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1 Riemannian manifolds - further examples

1.1 Generalities

want to explain a couple of constructions of Riemannian manifolds and their basic prop-

erties

up to now:

- every manifold has a Riemannian metric



— glue local metrics using a partition of unity

— these metrics do not have interesting special properties

a basic property is completeness
- if g is any metric on M

- can find conformal change efg which is in addition complete

often one is interesting in metrics with symmetry

- assume that a Lie group H acts on M

Lemma 1.1. If H acts properly, then there exists a H-invariant metric on M.

Proof. idea: take any metric g on M, average over H

- H as locally compact group has right-invariant Haar measure dh
- R «dh = dh for all [ in H

— dh unique up to normalization
- H is Lie group = dh represented by a H-invariant volume form

idea works immediately if H compact:

- H compact = can normalize volume such that f gdh=1

- set g:= [ h*g dh

— check: I*g = [ I*h*g dh = [ (hl)*g dh = [ h*gRj-1.« dh = [;h*g dh =3

choose any metric g

if H is non-compact:

- can not normalize dh (H has infinite volume)

- by properness of the action can choose a function x in C.(M) with

—x=0



= Jhemw M xdh =1
- define g := [, _, h™"*x h*g dh

check:

I'g = I*h*x I*h*g dh

/

/ (h)*x (hi)*g dh
h
:/ hx W*gR1 , dh
h
/
g

h*xh* g dh

Example 1.2. Exercise?

R* acts on R by multiplication

R has no R*-invariant metric

- assume that g is such a metric

- g = f(x)dx? with f >0

- t*g = f(tx)t?dx for all t in RX

-at x =0 get f(0) = t2£(0)

- this implies f(0) = 0 (consider limit for t — 0)

— contradicts f > 0

What goes wrong?
R* does not act properly

- it does act properly on R\ {0}



- then z—2dz? is invariant metric

M — R™ - submanifold
- has induced metric

- can describe properties by second fundamental form, Gauss-Codazzi equations

Problem 1.3. Given (M, g), is there an isometric embedding M — R™ for some n?

- Whitney: there is an embedding as manifolds if n > 2 dim(M).

- Nash: There is an isometric embedding for n >> dim(M)

1.2 Warped products

Construction 1.4. (N, ¢") Riemannian manifold
f:R — (0,00) - warping function

M:=RxN

gM = dr® + f(r)g"

(M, gM) is called warped product

sometimes one replaces R by subintervals

Example 1.5. R* =R x R*!

- coordinates (z, z')

_ gR" = dz? + an—l

- constant warping

Example 1.6. cylinder over (N, g)
M=RxN

- gM = dr? + gN

R” is cylinder over R™~!



Example 1.7. H"

- upper half space model H" = {(x,2') € R x R*"! | z > 0}

H__ 1 Rr
-9 = 29
2
- solve dr? = 4z
x
_ dz
-dr =7
- r =In(x)
-rx=¢€"
rz=e"
H" =R x R*!

~gH =dr? + e—QTan71
Example 1.8. cusp over (N, g")

_ gM — er +T72rgN

H"™\ {0} is cusp over R"~!

Example 1.9. euclidean cone
- replace R by (0, 00)

- M =(0,00) x N

S gM = dr? 4 2gN

— not complete at t =0

R™\ {0} is euclidean cone over S"~! (Polar coordinates)

- in this case can complete at t =0

(N, g"), f given

(M, g™) warped product



Lemma 1.10. (M, ¢g™) is complete if and only if (N, g") is complete

Proof. exercise?
- (t,z) in M

- B((t,x),r) is contained in [t — r,t + 7] x N

- B((t,x),r) is contained in [t — r,t + r] X B(z,s) with s:= 1

minue [t—r,t+7) f(u)

- this is compact by completeness of (N, g") O

Example 1.11. volume
volg = dr + f(r)%volgw

Lemma 1.12. If N is compact, then vol(M, g™) is finite if and only if [, f(r)%dr < 0.

(N,g™), f given

(M, gM) warped product

Example 1.13. exercise? When is the fibre NV; := {t} x N totally geodesic?

Answer: If and only of f'(t) =0 O

1.3 Bundles

7 : M — B fibre bundle

g™ and ¢® Riemannian metrics on M and B

Definition 1.14. 7 is called a Riemannian submersion if Dm: TM — w*TB is an isom-

etry.

- get orthogonal decomposition TM = T1 @ TVr+
—set TPM := Tz - this is a connection

— D induces isometry TV7t = 7*T'B

reverse construction



choose connection TM = Tw & T"M
choose

- ¢gP -metric on B

- g7 vertical metric

define: gM = ¢7"™ @ 7*gP

- then 7 is Riemannian submersion
Example 1.15. warped products are examples
mT:Rx N —=R

- gR =dr?

- connection is TN CTRBETN =T(R x N)
- f(r)gVis g T

Lemma 1.16. If 7 is proper and B is complete, then M 1is complete.

Proof. Exercise?

fix min M

fix r in (0, 00)

- B(m,r) C 7 'B(n(m),r)

- this is compact since 7 is proper and (B, g?) is complete

Example 1.17. G-principal bundles
m: P — B - G-principal bundle

- g9 - Ad-invariant metric on g

~

- action defines isomorphism T} = g at every p in P

v . . . .
T 0 that this is isometric

define ¢

choose principal bundle connection w
- choose metric ¢g”

- get metric ¢F = ¢7" ™ @ 1*gP



Lemma 1.18. g© is G-invariant.

Proof. Exercise

use

1.4 Spaces of loops

(W, ¢") Riemannian manifold
L(W) := C>(S*, W) - loop space

- this is a set for the moment, more structure later

v in L(W)
- (Yu)uer smooth family of loops at ~y

— this is a map S* x I — W, (t,u) > 7,(t)

— write (—) for derivative w.r.t. u

-5 € D(SY,*TW)

- interpret T'(S*,v*TW) as T, L(W)

- define scalar product for Y, X in T, L(W)
—(X,Y) = [ g™ (X (1), Y ())dt

want to interpret this as Riemannian metric g“") on L(W)
- consider f:S' x M — W - interpret as map f: M — L(W)

- get a scalar product (—,—) on T,, M by:



- = f(_?m)
-dx f(—,m) is in T, L(W)
—(X,Y) = {dx f,dv [)

this should be f*gL(W)

- problem: L(W) is not a manifold (infinite-dimensional)

use the language of diffeological spaces

- L(W) is diffeological space:

Cart - category of open subsets of euclidean spaces R™ (for any n) and smooth maps

Definition 1.19. A cartesian sheaf is a functor F : Cart®® — Set such that for every U

and open covering (U;) we have
FU)=eq(J[FW) = [[FU:NTy)) -
( 1,3
A morphism between cartesian sheaves is a natural transformation.

get category Sh(Cart) of cartesian sheaves
Example 1.20. example: X a set
X (U) := Homget (U, X) is a sheaf
(]

Definition 1.21. A concrete cartesian sheaf is a subsheaf of a cartesian sheaf of the form
X (=) for some set X.

Remark 1.22. X - concrete sheaf

- can recover set X := X (x)

-uinUismap u:*x = U

- interpret ¢ in X(U) as map U — X (%)

~Usuw—u*¢ € X(x)

— X (U) is a subset of Homget (U, X (*)) 0

10



Example 1.23. not every cartesian sheaf is concrete
- consider Q' : U +— QY(U) - sheaf of smooth 1-forms
- Ql(x) = {0}

- QY(R) is large

Definition 1.24. A diffeological space is a subsheaf of a concrete sheaf.

get a full subcategory Mfp; ¢ of Sh(Cart) of diffeological spaces

- this is category of diffeological spaces

Example 1.25. manifolds
M a manifold
- induces a diffeological space Mp;g(—)

Mpig(U) := C>(U, M)

one can recover M from Mp;g
- underlying set M, (%)
- then Mpig(U) C Homget (U, Mo (*)) induced by

- (ur— u*¢) (here u € U is map * — U)

- topology on M (*): maximal such that all maps in Mp;g(U) are continuous

- smooth structure: characterize smooth functions: f : M(x) — Rissmoothif ¢*f: U — R

is smooth for all ¢ in Mpg(U)

a map of manifolds f : M — N induces map fpig : Mpig — Npig of diffeological spaces

- one can recover f from fpig

Lemma 1.26. We have a fully faithful unctor Mf — Mfpg.

Example 1.27. many more examples of the following kind

11



- B Banach space
- Bpig(U) := C*°(U, B) makes sense

- get Bp;g - diffeological space O

Example 1.28. - X topological space

- Xpigg(U) := Hommop (U, X') makes sense
- get Xpig - diffeological space

- in general can not recover X from Xp;g
— can recover underlying set as X (x)

— maximal topology such that all maps ¢ : U — X (%) for ¢ € X(U) are continuous is in

general larger than original topology O

Example 1.29. Mapping spaces between manifolds
this example is the main reason to consider diffeological spaces
Hompe(M, N) extends naturally to a diffeological space

- HOme(M, N)Diﬁ‘(U) = HOme(U X M, N)

- apply to loop space L(W) := Hom(S*, W)
- get L(W)Diﬂ‘

O
Example 1.30. can talk about smooth functions, or forms on diffeological spaces
C>®(X) := Hommgs,,; (X, Rpigr)
Q"(X) := Homgp(cart) (X, ")
- de Rham complex d : Q"(X) — Q"1 (X) makes sense

O

use same idea to interpret metrics

- have sheaf ST in Sh(Cart)

12



- S2T(U) =T(U, S*TU)

— has subsheaf SgOT - non-negative symmetric tensors

— can not define sheaf of metrics SiOT since positivity is not preserved under pull-back
— can only define a notion of possibly degenerate metric

— this makes all construction problematic which use the inverse

Definition 1.31. A possibly degenerate metric on a diffeological space M is a map g :
M — SiOT in Sh(Cart).

Example 1.32. If (M, g) is Riemannian

- get possibly degenerate metric on Mp;g

- can recover g from this O

Example 1.33. (W, ¢") - Riemannian
- L(W)pig has canonical possibly degenerate Riemannian structure

- the embedding Wp;g — L(W)pig (as constant loops) is isometric O

Example 1.34. v+ E(v) is a map L(W)pig — Rpigr

Remark 1.35. in order to model all aspects of tangent bundle diffeologically:
- must enlarge category Cart by adding fat points like *? := R[z]/(z?)

- TM = Hom(x%, M) (in the sense of ringed spaces)

— element is a homomorphism C*°(M) — R[xz]/(x?)

— this is a point m and a derivation X € T, M:

e fm)+ X(fa

- % — *2 corepresents projection TM — M O

1.5 Space of connections

V — M vector bundle

Conn(V') - set of connections

13



- can turn Conn(V') into diffeological space Conn(V')pig

consider vector bundle W — N x M

Definition 1.36. A partical connection on W along M is a R-linear map
V:I'(NxM,V) - T(Nx M,pry,T"M @ V)

satisfying the Leibnitz rule

Vx(fv) = fVxv+X(f)

for all X in T'(N x M,pry,TM), f in C°(N x M), and v in I'(N x M, V).

Connjs (V) - set of partial connections

- is an affine space over I'(N x M, priT*M ® End(V))

Definition 1.37. The diffeological space Connpig (V) is defined by

Connp;g(V)(U) := Connyy(pry,V) .

assume: M is Riemannian and compact

- consider metric on V'

- induces notion of adjoint

- get metric on End(V') by (A, B) :=trA*B

- get metric on pri7*M ® End(V') by combining

get metric on Connp;g(V):

- fix V in Connpg(V)(U)

-X,Y inT,U

-dxV(u) e '(M,T*M ® End(V))

- 9(X,Y) = [, {dx V(u)(m), dy V(u)(m))dg"

in gauge theory

14



- consider functions like V +— [, [|RV|2dg™ (Yang-Mills functional)
— this is smooth function: Connp;g(V) — R

- metric allows to consider gradient and gradient flow

2 The group of Isometries

2.1 (G-structures

recall:

M - manifold, dim(M) =n

- have frame bundle Fr(M) — M

—a GL(n,R)-principal bundle

—m in M, e in Fr(M),, is isomorphism e : R" — T,, M

— GL(n,R)-action by e-g:=eog

f: M — M’ local diffeomorphism

- f induces Fr(f) : Fr(M) — Fr(M')

-Fr(f)(e) :==Tf(n(e))oe

k: G — GL(n,R) homomorphism of Lie groups

Definition 2.1. A G-structure on M is a G-reduction (Q,r) of the frame bundle.

recall notion of G-reduction :
- (Q — M is G-principal bundle

-1 :Q — Fr(M) is G-equivariant bundle map:

QxG——Q

15



notion of equivalence:

Q - —
N
Fr(M)

consider special case: k: G — GL(n,R) is inclusion of a sub Liegroup

- r identifies @) with a subbundle of Fr(M)

Corollary 2.2. If k is an inclusion of a sub-Lie group, then a G-structure on M is a
G-principal subbundle @ of Fr(M).

(M,Q), (M',Q") manifolds with G-structures
f: M — M’ local diffeomorphism

Definition 2.3. f preserves the G-structures if Fr(f)(Q) = Q'.

