ((g ◦ f)(a))

Since φ is arbitrary we conclude that g(f(a)) = (g ◦ f)(a).

We now extend the function calculus to non-unital algebras. Let A be in C∗Algnu and a
be in A normal. Then we consider (a, 0) in Au. For every p in C[x, y] we have

p((a, 0), (a∗, 0)) = (p(a, a∗), p(0, 0)) .

In the following corollary we consider A as a subalgebra of Au in the natural way. We
conclude that p((a, 0), (a∗, 0)) ∈ A provided p(0, 0) = 0.

Corollary 6.7.

1. For f in Cb(σ
u(a)) with f(0) = 0 we have f(a, 0) ∈ A. We set f(a) := f(a, 0).

2. (calculus) For f, g in Cb(σ
u(a)) with f(0) = g(0) = 0 and λ in C we have (f +

λg)(a) = f(a) + λg(a) and (fg)(a) = f(a)g(a), f(a)∗ = f̄(a).

3. (spectral mapping principle) We have σu(f(a)) = f(σu(a)).

4. (composition rule) For g in Cb(σ
u(f(a)) with g(0) = 0 we have g(f(a)) = (g ◦ f)(a).

We consider A in C∗Algnu and a in A.

Definition 6.8. a is called positive if a = a∗ and σu(a) ⊆ [0,∞).

In formulas the assertion that A is positive is written as a ≥ 0. The set of positive elements
of A is denoted by A+ := {a ∈ A | a ≥ 0}.

Let A be in C∗Algnu and assume that a is in A+
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Lemma 6.9. There exists a unique b in A+ such that b2 = a.

Proof. In order to show existence we apply the function calculus. Note that
√

0 = 0. Since
σ(a) ⊆ [0,∞) the function

√
− is continuous on σ(a). We set b :=

√
a. Since

√
− is a real

function we have b = b∗. Furthermore, by the composition rule since
√
−2

= id[0,∞), we
have b2 = (

√
a)2 = (

√
−)2(a) = a.

In order to show uniqueness, we consider c ∈ A+ such that c2 = a. Then again by the
composition rule since

√
(−)2 = id[0,∞) we have c =

√
a. Hence c = b.

Let A be in C∗Algnu.

Corollary 6.10. A is generated linearly by A+

Proof. We first write a = (a∗ + a)/2 + i(a− a∗)/2i. Since (a∗ + a)/2 and (a− a∗)/2i are
selfadjoint we conclude that A is linearly generated by selfadjoints.

We now consider a selfadjoint a in A. We must write it as a linear combination of positive
elements. We can apply the function calculus to the restriction of the continuous function
| − | to σu(a). Note that |0| = 0. We have

id = (| − |+ id)/2− (| − | − id)/2

and | − |+ id and | − | − id are non-negative functions. We therefore define the positive
and negative parts of a by

a+ := (|a|+ a)/2 , a− := (|a| − a)/2 .

Note that (|a|+a)/2 and (|a|−a)/2 belong to A+, and that a = a+−a− and a+a− = 0.

In the next lemma we characterize positivity using the norm. Let A be in C∗Algnu and a
be in A selfadjoint.

Lemma 6.11.

1. If ‖a− t‖ ≤ t for some t in R, then a in A+.

2. If ‖a‖ ≤ t and a ∈ A+, then ‖a− t‖ ≤ t.

Proof. By considering (a, 0) in Au instead of a we can assume that A is unital.

We now show Assertion 1. Since a is selfadjoint we have σ(a) ⊆ R. The subalgebra CA(a)
of A is isomorphic to Cb(σ(a)) such that a corresponds to the function x. The inequality
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‖a− t‖ ≤ t means that |x− t| ≤ t for all x in σ(a). If there existed s in σ(a) with s < 0,
then |s− t| > t which is a contradiction. Hence σ(a) ⊆ [0,∞).

We show Assertion 2. By assumption we have σ(a) ⊆ [0, t]. But then |x− t| ≤ t for all x
in σ(a).

Let A be in C∗Algnu.

Lemma 6.12. A+ is a closed cone in A.

Proof. We first show that A+ is a closed subset. Using the embedding A→ Au we reduce
to the unital case. We now assume that A is unital. Let λ be in (−∞, 0). Then λ ∈ ρ(a) for
every a in A+. Moreover, by the spectral mapping princple ‖(λ−a)−1‖ ≤ 1

|λ| . This implies

(use Neumann series, see Lemma 2.14) that λ ∈ ρ(b) for every b in A with ‖a− b‖ < |λ|.

Let now b in A be an accumulation point of A+. Then there exists a in A+ with
‖a− b‖ ≤ |λ|/2. Then λ 6∈ σ(b). Since λ is arbitrary we conclude that b ≥ 0.

For r ∈ [0,∞) and a in A+ we have σ(ra) = rσ(a) ⊆ R by the spectral mapping principle.
Hence ra ∈ A+.

Finally we consider a, b in A+ and show that then also a+ b ∈ A+. We know from Lemma
6.11.2 that

‖a− ‖a‖‖ ≤ ‖a‖ , ‖b− ‖b‖‖ ≤ ‖b‖ .
We get

‖a+ b− ‖a‖ − ‖b‖‖ ≤ ‖a− ‖a‖‖+ ‖b− ‖b‖‖ ≤ ‖a‖+ ‖b‖ .
Again by Lemma 6.11.1 we conclude that a+ b ≥ 0

Let A be in C∗Algnu and a, b be in A.

Lemma 6.13. We have σu(ab) = σu(ba).

Proof. Assume that λ is in ρu(ab). Then we will show that λ ∈ ρu(ba). Note that λ 6= 0:
We consider

c :=
1

λ
(1 + b(λ− ab)−1a) .

We calculate

c(λ− ba) =
1

λ
(1 + b(λ− ab)−1a)(λ− ba)

=
1

λ
(λ− ba+ b(λ− ab)−1aλ− b(λ− ab)−1(λ− λ+ab)a)

=
1

λ
(λ− ba+ b(λ− ab)−1aλ− b(λ− ab)−1λa+ ba)

= 1Au
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and analogously (λ− ba)c = 1Au .

Let A be in C∗Algnu and a be in A.

Lemma 6.14. We have a∗a ∈ A+

Proof. We set
b := a∗a .

Then we decompose b into the positive and negative parts:

b = b+ − b− .

We set
c := ab− .

Then we calculate

−c∗c = −b−a∗ab− = −b−(b+ − b−)b− = (b−)3 ∈ A+ ,

where we use the spectral mapping principle in order to conclude that (b−)3 ∈ A+.

We now claim that that this implies that c = 0. The claim implies that b− = 0 and hence
a∗a = b = b+ ∈ A+.

It remains to show the claim. Since σu(c∗c) = σu(cc∗) by Lemma 6.13 we also have
−cc∗ ∈ A+.

We write
c = e+ if

with selfadjoint e, f . Then we have

cc∗ + c∗c = (e+ if)(e− if) + (e− if)(e+ if) = 2e2 + 2f 2 ∈ A+

But then cc∗ = (cc∗ + c∗c) − c∗c ∈ A+. Since σu(c∗c) = σu(cc∗) we conclude that
σu(c∗c) = σu(cc∗) = {0}. But then c = 0, since ‖c‖2 = r(c∗c).

Let A be in C∗Algnu and a, b, c be in A

Lemma 6.15.

1. If a ≤ b, then c∗ac ≤ c∗bc.

2. If a, b ∈ A+ are invertible and a ≤ b, then b−1 ≤ a−1.

43



Proof. For the first assertion we write b− a = d∗d. Then c∗(b− a)c∗ = c∗d∗dc ∈ A+.

For the second assertion we first observe that 1 ≤ c implies c−1 ≤ 1 by the spectral
mapping principle.

Using Assertion 1 we have 1 =
√
a
−1
a
√
a
−1 ≤

√
a
−1
b
√
a
−1

. Hence
√
ab−1
√
a ≤ 1 which

implies b−1 ≤ a−1.

Let A be in C∗Algnu.

Definition 6.16. An approximative unit is a net (uν)ν∈N such that

1. N is a filtered poset

2. uν ∈ A+

3. N 3 ν 7→ uν ∈ A+ is order preserving

4. ‖uν‖ ≤ 1 for all ν in N

5. limN auν = a for every a in A.

Let A be in C∗Algnu.

Lemma 6.17. A admits an approximative unit.

Proof. If A is unital, then it has even a unit.

So we now assume that A is not unital. We consider the poset

N := {a ∈ A+ | ‖a‖ < 1}

with the induced partial order and the tautological family (u)u∈N .

We first show that N is filtered. To this end we consider a, b in N . We then let a′ :=
a(1− a)−1 and b′ := b(1− b) in N . Note that a = a′(1 + a′)−1 and b = b′(1 + b′)−1. We
consider

a′ + b′

1 + a′ + b′
∈ N .

We now show that

a = a′(1 + a′)−1 ≤ a′ + b′

1 + a′ + b′
and b = b′(1 + b′)−1 ≤ a′ + b′

1 + a′ + b′
.
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We claim that

0 ≤ c ≤ d implies
c

1 + c
≤ d

1 + d
.

By the claim the inequality a′ ≤ a′ + b′ indeed implies that a′

1+a′
≤ a′+b′

1+a′+b′
.

First of all we have 1 + c ≤ 1 + d. Since (−)−1 reverses order by Lemma 6 we get

1

1 + d
≥ 1

1 + c
.

We conclude that

1− 1

1 + c
≤ 1− 1

1 + d

which is the claim.

We thus have shown that N is filtered.

In order to verify Condition 5 it suffices to show limN au = a for a selfadjoint since A is
spanned by selfadjoints. Let Ω := σu(a) \ {0}.

Let ε ∈ (0,∞) and φ : CA(a)→ C0(Ω) be Gelfand isomorphism. The set

K := {ω ∈ Ω | |ω(a)| ≥ ε}

is compact. We can find g : Ω→ [0, 1] such that g|K = 1 and such that supp(g) is compact.
Let δ be in (1− ε, 1). Then

‖φ(a)− δgφ(a)‖ ≤ ε .

We set u := φ−1(δg). Then u ∈ N and ‖a− au‖ ≤ ε. For any u′ in N with u ≤ u′ we have
1− u′ ≤ 1− u and therefore a(1− u′)a ≤ a(1− u)a. This implies

‖a−au′‖2 = ‖a(1−u′)1/2(1−u′)1/2‖2 ≤ ‖a(1−u′)1/2‖2 = ‖a(1−u′)a‖ ≤ ‖a(1−u)a‖ ≤ ε .

7 The maximal norm- from ∗Algnu
C to C∗Algnu

Let A be in ∗Algnu
C . In this section we study the question how to decide whether A is

a C∗-algebra or can at least be completed to a C∗-algebra. This leads to the notion of
the maximal norm and of a pre-C∗-algebra. We then study the adjunction between the
categories of ∗-algebras, pre-C∗-algebras and C∗-algebras and deduce completeness and
cocompleteness of the latter two.

Let A in ∗Algnu
C and a be an element A.
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Definition 7.1. We define the maximal norm

‖a‖max := sup
ρ:A→B

‖ρ(a)‖B

where the supremum runs over all homomorphisms ρ : A → B in ∗Algnu
C with B a

C∗-algebra.

Here ‖ − ‖B denotes the unique C∗-norm on B. We have ‖a‖max ∈ [0,∞] since we always
have the zero representation 0 : A→ 0.

Example 7.2. We consider C[z] in ∗AlgC with involution determined by z∗ = z. In other
words C[z] ∼= Free∗({z}), where C2 acts trivially on the one-element set {z}.

Lemma 7.3. We have ‖z‖max =∞.

Proof. For every t in R we have the ∗-representation ρt : C[z]→ C uniquely determined
by z 7→ t. Then ‖ρt(z)‖ = |t|.

We now consider the C(z) in ∗AlgC with the involution again determined by z∗ = z. It is
the quotient field of C[z] to which the involution is extends using the universal property
of the quotient field.

Lemma 7.4. The maximal norm ‖ − ‖max on C(z) vanishes.

Proof. Let ρ : C(z)→ B be a homomorphism. We claim that ρ = 0.

Assume that B 6= 0. Replacing B by ρ(1C[z])Bρ(1C[z]) we can assume that ρ is unital and
B 6= 0. Let f be in C(z) \C (i.e., f is not constant). Since C(z) is a field we conclude that
(λ− f)−1 exists for every λ in C. Therefore σ(f) = ∅. Since σ(ρ(f)) ⊆ σ(f) by Lemma
1.45 we conclude that σ(ρ(f)) = ∅. In view of Example 2.19 we conclude that B = 0. This
is a contradiction.

Example 7.5. We consider the ∗-algebra of differential operators D(C) on C from Example
3.6.