Remark 2.4. If x is not injective, then the notion of preservation of G-structure is addi-

tional structure

- a lift of Fr(f)

0 Fr(/f) o
Fr(M) — m(r)
b
this applies e.g. to Spin(n)-structures
O
Example 2.5. Orientation is GL(n,R)"-reduction
Example 2.6. choice of volume form is SL(n,R) - reduction 0

16



Example 2.7. choice of Riemannain metric is O(n) - reduction
Example 2.8. U(n) C GL(n,C) C GL(2m,R)

reductions are called almost complex structures

Example 2.9. Sp(n) C GL(2n,R)

reductions are called symplectic structures

Example 2.10. Spin(n) 25 SO(n) — GL(n,R)

a Spin(n) - reduction is a spin structure

Example 2.11. consider G =1

- an 1-structure is a section ® of Fr(M)

Q—* F M

\/

- is a trivialization ® : M x R" — TM

general priciple:
V' - real vector space

-TFV) =V VeV e -V

-~
kx Ix

- Aut(V) acts on T;¥(V) by functoriality

consider element K € T,*(R")

- define G C GL(n,R) as stabilizer of K

- given () — M - a G-structure

— form TF(TM) = Q x¢ TF(R") - bundle of (k,1)-tensors
- K induces section K in T'(M, T*(TM)):

17



— value at m in M: K(m) = [e, K] for any e in @,
— note [eg, K] = [e,gK]| = [e, K] for g € G

—s0 K(m) well-defined independently of choice of e

given K can recover () from section X

- take subset of frames e in Fr(M) such that [e, K] = K(m(e))

Example 2.12. Riemannian metrics
K=" e ®efin S2(R™) C T2(R™*)

— is positive definite

— all positive definite are isomorphic to this one

- stabilizer: O(n)

- a metric on M defines O(n)-structure @) C Fr(M)
—e € @y, if and only if e : R® — T,,, M isometric

— ( is the subundle of orthogonal frames

Example 2.13. K :=¢e; A---ANe, € A"R™ C T*(R™)
- all volume forms are isomorphic to this one

- SL(n,R) is stabilizer

- SL(n,R) - structure on M is equivalent to datum of volume form IC € Q" (M)

Example 2.14. R?" = C

- I € End(R?") - multiplication by I

~IP=-1

— every endomorphism J of R?" with J? = —1 is conjugated to I

_ End(RQ") o R2n,* ® RQn — 7‘11 (RZn)

18



- stabilizer GL(n,C)

G L(n, C)-structure is the same as a section Z € I'(M, End(TM)) with Z? = —1

- called an almost complex structure

Example 2.15. almost symplectic structure

consider R?"

W= Ay T el Acs, € AZRMS

- every non-degenerate alternating form is isomorphic to w under GL(2n,R)

- stabilizer ist Sp(n)

- Sp(n)-structure is determined by form w € Q?(M) everywhere non-degenerate

fix tensor K € T*(R™), stabilizer G
G-structure on M determined by K € T'(M, T,F(TM))
- can one find coordinates locally such that K = K

- in this case we call the G-structure flat
- always possible for SL(n,Z)-structure

- for almost symplectic:
— necessary and sufficient condition dw = 0 (Darboux theorem)

— in this case structure is called symplectic structure

- not always possible for Riemannian metric:
. . vLC
— necessary and sufficient condition: R =0

— in this case (M, g) is called flat

- not always possible for almost complex structure
— T9'M - consider —1-eigenspace of Z® 1 on TM ®g C
— this subbundle of TM ®r C must be involutive

19



— commutator of sections is again a section of the subbundle (Newlander-Nierenberg

Theorem)
— in this case (M,Z) is called complex

— has charts with values in C™ and holomorphic transition maps

Example 2.16. T*M has a symplectic structure
m:T*M — M

-Trn:T(T*M) - T*M

- define o in Q' (T*M) - canonical 1-form

— e M

— X eTe(T*M)

~a(X) = E(Tr(E)(X))

— in fact: Tn(§)(X) € T, M

— so can apply &

define: w := da
- clear dw =0

- check: w is non-degenerate

- local coordinates of M : x1,...,x,
- local coordinates of T*M : x1,...,xp, €Y, ... &
-m(z,6) ==

- X = X8, + Y0,

- Tr()(X) = X',

- E(Tr(O)(X)) = & X

- read off: a = &;dx’

- w=da = d& A dx' - this is obviously non-degenerated

— here flatness is clear: we have found suitable coordinates explicitly

20



2.2 Transformation groups

Definition 2.17. A Lie transformation group is a triple (G, M,a) of a Lie group G, a
manifold M and an effective action a : G x M — M.

- effective means: G — Diff (M) is injective

get map g — X (M), X — X*
- X! - fundamental vector field for X

- X*(m) = dya(e,m)(X)

for X in X (M)

- write exp(tX)m for the value of flow at time ¢ with start in m

- recall: X is called complete if exp(tX)m exists for all ¢t in R and m in M

- write X¢(M) :={X € X(M) | X is complete} - set of complete vector fields

consider tranformation group (G, M, a),

-g C X(M)

Lemma 2.18. We have g C X°(M).

Proof. write !X for one-parameter group in G generated by X
- claim: exp(tX)m = e'*m (exercise)

- claim shows assertion O

Lemma 2.19. The map g — X (M) is injective.

Proof. assume: X in g is in kernel

- then eX

m = exp(X)m = m for all m
- conclude: e¥ acts trivially

- contradicts effectiveness

21



forming fundamental vector fields realizes g as sub-Lie algebra of X'(M)

can reconstruct tranformation group (G, M, a) from g

Theorem 2.20 (Palais). If g is a finite-dimensional sub-Lie algebra of X¢(M), then there

exists a unique Lie transfomation group (G, M,a) with G connected and Lie algebra g.

Proof.

want to define G as group generated in Autpge(M) by exp(X) for X in g
- G - simply connected Lie group with Lie algebra g

- want to see that G acts on M such that e!Xm = exp(tX)m

- obtain G as quotient G /G where Gy - stabilizer of M

— But not clear that this action is well-defined!

in order to show this we use fibre bundle theory:
- consider G x M — G as fibre bundle
— G acts on G x M by h(g,m) = (hg,m)

define G-invariant connection on G x M

- give horizontal subbundle L of T(G x M)

— generated at(g,m) by (¢X, X(m)) for all X in g
— this subbundle is G-invariant

— check: this subbundle is involutive, i.e., defines a flat connection

in general for flat connection: for any (g, m) in M get unique local horizontal lift

M

(Y
————X

— U is open nbhd of ¢



- ¢(g) = (g,m)

now use: GG is simply connected

- for any (g,m) in M get unique global horizontal lift

- Gx M
s
G G
- ¢(g) = (g,m)

write ¢, for unique lift with i, (e) = (e, m)
- identify set M with set these horizontal maps
- G acts on this set

—so G acts on M such that gm = Pg-1p,

show that this is the desired action

-Xing

— (e, exp(tX)m) is horizontal curve which intersects (e, m)
- is in the image of !X Pexp(tX)m

— conclude that etX Pexp(tX)ym = Pm

- replace m by exp(tX)m

- conclude X ¢, = Bexp(tX)m

tX

— hence e"*m = exp(tX)m

Gy C G stabilizer of M
- observe () is discrete

— exp(tX)m = m for all m implies X =0
set G := G /Gy

23



- then G act effectively

- get desired transformation group

consider the following situation

- M - manifold

- G - group

- G acts by diffeomorphisms on M
- a: G — Autpg(M) - injective

What additional data makes (G, M, a) into a Lie transformation group?

S:={XeX(M)|(VteR|exp(tX) e G)}
- at the moment this is just a subset

— In general we do not know that a linear combination of complete vector fields are a

commutator of them is again complete!
— so not clear whether linear subspace or even sub-lieagebra
Theorem 2.21. If S generates a finite-dimensional Lie algebra, then (G, M,a) has the

structure of a Lie transformation group with Lie algebra S

Proof. g* - Lie algebra generated by S (as subalgebra of X' (M))
- is finite-dimensional by assumption

- want to show that S =g

have simply-connected Lie group G with Lie algebra g

- the elements of g have local flows

consider X,Y in g*
- define Z := Ad(e®)(Y) in g*

Lemma 2.22. If X,Y € S, then Z € S.

24



Proof.
exp(sX) exp(tY) exp(—sX)m = eXetY e ™%X m = AV )y = exp(tAd(e*X)(Y))m

for all small s,¢ (depending on m) and all m
- conclude: exp(sX)exp(tY)exp(—sX)m = exp(tAd(e*X)(Y))m for all t,s,m

— conclude exp(X) exp(tY) exp(—X)m = exp(tZ)m exists for all ¢t and exp(tZ) belongs to
G

— hence Z € S O

Lemma 2.23. S spans g as a vector space

Proof. V := spang/(S)

- have seen above: Ad(e”)(V) CV

— differentiate in order to get [S, V] C V
— by linearity of bracket: [V, V] CV

— V is Lie algebra

— conclude from S C V that gC V'

— by construction V C g

— hence g* =V

Lemma 2.24. S =g

Proof. consider Y € g
- must show that exp(tY)m exists for all t and m and exp(tY) is in G

- suffices to show that there is 0 in (0, 00) such that exp(tY)m exists for all ¢ with |¢t| < §
and all m and exp(tY) is in G

(X;); - basis of g

R 3 (... 1) = X1 e Xn € G local diffeo

25



—ex 0 in (0,00) such that for all ¢ with [¢| < §
o etY — ¥ (*) X1 o ean(t)Xn

—t > (ay(t),...,an(t)) smooth

- exp(tY)m = exp(a1(t)X1) . .. exp(an(t) Xy)m for all ¢t with |¢| < 0 and all m

- also clear: exp(tY) isin G

finish proof of Theorem

- use Theorem for g

- get transformation group (G*, M, a) with Lie algebra g
-G* = G/GM - with Gy stabilizer

consider (V4)q system of open nbhds of 1 in G*

- set (hVq)q as system of open nbhds of A in G

- this defines topology on G

- G* C G is open, closed

- G becomes Lie group 1 - G* - G — 7p(G) — 1
- G x M — M becomes smooth action

There is a gap here: 7y(G) must be countable

Example 2.25. counterexample:

consider M =R

- consider some uncountable subgroup G of R which is not equal to R
— take any uncountable subset [

— let G be subgroup group generated by [

—then S =0

— (G is discrete
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2.3 Automorphism groups of structures

do not say G-structures since we use G to denote the automorphism group

M - manifold with 1-structure
- recall: this is a trivialization of T'M

G :={f € Autme(M) | f preserves l-structure}

need to consider non-connected manifolds M

- fix ¢ in mo(M)

- M; component of M

— consider the subgroups G(;y C Gy C G of f which stabilize M; point- and setwise
— define G; := G; /G

— @ acts effectively on M;

Example 2.26. Consider M = RURUZ/2Z and G :=Z/2Z x R x Z/27
- components 0,1, 2

- write elements of M

—as (z,1), z € R, i € Z/2Z for first two components

—and j in Z/27

- define action of G
—(0,0,0)(x,1) := (x,i + 0)
0,0, k)(

x,1) := (z,1)

)
7,0,0)j
)

—(

—( j
~(0,0,r)j==j+0o
—(0,t,0)(z, 1) := (x +t,1)
—(0,4,0)j:=j

-Gy =R x Z/2Z
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- G0y = Z/2Z
-Go=R

Theorem 2.27. Assume that M has finitely many components.

1. (G, M,a) refines to a Lie transformation group.
2. dim(G) < |mo(M)|dim(M)
3. For every i in mo(M) we have an induced Lie transformation group (G;, M;,a).

4. For every i in mo(M) and m in M; the map G; — Gym is an embedding onto a closed
submanifold.
Proof. (e;) basis fields of 1-structure
V :=spang((e;);) C X (M)
-V 5 v+ exp(v)m local diffeo near 0
- g in G preserves V
— g«v =v for every v in V

— conclude gexp(v) = exp(v)g

[={XeXx(M)]|[V,X] =0}
- [ is Lie subalgebra (by Jacobi identity)

- have decomposition [ = B, () bl

fix ¢ in mo(M) and m in M;

Lemma 2.28. The evaluation l; — T,,M 1is injective.

Proof. write X =), ae;

-0 = [ej’X] = Zl ej(ai)ei + Zl az’[ejvei]

— system of homogeneous linear ode’s for the a;
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consider m/ in M;
—solve ODE along a curve from m to m’

— X (m) = 0 - initial condition - implies X (m') = 0

- m/ arbitrary in M;

— conclude X =0 on M; ]

conclude dim(¢) < dim(M)|mo(M)|

S = X¢(M)NI- set of complete elements in [
- S generates Lie algebra contained in [

- is also finite-dimensional

argue that exp(tX) € G for all t:
- Opexp(tX)+(ei) = exp(tX).(€;)[X, e;] =0
- hence exp(tX).e; = ¢; for all ¢

— implies claim

conclude by Theorem that G is part of Lie transformation group (G, M, a) with Lie
algebra S

consider 7 in mo(M)
- G; acts on M; and preserves (restriction of) 1-structure
apply to G; and S; := SN

- conclude by Theorem that G; is part of Lie transformation group (G;, M;, a) with
Lie algebra .5;

fix m € M;

Lemma 2.29. G;m is closed in M;
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Proof. (gr)r sequence in Gj
- gpm — Ty

must find ¢ in G; with gm = mg

want to define g by m’ — limy, gpm’

- consider set M/ of m’ in M; such that limy, gym’ exists

- M/ is open and closed:

— to see this: parametrize open neighbourhood of m’ in M; by v — exp(v)m’

li]?a grexp(v)m’ = exp(v) li]?a g’
M, is connected, hence M/ = M,

have by construction have g exp(v)m’ = exp(v) limg, g’ - this is smooth in v

- have ¢ in G; since it preserves V'

fix m in M;

Lemma 2.30. G; 5 g — gm € M; is injective

Proof. M? - fixed point set of ¢

- closed by continuity of action of g

- for m in Mig

~ gexp(v)m = exp(v)gm = exp(v)g

- g 3
M is also open

have two cases:
- M =M;and g =1
- Mig =0
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-m € M;

- by Lemma G; — G'm is immersion and hence embedding

Example 2.31. What happens if we drop the condition on finitely many components?

we consider the standard 1-structure on | |y R

[I,en R acts

(t;)ien acts as x — = + t; on component with index 4

is not a Lie transformation group

2.4 The isometry group as a Lie transformation group

(M, g) - Riemannian manifold
- equivalently: O(n) - structure r : Q — Fr(M)
- I(M) - isometry group

- equivalently: group which preserves O(n)-structure

Theorem 2.32 (Myers-Steenrod 1939). We assume that M is connected.
1. I(M) is part of a Lie transformation group (I(M), M, a)
2. For every m in M the stabiliser I(M ), is compact.
3. If M is compact, then I(M) is compact.
Proof. we use that @ has a canonical connection, the Levi-Civita connection
m:Fr(M)— M
- have tautological R"-valued 1-form @ in Q' (Fr(M),R")
—0(e)(X) :=e Y (Tm(e)(X)) € R" for all X in T.Fr(M)
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fin Aut(M)

- induces Fr(f) € Aut(Fr(M))
Fr(f)0 = 0

—indeed use mo Fr(f) = fom

(Fe(f)70)(e)(X) = O(Fr(f)(e)(TFr(f)(e)(X))
= Fr(f)(e)” (Tr(TFx(f)(e))(X))
= (Tf(r(e)) o e)” (T f(m(e))(Tm(e)(X)))
= ¢ (I'n(e)(X))
= 0(e)(X)

G C GL(n,R) sub Lie-group with finitely many components
consider G-reduction @) C Fr(M)

- consider G-principal bundle automorphism

o-1.0q

|, |

M— M

Lemma 2.33. If f*9|Q =0\, then f preserves the G-structure and f =TFr(f).

Proof. J:=Fr(f)tof

- want to show: J is inclusion @ — Fr(M)
— know already

-moJ=m

-J0=0

- 0(J())(TT(e)(X)) = J(e) " (Tr(J(e)(TI(e)(X))) = J(e) " (Tm(e)(X))
- 0(e)(X) = e N (Tm(e)(X))
— both together imply J(e) =
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— hence J is the canonical embedding

Aut(M, Q) - group of G-structure preserving automorphisms of M
- consider principal bundle connection w on @

Definition 2.34. Call f in Aut(M, Q) affine if Fr(f)*w = w.

Aut(M, Q,w) - subgroup of Aut(M, Q) of affine transformations

Lemma 2.35. Aut(M, Q,w) is part of a Lie transformation group (Aut(M,Q,w), M, a).

Proof. 0 ®w € QYQ,R" @ g)
- is a l-structure on Fr(M)

- by Lemma Aut(M, Q,w) is 1-structure preserving automorphisms of Fr(M)

- @ has finitely many components
— by Theorem get Lie transformation group (Aut(M, Q,w),Fr(M),da’)
- action descends to action on M by Lemma [2.33

- get Lie transformation group (Aut(M,Q,w), M, a)

consider G = O(n) C GL(n,R)
- w - Levi-Civita connection
- I(M) = Aut(M, Q) = Aut(M, Q, w)

- get Lie transformation group (I(M), M, a)

m in M

I(M),, stabilizer

-fix ein Qp,

-I(M) > f — Fr(f)e is embedding onto closed submanifold
- I(M),, has image in fibre Qy,
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— hence I(M),, is compact

if M is compact then @ is compact and hence I(M) is compact

2.5 Manifolds with large isometry groups

M - manifold
- n:=dim(M)
- gM - Riemannian metric

I(M, gM) - isometry group

: n(n+1
Lemma 2.36. dim(/(M, ¢M)) < (2 )

Proof. dimO(TM) = dim(O(n)) +n = @ +n= w
- have embedding (G, g™) into O(T'M)

— fix orthogonal frame e in O(T M)

— embedding is by g — Fr(g)e

- hence estimate

Lemma 2.37. Let M be connected. If dim(I(M,g™)) = %, then M is one of

1. R"
2. §n
3. P'(R)

4. H"

Proof. 1(M,gM)e in O(TM) closed

- and open by equal dimension

O(T'M) has one or two components
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- if O(T M) is connected: I(M,g™) = O(TM)
- otherwise: I(M,gM) is component of O(T'M)
- stabilizer of m: I(M, g™),, is O(T;, M)

I(M, g™M),, acts transitively on 2-planes in T}, M
- sectional curvature is invariant
— hence have sectional curvature is constant in m

— can conclude: sectional curvature is constant (last semester)

- I(M, gM) acts transitively on points of M
— get uniform existence time of geodesic flow

— conclude: (M, g™) is complete

- M — M universal covering
— M = M/T - where T discrete subgroup of I(M, gM)
— has lifted metric g

— is also complete and has constant sectional curvature

consider Killing field X on M
- lifts to Killing field X on M
- conclude: "5 — dim(I(M, gM)) < dim(I(M, g™)) = mntL)

— hence X — X is isomorphism of Lie algebras

— X is I'-invariant

I(M, gM)O is generated by exp(X) for all X

- these vector fields are I'-invariant (no additional non-invariant ones by maximality of
dimension of I(M,g"))

- all elements of I(M, gM )? commutes with T’

35



now invoke classification of complete simply connected manifolds with constant sectional

curvature

use

K>0: 5"

- have group I' = (5 generated by antipodal involution

— the antipodal involution commutes with all isometries (is central in I(S™, ¢°") = O(n+1))
— hence RP" is non-simply connected example

— this is the only quotient of S™ by central isometries

K=0:R"

- exclude quotients: R"™/T":

— every isometry which commutes with all translations and rotations is trivial
K <0: H"

- exclude quotients H™ /T

— every v which commutes with all isometries is trivial

3 Construction of E examples from Lie groups

3.1 Symmetric spaces
(M, g™) - Riemannian

Definition 3.1. (M, gM) is a symmetric space if every m in M is an isolated fized point

of an involutive isometry 0,,.

note: DO,,(m) = —1
- otherwise D#,,(m) would fix some nonzero X

— exp,, (tX) is then also fixed for all small ¢
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— hence m not isolated
will provide the construction of Riemannian symmetric spaces using symmetric pairs

consider semisimple Lie group G
- g - semisimple Lie algebra

- Killing form B € S%(g*)

- B(X,Y) :=tr(ad(X)ad(Y))

- semisimple is equivalent to: Killing form B € S%(g*) is non-degenerate
— recall further: G is compact if and only if B is negative definite

consider involution © on GG

- set K C G® open subgroup of fixed points

Definition 3.2. A pair (G, K) of a Lie group and a closed subgroup is called a symmetric

pair of there exists an involution © of G such that K is an open subgroup of G©.

— is a subgroup
- then ¢ C g - fixed points of induced involution 0 := d©

— is sub Lie algebra of subgroup K

- p := —1l-eigenspace of 0

— is not a Lie algebra in general:

g=t®p is called Cartan decomposition

Lemma 3.3. The Cartan decomposition is and Ad(K), 0-invariant, and B-orthogonal

decomposition. We furthermore have

EpCp, [pp]CE.

Proof. #-invariant by construction
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Ad(K) commutes with 6

- implies Ad(K)-invariance of decomposition

0 is automorphism of Lie algebras and preserves therefore B

- implies B-orthogonality of decomposition

commutator rules: apply automorphism 6

(G, K) - symmetric par

Definition 3.4. We call (G,K) a Riemannian symmetric pair if Ad(K) C Aut(p) is

compact.

Corollary 3.5. If (G, K) is a Riemannian symmetric pair, then p admits Ad(K)-invariant
scalar product.

Example 3.6. assume G semisimple, compact

- B is negative definite on g, Ad(G)-invariant

— =By, is positive definite, Ad(K)-incvariant

say in this case: (G, K) is of compact type O

Example 3.7. assume G semisimple

- assume B is negative definite on £ and positive definite on p

- then G is non-compact (necessarily)

— By, is positive definite, Ad(G)-invariant

say in this case: (G, K) is of non-compact type a
Example 3.8. Remaining case: B =0

- g is abelian

- G not semisimple

- say (G, K) is of Euclidean type O
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Remark 3.9. (up to coverings) every Riemannian symmetric pair is a product of a non-

compact, a compact, and an euclidean type

consider Riemannian symmetric pair (G, K) (with involution ©)
M := G/K manifold

- GG acts transitively on M from the left

- G — M is G-equivariant K-principal bundle
- T.G = g = £ & p decomposition
— £ - vertical

— p - horizontal

O

— defines G-invariant principal bundle connection 7"G on G — M by equivariant extension

hev .
Tg G:=Lg.p

- check: this is right K-invariant:
— use identity: Ry .Lg X = Lgk,*Ad(k‘_l(X))
— suggestive notation: gXk = gkk~'Xk = gkAd(k~1)(X)

~ define isomorphism of vector bundles over M: G xx p = TM
=9, X] = T(7)(Lg,+ (X))

— for well-definedness

— [gk, X] = Lgi«(X) = T(7)(Lg,«(Ad(k)(X)))

— [9, Ad(k)(X)] = T(7)(Lg(Ad(k)(X)))

any Ad(K)-invariant metric (—, —) on p defines G-invariant Riemannian metric g™ on M

- transitive G-action implies completeness of (M, g™)

Lemma 3.10. (M, gM) is a Riemannian symmetric space.
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Proof. consider gK in M

- must find involutive isometry with isolated fixed point gK

-9, :=¢Og tisin I(M, gM)
— fixes precisely point gK

—acts as —1 on Typr

want to understand the Riemannian geometry of M in group-theoretic terms
the group G and © act by principal bundle automorphisms on G — M

- nontrivially also on the base, i.e. not fibrewise

- for g in G: by left tranlation

-for ®:g— O(g)

— note O(gk) = 0(g)O(k) = ©(g)k

-and gK — O(gK) =0(g9)K

the connection T"G on G — M is G- and O-invariant

- for G: by construction

- for @: T@(L%*X) = —L@(g)(X)

Lemma 3.11. 1. The (principal bundle) curvature (at e € G) of the connection is given

by QX,Y)=—[X,Y] for X,Y €p.

2. For X inyp, k in K the curve e"Xk is horizontal.

Proof. by definition Q(X,Y) is the negative vertical part of [X", Y"](e)
- here X", Y horizontal fields extending X,Y

- but for X in p the corresponding left invariant field g — L, . X is horizontal by definition

— commutator of left invariant fields is commutator in Lie algbera

—since [X,Y] € ¢ this is already vertical
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— conclude Q(X,Y) = —[X,Y]

Oy exp(tX)k = Ry yLoix o(X) = Loexy o (Ad(k™1)(X) is horizontal
O

the principal bundle connection induces a vector bundle connection V on TM = G Xg p
- since Ad(K) acts isometrically on p this connection is automatically metric

- this connection is G and ©-invariant

Lemma 3.12. 1. We have TV =0, i.e., V is the Levi-Civita connection of (M, g™).
2. For X in p the curve exp(tX)K is a geodesic.
3. Every G-invariant tensor on M is parallel.

Proof. show that torsion TV =0 at e € G

- then TV = 0 by G-invariance

TV is O-invariant

-O acts by —1lon p="T.x
-TV(0X,0Y) =0T(X,Y)
implies (1)2 = ~1 or T(X,Y) =0

curve 9! K = Lix X in T'M is parallel

- since it is image of horizontal curve [e!*, X] in G

Assertion 3: exercise

O

Corollary 3.13. The Riemannian curvature at eK is given by RV (X,Y) = —ad([X,Y])
in End(p).

for the next we assume that (G, K) is of compact or non-compact type
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- (=) =¢By
— ¢ > for non-compact type
— ¢ < 0 for compact type

— we need that (—, —) is the restriction to p of an ad(g)-invariant scalar product on g

Corollary 3.14. The sectional curvature is given by KV(X,Y) = ¢B([X,Y],[X,Y]).

Proof. RV by definition

- sectional curvature

- insert orthonormal X,Y:

~KY(X,Y) = cB(=ad([X, Y])Y, X)) = eB([Y. [X, Y]}, X)) = —eB([X, Y], [V, X]) = ¢B(IX, Y], [X,Y])
O]

note that [X,Y] € £ and Bj; is negative definite

- hence B([X,Y],[X,Y]) <0

consider maximal abelian subspace a in p

Definition 3.15. dim(a) is called the rank of the symmetric space

sectional curvature KV vanishes along a

- exp(a)K is a flat submanifold in M

- the rank is the dimension of a maximal flat submanifold

Corollary 3.16. If (G, K) is of compact (non-compact) type, then (M, G) has non-negative

(non-positive) sectional curvature. If tk(M) = 1, then it has positive (negative) sectional

curvature.

Proof. - if rk(M) =1, then [X,Y] # 0 for any two independent X,Y in p
- +¢B([X,Y],[X,Y]) < 0 depending on sign of ¢ O

if (G, K) is a product of compact and non-compact factors, then the corresponding sectional

curvature has no definite sign
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3.2 Example 5" and SO(n + 1)

we consider the group G = SO(n + 1)

define © as conjugation by © := diag(1,—1,...,—1)

- in blocks of size (1,n)

A B A -B
- —
(o)-(% )
—thusKQ(A 0)
0 D

- is compact

from orthogonality: det(D) = +1, i.e. A= det(D)

have two choices for K: SO(n), O(n) (identified with D)

SO(n + 1) acts transitively on S™ C R*H!

- SO(n) is precisely stabilizer of e; in R"*!