Lemma 7.6. The maximal norm on D(C) vanishes.

Proof. We show that every homomorphism ρ : D(C)→ B with a C∗-algebra B is trivial.

Assume by contradiction that it is non-trivial. Then we can assume that it is unital and
B 6= 0. Otherwise we replace B by ρ(1D(C))Bρ(1D(C)). Then ρ(z) 6= 0 since [∂, z] = 1D(C)

and hence [ρ(∂), ρ(z)] = ρ(1D(C)) = 1B 6= 0. Let x := z/‖ρ(z)‖B. Then ‖ρ(x)‖B = 1.
Since x is selfadjoint we have ‖ρ(xk)‖B = 1 for all k in N. We have the relation

[∂, xk] =
k

‖ρ(z)‖B
xk−1 .
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This implies

‖[ρ(∂), ρ(xk)]‖B =
k

‖ρ(z)‖B
.

On the other hand we have ‖[ρ(∂), ρ(xk)]‖B ≤ 2‖ρ(∂)‖B for all k in N. This is a contra-
diction.

Let A be in C∗Algnu with norm ‖ − ‖A. Note that ‖ − ‖A is the unique C∗-norm on A
such that A is complete.

Lemma 7.7. We have ‖ − ‖max = ‖ − ‖A.

Proof. Let a be in A. For every ρ : A→ B we have

‖ρ(a)‖B ≤ ‖a‖A

by the automatic continuity result Corollary 3.26. This implies ‖a‖max ≤ ‖a‖A. Since
we can consider the identity representation idA : A→ A in place of ρ we get the reverse
inequality ‖a‖A ≤ ‖a‖max.

Let A in ∗Algnu
C .

Lemma 7.8. The maximal norm on A has the following properties:

1. For all a in A and λ in C we have ‖λa‖max = |λ|‖a‖max.

2. For all a in A we have ‖a∗‖max = ‖a‖max.

3. For all a, a′ in A we have ‖aa′‖max ≤ ‖a‖max‖a′‖max.

4. For all a, a′ in A we have ‖a+ a′‖max ≤ ‖a‖max + ‖a′‖max.

5. For all a, a′ in A we have ‖a∗a‖max = ‖a‖2
max (C∗-property).

6. For every morphism φ : A→ A′ in ∗Algnu
C and a in A we have ‖φ(a)‖max ≤ ‖a‖max.

Proof. We use that the norm of any C∗-algebra has these properties.

‖λa‖max = sup
ρ:A→B

‖ρ(λa)‖B

= sup
ρ:A→B

‖λρ(a)‖B

= sup
ρ:A→B

|λ|‖ρ(a)‖B

= |λ|‖a‖max .
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‖a∗‖max = sup
ρ:A→B

‖ρ(a∗)‖B

= sup
ρ:A→B

‖ρ(a)∗‖B

= sup
ρ:A→B

‖ρ(a)‖B

= ‖a‖max .

‖a+ a′‖max = sup
ρ:A→B

‖ρ(a+ a′)‖B

= sup
ρ:A→B

‖ρ(a) + ρ(a′)‖B

≤ sup
ρ:A→B

‖ρ(a)‖B + ‖ρ(a′)‖B

≤ sup
ρ:A→B

‖ρ(a)‖B + sup
ρ:A→B

‖ρ(a′)‖B

= ‖a‖max + ‖a′‖max .

‖aa′‖max = sup
ρ:A→B

‖ρ(aa′)‖B

= sup
ρ:A→B

‖ρ(a)ρ(a′)‖B

≤ sup
ρ:A→B

‖ρ(a)‖B‖ρ(a′)‖B

≤ sup
ρ:A→B

‖ρ(a)‖B sup
ρ:A→B

‖ρ(a′)‖B

= ‖a‖max‖a′‖max

‖aa∗‖max = sup
ρ:A→B

‖ρ(aa∗)‖B

= sup
ρ:A→B

‖ρ(a)ρ(a)∗‖B

= sup
ρ:A→B

‖ρ(a)‖2
B

= ‖a‖2
max

For last assertion note that

‖φ(a)‖max = sup
ρ′:A′→B

‖ρ′(φ(a))‖B ≤ sup
ρ:A→B

‖ρ(a)‖B = ‖a‖max , (7.1)

where the first inequality comes from the fact that the right supremum amounts to take
the supremum of ‖ρ(a)‖B over representations ρ : A→ B which factor over φ.

48



We consider A in ∗Algnu
C .

Definition 7.9. A is called a pre-C∗-algebra if ‖ − ‖max is finite on A.

We let preC
∗Algnu denote the full subcategory of ∗Algnu

C of pre-C∗-algebras.

By Lemma 7.7 we have the following fact.

Corollary 7.10. We have an inclusion C∗Algnu ⊆ preC
∗Algnu.

Let A be in ∗Algnu
C and consider a subset S of A. Let 〈S〉A in ∗Algnu

C denote the subalgebra
of A generated by S.

Lemma 7.11. If S consists of orthogonal projections and partial isometries, then 〈S〉A ∈
preC

∗Algnu.

Proof. We consider s in S. Then for for every ρ : 〈S〉A → B the image ρ(s) is a partial
isometry or a projection. Hence ‖ρ(s)‖B ≤ 1. This implies that ‖s‖max ≤ 1. Since every
elements of 〈S〉A is a finite linear combination of finite products of elements of S ∪ S∗ we
conclude, using Lemma 7.8, that ‖a‖max <∞ for all a in 〈S〉A.

Example 7.12. Let A and B be C∗-algebras. Then we can form the algebraic tensor
product A⊗alg B with involution (a⊗ b)∗ = a∗ ⊗ b∗.

Lemma 7.13. The algebraic tensor product A⊗alg B is a pre-C∗-algebra.

Proof. (Sketch) Let π : A⊗alg B → C be a homomorphism into a C∗-algebra. We show
that

‖π(a⊗ b)‖C ≤ ‖a‖A‖b‖B .

If A and B are unital, then we can define homomorphisms πA : A→ C by πA(a) := π(a⊗1B)
and πB : B → C by πB(b) := π(1A ⊗ b). We then conclude

‖π(a⊗ b)‖ = ‖πA(a)πb(B)‖C ≤ ‖πA(a)‖C‖πB(b)‖C ≤ ‖a‖A‖b‖B .

This implies
‖a⊗ b‖max ≤ ‖a‖A‖b‖B .

Since every element of A⊗alg B is a finite linear combination of elements of the form a⊗ b
we conclude, using Lemma 7.8, that all these elements have finite maximal norm.

The non-unital case is considerably more complicated. Using the notion of the multiplier
algebra M(C) of C we argue as follows. Without loss of generality we can assume
that the image of π is dense in C (otherwise replace C by the closure of the image).
Then there exists homomorphisms πA : A → M(C) and πB : B → M(C) such that
π(a ⊗ b) = πA(a)πB(a). Using these representations and the fact that C → M(C)
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is isometric we then argue as in the unital case. The representations πA and πB are
characterized by πA(a)π(a′ ⊗ b′) := π(aa′ ⊗ b′) and πB(b)π(a′ ⊗ b′) := π(a′ ⊗ bb′). The
difficulty consists in showing that these representations are still well-defined. One first
shows that for every a in A the linear map B 7→ π(a⊗ b) ∈ C is continuous, and similarly,
for every b in B the linear map A 7→ π(a ⊗ b) ∈ C is continuous. Then one uses an
approximative unit (uν)ν of B and observes that

lim
ν
π(a⊗ un)π(a′ ⊗ b′) = lim

ν
π(aa′ ⊗ uνb′) = π(aa′ ⊗ b′) .

This implies that the multiplier πA(a) is well-defined on π(A ⊗alg B) and bounded by
‖π(a⊗−)‖B→C .

We now study the relations between the categories C∗Algnu, preC
∗Algnu and ∗Algnu

C and
their unital versions.

Lemma 7.14. We have colocalizations

incl : preC
∗Algnu � ∗Algnu

C : Bd∞ , incl : preC
∗Alg � ∗AlgC : Bd∞

Proof. We give the argument in the non-unital case. The unital case is similar. We first
provide an explicit formula for the right-adjoint. Let A be ∗Algnu

C . Then we define the
subset

Bd(A) := {a ∈ A | ‖a‖max <∞}
of A. Using the properties of the maximal norm listed in Lemma 7.8 we see that Bd(A) is
a subalgebra of A. If φ : A→ B is a homomorphismus, then

Bd(φ) : Bd(A)→ Bd(B)

is defined by restriction of φ using (7.1). This turns Bd into a functor

Bd : ∗Algnu
C → ∗Algnu

C .

Note that A is in preC
∗Algnu if and only if Bd(A) = A.

We now define by transfinite induction a decreasing family (Bdα(A))α indexed by ordinals.

1. Bd0(A) := A

2. Bdα+1(A) := Bd(Bdα(A))

3. Bdα(A) :=
⋂
β<α Bdβ(A) if α is limit ordinal.

By construction, if α ≤ α′, then we have Bdα
′
(A) ⊆ Bdα(A). If α′ ≥ α ≥ |A| then

Bdα
′
(A) = Bdα(A). So the decreasing family eventually stabilizes. We define

Bd∞(A) :=
⋂
α

Bdα(A) .
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We claim that Bd∞(A) ∈ preC
∗Algnu. Indeed this follows from

A = Bd(Bd∞(A)) = Bd∞+1(A) = Bd∞(A) .

We have defined a functor

Bd∞ : ∗Algnu
C → preC

∗Algnu .

We now construct the adjunction. The counit c : incl ◦ Bd∞ ⇒ id of the adjunction is
given by the canonical inclusions

cA : Bd∞(A)→ A

for all A in ∗Algnu
C . Naturality is straightforward to check. For every B in preC

∗Algnu we
consider the map

β : HompreC∗Algnu(B,Bd∞(A))
incl∼= Hom∗Algnu

C
(B,Bd∞(A))

cA,∗→ Hom∗Algnu
C

(B,A) .

The first isomorphism reflects the fact that the functor incl is fully faithful by definition.
We claim that β is a bijection. Since cA is injective, β is injective. In order to show that
β is also surjective, we consider a homomorphism φ : B → A, where B is in preC

∗Algnu.
Using that φ is contractive w.r.t. to the maximal norms (see (7.1)) we conclude that φ
takes values in Bd∞(A). Hence φ factorizes over cA and is therefore in the image of β.

Example 7.15. We have Bd∞(C[z]) = C. In fact, already Bd(C[z]) = C. In order to
see this let p be in C[z] non-constant. Then ‖ρt(p)‖ = |p(t)|. We have supt∈R ‖ρt(p)‖ =
supt∈R |p(t)| =∞. Hence ‖p‖max =∞. See Example 7.2 for notation.

Lemma 7.8 has the following consequence.

Corollary 7.16. If A is in preC
∗Algnu, then ‖ − ‖max is a semi norm

Lemma 7.17. We have localizations

compl : C∗Algnu � preC
∗Algnu : incl , compl : C∗Alg � preC

∗Alg : incl

Proof. We discuss the non-unital case. The unital case is analoguous.

We first construct the left-adjoint which is called the completion functor. Let A be in

preC
∗Algnu. We first observe that

I := {a ∈ A | ‖a‖max = 0}

is ∗-ideal. Indeed, if i is in I, then also i∗ ∈ I since ‖i∗‖max = ‖i‖max = 0. If i, i′ ∈ I and
λ ∈ C, then

‖i+ λi′‖max ≤ ‖i‖max + |λ|‖i′‖max = 0 ,
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hence i + λi′ ∈ I. Finally, if i is in I and a is in A, then ‖ai‖max ≤ ‖a‖max‖i‖max = 0,
hence ai ∈ I.

We form the quotient A/I in ∗Algnu
C . We define a seminorm

‖[a]‖ := ‖a‖max .

This seminorm is well-defined since

‖a+ i‖max ≤ ‖a‖max +‖i‖max = ‖a‖max = ‖a+ i− i‖max ≤ ‖a+ i‖max +‖i‖max = ‖a+ i‖max

for all i, and therefore the inequalities are equalities. If ‖[a]‖ = 0, then a ∈ I and hence
[a] = 0. Therefore ‖ − ‖ is a norm. on A/I. One checks using Lemma 7.8 that ‖ − ‖ is a
submultiplicative ∗-norm and satisfies the C∗-equality.

We let compl(A) denote the completion of A/I in the sense of normed vector spaces. Note
that A/I → compl(A) is injective. Since ‖ − ‖ is submultiplicative the multiplication
extends by continuity. The extension of the norm to the completion exhibits compl(A) as
a C∗-algebra.

Let φ : A→ B be a homomorphism. We write IA and IB for the ideals of zero elements
on A and B. By (7.1) we see that φ(IA) ⊆ IB. Hence we get an induced homomorphism
represented by the dotted arrow in

IA
φ|IB //

��

IB

��

A

��

φ
// B

��

A/IA

��

// B/IB

��

compl(A)
compl(φ)

// compl(B)

.

The dashed arrow is obtained from the universal property of the completion.

We now have constructed a functor

compl : preC
∗Algnu → C∗Algnu .

The unit of the adjunction id⇒ incl ◦ compl is given by the canonical homomorphisms

iA : A→ compl(A) .

For A in preC
∗Algnu and B in C∗Algnu we consider the map

α : HomC∗Algnu(compl(A), B)
incl∼= HompreC∗Algnu(incl(compl(A)), incl(B))

ι∗A→ HompreC∗Algnu(A, incl(B)) .
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We show that α is a bijection. We first show that α is injective. Assume that φ, φ′ are in
HomC∗Algnu(compl(A), B) such that α(φ) = α(φ′). Then φ and φ′ coincide on the image of
iA. Since this is dense in compl(A), we conclude φ = φ′ by continuity.

We now show that α is surjective. Let φ be in HompreC∗Algnu(A, incl(B)). Then ‖φ(a)‖B ≤
‖a‖max. Therefore φ(IA) = 0. Hence we have a factorization given by the dotted arrow in
the following diagram

A
ψ

//

��

B

A/I

99

// compl(A)

φ

OO .

The dashed arrow is the continuous extension of the dotted arrow to the completion which
exists by the universal property of the latter and since B is complete. By construction we
have α(φ) = ψ. Hence α is surjective.

Example 7.18. Let A and B be in C∗Algnu. Then we have A⊗alg B in preC
∗Algnu by

Lemma 7.13.

Definition 7.19. The maximal tensor product is defined by

A⊗max B := compl(A⊗alg B) .

One can check that for C in C∗Algnu the set HomC∗Algnu(A ⊗ B,C) is in bijection with
the set of bilinear maps A×B → C which are compatible with the involutions.

Remark 7.20. We have a functor

compl ◦ Bd∞ : ∗Algnu
C → C∗Algnu .

It is a composition of a right-adjoint and a left adjoint.

1. compl ◦ Bd∞(C[z])) ∼= C.

2. compl(C(z)) = 0

3. compl(D(z)) = 0

We now want to show that the categories of pre-C∗-algebras and C∗-algebras are complete
and cocomplete. We will use the following fact. Assume that

L : C � D : R

is a reflective localization, i.e., an adjunction such that R is fully faithful.
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Proposition 7.21.

1. If C is complete, then so is D. The functor R preserves and detects limits.

2. If C is cocomplete, then so is D. If D : I→ D is a diagram in D, then

colim
I

D ∼= L(colim
I

R(D)) .

Proof. Since R is fully faithful, we can identify D with the essential image of R. We will
omit the inclusion from the notation.

We first consider limits. Let W be the class of morphisms in C which are send to
isomorphisms by L. An object C of C is called W -local if for every w in W the morphism
HomC(w,C) is an isomorphism. We claim that D consists exactly of the W -local objects.
Indeed, if D is in D, then it is W -local since HomC(w,D) ∼= HomC(L(w), D).

Assume now that C is W -local. Let η : C → L(C) be the unit of the adjunction. We show
that η is an isomorphism. This implies that D ∈ D. The map η itself belongs to W since

L(C)
L(η)→ L(incl(L(C)))

counit◦L→ L(C)

is an isomorphism by the triple identity of the adjunction (here it is useful to write the
inclusion), and the counit is an isomorphism since R is fully faithful. Since we assume
that C is W -local

HomC(L(C), C)
η∗→ HomC(C,C)

is an isomorphism. We let κ : L(C) → C be the preimage of idC . Then by definition
κ ◦ η = idC . This implies that κ ∈ W since L(κ) ◦ L(η) = idL(C) and L(η) is an
isomorphism. Furthermore

HomC(C,L(C))
κ∗→ HomC(L(C), L(C)) .

is an isomorphism. Hence there exists δ : C → L(C) such that δ ◦ κ = idL(C). Both
equalities togther imply that δ = η and hence η is invertible.

We now show that D is closed under limits. Let D : I→ D be a diagram. Then for every
w in W we have HomC(w, limID) ∼= limI Hom(w,D). Since a limit of isomorphisms is an
isomorphism we conclude that HomC(w, limID) is an isomorphism. Since w is arbitrary
we conclude that limID is W -local and hence in D.

Since D → C is fully faithful, we can conclude that D has all limits. They are calculated
in C. This finishes the proof of Assertion 1.

Let D : I → D be a diagram in D. Since C is cocomplete we can form the colimit
colimIR(D). Its structure maps (ιi : R(Di)→ colimIR(D)) induce a bijection

HomC(colim
I

R(D), R(D′)) ∼= lim
Iop

HomD(R(D), R(D′)) .
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Using the adjunction and the fact that R is fully faithful (and therefore that the counit

L ◦R
∼=→ id is an isomorphism) we conclude that the structure maps

Di
∼= L(R(Di))

L(ιi)→ L(colim
I

R(D)) (7.2)

induce a bijection

HomD(L(colim
I

R(D)), D′) ∼= lim
Iop

HomD(D,D′) .

Hence the family of structure maps (7.2) for i in I presents L(colimIR(D)) as the colimit
of the diagram D in D.

We can conclude that D is cocomplete.

Corollary 7.22.

1. The categories preC
∗Algnu and preC

∗Alg are cocomplete. The inclusion preC
∗Algnu →

∗Algnu
C (and preC

∗Alg→ ∗AlgC, respectively) detects and preserves colimits.

2. The categories preC
∗Algnu and preC

∗Alg are complete. The limit of a diagram
C : I→ preC

∗Algnu (or C : I→ preC
∗Alg, respectively) is calculated by

lim
I
C ∼= Bd∞(lim

I
incl(C)) .

Proof. Use the analog of Proposition 7.21 for colocalizations obtained by taking opposites
and apply it to the colocalizations from Lemma 7.14.

Corollary 7.23.

1. The categories C∗Algnu and C∗Alg are complete. The inclusion C∗Algnu →
preC

∗Algnu (and C∗Alg→ preC
∗Alg, respectively) detects and preserves limits.

2. The categories C∗Algnu and C∗Alg are cocomplete. The colimit of a diagram
C : I→ C∗Algnu (or C : I→ C∗Alg, respectively) is calculated by

colim
I

C ∼= compl(colim
I

incl(C)) .

Proof. Use Proposition 7.21 for the localizations from Lemma 7.17.

8 Some limits and colimits in C∗Alg and C∗Algnu

Let (Ai)i∈I be a family of C∗-algebras in C∗Algnu.
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Lemma 8.1. The product
∏C∗Algnu

i∈I Ai is the subalgebra of the product
∏∗Algnu

C
i∈I Ai consist-

ing of sequences (ai)i∈I with

‖(ai)i‖ := sup
i∈I
‖ai‖Ai <∞ .

Proof. By Corollary 7.22 the product of the family in preC
∗Algnu is given by

preC∗Algnu∏
i∈I

Ai = Bd∞(

∗Algnu
C∏

i∈I

Ai) .

If fact if a sequence (ai)i in
∏∗Algnu

C
i∈I Ai is in Bd(

∏∗Algnu
C

i∈I Ai) then ‖(ai)i‖ < ∞ since we
can using the projections to a components as test representations. We now observe that
the subalgebra of bounded sequences with the norm ‖ − ‖ is actually a C∗-algebra. This

immediately implies that Bd(
∏∗Algnu

C
i∈I Ai) = Bd∞(

∏∗Algnu
C

i∈I Ai) is exactly the subalgebra
of bounded sequences. By Corollary 7.22 this subalgebra also represents the product in
C∗Algnu.

If the family (Ai)i∈I has infinitely many members, then the inclusion

C∗Algnu∏
i∈I

Ai →
∗Algnu

C∏
i∈I

Ai

is proper.

Let

A

f

  

g

AAB .

be an equalizer diagram in C∗Algnu.

Lemma 8.2. The equalizer EqC
∗Algnu

(f, g) is the subalgebra {a ∈ A | f(a) = g(a)} of A.

Proof. The equalizer Eq
∗Algnu

C (f, g) = {a ∈ A | f(a) = g(a)} is a closed subalgebra of A
and hence a C∗-algebra. It follows that

Eq
∗Algnu

C (f, g) = EqpreC∗Algnu

(f, g) = EqC
∗Algnu

(f, g) .

Let (Ai)i∈I be a family of C∗-algebras in C∗Algnu.
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Lemma 8.3. We have
C∗Algnu∐
i∈I

Ai ∼= compl(

∗Algnu
C∐

i∈I

Ai) .

Proof. We have

C∗Algnu∐
i∈I

Ai ∼= compl(

preC∗Algnu∐
i∈I

Ai) = compl(

∗Algnu
C∐

i∈I

Ai) .

Note that
∐∗Algnu

C
i∈I Ai is the algebraic free product. The completion is usually strictly

bigger.

Let A be in C∗Algnu, and let I be a closed ∗-ideal in A. The quotient A/C
∗Algnu

I is
defined as the push-out

I //

��

A

��

0 // A/C
∗Algnu

I

(8.1)

in C∗Algnu. By construction it is the completion of the quotient A/
∗Algnu

C I taken in the
sense of algebras. In order to work with quotients we must understand this completion
explicitly.

On A/
∗Algnu

C I can consider the norm obtained by taking the quotient in the sense of normed
vector spaces, i.e., ‖[a]‖ := infi∈I ‖a+ i‖. Our next goal is to show that this is exactly the
norm on A/C

∗Algnu
I.

Let (uν)µ∈N be an approximate unit of I.

Lemma 8.4. We have
‖[a]‖ = lim

ν∈N
‖a− uνa‖ . (8.2)

Proof. Since uνa ∈ I for every ν in N we have ‖[a]‖ ≤ ‖a− uνa‖. This implies

‖[a]‖ ≤ lim inf
ν∈N

‖a− uνa‖ . (8.3)

We fix ε in (0,∞). Then there exists i in I such that ‖a+ i‖ ≤ ‖[a]‖+ ε/2. There exists
ν0 in N such that ‖i− uνi‖ ≤ ε/2 for all ν in N with ν ≥ ν0. Then (working in Au if A is
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not unital)

‖a− uνa‖ = ‖(a+ i)− uν(a+ i)− (i− uνi)‖
≤ ‖(1A − uν)(a+ i)‖+ ‖i− uνi‖
≤ ‖a+ i‖+ ‖i− uνi‖
≤ ‖[a]‖+ ε

for all such ν. Since we can chose ε arbitrary small this implies

lim sup
ν∈N

‖a− uµa‖ ≤ ‖[a]‖ . (8.4)

The inequalities (8.3) and (8.4) together imply the assertion.

Lemma 8.5. A/C
∗Algnu

I is isomorphic to the algebra A/I with the Banach-quotient norm.

Note that this lemma says in particular that forming quotients does not involve any
completion.

Proof. We use Corollary 7.23 saying that

A/C
∗Algnu

I ∼= compl(A/
∗Algnu

C I) ,

where A/I is already known to be a pre-C∗-algebra by Corollary 7.22. We know that ‖−‖
presents A/

∗Algnu
C I as a Banach space. It suffices to show that ‖ − ‖ is submultiplicative

and satisfies the C∗-identity. We have, writing (a + i)(b + j) = ab + ib + aj + ij with
ib+ aj + ij ∈ I,

‖[a][b]‖ = ‖[ab]‖ = inf
i∈I
‖ab+ i‖ ≤ inf

i
‖a+ i‖ inf

j
‖b+ j‖ = ‖[a]‖‖[b]‖ .

We now calculate, using that I = I∗,

‖[a]∗‖ = ‖[a∗]‖ = inf
i∈I
‖a∗ + i‖ = inf

i∈I
‖a∗ + i∗‖ = inf

i∈I
‖a+ i‖ = ‖[a]‖ .

We finally verify the C∗-equality. We can assume that A is unital. Otherwise work in Au.
By Lemma 8.4 we have

‖[a]‖2 = lim
ν∈N
‖a− uνa‖2

= lim
ν∈N
‖(a− uνa)(a∗ − a∗uν)‖

= lim
ν∈N
‖(1− uν)aa∗(1− uν)‖

≤ lim
ν∈N
‖(1− uν)aa∗‖

= ‖[aa∗]‖ .

On the other hand we have

‖[aa∗] ≤ ‖[a]‖‖[a∗]‖ = ‖[a]‖2 .
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Both inequalities togther imply

‖[a]‖2 = ‖[aa∗]‖ .

Corollary 8.6. The square (8.1) is also a pull-back square.