-SO(n+1)/SO(n) =5"

- SO(n) =2 SO(n + 1) N acts transitively on planes in north pole N
- sectional curvature of induced metric is constant

(SO(n + 1), 0) presents round sphere as symmetric space

-1k(S™) =1

Exercise: determine the value of the sectional curvature precisely
If we take K = O(n), then get RP"

3.3 H™ and SO(1,n)

consider bilinear form on R™*! represented by B := diag(1,—1,...,—1)
- O(1,n) group of automorphisms

- SO(1,n) C O(1,n) - singled out det(g) =1
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SO(1,n) has again two components

-C:={x € R"| B(x,z) = 0} light cone

- C* := C'\ {0} has two componets

— distinguished by sign of z;

- SO(1,n) acts on C*

- SO(1,n)* € SO(1,n) subgroup which fixes the componets setwise

Exercise: Show that that SO(1,n) contains elements which interchanges the components.

define © as conjugation by © := diag(1,—1,...,—1)

- in blocks of size (1,n)

A B A -B
}_>
C D -C D
thus K C 40
0 D

- conclude D € O(n)
- from orthogonality: det(D) = £1, i.e. A = det(D)

have again two choices for K: SO(n), O(n) (identified with D)
Exercise: Show that that SO(n) = SO(1,n)*®.

consider H" := SO(1,n)%e; (hyperboloid: {x € R*"™! | B(x,z) =1 & 21 > 0})
- stabilizer of e; is precisely SO(n)
- H" = S0(1,n)"/S0(n)

- projection H™ — {0} x R" (last n coordinates) is a diffeomorphism
- SO(n) acts transitively on planes at e;

- sectional curvature of H™ is constant

- (SO(1,n)™,©) defines presents hyperbolic space as symmetric space

Exercise: determine the value of the sectional curvature precisely
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- have rk(H") =1

3.4 CP"and U(n+1)

consider group U(n + 1)
- define © as conjugation by O := diag(1,—1,...,—1)

- in blocks of size (1,n) (complex matrices)

A B A -B
}_>
C D -C D
—thusKQ(A())
0 D

-AeU(l), DeU(n)
- K =U(1) x U(n) is compact

U(n + 1) acts transitively on CP" (lines in C"*1!)
- stabilizer of Ce; is precisely U(1) x U(n)
-U(n+1)/U(1) x U(n) = CP"

get Riemannian metric on CP"

- (U(n+1),0) presents CP" as Riemannian symmetric space
in the following want to study this metric in detail

- K acts transitively on complex hyperplanes of T, CP", but not on all real ones
— can not conclude that sectional curvature is constant

- but know: sectional curvature is non-negative (since U(n + 1) is compact)

identify p with C"
0 —-X¢

embed as X —
X 0

) inu(n+1)
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- consider family of hyperplanes Hy for s in [0, 1]

— intersects all U(1) x U(n)-orbits exercise

let H(s) be generated by E19 — Fs; and 81/22'(E12 + E91) + (1 — 8)1/2(E31 — E13)
— H; is a complex plane

— Hy is a real plane

[Erg — Ea1,sY%i(Ei2 4+ Ex) + (1 — 8)Y2(E31 — Eu3)]
sY2i(Ey — Eg) + (1 — 5)Y2Eys — s'/%i(—Ey1 + Fa) — (1 — )2 Ea3y
= 25Y2(BEyy — Eg) + (1 — 5)/%(Ey3 — E39)

- calculate with scalar product on u(n + 1) given by trA*A
— this is U(n + 1)-invariant
— proportional to Killing form, but easier to calculate

— A*A:

(2is'/2(Bry — Ea2) + (1 — 8)Y/2(Bas — E32))* (2is"/2(Eny — Ea2) + (1 — 5)Y/?(E2s — E3))
= (—2i51/2(E11 — E22) — (1 — 8)1/2(E23 — E32))(2i51/2(E11 — E22) + (1 — 8)1/2(E23 — Egg))
= 4S(E11 + E22) + (1 — S)(E22 + Egg) + off diagonal

—trA*A:

— the generators are orthogonal and have norm /2 (this is a similar calculation)
— 8s+2(1—s) =6s5+2

— K(H(0)) =1

— K(H(1)) =4

conclusion: minimal sectional curvature at real plane is 1/4 of maximal sectional curvature

of complex plane
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- 1k(CP") =1

- this is a the scale invariant statement

3.5 Gand G x G

L - a compact Lie group

-G:=LxL

-0 = flip: (1) := (I',])

- K := G® = L (diagonally embedded)

-L=G/K,

— projection G — L: (I,I') +— 11"~!

— metric on L is left-invariant metric determined by Ad(L)-invariant scalar product on L

— every Lie group L with the left-invariant metric associated to the Killing form (or any

other Ad(L)-invariant metric) is Riemannian symmetric
— 0. = (_)_1
note: every scalar product on [ induces left invariant metric

- get symmetric space property only for Ad-invariant metrics

4 Complex manifolds and the Kahler condition

4.1 Complex manifolds

recall from function theory:
- U open in C
- f: U — C smooth

Definition 4.1. f is called holomorphic if df (z) is complez linear.

equivalently: df commutes with ¢

- check, that this is equivalent to Cauchy-Riemann equations
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—z=x+1y
— 10y = Oy, 10y = —0y
—dxi = —dy dy = dxi

— write f =u+ v

df = Orudx + Oyudy + 10 vdx + 10yvdy

- idf = —0zvdx — Oyvdy + 10, udx + 10yudy

- dfi = Ozudzi 4 Oyudyi + i0,vdxi 4 10yvdyi = —0,udy + Oyudxr — 10, vdy + 10yvdx
—read off: O,u = Oyv, Oyu = —0,v, —0,v = Oyu, Oyv = O u

— these are the Cauchy-Riemann equations:

U open in C"
f:U — C™ smooth

Definition 4.2. f is holomorphic if df is complex linear.

this is equivalent to: the components of f are holomorphic in each variable separately

globalize to manifolds:

M - manifold

-n=2m = dim(M)

- consider GL(m, C)-structure (represented by I € I'(End(TM)), I? =1)

—i.e. (M,I) is almost complex

Definition 4.3. We say that M is a complex manifold if the almost complex structure is
integrable.

this means:

- we can find at every point m coordinates z := (z1,..., zp) in C"

— such that Tz(m') o I,y = iTz(m') in Hom(T,,» M,C") for all m’ near m

— this implies: the transition functions z — 2/(z) between two coordinate systems are

holomorphic
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Example 4.4. basic example: open subsets of C™ with standard coordinates O

M,I), (M',I") almost complex manifolds
( , (M p
- f: M — M’ smooth map

Definition 4.5. We say that f is holomorphic if Tf(m)o I(m) = I'(f(m)) o Tf(m) for
all m in M.

- can talk about holomorphic functions on complex manifold

- note: if (M, ) is only almost complex, then there might by only very few of them
Example 4.6. this is without proof:

recall TM @ C = TYOM @ TY' M decomposition into +1-eigenspaces of I ® id¢

- X0 (M) and X1O(M) - sections of T M and T'OM

Lemma 4.7. f: M — C is holomorphic if and only if X f =0 for all X in X%1(M).
Theorem 4.8 (Newlander-Nierenberg). Integrability of I is equivalent to [X%1 (M), X% (M) C
XOL(M).

Say that I is maximally non-integrable if for every m in M and every X in T;, M there are
Y, Z in X% (M) such that [Y, Z](m) = X.

- this is the extreme case

- exists locally

- if I is maximally non-integrable, then all holomorphic functions are constant

— in general: if I is not integrable, then there not enough holomorphic functions to build
charts O

f:(M,I)— (M, I') - almost holomorphic

Proposition 4.9. If m’ is a regqular value of f, then the restriction I” of I to TN turns
N := f=Y(m/) into an almost complex manifold. If (M,I) and (M',I") are complex, then

(N, I") is again complex.
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Proof. for m in N:
Tf(m)oI(m)=1I(f(m))oTf(m) shows that I preserves ker(Tf(m)) =T,,N

- can restrict I to I”

- for the second assertion we use that the implicit function theorem holds in the holomorphic

context

Exercise: deduce the statement from the usual implicit function theorem

O]
Example 4.10. . quadrics
- f(21y ) =24+ 2241
—(0,0...,0) is only singular point of f
— 1 is only non-regular value
— 0 is regular value
— £71(0) is a quadric
— make picture for n = 2 (real/imaginary part) 0

Lemma 4.11. (M,I) is a compact connected complex manifold, then every holomorphic

function on M is constant.

Proof. - by maximum principle

— ¢ : M — C holomorphic

— |¢| must have maximum at m

— ¢ is constant along every holomorphic map C D U — M with 0 - m

— use holomorphic coordinates in order to produce many such linear (in coordinates) maps
— conclude that ¢ is constant near m

— use connectedness of M to conclude that ¢ is constant on M
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Corollary 4.12. If (M, 1) is a compact connected complex manifold, then every holomor-
phic map M — C™ is constant.
in particular: there is no holomorphic embedding of M into C” for any n

- this is in contrast to the real case

Example 4.13. complex torus
A:=C"/(Z" +iZ™)
- is compact complex manifold (has even group structure)

- has no holomorphic embedding into C" O

4.2 The complex projective space

CP" - lines in C"*!
- (20, .-, 2n) € C"L\ {0} gives line C(2o,. .., z,)

- (20, .., 7)) gives same line if an only if (zp,...,2n) = A(2{, ..., 2},) for A € C*

write [z : -+ : 2z, for equivalence class, i.e., the point in CP"
- Ui :={z # 0} is open
- ¢; : Uy — C™ chart
—¢i([z0: 1 zm)) = (z—f,,%,%)
— check coordinate transition
~say: 10 65"
1 n
— (Ury ey up) = [Lug, ..o up] — (171’%""’?71)
— is holomorphic
the charts above determine a complex structure on CP"
Definition 4.14. A complex manifold (M, I) is called projective if it admits a holomorphic
embedding (M, I) — CP".
- not every complex manifold is projective

- will see an obstruction later using Kéahler class
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4.3 The Fubini-Study metric

know U(n + 1) acts transitively on CP"
- (u, [2]) ¥ [uz] - this is matrix multiplication
— it acts by holomorphic transformations

— U(1) x U(n) stabilizes [1,0,...,0]

— want to determine Riemannian metric from symmetric space presentation at this point

explicitly
— know: work with form A — tr(A*A) on u(n + 1)

11 0,...,0)CP" = C" using chart ¢o
- is identified with p in u(n 4+ 1) by
(@1, an) = A(@) =300 2B — ZiEo,

A(x)*Az) = (Z i o — fz‘Eo,i)*(Z ziE; o — T Eo ;)
=1 =1

n n

= (Z Ty — DCzEzo)(Z ziEio— Z;Ep ;)
i—1 i1

= > |wilEoo+ Y |wil’Ei
i i

tr(A(2)"A(z)) = (n+1)]z|?
- thus metric at [1,0,...,0] in chart is (up to scale) standard metric on C"

- metric is completely determined by value at T o . CP" and U(n + 1)-invariance
Remark 4.15. for curiosity determine formula on all of C™ (image of the chart):
— U(n+1) acts on §?7+1 in C+!

— stabilizer of (1,0,...,0) is U(n)

— U(1) still acts from the right
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— get §?n*1 — CP" - U(1)-principal bundle

— is necessarily Riemannian submersion if we equip S?"*! with standard metric (by invari-

ance)

on Uy have split

— S0 Cc" — 52n+1

(1,21,.-,2n)

— S0 %ly.-.yRn) = —F/—=

By 2n) = SRS
(0,dz1,...,dzn)

1,21,...,2n) @2 -dz

_ _ o 1
dso = V1422 (1+|Izl\2)2/3(

— second component is vertical

- vertical part of first component is Wz -dz

horizontal component is

(0,dz1,...,dzn) (L21,00520) 5
— zZ-dz
NATEE (1+]12[12)3/2

- metric is

d2®dz+z-d2®2-dzi z-dZ®ZzZ-dz
L+ lz)12 (T4 [[=]?)? (1 + []z])?
dzZ ® dz z-dZ®ZzZ-dz

L+ (T +]12(1%)?

4.4 Kahler geometry

(M, I) almost complex manifold

- g Riemannian metric

Definition 4.16. We say that I and g are compatible if [* = —1.
Example 4.17. on C" with standard metric z — R(Z - z)

- multiplication by 7 satiesfies: i* = —i

- hence the same on CP" with Fubini-Study - I* = —I (the complex structure is antiselfadjoint )
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assume that g and I are compatible
Definition 4.18. The form w := g(I—,—) in Q%(M) is called the Kdihler form.

Definition 4.19. (M, g, I) is called almost Kihler of dw = 0. It is Kdhler if in addition I

1s integrable.

assume (M, g, I) given

- g, I compatible

Lemma 4.20. (M, g,I) is Kdhler if and only if VI = 0.

Proof. only one conclusion feasable at this point:

VI =0 implies dw = 0:

- since Vg = 0 have

- (Vxw)(Y. Z) = g(Vx )Y, Z)

- the following conditions are equivalent

~-VI=0

- Vw=0

0= (Vxw)(Z,Y) = X(w(Y, 2)) - w(VxY, Z) — (Y, Vx Z)

dw(X,Y,Z2) = Xw(Y,2)) - Yw(X,2Z)+ Zu(X,Y) - w([X,Y], Z) + w(X, Z],Y) — w([Y, Z], X)
= w(VxY,Z) +w(Y,VxZ) — w(Vy X, Z) — w(X,VyZ) +w(VzX,Y) + w(X,V,Y)
—w([X,Y],2) +w(X, 2],Y) - (Y, Z], X)
=0

Lemma 4.21. CP" is Kdahler.