Proof. The point here is that I is the kernel of the quotient map A→ A/C
∗Algnu

I. This is
not apriori clear, but follows from Lemma 8.5.

From now on we will just write A/I for the quotient of a C∗-algebra by a closed ideal.

Let

A

f

  

g

AAB .

be a coequalizer diagram in C∗Algnu. We let I be a closed ideal generated by the elements
f(a)− g(a) for all a in A.

Corollary 8.7. The quotient map π : B → B/I presents B/I as the coequalizer
CoeqC

∗Algnu

(f, g).

Proof. First of all it is clear that π ◦ f = π ◦ g. Let C be in C∗Algnu and consider a
homomorphism h : B → C such that h ◦ f = h ◦ g. Then h(f(a)− g(a)) = 0 for all a in
A. Hence h factorizes uniquely through a ∗-algebra morphism h̄ : B/I → C. This is then
also a morphism in C∗Algnu.

The following examples demonstrate constructions of C∗-algebras by generators and
relations. In general we first construct the free ∗-algebra on the generators, and then
implement the relations by forming a quotient. Then we must ensure that the result is a
pre-C∗-algebra so that we can form the closure. Sometimes there may be further closures
with respect non-maximal norms.

Example 8.8. Let G be a group and consider the group ∗-algebra C[G] from Example
3.5.

Lemma 8.9. C[G] is in preC
∗Alg.

Proof. Every element in C[G] is a finite linear combinations of elements [g] for g in G. It
suffices to show that ‖g‖max <∞. But since [g]∗ = [g−1] = [g]−1 we see that [g] is unitary
and hence ‖[g]‖max ≤ 1.
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Definition 8.10. The C∗-algebra C∗(G) := compl(C[G]) is called the maximal group
C∗-algebra.

We can consider C∗(G) as the C∗-algebra which generated the C2-set G (whose elements
we write as [g]) with the action [g] 7→ [g−1] subject to relations [g][g′] = [gg′].

This C∗-algebra has a natural representation ρ on the Hilbert space L2(G). It is determined
by (ρ([g])f)(h) := f(g−1h).

(ρ([g][g′])f)(h) = (ρ([gg′])f)(h) = f((gg′)−1h)

= f(g′,−1g−1h) = ρ([g])(f(g′,−1h)) = (ρ([g])ρ([g′])(f))(h)

hence ρ([g][g′]) = ρ([g])ρ([g′]). Furthermore

〈ρ([g])(f), f ′〉 =
∑
h∈G

f̄(g−1h)f ′(h) =
∑
h∈G

f̄(h)f ′(gh) = 〈f, ρ([g]∗)(f ′)〉 ,

hence ρ([g])∗ = ρ([g]∗). We define the reduced norm ‖ − ‖r on C[G] by ‖x‖r :=
‖ρ(x)‖B(L2(G).

Definition 8.11. We define the reduced group C∗-algebra C∗r (G) as the completion of
C[G] with respect to the norm ‖ − ‖r.

Equivalently, C∗r (G) is the sub-C∗-algebra of B(L2(G)) generated by the elements ρ([g])
for all g in G which satisfy the relations as above.

Since ‖ − ‖r ≤ ‖ − ‖max we have a canonical homomorphism

C∗(G)→ C∗r (G) .

In general, this is not an isomorphism. It is one if G is amenable.

If κ : G → U(H) is any unitary representation of G on a Hilbert space, then we get
an extension to a ∗-homomorphism κ : C[G] → B(H) and hence a homomorphism
κ : C∗(G)→ B(H). We apply this to the trivial representation of G and get a character

κ1 : C∗(G)→ C

characterized by κ1([g]) = 1 for all G. In general this homomorphism does not factorize
through C∗(G)→ C∗r (G).

For example, let F2 be the free group on two generators. Then C∗r (F ) does not have any
non-trivial finite-dimensional representation. But as the example above shows, C∗(F2) has
one.

Example 8.12. We consider a finite set S and let S ′ be a second copy. We write s′ for
the copy of s in S ′. Then S t S ′ has a natural C2-action sending s to s′. We can form the
free unital ∗-algebra algebra Free∗(S t S ′). Inside this free algebra we consider the ideal I
generated by the elements generated by
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1. s′ − s∗

2.
∑

s∈S ss
′ − 1

3. s′s− 1A.

Then AS := Free∗(S t S ′)/I. The ∗-algebra AS is generated as a ∗-algebra by the image
of the set S in AS. The relations imply that ‖ρ(s)‖ ≤ 1 for any representation of AS in a
C∗-algebra. It follows that AS is in preC

∗Alg.

Definition 8.13. The C∗-algebra OS := compl(A) is called the Cuntz algebra on S.

One can show that A has a unique C∗-norm. Therefore any unital representation ρ :
OS → B is injective. It is determined by fixing a collection of isometries (bs)s∈S such that∑

s bsb
∗
s = 1B and ρ(s) = bs.

9 C∗-categories

In this lecture course we do not require that categories have identity morphisms. A
category which has identity morphisms will be called unital. We have a category Catnu of
categories and functors. It contains the subcategory Cat of unital categories and identity
preserving (unital) functors.

Example 9.1. A magma M can be considered as an object BM of Catnu. It has one
object ∗, and its endmorphisms are given by EndBM(∗) = M with the composition given
by the magma structure on M .

If M is a monoid, then we have BM ∈ Cat.

We have an adjunction
(−)u : Catnu � Cat : incl

where the left-adjoint adds units to all endomorphism sets (a new one even if there was
already one).

Definition 9.2. A VectC-enriched category is a category is a category together with
C-vector space structures on the morphism sets such that the composition is bilinear.

A functor between VectC-enriched categories is a functor which induces linear maps between
the morphism sets.

We get the category Catnu
C of VectC-enriched categories and functors and the full subcat-

egory CatC of unital VectC-enriched categories and unital functors.
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Example 9.3. If A is an algebra over C, then the category of A-modules Mod(A) is
naturally an object of CatC. The wide subcategory Mod(A)c of Mod(A) of morphisms
with finite-dimensional range belongs to Catnu

C .

Example 9.4. The categories AlgC and Algnu
C are full subcategories of CatC and Catnu

C
consisting of the categories with a single object.

If C is in CatC and Catnu
C , then EndC(C) belongs to AlgC or Algnu

C , respectively, for
every object C of C.

We have adjunctions

C[−] : Catnu � Catnu
C : forget , C[−] : Cat � CatC : forget ,

where the right-adjoints forget the enrichments, and the left-adjoints replace the morphism
sets by free C-vector spaces generated by them.

Example 9.5. For a magma M the magma algebra C[M ] is the same as C[BM ].

We have a unitalization adjunction

(−)u : Catnu
C � CatC : incl .

Applying the left-adjoint (−)u to C amounts to replace EndC(C) by EndC(C)u for every
object C in C and extending the composition in the obvious way.

The following has no analogue in the case of algebras.

Lemma 9.6. We have an adjunction

incl : CatC � Catnu
C : U .

Proof. We construct the functor U . Let D be in Catnu
C . Then U(D) is given as follows.

1. objects: The objects of U(D) are pairs (D, p) of an object D in D and a projection
p in EndD(D).

2. morphisms: We define HomU(D)((D, p), (D
′, p′)) := p′HomD(D,D′)p.

3. composition and enrichment: The composition and the C-enrichment is inheritied
from C.

Note that U(D) is unital. The unit of the object (D, p) is given by p.

If φ : D→ D′ is a functor, then U(φ) : U(D)→ U(D′) is given as follows:
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1. objects: U(φ)(D, p) := (φ(D), φ(p)).

2. morphisms: U(φ)(f) := φ(f).

Note that U(φ) is unital. The counit of the adjunction evaluated at D is the functor
incl(U(D)) → D which sends (D, p) to D and is the canonical inclusion on the level of
morphisms. We now check the universal property. We consider for C in C∗Cat the map

α : HomC∗Cat(C, U(D))
incl→ HomC∗Catnu(incl(C), incl(U(D)))

counit→ HomC∗Catnu(incl(C),D) .

We must check that this map is a bijection. Let φ, φ′ : C→ U(D) be two functors such
that α(φ) = α(φ′). Then we have α(φ(C)) = α(φ′(C)) for all objects C ′ in C and also
α(φ(1C)) = α(φ′(1C)). This implies φ(C) = φ′(C) in U(D). It is clear that α is injective
on morphisms. We conclude that α is injective.

Let now ψ : incl(C) → D be given. Then we define φ : C → U(D) by φ(C) :=
(ψ(C), ψ(1C)) and φ(f) := ψ(f). Then α(φ) = ψ. This shows surjectivity.

Example 9.7. If A is in Algnu
C , then U(A) in CatC is in general a C∗-category with many

objects, namely the set of projections in A.

Example 9.8. For any C in CatC we can consider the category Fun(C,VectC) of unital
functors in CatC and natural transformations. It is again an object of CatC.

We have a Yoneda embedding

Y : C→ Fun(Cop,VectC)

given as follows:

1. objects: An object C in C is sent to the functor Y (C) := HomC(−, C)

2. morphisms: A morphism f : C → C ′ in C is sent to the natural transformation
f∗ : HomC(−, C)→ HomC(−, C ′).

We have the Yoneda Lemma

HomC(C,C ′) ∼= HomFun(Cop,VectC)(Y (C), Y (C ′))

with the usual proof.

All this except the Yoneda Lemma extends to the non-unital case.

In the case of ∗-categories below the analogue of the Yoneda embedding turns out to be
considerably more involved.
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An involution on C in Catnu
C is a functor ∗ : Cop → C which fixes objects, is anti-linear

on morphism spaces, and satisfies ∗op ◦ ∗ = id. In the unital case we require that ∗ is
unital.

A C-linear ∗-category as a pair of an object C in Catnu
C or CatC together with an involution.

We get the categories ∗Catnu
C and ∗CatC of C-linear ∗-categories and ∗-preserving functors

and the subcategory of unital C-linear ∗-categories and ∗-preserving unital functors.

Example 9.9. The categories ∗AlgC and ∗Algnu
C are full subcategories of CatC and Catnu

C
consisting of the categories with a single object.

Example 9.10. The category Hilb(C) of Hilbert spaces and bounded operators belongs
to ∗CatC. The involution is given by taking adjoints. Its wide subcategory of Hilbert
spaces and compact operators Hilbc(C) belongs to ∗Catnu

C

We have a unitalization adjunction

(−)u : ∗Catnu
C � ∗CatC : incl .

Again the inclusion is also a left-adjoint.

Lemma 9.11. We have an adjunction incl : ∗CatC � ∗Catnu
C : U .

Proof. The argument is similar as for Lemma 9.6. The only difference is that U(D) consists
of the pairs (D, p) with p∗ = p.

We have a functor
Ob : C∗Catnu → Set

which takes the set of objects. We have a functor

C[−] : Set→ ∗CatC

which sends a set to the category obtained by linearization of the set considered as a
discrete category. There is a unique involution on this category. We furthermore have a
functor

0[−] : Set→ ∗CatC

which sends a set to the zero-category with the given set of objects (and with zero morphism
spaces).

Lemma 9.12. We have the following adjunctions:

Ob : ∗Catnu
C � Set : 0[−] (9.1)

0[−] : Set � ∗Catnu
C : Ob (9.2)

Ob : ∗CatC � Set : 0[−] (9.3)

C[−] : Set � ∗CatC : Ob (9.4)
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Proof. We just give the units or counits determining the structure. The counit of (9.1) at
a set X given by the identity Ob(0[X])→ X.

The counit of (9.2) at C is given by the canonical functor 0[Ob(C)]→ C. Note that this
is not unital in general.

The counit of (9.3) at a set X is again given by the identity Ob(0[X])→ X.

The counit of (9.4) at C is given by the canonical functor C[Ob(C)]→ C, which sends
the unit of C considered as an object of C[Ob(C)] to 1C . This functor is unital.

A representation of C in ∗Catnu
C is a functor ρ : C→ A where A is in Algnu

C . Note that
C∗Algnu is a full subcategory of Algnu

C and hence of ∗Catnu
C .

A norm on C in ∗Catnu
C is a function Mor(C)→ [−∞,∞].

Definition 9.13. We define the maximal norm ‖ − ‖max on C by

‖f‖ := sup
ρ:C→A

‖ρ(f)‖A

where the supremum is taken over all representations of C into some A in C∗Algnu.

Since we alway have the zero representation we have ‖f‖ ∈ [0,∞].

Lemma 9.14. The maximal norm on C has the following properties:

1. For all f in C and λ in C we have ‖λf‖max = |λ|‖f‖max.

2. For all f in C we have ‖f ∗‖max = ‖f‖max.

3. For all composeable f, f ′ in C we have ‖ff ′‖max ≤ ‖f‖max‖f ′‖max.

4. For all parallel f, f ′ in C we have ‖f + f ′‖max ≤ ‖f‖max + ‖f ′‖max.

5. For all f in C we have ‖f ∗f‖max = ‖f‖2
max (C∗-property).

6. For every functor φ : C→ C′ in ∗Catnu
C and f in C we have ‖φ(f)‖max ≤ ‖f‖max.

7. For every pair of morphisms f, g with the same domain we have the C∗-inequality
‖ff ∗‖max ≤ ‖ff ∗ + gg∗‖max.

Proof. The argument is the same as for Lemma 7.8.

Let C be in ∗Catnu
C .
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Definition 9.15. We call C a pre-C∗-category if ‖f‖ <∞ for every morphism f in C.

We get the full subcategories preC
∗CatC and preC

∗Catnu
C of ∗CatC and ∗Catnu

C , respec-
tively. The categories preC

∗Algnu and preC
∗Alg are full subcategories of preC

∗Catnu
C and

preC
∗CatC, respectively.

Lemma 9.16. We have colocalizations

incl : preC
∗CatC � ∗CatC : Bd∞ , incl : preC

∗Catnu
C � ∗Catnu

C : Bd∞ .

Proof. This is completely analoguous to the one of Lemma 7.14.

These colocalizations restrict to the colocalizations from Lemma 7.14.

Let C be in preC
∗Catnu

C .

Definition 9.17. C is called a C∗-category if its morphism spaces are complete with
respect to the maximal norm.

Lemma 9.18. We have adjunctions

compl : preC
∗CatC � C∗Cat : incl , compl : preC

∗Catnu
C � C∗Catnu : incl .

Proof. The proof is completely analoguous to the proof of Lemma 7.17.

We now show that all the categories above are complete and cocomplete.

To this end we consider the adjunction

C[−] : ∗Cat � ∗CatC : incl , C[−] : ∗Catnu � ∗Catnu
C : incl

where ∗Cat and ∗Catnu are categories with involution (fixing objects) and the left adjoint
linearizes the morphism spaces and extends the involution antilinearly. Note that this is
not a localization since the right-adjoint is not fully faithful.

Our starting point is that Cat is complete and cocomplete. By the localization (−)u :
Catnu ↔ Cat : incl also Catnu is complete and cocomplete.

Lemma 9.19. The categories ∗Cat and ∗Catnu are complete and cocomplete.

Proof. One calculates the limits and colimits on the level of underlying categories and then
implements the involution by functoriality. Then one checks the universal properties.

Lemma 9.20. The categories ∗CatC and ∗Catnu
C are complete and cocomplete.
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Proof. One calculates the limits and colimits on the level of underlying ∗-categories. Then
one introduces the C-enrichment in the natural way and checks universal properties.

Corollary 9.21. The categories preC
∗CatC, preC

∗Catnu
C , C∗Cat and C∗Catnu are com-

plete and cocomplete.

Proof. Use the adjunctions.

Lemma 9.22 (M. Joachim). We have adjunctions

Af : C∗Cat � C∗Alg : incl , Af : C∗Catnu � C∗Algnu : incl .

Proof. We disuss the non-unital case. The unital case is analoguous.

We construct the C∗-algebraAf (C). We first form the free non-unital ∗-algebra Free∗,nu(Mor(C))
on the C2-set of morphisms if C. In Free∗,nu(Mor(C)) we form the ideal I(C) generated by

1. [f ] + λ[g]− [f + λg] if f, g : C → C ′ and λ in C.

2. [f ][g]− [f ◦ g] if f ◦ g is defined.

Then we set
Af,alg(C) := Free∗,nu(Mor(C))/I(C) .

We have a canonical functor

C→ Af,alg(C) , f 7→ [f ] .

The relations are minimal such that this functor is well-defined. We observe that this
is a pre-C∗-algebra. To this end we show that ‖[f ]‖max ≤ ‖f‖. Let ρ : Af,alg(C) → B
be a ∗-homomorphism. Let f : C → C ′. Then we get a ∗-homomorphism EndC(C) →
Af (C)→ B. Since EndC(C) is a C∗-algebra we see that

‖ρ([f ])‖2
B = ‖ρ([f ∗f ])‖B ≤ ‖f ∗f‖EndC(C) = ‖f‖2

C .

We define
Af (C) := compl(Af,alg(C)) .

We have a canonical functor

C→ Af (C) , f 7→ [f ] .

This functor is natural in C and the unit of the adjunction.

We check that

HomC∗Algnu(Af (C), B)
incl→ HomC∗Catnu(Af (C), B)

unit∗→ HomC∗Catnu(C, B)
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is a bijection.

We first show surjectivity. Let φ : C → B be given. Then we define Af(C) → B such
that [f ] 7→ φ(f). A priori this defines a homomorphism Free∗,nu(Mor(C)) → B, but it
annihilates the ideal I(C) and therefore factorizes over Af (C). This homomorphism is a
pre-image of φ.

In order to show injectivity, consider ψ, ψ′ : Af (C)→ B and assume that they go to the
same functor C→ B, then ψ([f ]) = ψ′([f ]) for all morphisms and hence ψ = ψ′.

Some facts about C∗-categories can be deduced from the corresponding facts for C∗-
algebras. It turns out that the functor Af is not so appropriate for this purpose. We
therefore associate to every C∗-category C another C∗-algebra A(C).

We first define the algebra

Aalg(C) :=
⊕

C,C′∈Ob(C)

HomC(C,C ′) .

We consider elements of Aalg(C) as matrices M = (MC′,C) indexed by the set Ob(C) with
finitely many non-zero entries, where MC′,C ∈ HomC(C,C ′). The composition is induced
by matrix multiplication

(M ′M)C′′,C :=
∑

C′∈Ob(C)

M ′
C′′,C′ ◦MC′,C

and the involution is given by
(M∗)C′,C := M∗

C,C′ .

If f : C → C ′ is a morphism in C, then we let [f ] denote the corresponding matrix with a
single non-trivial entry. We have a canonical functor

C→ Aalg(C) , f 7→ [f ] .

It is initial for functors ρ : C→ B to ∗-algebras such that

ρ(f ′)ρ(f) =

{
ρ(f ′ ◦ f) f ′ ◦ f is defined

0 else

Lemma 9.23. Aalg(C) is in preC
∗Algnu.

Proof. Let ρ : Aalg(C) → B be a homomorphism to a C∗-algebra. Let f : C → C ′ be a
morphism in C. Then we have

‖ρ(f)‖2 = ‖ρ(f)∗ρ(f)‖B = ‖ρ(f ∗f)‖B ≤ ‖f ∗f‖2
EndC(C) = ‖f‖C .

Since B is arbitrary this implies that ‖[f ]‖max ≤ ‖f‖C. Since Aalg(C) is algebraically
generated by elements of finite maximal norm we conclude that Aalg(C) is a pre-C∗-
algebra.
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Definition 9.24. We define the C∗-algebra A(C) := compl(Aalg(C)).

The construction C 7→ A(C) is functorial for functors which are injective on objects.

Our next goal is to show that the functor C→ A(C) is isometric. In order to do this we
must show that ‖ − ‖max on Aalg(C) is sufficiently large. To this end we must construct
representations of this algebra. These will be representations by endomorphisms on some
Hilbert C∗-modules.

10 Hilbert C∗-modules and Yoneda

In this section we associate to any C∗-algebra A the C∗-category Hilb(A) of Hilbert
C∗-modules over A. The notion of a Hilbert C∗-module generalizes the notion of a Hilbert
space in the case of A = C.

Let A be in C∗Algnu. Let M be a right A-module.

Definition 10.1. An A-valued scalar product on M is a map

〈−,−〉 : M ×M → A

with the following properties:

1. 〈−,−〉 is C-antilinear in the first and C-linear in the second argument.

2. 〈m,m′〉 = 〈m′,m〉∗ for all m,m′ in M

3. 〈m,m′a〉 = 〈m,m′〉a for all m,m′ in M and a in A

4. 〈m,m〉 ≥ 0 for all m in M and 〈m,m〉 = 0 if and only if m = 0.

We define
‖m‖ :=

√
‖〈m,m〉‖ .

Lemma 10.2 (Cauchy-Schwarz). For all m,n in M we have the inequalities

〈m,n〉〈m,n〉∗ ≤ ‖n‖2‖〈m,m〉 , ‖〈m,n〉‖ ≤ ‖n‖‖m‖ .

Proof. The second inequality follows from the first by applying ‖ − ‖ and taking the root.
In order to show the first we calculate

0 ≤ 〈m− n〈n,m〉
‖n‖2

,m− n〈n,m〉
‖n‖2

〉

= 〈m,m〉 − 2

‖n‖2
〈m,n〉〈n,m〉+

1

‖n‖4
〈m,n〉〈n, n〉〈n,m〉
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The inequality
〈n, n〉
‖n‖2

≤ 1

implies by Lemma 6.15 that

1

‖n‖4
〈m,n〉〈n, n〉〈n,m〉 ≤ 1

‖n‖2
〈m,n〉〈n,m〉

We conclude that

0 ≤ 〈m,m〉 − 1

‖n‖2
〈m,n〉〈n,m〉

which implies the desired inequality.

We define a norm in M by
‖m‖ :=

√
‖〈m,m〉‖ .

To see the triangle inequality note that

‖m+n‖2 = ‖〈m+n,m+n〉‖ = ‖〈m,m〉+〈m,n〉+〈n,m〉+〈n, n〉‖ ≤ ‖m‖2+‖n‖2+2‖〈m,n〉‖ .

Using the Cauchy-Schwartz inequality we get 2‖〈m,n〉‖ ≤ 2‖m‖‖n‖ and hence

‖m+ n‖2 ≤ (‖m‖+ ‖n‖)2 .

Definition 10.3. (M, 〈−,−〉) is a Hilbert A-module if M is complete w.r.t the norm ‖−‖.

Example 10.4. If (M, 〈−,−〉) is a right A-module with a scalar product. Then we can
form the closure M̄ with respect to the norm ‖ − ‖. The A-action and the scalar product
extend by continuity and (M̄, 〈−,−〉) is a Hilbert A-module. In order to see that the right
multiplication extends note that

‖ma‖ =
√
‖〈ma,ma〉‖A =

√
‖a∗〈m,m〉a‖A ≤ ‖a‖A‖m‖ .

Example 10.5. The algebra A itself is a Hilbert A-C∗-module. Thereby we consider
A as a right-module by right multiplication. The A-valued scalar product is defined by
〈a, a′〉 = a∗a′. The norm on A as Hilbert module is the original norm of A:

‖a‖ =
√
‖〈a, a〉‖A =

√
‖a∗a‖A = ‖a‖A .

Example 10.6. Let (Mi, 〈−,−〉i) be a family of Hilbert A-modules. Then we form the
algebraic sum

M :=

alg⊕
i∈I

Mi
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and define the scalar product

〈⊕imi,⊕im′i〉M :=
∑
i∈I

〈mi,m
′
i〉i .

We then form the closure which will be denoted by
⊕

i∈IMi. In particular

HA :=
⊕
N

A

is called the standard Hilbert A-module.

We consider a Hilbert A-module (M, 〈−,−〉). Let T, T ′ : M →M be maps.

Definition 10.7. We say that T ′ is adjoint to T if

〈Tm, n〉 = 〈m,T ′n〉

for all m,n in M .

Lemma 10.8. If T admits an adjoint T ′, then

1. T is bounded.

2. T is an A-module map.

3. T ′ is uniquely determined.

4. T is the adjoint of T ′.

Proof. In order to show that T is bounded we use the closed graph theorem. Assume that
(mi)i∈N is a sequence such that mi → m and Tmi → n. Then we have for any k in M that

〈Tm, k〉 = 〈m,T ′k〉
= 〈lim

i∈N
mi, T

′k〉

= lim
i∈N
〈mi, T

′k〉

= lim
i∈N
〈Tmi, k〉

= 〈lim
i∈N

Tmi, k〉

= 〈n, k〉

This implies that Tm = n. Consequently T has a closed graph and is therefore bounded.

We have for any m,n in M and a in A that

〈T (ma), n〉 = 〈ma, T ′n〉
= a∗〈m,T ′n〉
= a∗〈Tm, n〉
= 〈(Tm)a, n〉 .
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This implies that T is A-linear.

Assume that T ′′ is also adjoint to T . Then

0 = 〈m, (T ′ − T ′′)n〉

for all m,n ∈M . This implies T ′ = T ′′.

Finally we have

〈T ′m,n〉 = 〈n, T ′m〉∗

= 〈Tn,m〉∗

= 〈m,Tn〉

for all m,n in M showing that T is the adjoint of T ′.

We consider a Hilbert A-module (M, 〈, 〉M).

Definition 10.9. We define B(M) as the set of maps M →M which admit an adjoint.