Proof. wis U(n + 1) invariant (since I and g are) - w is parallel

-dw=0
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- I is integrable

— have seen this independently (also VI = 0 since [ is invariant)

(M',¢', I') - Kahler (e.g. C™ or CP")
consider complex submanifold 7 : M C M’
- get an induced metric gM := i*g™’
- complex structure integrable

M _ s, M’

- induced Kahler form w 7*w

. !’ . ’
— dwM = di*wM = i*dwM =0

Corollary 4.22. A complex submanifold of a Kdihler manifold is again Kdhler (with the

induced structure).

affine or projective manifolds admit Kéahler metrics
consider almost Kéhler manifold (M, I, g)

- w- Kahler form

- w™ is a volume form

- i.e. w is symplectic

- GL(n,C) C GL(2n,R)* - i.e. complex manifolds are oriented

~ M is closed, then [, w" >0
- [w] € H2p (M)
- W™ #0

Corollary 4.23. A closed almost almost Kdhler manifold has a class ¢ in H(%R(M) such
that ¢ # 0.

Example 4.24. S?" for n > 2 does not have such a class

- has no almost Kahler metric O
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5 De Rham cohomology

5.1 Basic theory

M- manifold

- consider chain complex

(Q*(M),d) : Q°(M) S o (M) L Q2(m) S ...

- the de Rham complex, often denoted shortly by Q*(M)

Definition 5.1. The de Rham cohomology of M is the cohomology of the de Rham complex:

_ ker(d: QF(M) — QM(M))
~im(d: QM) = QF(M))

HgR(M) :

by definition: H%, (M) is a real vector space

Example 5.2.
R k=0
HEL (%)
ar (%) { 0 else
Example 5.3. HJ; (M) = Rmo(M)]
- ker(d : Q°(M) — QY (M)) is vector space of locally constant functions O

consider smooth map f: M — M’

- induces f*: (Q*(M'),d) — (Q*(M),d)

— morphism of chain complexes: df* = f*d

- get induced map: f*: Hk (M') — HE, (M)
— composition: (fog)* =g*o f*

Corollary 5.4. We have a de Rahm cohomology functor Hjy : Mf°? — Vectﬁgr.

consider smooth homotopy: h : [0,1] x M — M’ between hy and hy
- define H : Q(M') — Q(M)[-1]
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— degree —1-map
- H(w) := fol Lo, W wdt

— make clear that you understand the meaning of this formula

— here are the details

— hrw(t, =) = wo(t) + dt Awi(t)
— wi(t) € (M)

— fol Lo, M wdt = fol wi(t)dt

- use Cartan formula: Ly, = 15, d + dup,

1
dHw = /dLath*wdt
0

1
= / (Lo, h*w — 1, dh*w)dt
0
= hjw—hjw — Hdw

dH + Hd = I} — I},

- H is chain homotopy between h] and hj

Corollary 5.5. The functor Hqr is homotopy invariant: In the above situation hy = hi :
Har(M') = Har(M).

Example 5.6. H}pn(R) = Hjp (%)
- the inclusion ¢ : x — R"™ is a homotopy equivalence

- inverse p : R" — %

—poi=idy
—h:[0,1] x R® - R"

- h(u, x) := uzx is homotopy from i o p to idgn
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M manifold
-UVopenu:U— M, v:V — M inclusions
-UuV =M

-a:UNV =>U,b:VNU — V inclusions

have exact sequence

0— QM) X255 o) e V) L5 QUuny) =0
Exercise: prove exactness

- exactness at Q(M) and Q(U) @ Q(V) is clear

— sheaf property of smooth sections of a vector bundle
— exactness as QU NV):

— choose partition of unity (x, k) associated to (U, V)
— assume o € QU NV)

— consider ka @ —xa € QU) & Q(V)

— a*ka — b*(—xa) = (kunv + Xjunv)a = a

Corollary 5.7 (Mayer-Vietoris sequence). We have a long exact sequence

u*Pv*

_ P a*—b*
Hé“Rl(U NV) S Hig(M) =5 H,(U) @ HE (V) = Hiz(UNV) .

Remark 5.8. here is an explicite description of the boundary operator using the partition

of unity from above

- [w] € Hip(UNV)

— dXjunv — dkjyny has compact support in U NV

— define (dyjyny — deny) Aw in QFFL(M) by extension by zero

get
Iw] = [(d’ﬂUmV - dX\Umv) Aw]
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Example 5.9. decompose S™ into complements S” and S™ of south and north pole
- 8% are homotopy equivalent to *
- §% N S™ is homotopy equivalent to gn—1

conclude inductively for n > 1
R k=0,n
s =

0 else
exercise: details
Example 5.10. assume M is oriented, closed
-dim(M) =n
- 3y dw = 0 by Stokes
- get [y Hig(M) - R
- let w be any volume form

~ [3yw > 0 shows: Hi (M) #0 O

A QM) @ QM) — QM) is map of complexes
-dlaAw) =daAw+ (=)o A dw

- get cup product U : Hijp (M) ® Hig (M) — Hip (M)
— is natural for maps

Example 5.11. H3(S") = R(z]/(2?)

-deg(z) =n

have map: Q(M) @ Q(M') — Q(M x M")

Proposition 5.12 (Kiienneth formula). If one of the factors is compact, then induced map
Hip(M)® Hig(M') — Hijg (M x M') is an isomorphism

Proof. Note: Q(M) @ Q(M') — Q(M x M') is not an isomorphism
cover M’ by finitely open sets such that all multiple intersections are contractible

- choose Riemannian metric and take small convex geodesic balls
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- argue by induction by the number of members of such a covering
- then argue by induction
— add one member of the covering in each step

- use Mayer-Vietoris and five Lemma

O
Example 5.13. 7" = S! x .- x S! - n factors
Hx(SY) 2 R[z],  in degree 1 (therefore 22 = 0)
Hyp(T") 2 R[z1] ® - - @ R[zy] = Rlxy, ..., x,] (this is A*R™) O

5.2 Cohomology of quotients

I'- finite group
- R[T'] - group ring
- generated over R by elements of I subject to relation v -+ = v/

— here - - ring multiplication

Lemma 5.14. We have an equivalence of categories:
R-vector spaces with I'-action ~ R[I'|-modules

Proof. - every action of I" extends uniquely to an R[I']-module structure

-as ' C R[I']* - every R[I'J-module induces a I'-action on the underlying R-vector space [

Example 5.15. R has R[[']-module structure corresponding to trivial I'-action 0

have functor V — VT

- in the langue of R[I']-modules: V' := Homgr|(R, V)

Lemma 5.16. The functor V — V' from real vector spaces with T-action to real vector

spaces 1s exact.
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1 ;
Proof. P:= 4 > ery in R[I
- is projection onto submodule VT
- can decompose any exact sequence into a sum of images of P and 1 — P

- these are exact too

general: an exact functor like (=)' descends through cohomology

M - with free action of T

-M:=M/T

- M — M

Lemma 5.17. 7% : Hag(M) — Haqr(M)' is an isomorphism.
Proof. - p*: Q(M) — Q(M)" is isomorphism

*

- hence Hjp(M) = H*(Q(M)) = H*(Q(M)") = B Q)" = Hip (M)

Example 5.18. antipodal map acts on H7(S™) by (—1)"!

0 else

R k=0
- Hip (RP?") = {

R k=0,2n+1

) HéR(RP%H) = { 0 else

G compact Lie group

- G connected component of identity

1= Gy—G—m(G)—0

assume G acts on M

- G acts trivially on Hj, (M) by homotopy invariance

- mo(G) acts on Hjp (M)
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Lemma 5.19. We have an isomorphism
H*(Q(M)®) 2 Hig(M)™@

Proof. 1.) show H*(Q(M)%0) = H}n(M)
2.) then apply (—)™(&) and conclude H*(Q(M)C) = H}p(M)™0()

remains to show 1.)
define P : Q(M) — Q(M)
Pw = [, g*wdg

-normalize dg such that [, dg =1

- is chain map: dP(w) :=d [, g*wdg = [, dg*wdg = [, g*dwdg = P(dw)

- is projection into Q(M)%

- cover GGy by finitely many contractible sets Uy, ..., U,

— can assume that all contain e

- choose partition of unity x1,...,Xn

- use homotopy formula applied to contraction of U; to find
- H(g)i: QM) — Q(M)[-1] for g in U; (continuous in g)
-dH(g)iw — H(g)idw = g*w — w

- define H := 371, [, xi(9)H(g)idg

-dHw — Hdw =371, [ xi(9)(¢"'w — w)dg = P(w) —w

P is chain homotopic to identity

- inclusion Q(M)% — Q(M) is chain homotopy equivalence

consider Riemann symmetric pair (G, K) of compact type
- assume that G is connected

-set M :=G/K

62



- g =t P p Cartan decomposition

Proposition 5.20. We have an isomorphism of rings Hjp (G/K) = (A*p*)X.

Proof. Hiz(G/K) = H*(Q(G/K)%) by Lemma

- every G-invariant form is determined by its value at e, this is an element in A*p*

- K still acts, hence G-invariance implies that value is in (A*p*)&

- vice versa, every element in (A*p*)¥ extends uniquely to G-invariant form

~ conclude Q(G/K)% = (A*p*)K - is isomorphism of rings
— every G-invariant tensor is parallel

— every G-invariant form is parallel

— hence every G-invariant form is closed

— hence differential on Q(G/K)Y is trivial

conclude

H*(UG/K)®) = (M)~

Example 5.21. want to calculate Hqg(S™) using this method
S~ S0(n+1)/S0O(n)

- p =2 R" with standard action of SO(n)

- (ARP)SO0) = Rzl /(a?)

—deg(z) =n

how to see this:
- SO(n) acts degree-preserving
- can calculate invariants degree-wise

_ Irlg .= (AkRn,*)SO(n)
induction by n
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n=20,1
- I = R[z]/(x'), deg(z) = 0
- I 2 A'R* @ A'R* 22 R[z]/(2?), deg(z) =1

- for step n — 1 — n (with n > 2) : have SO(n — 1)-equivariant split exact sequence

— — A —
O—>Ak 1Rn 1, € AkRn’* res AkRn 1, =0

- induces
0 — IF-1 o (AFRm)SO0=1) 1k 0

- have I¥ C (AFR™*)SO(n—1)

have 19 = (AOR™*)50(m) ~ R

- by induction Ig:ll is generated by el A--- Aem !

- the image of " A I~} — (A"R")99("=1) is generated by e! A--- Ae” is SO(n) invariant
— contributes to I}

-1y =0

— together I} = R

-show I¥ =0fork=1,...,n—1
-k=1
_ (Aan)SO(n) >~

-k=2,...,n—2:

- Iﬁj =0 and I¥_; = 0 by induction assumption

— conclude I¥ =0

remains kK =n — 1: Ig_l = (A"_anv*)SO(”) o~ (AlR”)SO(”) >~
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Example 5.22. this example shows that compactness of G is relevant:
H™ = S0(1,n)/SO(n)

- (AP0 = (AR50 = Rla] /(a?) -

- x in degree n

- but H™ is contractible

~ Hi(H™) =20
~ but (A"R™)5O() =R

Example 5.23. want to calculate Hqg (CP")
claim: Hyg(CP") = R[xz]/(2"!) with deg(x) = 2

-CP"=U(n+1)/U(1) x U(n)
- p = C" with standard action of U(n) and U(1)

- (A*CM)YVM)XU) _ pote that we consider C™ as real vector space

- argue by induction

— IF = (AFCMUm)xUQM)
~—wseCt=ClaC

— this is U(n — 1) x U(1)-equivariant
- have inclusion I} — I | ® I}

- now I =R @& R[2]

—use U(1) = SO(2) , C =~ R?

~ show: 2" = "2 ® I? by showing that the elements of the r.h.s. are U(n)-invariant
— have restriction I, — I*_, whose kernel is I’ | ® Ilzl
— show that this is surjective

— conclude above inclusion is surjective in all degrees (details exercise?)
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(G, K) - symmetric pair

g=top

- recall: Q(G/K) = (A*p*)K

How to construct elements in (A*p)&?

-R: A’ — ¢, R(X,Y) = [X,Y] is Ad(K)-equivariant
- R* L SH(E) 5 S*(A%p*) — AP

- restricts to R* : S*(£*)K — (Aevp*)K

Example 5.24. Grassmannian G(k,n,C):

manifold of k-dimensional subspaces of C"

- G :=U(n) acts transitively on G(k,n,C)

- stabilizer of C*: K := U(k) x U(n — k)
-G(k,n,C)=U(n)/(U(k) x U(n — k)) as homogeneous space

is symmetric:

-use involution given by conjugation by diag(1,...,1,—1,...,—1)
~———

kx n—kx
A B
cC D

B
p:( 0 >, B € Mat(k,n — k,C)
B 0

- block matrices

- adjoint action of U(k) x U(n — k) is (u,v)B = uBv~!
construct elements of S*(£)X

- consider u(k)

-u(k) 3 X = det(14tX) := 14 tey + t2eq + - - - + they,

— e; are homogeneous polynomials on u(k)
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— deg(e;) =1
—e; is Ad(U(k)) - invariant
— ¢; € SH(u(k)*)V®)

special cases:
—e1(X) = Tr(X)
—ex(X) = det(X)

- S*(u(k)* @uln —k)*) = S*(u(k)*) ® S(u(n — k)*) contains

—a;:=e®1,i=1,...,k

—bj=1®ej,7=1,...,n—k

— ¢ =R'a;ini=1,...,k,

— deg(c;) = 2i

—dj:=Rb;,j=1,....n—k

— deg(d;) = 2j

get homomorphism of graded rings Rlci, ..., ck, d1, ..., dy_i] — (A*p*)K

Proposition 5.25. This map induces an isomorphism

R[Cl7' "7Ck’7d17'- . 7dn—k]
(Zé:ocidi—l =0|l=1,...,n)

-setcg=1,dp=1and ¢;=0for 7>k and d; =0 for j >n —k
proof and determination of relations goes beyond this course
- can calculate cohomology ring using algebraic topology (Serre spectral sequence)

- deduce proposition and relations from this
Corollary 5.26. We have an isomorphism

R[Cl7' . 'JCk7dlu"~ 7dn_k]
(Clgcidia=0[1=1,...,n)

— HdR<G(/€, n, (C)) .