Remark 10.10. Let M∗ := HomA(M,A) be the space of bounded A-linear operators. The
scalar product of M induces antilinear map

i : M →M∗ , m 7→ 〈m,−〉 .

In we do not have the analogue of the Riez representation theorem. In particular, this
map is not an isomorphism in general.

If T : M → M is bounded A-linear, then we have a continuous adjoint T ∗ : M → M∗.
The existence of an adjoint T ′ of T in the sense of Hilbert modules is equivalent to the
existence of a factorization T ′ as in

M

i
��

T ′ //M

i
��

M∗ ◦T //M∗

.

We refer to Example 10.21 for an operator without adjoint.

We write T ∗ for the adjoint.

Lemma 10.11. B(M) is a C∗-algebra with the operator norm

‖T‖B(M) := sup
m∈M ‖m‖=1

‖Tm‖M .
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Proof. It is clear that B(M) is closed under sum and composition. Thereby (T + λT ′)∗ =
T ∗+λ̄T ∗ and (TT ′)∗ = T ′,∗T ∗. The operator norm is submultiplicative and ∗ is an isometry.
The last property implies that B(M) is complete with respect to ‖ − ‖B(M).

We now show the C∗-equality. It is clear from the properties already seen that we have

‖T ∗T‖B(M) ≤ ‖T‖2
B(M) .

If ‖m‖M = 1, then we have by Cauchy-Schwarz

‖Tm‖2 = ‖〈Tm, Tm〉‖A = ‖〈m,T ∗Tm〉‖A ≤ ‖T ∗T‖B(M) .

This implies
‖T‖2

B(M) ≤ ‖T ∗T‖B(M) .

We conclude the C∗-equality.

Example 10.12. We consider A as a Hilbert A-module. Then every a in A acting by left
multiplication belongs to B(A). Its adjoint is given by a∗. Indeed

〈ab, b′〉 = b∗a∗b′ = 〈b, a∗b′〉

for all b, b′ in A.

If A is unital, then A→ B(A) is an isomorphism with inverse T 7→ T1A.

In general A→ B(A) is the inclusion of A into the multiplier algebra M(A) of A.

Let A be a C∗-algebra. Then the multiplier algebra M(A) of A is defined as follows. The
set M(A) is the set of pair (l, r) of maps A→ A such that r(a)b = al(b) for all a, b in A.
Linear combinations are defined in the obvious manner. The composition is defined by
(l′, r′) ◦ (l, r) = (l′l, rr′), and the adjoint is defined by (l, r)∗ := (r(−∗)∗, l(−∗)∗).

We get M(A) in Algnu
C and a homomorphism A→M(A) which sends c to (l, r) given by

l(b) := cb, r(b) := bc. We check that al(b) = a(cb) = (ac)b = r(a)b.

We now observe that

〈l(a), b〉 = l(a)∗b = (b∗l(a))∗ = (r(b∗)a)∗ = a∗r(b∗)∗ = 〈a, r(b∗)∗〉 .

This shows that l has an adjoint, namly b 7→ r(b∗)∗. This we have a homomorphism
M(A)→ B(A) given by (l, r) 7→ l. On the other and, if T is in B(A), then we define (l, r)
in M(A) by l(a) = T (a) and r(a) := T ∗(a∗)∗. We check that

al(b) = aT (b) = 〈a∗, T (b)〉 = 〈T ∗(a∗), b〉 = T ∗(a∗)∗b = r(a)b .

This gives a map B(A)→M(A). These two maps are bijections. Consequently, M(A) =
B(A). In particular M(A) is a C∗-algebra.
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Note that we gave a constructive definition of the multiplier algebra. It can alternatively
be characterized by the universal property being the maximal unital extension of A which
contains A as an essential ideal (intersects A intersects every non-zero ideal non-trivially).

Example 10.13. Let (M, 〈−,−〉) be a Hilbert A-module. For k, n we can define the
operator θk,n in B(M) by

θk,n(m) = k〈n,m〉 .
The adjoint of θk,n is θn,k. Indeed, for all m, l in M we have

〈θk,n(m), l〉 = 〈k〈n,m〉, l〉
= 〈n,m〉∗〈k, l〉
= 〈m,n〉〈k, l〉
= 〈m,n〈k, l〉〉
= 〈m, θn,k(l)〉 .

Let (M, 〈−,−〉) be a Hilbert A-module.

Definition 10.14. We let K(M) be the subalgebra of B(H) generated by the operators
θn,k for all n, k in A.

The C∗-algebra K(M) is the algebra of compact operators (in the sense of Hilbert A-
modules) on M .

Example 10.15. If A = C and M is a Hilbert space, then K(M) is the usual algebra of
compact operators on M . The operators θk,n are exactly the one-dimensional operators.

Lemma 10.16. K(M) is a closed ∗-ideal in B(M).

Proof. This immediately follows from

Tθn,k = θTn,k , θn,kT = θn,T ∗k

for all n, k in M and T in B(M).

Example 10.17. We consider A as a Hilbert C∗-module. Then we have K(A) = A. First
of all, for all n, k in A the operator θn,k is given by left-multiplication by nk∗ and hence
belongs to A. This implies that K(A) ⊆ A ⊆ B(A).

In order to see the converse, let (uν) be an approximative unit. We then have θuν ,a(b) =
uνa

∗b. Since limν uνa
∗ = a∗ it follows that

θuν ,a → a∗ · .

This shows that K(A) is dense in A. We conclude equality.
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Example 10.18. Let (V, h) be an euclidean vector bundle on a locally compact space
X. We consider the right C0(X)-module Cc(X, V ) with scalar product 〈φ, ψ〉 := (x 7→
h(φ(x), ψ(x)). We define the Hilbert C0(X)-module C0(X, V ) := Cc(X, V ) as the closure.

The identity of C0(X, V ) is compact if and only if X is compact. If X is not second
countable, then C0(X, V ) might not be full in the sense that the values of the scalar
product generate the algebra.

We can extend the definitions to operators between different Hilbert H-modules M and
M ′. Formally we define B(M,M ′) such that

B(M ⊕M ′) =

(
B(M) B(M ′,M)

B(M,M ′) B(M ′)

)
.

Definition 10.19. We define the Hilb(A) in ∗Catnu
C such that:

1. objects: Hilbert A-modules.

2. morphisms: B(M,M ′)

3. composition and ∗: composition and adjoint

Lemma 10.20. Hilb(A) is a C∗-category.

Proof. The operator norm on the spaces B(M,M ′) exhibits Hilb(A) as a C∗-category.

Example 10.21. We let B = B(`2) and K = K(`2). We consider K and B as Hilbert
B-modules. Then the inclusion K → B is bounded B-linear, but does not have an adjoint.
To see this assume by contradiction T ′ : B → K is an adjoint. Then we have k∗b = k∗T ′(b)
for all k in K and B in b. This implies T ′(b) = b but this is impossible.

Note that K is a closed submodule of B. But K⊥ (with the obvious definition) vanishes,
and hence (K⊥)⊥ = B is strictly larger than K. There is no orthogonal projection B → K.

We can consider the inclusion K → B as an operator on the B-Hilbert module K ⊕B. In
this way we get an example of a bounded B-linear map K ⊕B → K ⊕B which does not
belong to B(K ⊕B).

Example 10.22. We consider the C∗-algebra C([−1, 1]) and the submodule

N := {f ∈ C([−1, 1]) | f(0) = 0} .

The inclusion i : N → C([−1, 1]) does not have an adjoint. If T would be such an adjoint,
then we set T (1) =: f in N . Then h̄g = h̄fg for all g in C([−1, 1]) and h in N . Setting
h = f̄ and g = 1 we get f = f 2. Hence f takes values in {0, 1}. Since f(0) = 0 we have
f ≡ 0. But the embedding is non-zero so that we get a contradiction.
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Example 10.23. Let A be a C∗-algebra. Let (Mi)i∈I be a famliy of Hilbert C∗-modules.
Then we have inclusions ei : Mi →

⊕
i∈IMi. We have ei ∈ B(Mi,

⊕
i∈IMi) and e∗i ei =

idMi
. Indeed, one checks that e∗i (⊕i∈Imi) = mi.

Let C be a C∗-category.

Theorem 10.24 (M. Joachim). The canonical map C→ A(C) is isometric.

Proof. Let C be a C∗-category and C,C ′ in C. Then HomC(C,C ′) is an EndC(C)-Hilbert
module with scalar product 〈f, g〉 := f ∗g. We form the sum

MC :=
⊕
C′∈C

HomC,C′

in Hilb(EndC(C)). We have a canonical homomorphism

Aalg(C)→ B(MC)

which sends f : C ′ → C ′′ to the one-entry matrix [f ] acting by left multiplication. In detail

([f ]⊕C′ gC′)C′′′ =

{
0 C ′′′ 6= C ′′

f ◦ gC′ C ′′′ = C ′′
.

By the universal property of the maximal norm involved in the construction of A(C) this
homomorphism uniquely extends to a homomorphism of C∗-algebras

A(C)→ B(MC) .

We now consider the composition

EndC(C)→ C→ A(C)→ B(MC) .

This map is the canonical identification of EndC(C) with one-entry diagonal matrices
located at the position with index C. In particular it is an isometric embedding. We
conclude that EndC(C)→ C→ A(C) is isometric for every C in C.

Since C can be taken arbitrary, using the C∗-equality we see that C→ A(C) is isometric.

We now construct the Yoneda embedding

Y : C→ Hilb(A(C)) .

Let C be in C. Then we consider the right Aalg-module

Y alg(C) :=
⊕

C′∈Ob(C)

HomC(C ′, C) .
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We define the Aalg(C) (and therefore also A(C))-valued scalar product by

〈⊕C′fC′ ,⊕C′′gC′′〉 :=
∑
C′,C′′

f ∗C′gC′′ .

We then form the closure and get Y (C) in Hilb(A(C)).

If f : C0 → C1 is a morphism, then we get a morphism Y (f) in B(Y (C0), Y (C1)). It is
given by

Y (f)(⊕C′gC′) := ⊕C′f ◦ g .

Its adjoint is f ∗.

Lemma 10.25.

1. The Yoneda embedding is isometric.

2. If C is unital, then the Yoneda embedding is full.

Proof. Let f : C → C ′. We must show that ‖Y (f ∗f)‖ = ‖f‖. Note that Y (f ∗f) is the
endomorphism of Y (C) given by

Y (f ∗f)(⊕C′gC′) := ⊕C′f ∗fg .

We restrict this to g in HomC(C,C). Inserting for g the members of an approximative unit
(uν)ν we get

lim
ν
Y (f ∗f)(uν)C := (f ∗f)C .

This shows that
‖Y (f ∗f)‖ ≥ ‖f ∗f‖ .

If C is unital and a : Y (C)→ Y (C ′) is a homomorphism, then f := a(idC) in HomC(C,C ′)
is such that Y (f) = a.

Example 10.26. Let B be a unital C∗-algebra. Then B ∼= A(B). Hence Y : B →
Hilb(A(B)) is the usual embedding which considers B as a Hilbert B-module.

11 Constructions

Let C be in C∗Cat.

Let (Ci)i∈I be a finite family of objects.

Definition 11.1. A direct sum of this family is a pair (C, (ei)i∈I) such that
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1. C in C

2. ei : Ci → C is an isometry for every i.

3.
∑

i∈I eie
∗
i = idC.

We call the morphisms ei the structure morphisms of the sum.-

Example 11.2. If (C ′i, (e
′
i)i∈I) is a second sum of the family, then we define u : C → C ′

by u :=
∑

i∈I e
′
ie
∗
i and v : C ′ → C by v =

∑
i∈I eie

′,∗
i . Then v = u∗ and vu = idC and

uv = idC′ and uei = e′i and ve′i = ei for all i. The verification is by direct calculations.

If u′ : C → C ′ is another morphism such that e′i = uei for all i in I, then u = u′. We
conclude that a sum is unique up to unique isomorphism which is compatible with the
structure maps.

Definition 11.3. We call C additive if it admits sums for all finite families of objects.

Example 11.4. Hilb(A) is additive. The orthogonal sum is represented by the orthogonal
sum in the sense of Hilbert modules.

Example 11.5. The algebra B(`2) is additive. Let I be a finite set We choose a bijection
N →

⊕
I N. Then we get a unitary isomorphism u : `2 →

⊕
i∈I `

2. We let pi be the
orthogonal projection onto the i’th summand. We let ei := u∗piu. Then (ei)i∈I is a family
of isometries in B(`2) and

∑
i∈I eie

∗
i = 1. The object (B(`2), (ei)i∈I) represents the sum of

the family (B(`2)I .

Let φ : C→ C′ be a functor.

Lemma 11.6. φ preserves finite orthogonal sums.

Proof. Let (C, (ei)i∈I) is an orthogonal sum of the family (Ci)i∈I in C. Then (φ(C), (φ(ei))i∈I)
is an orthogonal sum of the family (φ(Ci))i∈I in D. Indeed, the identity

∑
i∈I eie

∗
i = idC

implies
∑

i∈I φ(ei)φ(ei)
∗ = idφ(C).

Remark 11.7. Let C be in C∗Cat. Then we consider the Yoneda embedding Y : C→
Hilb(A(C)). We let C⊕ be the full subcategory of Hilb(A(C)) of objects which are
isomorphic to finite direct sums of objects of C. The Yoneda embedding factorizes through
a functor

(−)⊕ : C→ C⊕ .

This functor has the following universal property: For any unital functor ψ : C→ D with
D additive we have an extension

C
ψ

//

  

D

C⊕

>>
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as indicated by the dotted arrow. This extension is unique up to unitary isomorphism. We
say that C→ C⊕ is a finite additive completion. Note that a finite additive completion is
unique up to unitary equivalence.

If we consider an algebra A as a C∗-category, then A⊕ is the category Mod(A)fg,free of
finitely generated free A-modules.

We now discuss orthogonal sums of infinite families.

Remark 11.8. We consider the C∗-category Hilb(A). If (Mi)i∈I is a family of objects,
then we can define (M, (ei)i∈I) with M =

⊕
i∈I . If I is infinite and infinitely many of

the Mi are non-zero, then ‖1M −
∑

i∈J e
∗
i ei‖ = 1 for all finite subset J of I. Hence the

Definition 11.1 does not generalize to capture the case of infinite sums of Hilbert modules.

In order to define infinite orthgonal sums we consider Hilb(A) as a model case. Let (Ci)i∈I
be a family of objects.

Definition 11.9. A pair (C, (ei)i∈I) represents the sum of the family if there exists a
unitary isomorphism u : Y (C)→

⊕
i∈I Y (Ci) such that u ◦ Y (ei) : Y (Ci)→

⊕
i∈I Y (Ci)

is the canonical embedding.

Example 11.10. In this construction we again show that also infinite sums are unique
up to unique isomorphism provided they exists.

We first show that the isomorphism u in the definition above is unique. Indeed, if u′ is a
second one, then

(Y (ej)
∗u∗,′)u′u∗(uY (ei)) =

{
idCi i = j

0 else

This implies u′u∗ = idY (C) and hence u = u′.

If (C ′i, (e
′
i)i∈I) is a second sum of the family. Then we get a unitary isomorphism

v̂ : Y (C)
u→
⊕
i∈I

Y (Ci)
u′,∗→ Y (C ′) .

Using that Y is fully faithul we get v : C → C ′ such that Y (v) = v̂. One then checks that
v is unitary and vei = e′i.

Furthermore, v is unique with these properties.

Example 11.11. The algebra B(`2) is countably additive.

Let I be a countable set We choose a bijection N →
⊕

I N. Then we get a unitary
isomorphism u : `2 →

⊕
i∈I `

2. We let pi be the orthogonal projection onto the i’th
summand. We let ei := u∗piu. Then (ei)i∈I is a family of isometries in B(`2). We want to
show that (B(`2), (ei)i) represents the sum of the family (B(`2))I .
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We use that in Hilb(B(`)) we have an isomorphism of C∗-algebras

B(
⊕
I

B(`2)) ∼= B(
⊕
I

`2) ∼= B(`2) .

Let φ : C→ D be a functor in C∗Cat. We have seen that φ preserves finite orthogonal
sums. For infinite sums the situation is more complicate.

Proposition 11.12. If φ is fully faithful, then it preserves sums.

Proof. This is shown in [BE, Sec. 6].

Let A be a C∗-algebra.

Lemma 11.13. Then the notions of an orthogonal sum of Hilbert A-modules and the
orthogonal sum in Hilb(A) coincide.

Proof. (sketch) Let (Mi)i∈I be a family in Hilb(A). We must show that there exists an
isomorphism

u : Y (
⊕
i∈I

Mi) ∼=
⊕
i∈I

Y (Mi)

which is compatible with the structure maps. It is given∑
i∈I

uiY (e∗i ) ,

where e∗i :
⊕

i∈IMi → Mi is the projection and ui : Y (Mi) →
⊕

i∈I Y (Mi) is the
embedding. The problem is to show that this sum converges. It does not converge in
norm, but strongly. The inverse of u is given by a similar formula∑

i∈I

Y (ei)u
∗
i ) :

⊕
i∈I

Y (Mi)→
⊕
i∈I

Mi) .

Example 11.14. In this example we exhibit a functor which does not preserve infinite
orthogonal sums. Let C be in C∗Cat. Note that objects of

∏
N C are families (Ck)k∈N of

objects in C, and morphisms are families (fk : Ck → C ′k)k∈N such that supk∈N ‖fk‖ <∞.

The product category
∏

N C contains the ideal I consisting of all families of morphisms
(fk)k∈N such that limk→∞ ‖fk‖ = 0.
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We let D := (
∏

N C)/I and consider the functor

h : C
diag−−→

∏
N

C
pr−→ D . (11.1)

We note that h is an isometric inclusion.

We consider a family of non-zero objects (Ci)i∈N in C which admits an orthogonal sum
(C, (ei)i∈N). We claim that then (h(C), h(ei)i∈N) in D does not represent the sum of the
family (h(Ci))i∈N.

To show the claim we consider the morphism f := (
∑

i>k eie
∗
i )k∈N in End∏

N C(diag(C))
and let

f̃ := pr(f) (11.2)

in EndD(h(C)) be the image of f in D. We note that ‖f̃‖ = 1. We further observe that
for every i in I we have f ◦ diag(ei) ∈ I, and consequently f̃ ◦ h(ei) = 0. The relations
f̃ 6= 0 and f̃ ◦ h(ei) contradict each other (h(C), h(ei)i∈N) would have been the orthogonal
sum.

Let C be in C∗Cat , C be in C and p be in EndC(C) such that p2 = p = p∗, i.e, p is an
orthogonal projection.

Definition 11.15. An image of p is an isometry u : D → C such that u∗u = p.

Remark 11.16. If u′ : D′ → C is a second image, then there exists a unique unitary
v : D → D′ such that u′v = u. Indeed, we can take v = u′,∗u. Hence an image of a
projection is unique up to unique unitary isomorphism.

Definition 11.17. We say that C is idempotent complete if it is finitelöy adittively
complete and every projection in C admits an image.

Example 11.18. If A is a C∗-algebra, then Hilb(A) is idempotent complete. Indeed, if
p is a projection on some M in Hilb(A), then the submodule pM is in Hilb(A) and the
inclusion u : pM →M is an image. Indeed, the adjoint u∗ : M → pM is given by p.

Example 11.19. We consider the C∗-algebra A := C ⊕ C. Then Mod(A)free is not
idempotent complete. E.g. the submodule C⊕ 0 of A does not belong to Mod(A)free.

We consider the full subcategory Idem(C) of Hilb(A(C)) of objects which direct summands
of modules which are isomorphic to finite sums of objects in the image of the Yoneda
embedding. The Yoneda embedding factorizes over a functor

C→ Idem(C) .
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It has following universal property: Any unital functor ψ : C → D with D idempotent
complete has a factorization

C
ψ

//

$$

D

Idem(C)

::

indicated by the dotted arrow. This factorization is unique up to unitary isomorphism.

Definition 11.20. We call C→ Idem(C) and idempotent completion functor.

An idempotent completion functor is uniquely determined up to unitary equivalence.

Example 11.21. Let A be in C∗Alg. Then Idem(A) 'Mod(A)fg,Proj.

Let C→ D be a functor. By the universal property of the idempotent completion functor
we get a factorization

C
φ

//

��

D

��

Idem(C)
Idem(φ)

// Idem(D)

The functor Idem(φ) is unique up to unitary isomorphism.

Definition 11.22. We call C → D a Morita equivalence of Idem(C) → Idem(D) is a
unitary equivalence.

Example 11.23. The embedding A → Mod(A)fg,Proj is a Morita equivalence. Also
Mod(A)fg,free →Mod(A)fg,Proj is a Morita equivalence.

We discuss tensor products of C∗-categories. This includes a discussion of tensor products
of C∗-algebras.

Definition 11.24. For C and D in ∗Catnu
C the algebraic tensor product C ⊗alg D is

characterized by the property that the morphism

C×D→ C⊗alg D

in ∗Catnu (possibly non-unital categories with involution) is universal for morphisms from
C×D to objects from ∗Catnu

C which are bilinear on morphism spaces.

Here is an description of the algebraic tensor product of C and D in ∗Catnu
C :

1. objects: We have Ob(C⊗alg D) ∼= Ob(C)×Ob(D).
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2. morphisms: For objects (C,D) and (C ′, D′) in C⊗alg D we have

HomC⊗algD((C,D), (C ′, D′)) ∼= HomC(C,C ′)⊗ HomD(D,D′) .

3. composition and involution: These structures are defined in the obvious manner.

We can thus form the algebraic tensor product of C∗-algebras A ⊗alg B. Assume that
C is any C∗-algebra and ρ : A ⊗alg B → C is a homomorphism. Let M(C) denote the
multiplier algebra of C.

Proposition 11.25. There exists representations α : A → M(C) and β : B → M(C)
such that ρ(a⊗ b) = α(a)β(b) for all a in A and B in B.

Proof. See [Tak97, Lemma 4.1] or [Mur90, Cor. 6.3.6].

Corollary 11.26. For all a in A and B in B we have ‖ρ(a⊗ b)‖C ≤ ‖a‖A‖b‖B.

We now introduce the maximal tensor product in C∗Cat or C∗Catnu has a similar
description by a universal property:

Definition 11.27. For C and D in C∗Catnu the maximal tensor product is characterized
by the property that the morphism

C×D→ C⊗max D

in ∗Catnu is universal for morphisms from C × D to objects from C∗Catnu which are
bilinear on morphism spaces.

One must check that the maximal tensor product exists. The first step in the verification
is the following lemma. Assume that C and D are in C∗Catnu.

Lemma 11.28. The algebraic tensor product C⊗alg D is a pre-C∗-category.

Proof. It suffices to check that f⊗g has a finite maximal norm for every pair of morphisms
f in C and g in D. We will show that

‖f ⊗ g‖max ≤ ‖f‖C‖g‖D . (11.3)

Let ρ : C ⊗alg D → A be a functor into to a C∗-algebra (considered as a morphism in
∗Catnu

C ). Then we will show that ‖ρ(f ⊗ g)‖A ≤ ‖f‖C‖g‖D. Using the C∗-equality for the
norm on C∗-categories, the case of C∗-categories can be reduced to the case of C∗-algebras
as follows. We have

‖ρ(f ⊗ g)‖2
A = ‖ρ(f ∗ ⊗ g∗)ρ(f ⊗ g)‖A = ‖ρ(f ∗f ⊗ g∗g)‖A ≤ ‖f ∗f‖C‖g∗g‖D = ‖f‖2

C‖g‖2
D ,

where for the inequality we use that ρ induces a representation of the algebraic tensor
product of C∗-algebras EndC(C) ⊗alg EndD(D) to A. Since ρ is arbitrary the inequality
(11.3) follows.
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Proposition 11.29. The maximal tensor product ⊗max on C∗Catnu exists and equips this
category with a symmetric monoidal structure.

Proof. In view of Lemma 11.28 the algebraic tensor product induces a symmetric monoidal
functor C∗Catnu → preCatnu

C . Using the completion functor we define

C⊗max D := compl(C⊗alg D) .

It remains to define the unit, associativity and symmetry constraints. Thereby only the
associativity is not completely straightforward. In order to construct it we consider the
bold part of the commutative diagram

(A⊗alg B)⊗alg C
∼= //

��

A⊗alg (B⊗alg C)

��

(A⊗max B)⊗alg C

**��

A⊗alg (B⊗max C)

��

(A⊗max B)⊗max C //A⊗max (B⊗max C)

whose vertical morphisms are all given by canonical morphisms into completions and
the functoriality of the algebraic tensor product. The upper horizontal functor is the
associativity constraint of the algebraic tensor product. We obtain the dotted arrow from
the universal property of the algebraic tensor product: To this end we must show that the
bilinear functor

(A⊗alg B)×alg C→ A⊗max (B⊗max C)

induced by the right-down composition extends by continuity to a bilinear functor

(A⊗max B)×alg C→ A⊗max (B⊗max C) .

For a morphism φ in A⊗alg B and h in C we have by (11.3) that

‖φ⊗ h‖A⊗max(B⊗maxC) ≤ ‖φ‖max‖h‖C .

This estimate implies that the bilinear functor extends as desired, and the existence of the
dotted arrow follows.