67



check case k =1 (projective space)

generators: ci,d1,...,dp—1

- relations: ¢ +dy =0, c1di +do =0, ... cdypo+d,_1=0
— can eliminate ¢y, ds, ..., dy_1

~dy=d?, ... dypi=dV0=d}

-~ Rlda[/(d}) = Hp (CP")

in the next section we generalize this method

5.3 Chern-Weil theory - characteristic classes

G - Lie group

-7m: P — M - G-principal bundle

Definition 5.27. A form « in Q(P) us called horizontal, if txa = 0 for every vertical X
in TP. It is called G-invariant, if Ry =« for all g in G

Q(P)S  C Q(P) - subspace of horizontal G-invariant forms

™ QY (M) — Q*(P)

Lemma 5.28. 7 induces an isomorphism ©* : Q*(M) — Q*(P)$

Proof. we Q*(M)

- mo Ry = 7 implies R 7w = m*w

— conclude m*w € Q(P)¢

X vertical
-dr(X)=0
—1xm™*w =0

— conclude m*w € Q(P)hor
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7 is surjective submersion

- ¥ is injective

- assume: o € Q(P)¢

- s: U — P local section

- s«

- claim: s*« is independent of the choice of section
— s’ another section

— §'(u) = s(u)g(u) for unique g : U = G

—u in U, X in T, M

sa(u)(X) = als(u)g(u))(dRyqy(ds(u)(X))) + als(u)g(u))(XF)
= () () (ds(u) (X))
= s'a(u)(X)

where X* = dg(u)(X)¥#(s(u)) is vertical

- get globally defined w in Q(M) with w; = s*a

-TW =«

choose connection w in Q(P, g)“
- = dw + [w, w] - curvature

- recall: Q € Q2(P,g)¢

hor

consider p in S*(g*)¢

- form p(Q) in QeV(P)}?or
- interpret Q : A°TP — g

- interpret p : S*(g)¢ — R
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- then p(Q) :=po S*(Q)) : S*(A’TP) - R

— or equivalently: p(Q2) € S*(Q?(P)) C QV(P)
— actually: p(Q2) € Q*V(P)$

Lemma 5.29. We have dp(2) =0

Proof. note: dp(X)([Y, X]) = 0 by Ad(G)-invariance

— differentiate identity p(¢Xg~') = p(X) w.r.t g

-Q =dw+ [w,w]
- |w, [w,w]] = 0 by Jacobi
- dQ) = 2[dw, w]| = 2[Q, w]

dp() = 2dp()(d2)
— 2dp(Q) (12, ])

let ¢,(w) € Q(M) denote the closed form on M such that 7*¢,(w) = p(Q)

f:M —-M
J R
[ ]
M — M
- pull-back

- F*w := ' connection

- have f*cp(w) = cp(w’)

Lemma 5.30. The class [cp(w)] in Hqr(M) does not depend on w.
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Proof. w'- second choice
P:=pri,P = [0,1] x M
-P= ]5|{z‘}><M

- P, 2 P canonically

- arrange @ on P such that ©jp) = w and @)p, =’

{0}xM = cp(w) and Cp(@){l}xM =

- df[O,l]xM/M @) =w —w

fix Lie group G

Definition 5.31. A characteristic class ¢ (of degree k) associates to every manifold M
and G-principal bundle P — M a class c(P) in Hé“R(M) such that for every pull-back

ffP— P

L, |

M —M

we have f*c(P) = c(f*P).

characteristic classes from a ring ChW(G)

Remark 5.32. one can show that

ChW(G) = H*(BG;R) .

let ¢ be a characteristic class

Lemma 5.33. Ifdeg(c) > 0 and P is trivial, then c(P) = 0.
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Proof. have pull-back

S
~
*4—Q

- ¢(G — *x) = 0 (for degree-reasons)

e(P) = f*e(G — ) =0

consider p in S*(g*)¢

Definition 5.34. We let c,(P) € Hqr(M) denote the class of cp(w).

this is the characteristic class ¢, for G-principal bundles associated to p

- if p is homogeneous: cp is of degree 2 deg(p)
Corollary 5.35. We have a homomorphism c : S*(g*)¢ — ChW(G) (of degree 2)

Example 5.36. G = U (k)
- det(1+tX) =1 +te + - + they, defines ¢; € S (u(k)*)V®)
- these are non-zero

- C¢; has degree 2i

- is called the ith Chern class for U(k)-bundles

-U(n)/U(k) = V(k,n,C) is Stiefel manifold of k-dimensional subspaces with framed or-

thocomplement in C"
- get U(k) principal bundle U(n) — V (k,n,C)
- get classes ¢, € H%: (V(k,n,C))

— one can show that they generate cohomology O

Example 5.37. U(k) x U(n — k)

-U(n)/U(k) x U(n — k) = G(k,n,C) is Grassman manifold of k-dimensional subspaces in
Cn
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- get U(k) x U(n — k) principal bundle U(n) — G(k,n,C)

- we used the classes ¢,, and cj; in the calculation of Hqgr (G (k,n,C)) O

5.4 Duality

M - manifold

Q.(M) C Q(M) subspace of compactly supported forms
- d preserves compact support

- get subcomplex (Q.(M),d) of (2(M),d)

Definition 5.38. The cohomology H g (M) = H*(Q(M),d) is called the compactly
supported de Rham cohomology

- contravariant functorial for proper maps
— f: M — M’ is proper if f~1(K) is compact for every compact K in M’

— supp(f*w) = f~(supp(w))

— supp(w) compact implies supp(f*w) is compact

- homotopy invariant for proper homotopies

~h:[0,1] x M — M’ is proper homotopy if f is proper

inclusion Q.(M) — Q(M) induces

¢ HE gy (M) — Hig (M)

— is ring homomorphism

— is an isomorphism if M is compact
wedge product : A : Qe(M) @ Qo (M) — Q.(M)
- induces cup product
U: HZggp(M) @ HZ gg(M) — H_ qg (M)
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(right) module structure Q.(M) @ Q(M) — Q(M)

- induces module structure

U: Hgr(M) ® Hig(M) — Hy qg (M)

new feature:

- (2(M), d) and therefore H jg(—) are covariantly functorial for open embedding:
— extension by zero

— notation 7

M = U UYV open decomposition

Lemma 5.39. The complex
0 QUNV) 2% 0 U) @ Qu(V) 5% Qu(M) — 0
18 exact.

Proof. use partition of unity y € C.(U), k =1—x € C.(V)

check exactness:
Q.(UNV): is clear

Q:(U) ® Qc(V):

(o, B) in Qe(U) ® Q(V)

~ assume o — 03 = 0

~ implies supp(c) = supp(8) C U NV
— (o, B) = (v, bev)

Qc(M):
- consider «y in Q.(M)

- (w —v)(x7, —KY) =7
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Corollary 5.40. We have a long exact Mayer-Vietoris sequence

_ B
Hf,dé(M) - Hng(U nv)— H(]:de<U) D Hf,dR(V) — Hf,dR(M) .

formula for 0:

- 3] in H gq (M)

- claim: 0[] = [dx A 7]

—d(xv, —r7) = (dx Ny, —dr)

— supp(dx A ~y) C supp(dyx) Nsupp(7)

— is closed subset of supp(+y) and hence compact in M
— is contained U NV

— hence supp(dyx A7) is compact in U NV

consider M x R

- integration map

P / Qu(R x M) = Qu(M)[~1]
MxR/M
- note that differential in Q(M)[n] is (—1)"d

Stokes: P is chain map
- must check dP = Pd

— decompose w = wg + dt A wq

— —dP(w) = —d foM/Mw = — [pdwi(t)dt
— Pd(w) = [ Owo(t) — [ dwi(t)dt = — [ dwi(t)dt

Lemma 5.41. P induces an isomorphism

Hc,dR(R X M) — Hc,dR(M)[_l] .
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Proof. let x € C*(R)
-x=1fort>1
-x=0fort<1

- dy € QL(R)

define E: Q.(M)[—-1] = Q(R x M), w +— dx A prijw

claim: F is a homotopy inverse
P(E(w)) = w is clear

- construct chain homotopy idg, (rxar) ~ Eo P
-h:RxRxM—=>RxM

- h(u,t,m) = (u+t,m)

- define H : Q.(R x M) — Q.(R x M)

CH@)(Em) = [ o, (@), m)du — x()E(w)
— first term term is also fjoo w1 (u)du

— second term term is also x(t) [*_ wi(u)du

—get H(w)(m,t) =0 for [t| >>0

- (dH 4+ Hd)(w) = w —dx N E(P(w))

— H is desired chain homotopy

— alltogether this shows: E is chain homotopy inverse to P

R k=
Corollary 5.42. H(’de(Rn) o n
' 0 else

Proof. induction starting with k =0

from now on assume: M is oriented

define duality map D : Q.(M) — Q(M)*[—n]
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~w (a [wAa)
check: this is chain map

dw A o

D(dw)(«)

(wA o — (=1)%e@y A da)

s
/
~1)¥“) D(w)(da)

- <—1>“D<w><< 1)4°5() da)
— dDW)(a)

- dualization V' +— V*Hom(V,R) is exact functor on R-vector spaces
- descends to cohomology

- for chain complex Cof real vector spaces: H¥(C*) = H=FK(C)*

— apply to de Rham complex: H*(Q(M)*[—n]) = Hggk(M)*

get induced duality map
- D : HE o (M) — HMQ(M)*[—n]) = HiZ"(M)*

Example 5.43. D : H* . (R") — Hggk (R™)* is an isomorphism

i: M’ — M open embedding

Lemma 5.44. ‘
Hyqq(M') —— H} g (M)
|- |
Hg k() 5 Hg ()
commautes

Proof. fM,a Ai*w = fMiga/\w
M manifold
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-U = (Uy)a a covering
- U is called a good covering if all intersections Uy, N --- N U,, are diffeo to R"

Lemma 5.45. If M admits a finite good covering, then D : H? jp (M) — Hig (M)* is an

isomorphism.

Proof. induction by the size of covering
start: one set

- this is Example [5.43

induction:
May-Vietoris
- add one set
-M'uU=M

— induction hypothesis applies to M’ and M’ NU

_ P
Hsdﬁ(M) —— H}(g(UN M) —— HE (g (U) @ H g (M") ——— H} 1o (M)

| J J |

HI Y (M) —25 HE R (U 0 M) —— HESF(U)* @ HiR (M) —— HI R (M)

must check that square involving boundary maps commutes

a:U—M,b: M — M, j:UNM — M inclusions

] € Hl g (M)

-we HigHUn M)

— choose x € C.(U) such that 1 — x € C.(M’)
— then O[y] = [dx A @]



— then Jw] = [dx A w]

1"+ Dla] (0w)

1)tk 1/ aNdy Nw

(=
(=
= / dxy Na ¢

M

= DELD(w])

I Dhl(w) =

finish argument by Five Lemma

O]

Corollary 5.46 (Poincar’e duality). If M is n-dimensional, compact and oriented, then
D : Hqg(M) — Har(M)*[—n] is an isomorphism.

~

Corollary 5.47. If M is n-dimensional, compact, oriented and connected, then Hip (M) =
R.

Example 5.48. Hyr(S") = R[z]/(2?)

- duality: (p,q) — azPQ|x:0

Hu(CP") = Rfa]/ ("), deg(x) = 2

- duality: (p,q) — (%@ZLPQ)M:O

Hgr(T") = Rz1, ..., zn), deg(z;) = 1

- duality: (p,q) — [5pq

— Berezin integral: takes coefficient at x; ...z,

Example 5.49. signature
M compact, connected, oriented, n = 4m-dimensional
- D : H3 (M) = H32(M)* - duality

- (@, y)m = D(z)(y) = [,z Uy
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~ (=, —)u is symmetric bilinear form on H3% (M)
— this is called the intersection form of M

— it is non-degenerated by Poincaré duality

classification of bilinear forms over R:
(=, —)ar is determined by b :

- b;m + b, = bam, - Betti number

Definition 5.50. sign(M) := b — b,

m

is called the signature of M

M) is oriented homotopy invariant of M

- sign(M°P) = —sign(M) (orientation change)

6 Riemannian geometry and de Rham cohomology

6.1 Hodge x

M manifold
- n = dim(M)
- g Riemannian metric

- induces metrics (—, —) on AFT*M

at a point:
- V - euclidean vector space

—e1,...,e, - ONB of V
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— el ..., e" - dual basis of V*

— e A--- A€k for ip < --- < g forms ONB of AFV*

assume M is oriented

- metric induces volume form vol in Q" (M)

at a point:
el, ..., e" oriented ONB

-vol=el A Aem

have non-degenerate pairing

-1
(=, =) ARTEM @ APRTEM D AT M 22 M xR

at a point:
—r=11 < ...l

_j:jl...<jk

- 7/ complementary sequence to %

—(2,4) = (1,3) (if n = 4)

- 0(i) - sign of permutation which orders concatenation ifi’

(1,3)) =

1,3)) =—1
(3,4)) =1

— o
— o
(€', e7) = o(i)i

- this shows non-degeneracy

there exists a uniquely determined * : A¥T*M — A" *T*M such that
(o, *w) = (o, B)

Definition 6.1. x is called the Hodge x-operator
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at a point:
se! = o(i)e’

- check:

— (ei,*ej,) = (el el) = i j
—(e' ) = (i, )0,

%

xxel =oa(i)o(i')e

o)) = (~1)

n=4
-xel =2 N2 Ned
-xeZ2 = —el Ned Net

-xel Ne2 =3 Net

6.2 The Hodge decomposition

M manifold, vol - volume measure

- E — M vector bundle

- h metric on F

- get pairing on sections
-¢pel(M,E), v eT.(M,E)

(6,4) := [y h(m)(¢(m), 1) (m))vol(m)

F' second vector bundle with metric
D:T(M,E) — T'(M,F) - differential operator
- preserves supports

— restricts to

-D:T.(M,E) = T'.(M,F)

Definition 6.2. A formal adjoint of D is a differential operator D* : T'(M, F) — I'(M, E)
such that (D¢, 1)) = (¢, D*) for all € T'(M, E) and ¢ € T'o(M, F).
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a formal adjoint exists and is unique

locally

- in chart of M

- trivialization of F, F,

—e:=dim(FE), f := dim(F)

- D= Zi:o Ziak ;0"

— where

— I, = {11 < -+ <ig} - set of multi-indices

— a; € C°(M,Mat(f,e))

— vol = vdx
d .
(D¢, ) = ( a;0'¢) Yvdz
d .
= d'¢" - a; - Yudx
d
= (=DF [ ¢* v 10 (val - )vdx
d
= [ (S o v )i
M k=04€l,
= (6.D%)
read off:

Dy =00 Sser, (R0 0 (vay ) = S0 e, ald

- use Leibnitz rule for second equality

consider dy, : QF (M) — QFFL(M)

Definition 6.3. The formal adjoint of dy, is 6y, : Q¥TH(M) — QF(M).
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note dg11 o dx = 0 implies

Ok 0 Opy1 = d o diyy = (dggr0dp)* =0

Lemma 6.4. 0, = (—1)"1 % d,_p_q*.