We finally get the dashed arrow from the universal property of the lower left vertical arrow
applied to the dotted arrow. In order to show that it is an isomorphism we construct an
inverse by a similar argument starting from the inverse of the upper horizontal arrow.

Restricting to C∗Algnu we obtain the maximal tensor product for C∗-algebras.

We now turn to the minimal tensor product on C∗Catnu.
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The category Hilb of small Hilbert spaces is a commutative algebra in ∗Catnu
C such that

the structure morphism
Hilb⊗alg Hilb→ Hilb

is induced by the universal property of ⊗alg by the functor Hilb×Hilb→ Hilb given as
follows:

1. objects: A pair (H,H ′) of Hilbert spaces is sent to H ⊗H ′ (tensor product in the
sense of Hilbert spaces).

2. morphisms: A pair of morphism (f, g) : (H0, H
′
0)→ (H1, H

′
1) is sent to the morphism

f ⊗ g : H0 ⊗H ′0 → H1 ⊗H ′1.

The unit of this algebra is the inclusion functor C→ Hilb.

Let C,D be in C∗Catnu and c : C→ Hilb and d : D→ Hilb be functors. Then we can
define a functor

c⊗ d : C⊗alg D→ Hilb⊗alg Hilb→ Hilb .

Definition 11.30. The minimal tensor product C⊗min D is defined as the completion of
the algebraic tensor product such that for every c, d as above we have a factorization

C⊗alg D
c⊗d

//

''

Hilb .

C⊗min D

88

In other words, the minimal norm of a morphism φ in C⊗alg D is given by

‖φ‖min := supc,d ‖(c⊗ d)(φ)‖Hilb . (11.4)

Proposition 11.31. The minimal tensor product ⊗min equips C∗Catnu with a symmetric
monoidal structure.

Proof. We must provide the unit, associativity, and symmetry constraints. As in the case
of the maximal tensor product only the associativity constraint is non-straightforward. In
order to construct it we consider the bold part of the commutative diagram

(A⊗alg B)⊗alg C
∼= //

��

A⊗alg (B⊗alg C)

��

(A⊗min B)⊗alg C

**��

A⊗alg (B⊗min C)

��

(A⊗min B)⊗min C //A⊗min (B⊗min C)
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where the vertical maps are given by the canonical maps from the algebraic tensor products
to the respective completions.

As in the case of the maximal tensor product, in order to show the existence of the dotted
arrow we must show that the bilinear functor

(A⊗alg B)×C→ A⊗min (B⊗min C)

induced by the right-down composition extends by continuity to a bilinear functor

(A⊗min B)×C→ A⊗min (B⊗min C) .

Let a : A → Hilb, b : B → Hilb and c : C → Hilb be representations. Let φ be in
(A⊗alg B) and h be in C. Then we have the inequalities

‖(a⊗ b⊗ c)(φ⊗ h)‖Hilb ≤ ‖(a⊗ b)(φ)‖Hilb‖c(h)‖Hilb ≤ ‖φ‖min‖h‖C .

Since a, b, c are arbitrary we conclude that ‖φ ⊗ h‖A⊗min(B⊗minC) ≤ ‖φ‖min‖h‖C. This
estimate implies that the bilinear functor extends as desired and that the dotted arrow
exists.

The first part of the estimate above shows that the dotted arrow further extends by
continuity to the dashed arrow. An inverse of the dashed arrow can be constructed in a
similar manner starting from the inverse of the upper horizontal arrow.

It is again clear from the universal property of ⊗min, or alternatively from the construction
of the minimal norm in (11.4), that the inclusion functor incl : C∗Algnu → C∗Catnu has a
canonical symmetric monoidal refinement for the minimal tensor structures on the domain
and the target.

Let us now collect some facts about the minimal tensor product which we will use at
various places in the present section.

If A is in C∗Algnu, then a representation α : A → Hilb of A is the same datum as a
homomorphism α : A → B(H) for some Hilbert space H. If β : B → B(H ′) is a second
homomorphism, then their tensor product in the sense of representations to Hilb is simply
the tensor product

α⊗ β : A⊗alg B → B(H)⊗B(H ′) ∼= B(H ⊗H ′) .

It is known that if α and β are faithful representations, then

‖x‖min = ‖(α⊗ β)(x)‖B(H⊗H′) (11.5)

for all x in A⊗alg B. Thus for C∗-algebras the supremum in (11.4) is realized by any pair
of faithful representations.
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Proposition 11.32. The functor A : C∗Catnu
i → C∗Algnu is symmetric monoidal for

⊗min and ⊗max.

Proof. See [BEL].

The following is a deeper property of ⊗max on C∗Algnu.

Theorem 11.33. For A in C∗Algnu the functor A⊗max − preserves exact sequences.

Proof. See [BO08, Prop. 3.7.1].

Corollary 11.34. For C in C∗Catnu the functor A⊗max − preserves exact sequences.

Proof. We use that A(−) detects and preserves exact sequences

We consider a group G. We let C be in C∗Catnu with act strict action of G. We use the
notation (g, C) 7→ gC and (g, f) 7→ gf for the action on objects and morphisms.

Example 11.35. If C is in C∗Catnu, then we can consider the trivial G-action on C.

Example 11.36. Let X be a bornological coarse space and Vlf(X) be the C∗-category
of locally small X-controlled objects. If G acts on X by automorphisms, then it acts on
Vlf (X) by functoriality. We have g(H,µ) = (H, g∗µ) and gA = A.

Example 11.37. Let A be in C∗Algnu and consider the C∗-category Hilb(A)G consisting
of pairs (H, ρ) if Hilbert A-modules with unitary G-action ρ and equivariant operators.
We define the G-action on Hilb(A)G by g(H, ρ) := (H, ρ(g−1 − g)) and gA := A.

Example 11.38. If C is a C∗-category with G-action, then we can form a new category
C(G) with G-action defined as follows.

1. objects: (C, ρ), where C in Ob(C) and ρ = (ρg)g∈G is a family of unitary maps
ρg : C → gC such that gρhρg = ρgh for all g, h.

2. morphisms, composition, involution: inheritied from C

3. G-action: G fixes the objects of C and acts on morphisms by g ·A := ρg−1 ◦ gA ◦ ρg.

We consider C in Fun(BG, ∗Catnu
C ). We use the notation (g, C) 7→ gC and (g, f) 7→ gf

for the G-action on objects and morphisms of C.
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Definition 11.39. We define the crossed product C oalg G of C with G as an object of
∗Catnu

C as follows:

1. objects: The set of objects of C oalg G is the set of objects of C.

2. morphisms: For any two objects C,C ′ of C we define the C-vector space

HomCoalgG(C,C ′) :=
⊕
g∈G

HomC(C, g−1C ′) .

Elements f in the summand HomC(C, g−1C ′) will be denoted by (f, g).

3. composition: For (f, g) in HomCoalgG(C,C ′) and (f ′, g′) in HomCoalgG(C ′, C ′′) we set

(f ′, g′) ◦ (f, g) := (g−1f ′ ◦ f, g′g) .

For general elements the composition is defined by linear extension.

4. ∗-operation: We define (f, g)∗ := (gf ∗, g−1).

Note that if f : C → C ′ is a morphism in C and g is in G, then we get a morphism
(f, g) : C → gC ′ in C oalg G.

The construction of the crossed product is functorial in C in an obvious manner. Let
φ : C→ C′ be a morphism in Fun(BG, ∗Catnu

C ). Then we get a morphism

φoalg G : C oalg G→ C′ oalg G

defined as follows:

1. objects: The action of φoalg G on objects is given by the action of φ on objects.

2. morphisms: For a morphism f in C and g in G we set (φoalg G)(f, g) := (φ(f), g).

We have thus defined a functor

−oalgG : Fun(BG, ∗Catnu
C )→ ∗Catnu

C . (11.6)

The crossed product functor preserves unitality of objects and morphisms and therefore
restricts to a functor

−oalgG : Fun(BG, ∗CatC)→ ∗CatC) . (11.7)

Remark 11.40. The crossed product functor −oalg G preserves the full subcategories
of algebras Algnu

C of ∗Catnu
C (in the possibly non-unital case) and AlgC of ∗CatC (in the

unital case). The restrictions of the crossed product to these subcategories recovers the
classical definitions.
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We have a canonical morphism

ιalg
C : C→ C oalg G (11.8)

in ∗Catnu
C which is the identity on objects and sends a morphism f in C to the morphism

(f, e) in C oalg G. If C is unital, then ιalg
C is unital.

Remark 11.41. Note that in the domain of ιalg
C we omitted to write the functor which

forgets the G-action. Below we will also omit the various inclusion functors from the
notation.

Lemma 11.42. If C is in Fun(BG,C∗Catnu), then C oalg G is a pre-C∗-category.

Proof. We first show that for every morphism f in C and g in G we have

‖(f, g)‖max ≤ ‖f‖C . (11.9)

Let A be a C∗-algebra and λ : C oalg G → A be a morphism in ∗Catnu
C . Then the

composition λ ◦ ιalg
C : C→ A is a functor between C∗-categories. This implies

‖λ(f, e)‖A = ‖λ(ιalg
C (f))‖A ≤ ‖f‖C .

We now have

‖λ(f, g)‖2
A

= ‖λ(f, g)∗λ(f, g)‖A = ‖λ(gf ∗, g−1)λ(f, g)‖A = ‖λ((gf ∗, g−1)(f, g))‖A = ‖λ(f ∗f, e)‖A
≤ ‖f ∗f‖C = ‖f‖2

C .

Since λ is arbitrary this implies that ‖(f, g)‖max ≤ ‖f‖C.

Since every morphism of C oalg G is a finite linear combination of elements of the form
(f, g) this implies that ‖ − ‖max is finite. Hence C oalg G is a pre-C∗-category.

In view of Lemma 11.42 we can restrict the crossed product functor to a functor

−oalg : Fun(BG,C∗Catnu)→ preC
∗Catnu

C .

Definition 11.43. We define the crossed product for C∗-categories by

C oG := compl(C oalg G) .

Since the crossed-product for C∗-categories is obtained by composing the algebraic crossed
product functor (11.6) and the completion functor it is clear that we have defined a
functor

−oG : Fun(BG,C∗Catnu)→ C∗Catnu . (11.10)
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It again restricts to a functor

−oG : Fun(BG,C∗Cat)→ C∗Cat . (11.11)

We define the natural morphism

ιC : C
ιalgC→ C oalg G→ C oG (11.12)

in C∗Catnu.

Proposition 11.44. ιC is isometric.

Proof. [Bun]

In the following we explain the universal property of the crossed product in the case of
unital categories.

We consider C∗Cat and the class of unitary equivalences. Then we can form the∞-category
C∗Cat∞ := C∗Cat[W−1] by Dwyer-Kan localization. Let ` : C∗Cat→ C∗Cat∞ be the
canonical morphism. We furthermore let `BG : Fun(BG,C∗Catnu)→ Fun(BG,C∗Catnu

∞)
be the induced functor.

Theorem 11.45. For C in Fun(BG,C∗Cat) we have a canonical equivalence

`(C oG) ' colim
BG

`BG(C) .

Proof. See [Bun].

Example 11.46. Let C be considered as a C∗-category with the trivial action. Then
C∗(G) := CoG is also called the maximal group C∗-algebra.

Proposition 11.47.

1. We have A(C oG) ∼= A(C) oG.

2. The functor −oG : Fun(BG,C∗Catnu)→ C∗Catnu preserves exact sequences.

Proof. For the first assertion see [Bun]. The second assertion follows from the first using
(the special case) that −oG preserves exact sequences of C∗-algebras and that A preserves
exact sequences.
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For G-C∗-algebras we also have the reduced crossed product AorG. To this end we define
the A-valued scalar product on Aoalg G by

〈(f, g), (f ′, g′)〉 =

{
(g−1f ∗ ◦ f ′ g = g′

0 else
.

We let L2(G,A) be the closure and get a homomorphism A oalg G → B(L2(G,A)). It
induces a C∗-norm ‖ − ‖r on Aoalg G.

Definition 11.48. The reduced crossed product A or G is the closure of A oalg G with
respect to ‖ − ‖r.

From the universal property of the maximal crossed product we have a canonical homo-
morphism

AoG→ Aor G .

Remark 11.49. The calculation of K∗(AorG) in terms of homotopy theory is the content
of the Baum-Connes conjecture for G and A.

Let C be a C∗-category with G-action.

Then we have a homomorphism

C oalg G→ A(C oG) ∼= A(C) oG→ A(C) or G .

It induces the reduced norm ‖ − ‖r on C oalg G.

Definition 11.50. We define the reduced crossed product CorG as the closure of CoalgG
with respect to the norm ‖ − ‖r.

Corollary 11.51. We have an isomorphism

A(C or G) ∼= A(C) or G .
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