Proof. deg(a) =k, deg(w) =k +1

(dra,w) = (=)FDOED (G, 5 5 w)

= (—1)(k+1)(”k1)/ dro A *w
M

_ (_1)(k+1)(nk1)+k+1/ N R
M

_ (_1)(k+1)(n—k)+(n—k+1)(k+1)/ oMk d ok w
M

= (a,(—D T sd,_pq *w)

general fact:
D differential operator between vector bundles E and F
- E, F with metrics

- M with volume
Lemma 6.5. We have ker(D) = im(D*)*.
Proof. ¢ € ker(D) implies (¢, D*9) = (D¢,v) = 0 for all ¢, hence ¢ € im(D*)*

¢ € im(D*)* implies (¢, D*y)) = (D¢, 1)) = 0 for all 1, hence ¢ € ker(D)

-din N

Definition 6.6. We say that ord(D) < d if for any fo,..., fq in C>°(M) we have

(fa; [fa1,---[fo.D]...] =0
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Lemma 6.7. We have ord(D) < d if and only if M can be covered by charts and trivial-

izations of the bundles such that locally
d .
D= i
k=04€1y,

Proof. exercise O

if ord(d) < d, then
e De™t = aq(D) ()t + - - -+ ao(D)(f)

Lemma 6.8. Assume that ord(D) < d. Then o4(D)(f)(z) only depends on df(x). We
have o4(D) € T(M, SHT*M) @ Hom(E, F)).

Proof. estimate of order of et/ De~*/ in ¢

- () =o€ D= = [f,[f,...[f. D]...]] = 0 (k commutators) for k > d + 1
locally

- 0a(D)(f) () = Xty <<igyer, On f (@) - O3y [ )i < <iy

Definition 6.9. o4(D) is called the principal symbol of order d of D.

Definition 6.10. A differential operator D of order < d is called elliptic if o4(D)(§) :
E, — F, is invertible for all £ in Ty M \ 0 and x in M.

Theorem 6.11 (from analysis, without proof!). If D is an elliptic differential operator
and M is compact, then
I'(M, E) = ker(D) @ im(D*) .

Moreover dimker(D) < oo and ker(D) = im(D*)*.
note that D* is also elliptic and hence I'(M, F') = ker(D*) & im(D).

M Riemannian manifold

Definition 6.12.
Ay = Op_1dp_1 + Opdy, - QF (M) — QF(M)
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1s called the Hodge Laplacian.

have ord(Ag) = 2
Lemma 6.13. We have o2(Ax)(€) = 2||€]|.
Proof. [f,d) = —eqs

- ¢ 1= &N
[f,(S] :[f7d*] :[d7f]*:62fzzdf

here is the argument for last equality
-ie{l,...,n},jE€Ix_1, hel

- (661 (ej)v eh) = 5{1}ﬁj,h = (6j7ieleh)

(£, 1f,0d)) = [f,[f,0ld] + [f, 6[f, d]
= [fsigrd] + [, 0ed]
= igreqf + lareds
= 2igreqr

analoguously

[fa [fa d(SH = 26df’idf

have
26dfidf + 26dfidf = 2”df”2

here is the argument

- (€p1ipr + €ripr)e? = el

— if j contains 1, then first term contributes, other wise second term contributes
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hence

o2(Ak) = |ldf||? O
Corollary 6.14. The Hodge Laplacian Ay, is elliptic.

Theorem 6.15. Let M be a compact Riemannian manifold. Then we have decompositions
OF(M) = im(dg—1) @ im(dg—1)" and QF(M) = im(0),) © im(55) "

Proof. show first assertion, the second is similar

consider Laplace operator Ay := 0p_1dy_1 + Opdy, : QF(M) — QF (M)
- elliptic and formally selfadjoint op
- Theorem gives QF (M) = ker(A*) @ im(AF)

-we Nk
- w = wy + Apw’ with

ALUQ =0
the following is the desired decomposition: w = dj_10x_1w" + (wo + dpdiw’)

- dk,15k,1w/ S im(dkfl)

- show: (wo + dpdpw’) € im(dg_1)+

— (dg—18,wo + 0pdrw”) = (B, 0p—1wo + Ok—10kdiw’)

— 0p_10pdrw’ = 0 is clear

(Ok—1wo0, Ok—1w0) < (dg—1wo, O—1wo) + (dkwo, dxwo)
= (w0, (dk—10k—1 + Sdy)wo)
= (wo, Agwo)
=0
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the following is for compact M:
Definition 6.16. We define the space of harmonic forms by H¥(M) := ker(6_1) Nker(dy).

Theorem 6.17. Assume that M is compact. We have a decomposition
OF (M) = im(dj—1) & H" (M) @ im () .
Furthermore, im(dy,_1) ® H*(M) = ker(dy,) and H*(M) = ker(Ay).

Proof. QF(M) = im(dy_1) @ im(dg_1)* and QF(M) = im(6;) © im(6)*.

show orthogonality o = dj_1a/ € im(d_1)
w = opw’ € im(dg)

v € ker(dx—1) N ker(dy)

- (,y) = (dp—1d/,7) = (&', 6,y) =0
- (w,7) = (pw',7) = (W', diy) =0

- (a,w) = (dg_1/, 6k) = (&, 0 _105w") = 0

completeness:

0 € QF(M)
-0 =a+o0 with a =dy_1o/ € im(dg_1), 0 € im(dj_1)*

-0 =+ 0w with v € im(0x)*
0 = dj_10’ + v+ 6w’ is desired decomposition

must show that v is harmonic
- claim: dp_17 =0

— ker(0p_1) = im(dj_1)*

— implies dp_10 = 0.

— since also 0j_10,w’ = 0 conclude:
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— 0p—17 =0

must show: dipy =0

- ker(dy,) = im(dg)* > v

im(dkfl) ) Hk(M) - ker(dk)
im(dy) L ker(dy) implies
im(dy_1) ® H*(M) = ker(dy,)

- Ap(H*) =0 is clear
- vice versa: assume Apw =0
- then 0 = (Ayw,w) = || dkw]|? + || 65— 1w||?
- hence w € ker(dy Nker(6;) = H*(M)
O
Corollary 6.18. If M is compact, then H*(M) — ker(dy) — HAz(M) is an isomor-

phism. In particular, every class [w] in H5; (M) has a unique representative w in H*(M)

characterized by the additional equation dp_qw = 0.
Example 6.19. M = G/K compact symmetric

- HE(M) = QF(M)E

speciality: H*(M) is an algebra
in general: the wedge product of harmonic forms is not necessarily harmonic

O

Definition 6.20. M 1is called formal if there exists a zig-zag of quasi-isomorphisms of

differential-graded algebras
Hip(M) — A1 «+ Ay — - = Q" (M) .

Corollary 6.21. If M is closed and admits a Riemannian metric such that H*(M) is an

algebra under A, then M is formal.
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Corollary 6.22. Compact symmetric spaces are formal.

M compact, oriented Rimannian

Proposition 6.23. The Hodge x-operator preserves harmonic forms and * : H¥(M) —
H"k is the Poincaré duality isomorphism: * = (—1)kF=k) D

Proof. w € H(M)

dxw=tx*xdxw==2%dw=0

dkw==F**d*w =*dw =0

- hence *w € H(M)

w e H¥ (M), a € H (M)

(xw,a) = (a,*w)

:/a/\w
M

= (D" MD()(a)

Example 6.24. dim(M) = 4m
-k HPY (M) — H7(M)
- sign(M) = sign(*) on H?"(M)

6.3 De Rham cohomology of complex manifold

M - manifold

TeM :=TM @ C

- Q1= QR

use AL(R"® C) 2 AER" ® C

set: AF(M) := (M, ALTcM) = T(M,AET*M @ R) = QF(M) @ C
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- complex differential forms

-d: AF(M) — AFTY(M) - complex linear extension of de Rham differential

- —® C is exact functor

H[;R’C(M) = H¥(A*(M),d) = H*(Q*(M) ® C,d) = H¥(Q(M),d) ® C = HY (M) ® C

assume now that (M, I) is almost complex manifold

- write also I for induced complex structure on End (7™ M)
- TEM = THLON @ TOLM

— T*LOM - j-eigenspace of I ® id¢

— T*%I M - —j-eigenspace of I ® idc

complex conjugation: (—) : TeM — TEM

()T M S T M

- S 1M

TeM = 710 @ T+%1 M induces

MM = @ ATOM @ ATT0 M
p+q=k

— define APITEM = APTHVONT @ AIT*01 )1
—set API(M) :=T'(M, Ap’qT(éM)
— then A*(M) =, AP9(M)

how does d interact with this decomposition

Lemma 6.25. d : AP9(M) C AP~ L9T2(M) + APITY(M) + APFLA(M) + APF2471( M)

Proof. local argument
- choose basis e!, ..., e" of T*1OM

- apply (—) - get basis &',...,&" of fT*0
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_feil/\.../\eip/\éjl/\.../\éjq_inAPaQ(M)

df = > OpfdaPnet A Ae NN N
k

(=)t Ao Adet A At NETUA - A B

NE

+f

=1

+£Y (DM Ao AN AdER A N

M=

>
Il
—

dz* € A% (M) + AYO(M)

- first term in APTLI(M) + APIHL (M)

de®, de” is just 2-form, any bidegree

- second term in AP~LIF2(M) + APOHL(M) + APTLA(M)
- third term in AP9+2(M) + APTLI(M) + APT24-1( M)

assume now that I is integrable
- study consequences for de Rham complex

- here is one

Lemma 6.26. If I is integrable, then d : AP4(M) C APTL4(M) @ AP+ M),

local structure

- by assumption on I have complex coordinates zp = xx + 1yi
- dZF = dab + idy*

- dzF = dab — idyF

(Oyi — 10y:)

(Oyi +10y:)

i = Oy =

s -— Uzi «

N—= D=

- basis of APITcM is dzt A -+ Adz AdZIT A - A\ dZa

- but now ddz* = 0 and ddz' = 0
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— this shows Lemma [6.26)

d =300 (€qpiOn; + €4y 0y,) = D) (€420 05 + €45i D)
-set 0= " €4.:0; and 9 1= 31 | €45:0;

0 APA(M) — APTLA(M)

0 : APA(M) — APITL(M)

have [9;,0;] = 0 and [0;,0;] =0

- hence 92> = 0 and 92 = 0

- hence 0 = d? = (0 + 9)? = 90 + 90

get double complex (A**(M), d, )

- interesting homological algebra, spectral sequences

Definition 6.27. The pth Dolbeault-complex of M is the complex (AP*(M),d).

Definition 6.28. Forp,q € N? we define the Dolbeault cohomology HP(M) := HI((AP*(M), D)
and the Hodge numbers hP4(M) := dim HP4(M).

Remark 6.29.

QP (M) == ker(0 : APO(M) — APH(M))
is the space of holomorphic p-forms
- complex of sheaves (AP*,d) is a soft resolution of sheaf QF (M)
- HPA(M) = H, o (M, Q)

— Dolbeault cohomology calculates sheaf cohomology of the sheaf of holomorphic p-forms
O

Example 6.30. M compact complex surface dimg (M) = 2
- also called curve in algebraic geometry since dim¢ M =1
- g - genus

Riemann Roch Theorem:

ROO(M) — hOY (M) =1—¢g
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- h%0 =1 (holomorphic functions are constant), h%'(M) = g
WPO(M) —hP (M) =29 —-2+1—g=yg—1
- What can one say about h%?(M) and h%!(M) separately?

Serre duality - see later

f: M — M’ holomorphic.

Proposition 6.31. f induces map of double complexes f* : (A**(M’),d,0) — (A**(M

and f* : H*(M') — H**(M).

Proof. df commutes with [

- it restricts to

- df @ idjpopy TYOM — f*THOM’ and same for (0,1)
- hence f* restricts to f*: APY(M') — AP9(M)

- f* preserves d and hence 9, &’

Remark 6.32. QF(M) ® C has decreasing filtration
- compatible with d
-d: F'QF(M) C FIQM1 (M)

- get filtration of Hyr(M) ® C by images of @ HP9(M)

p+q=k,p>1

),0,0)

the spectral sequence associated to this filtration is called the Hodge-de Rham spectral

sequence.
Z€ero page
- AP9(M),

~dy=0d

first page:
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- BP9 = HPA(M)
-dy =0 : HPI(M) — HPTL9(M)

conclude: estimate of Betti numbers
b (M) <> hPREP(M)
P

check for surfaces:

-1=00(M) <ROO(M) =1

- b (M) < 29 < B0+ BN (M) = g + BO(M)
— hence h'P(M) > ¢

— will see that we have equality here later

-1 =0v¥(M) < Y (M)
- hBY (M) = RMO(M) + 1 — g > 1 is compatible with 0

Riemannian metric on M

M compact

- induces hermitean metric on AP9TcM
- can define 0* - formal adjoint of 0

- A= 0%0 + 90"

- A is elliptic

Theorem 6.33. If M is compact, then we have a decomposition AP9(M) = im(9y—1) ®
HPAU(M) + im(é;;). Furthermore we have an isomorphism HP4(M) = HP4(M) and hP? =
dim HP4(M) < oo.

- in general: AP is sensitive to complex structure, difficult to calculate

6.4 The Kahler package

M manifold
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- 2n := dimg (M)

- I almost complex structure

- g metric such that [ = —TI*

-w = g(I,—,—) - Kéhler form in Q?(M)

define L : A*T*M — AFT2T* M
-Lla)=wAha

Lemma 6.34. L(APITZM) C APTLarITENT)
Proof. must show: w € ALY(M)

choose local ONB of the form (e’, Iej)jzl,m,n of TM

g= Z?Zl(ej ®el 4+ Ied @ Ie))

n
w = Z(Iej ®e —el @Ied)
=1
n

J
= Zlej Ael
j=1

n - . .
= Z(iej + Iel)Ne

=1

n
. . 1 .
= izl(ie] + Ie?) A (—iel + §<i€] + Ie?))
1=
= 52(1’634—[6])/\(—2'634-]6])
j=1
- I(ied + Ie?) = Iied — el = i(iel + Ie’) hence (ied 4 Ied) € T*VOM

- I(—iel + Ie) = —Tied — e/ = —i(—iel + Ie) hence (—iel + Ied) € TO1 M
— conclude: w € AbL(M)
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define A := L* : AMP2T* M — ART*M

XinTM

~

- notation: X = g(X, —) - the dual 1-form to X
Lemma 6.35. We have [tx,A] =0 and [1x, L] = €55
Proof. [tx,A] since A is even

[tx, L] = €1xw = €g1x,—) = €5%

recall: (M, g,I) Kahler if dw = 0 (then also I is integrable)

Lemma 6.36. If (M, 1,g) is Kdhler, then [L,d] =0 and [A,d] = 0.

Proof. [L,d] = —dw A — =0
take adjoints to get [A,d] =0 O

* - Hodge x
- consider C-linear extension to A*TAM

Lemma 6.37. * restricts to maps x : APITEM — A9 "PTEM .
Proof. use basis dz',...,dz",dz', ..., dz" O

recall: d =0+ 0

-0 APY(M) — APTLI(M)

-0 APY(M) — APITL(M)

— consider formal adjoints: 9* and 0*

— define A? := 99* + 5*9, A9 = §9* + 50
- both preserve summands AP4(M) of APTI(M)

Theorem 6.38. If (M,1,g) is Kdhler, then A = 2A? =279, In particular A preserves
Apa(),
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define
d°:=[L,6] : Q(M) — Q(M)[1]

5° = (d°)* = [d, A] : QM)[1] — QM) .

calculate local formula at some point p

(€%)i=1...2n - local basis dual to (e;)i=1,.. 2n

recall: d =7, €.V,

- calculate formal adjoint of V,,

— use definition diverence div : X'(M) — C*(M)
— div is formal adjoint of grad : C*°(M) — X (M)
(div(X), f) = (X, grad(f)) forall f in C°(M)

/M(Veioz, B)vol /M ei(a, B)vol — / (a, Ve, B)vol

M

_ /M(Oévﬁ)div(ei)vol / (0,7, f)vol

M

- hence V;, = —V, +div(e;)
-get § =) . (—Ve, +div(e;))ee

— want to switch ¢,: to the left

- claim: 6 = =), 1.V,

— consider u := ) . (—=Ve, +div(e;))tei — (—D; teiVe,)
— u is bundle endomorphism

— is independent of choice of basis (e;)

— fix point p in M

— at p can assume that e; (and hence €') are parallel

— at this point div(e;) = 0 and [¢pi, Vi) =0
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— hence u(p) =0

— since p is arbitrary conclude u =0

M Kéhler implies Vw = 0 and hence [L, V] =0

2n

2n

d°=[L,0] = _Z[Lv te;Ve,] = _Z[L’Lei]vei = Zeleivei

7
now use complex coordinates
- write 2F = 2F + iyk
- e i=dx', Iet == dy

US€ —1€eitifei = €feitillel

=1

=1

0= E?:l €40 =D, E(ei-i-ilei)%(aei —i0re;) = %(Z?:l e(ei—s—ilei)aei + Z?:l E(Iei-i-illei)@ki)

US€ U€cijfei = €[¢i—i[]ei

d = Z?:l 6d2“§i = ZZ 6(e"—iIei)%(aei + iafei) = %(Z?:l 6(6i—i16i)8€i + Z?:l 6(Ie””'—z'IIe”‘)afei)

get

Z(é — a) = Z?:l 6Ieiaei + EIIeiafei =d°
Z(a* _ 5*) = ¢

[L,0* 4+ 0*] = [L,d] = d° = i(0 — 0)
part API(M) — APTLA: [L, 0*] = —i0,
part AP4(M) — AP4HL: [L,0%] = i0

[L,0+0] =[L,d =0
part AP4(M) — APT2L (L 9] =0
part API(M) — APTLa+2 [L 9] =0

take adjoints and get identities

[A,0] = —i0*, [A,0]=i0%, [A,07]=0,
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use 92 =0
(00" + 0°9) = B[N 8] + [, 8]0 = 0
analogously —i(99* + 9*9) = 0

A = di+dd
= (0+0)(0*+0%)+ (0 +0")(0+0)
= A2 4 AP

remains to show: A% = A9

—iN? = —i(3O* + D"9)
= OJ[A, 8]+ [A, 9]0
= OAD — DDA + ADD — DD
= OAD + DON — ADD — DA

= [0,A]0 + 9]0, A]
= —i0*0 —i00*
= —iA?

Lemma 6.39. If (M, 1,qg) is Kdhler, then [A, L] = 0.

Proof. dw =0
- part in A2H(M) is Ow = 0

use A = 2A9

[A, L] = 2([00*, L] + [0*0, L]) = 20[0*, L] + [0*, L]0
- already shown: [0%,L] = —i0
- 90400 =0
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get [A,L] =0

O

Corollary 6.40. 1. If (M, 1,g) is a compact Kdhler manifold of complex dimension n,

then we have an orthogonal decomposition H* (M) = D, =i HPU(M)

2. % induces an isomorphism HP9(M) = H"~9""P(M) (Serre duality). In particular,

hP (M) = h"~ 4" P(M).
3. We have b*(M) = > prg=k PPU(M) for every k € N.

4. We have 0 # [w'] € HVY(M) for1=0,...,n. In particular, h"(M) > 1

5. Complex conjugation induces an isomorphism HP1(M) — HPP(M) and hP9(M) =

h®P(M). In particular, b***+1(M) € 2.
6. The Hodge de-Rham spectral sequence degenerates at the E1-term.

Example 6.41. Hodge numbers for connected complex curve, genus g
_ hO,l — hl,O =y

_ hO’O — hl,l =1
6.5 Lefschetz theory
start with some linear algebra with hermitean vector spaces

C" - with standard C-basis (e;)j=1,....n
- R-basis is (ej,i€5)j=1,...n
- (¢/)j=1,..n - dual C-basis

- (é/,ie?)j=1,..n - dual R-basis

euclidean metric: g = Y77 ¢/ ® ¢/ +ie! @ i€

- Kéhler form w(—, =) = g(i—, =) = Y7, (i @ ¢/ — e ®@iel) =371 ied N el
consider operators on A*R?™* @p C =2 ARC¥* @ C
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-Li=mwA= =300 Geie

-A=LF= 22:1 LejLie;

- deg : ARC™* ®@r C = ARC™* @ C - degree operator
— for a € AEC™* @R C: deg(a) =k

- N :=deg—n

Lemma 6.42. We have [L,A] = N, [N,L] =2L, [N,A] = —2A.

Proof. L increases degree by 2

- [deg, L] = 2L

- take adjoint: [A,deg] = 2A

- implies: [N, L] = 2L, [N,A] = —2A

let non = €nte, € End(AzC™* @R C)
e A Netr Niedt Ao Nieds  h =4; for some [

_neh<6i1/\.../\eir/\i€jl/\.../\iejs): { . l
else

e A Aetr Ndelt Ao Ndels  h = j; for some [

- Nyeh (eh A~ A€t AjeILA- - ./\iejs) — { ) l
eLse

- Loy €ch = 1 —Ngn, Lie, €on = 1 — i1
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n

[L,A] = ) (€iei€eitey tie, — teybicyGiei€er)
]7k:1

- E (eiej eej Lej Liej - Lej L’L'Ej 6iej eej )

j=1
n n
= Z eiej/fiejnej - Z lej€ei (1 - niej)
p =1
n n
= Zniejnej — Z(l - nej)(l - niej)
o j=1
n
= Z(nej + niej) -n
j=1
= deg—n
= N

recall Lie algebra sl(2,R)
- linear generators: L, A, N
- relations: [N,L =2L|, [N,A] = —2A, [L,A] =N

Corollary 6.43. AzC™* @gr C carries a representation of sl(2,R).

sl(2,R) is semisimple

- every finite-dimensional complex representation completely decomposes into irreducible

representations

- the list of irreducible representations up to isomorphism is (Vj)ken
—dim(Vg) =k+1

— weights (eigenvalues of N) in Vi are —k,—k +2,...,k — 2,k

— lowest weight vector v_y

— (L"v_k)r=0,..k is C-basis of V},
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— weight of L"v_j is 2r — k

~ LMy =0

provide explicit description
SL(2,R) acts on C? - usual matrix multiplication
- acts on S¥(C%**) - homogenous polynomials on x,y of degree k

k k-1 k=1 ..k

- basis 2",z "y, ..., xy" ", x

- get action by si(2,R) by differentiation

N[ 10 Lo (01 (00
"Moo =1 )77 \oo) T \1o
N _ et 0

0 et

-etNg =elx, Ny = ety
- N gyl = pt(e=20) kLl

- Nab=lylt = (k - 21)

A
0 1

ety =z, Le =0, Ly==x

- Laklyl = (k142,12

y* - generates S¥(C%*) under powers of L

- is lowest weight vector of weight —k

- conclude irreducibility

-V Sk(CQ’*) as sl(2,R)- representations

W any finite-dimensional representation of s/(2,R)

- have canonical sl(2,R) -equivariant decompostion W = ), ., W,

104



— W}, is isomorphic to a finite sum of copies of Vj,

— want to describe this explicitly

W = @, W(k) - weight decomposition (eigenvalues of N)

for ke N

-W(k)_ == ker(LFt' : W(—k) — W(k+2)) is the subspace of lowest weight vectors of W},
- get canonical sl(2,R)-equivariant isomorphism W (k)_ ® Vj =W

— uniquely determined by w ® v_p — w

— explicitly:

®F_oL" : @W U

— get sl(2,R)-equivariant isomorphism

1R

ook
SPpwk)- v, —>w

k=0 r=0

— explicitly
o k N
PR, OF_ L7 @@W(k),iw

apply this to ARC™* ®r C

recall: N =deg—n
- (ARC™ @R C)(k) = ARTFC™* @R C

for k <n set
- set (ARTFC™* @ C)prim := (A5C™* ®p C)(—k)-
Corollary 6.44. 1. For k < n we have an isomorphism

L : (A *C™* ®@g C) — (ART*C™* @ C) .
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2. We have a decomposition

oo k
Dy BF_o L™ : (P EP(AR*C™ @R C)prim — ARC™ @R C
k=0 r=0

note:

min(n—1/2,1/2)
oL : P (AFTC @k C)prim — ARC™* @R C
r=0

applies to A*T*M fibrewise
L, A, N := deg —n define an action of si(2,R) by bundle endomorphisms
[L,d] = 0 from Kéhler condition

Corollary 6.45. 1. For k < n the operator L* : A"=F(M) — A"k(M) is an isomor-

phism.

2. It induces an isomorphism (Hard Lefschetz)

Hgg;ck(M) — Hggjgc’f(M)

3. It restricts to isomorphisms
Hp & 1(M) — Hyg &"P(M) .
Definition 6.46. For k < n Define
AR (M) prim = ker(LMT 2 AR (M) — AMTRTL (M) |
H" *(M)dr,c,prim = ker(LFT - HIZE(M) — HYE & (M)
and forp+q=n—~k

HP9(M)aR,Cprim = ker(LET! s HEY (M) — HEH 1 (Ar)

L commutes with A

106



Corollary 6.47. We have an isomorphisms

min(n—1/2,1/2)
oL P AL = AM)
r=0
min(n—1/2,1/2)

GBTLT : @ Hfllﬁ?(é,prim(M) i> H(liR,(C(M)
r=0

and for and forp+q=1

min(n—1/2,1/2)

S @ HTO)
r=0

luz
g
&

Corollary 6.48.
min(n—1/2,1/2)

© L D Hpn(M) = H (M)
r=0

and for and forp+q=1

min(n—1/2,1/2)
oL : @ HELTT(M) = HPUM)

prim
r=0

[Hel01] [KN96a] [KNIGH) [Voi07] [Kohas)

References

[BT82] Raoul Bott and Loring W. Tu. Differential forms in algebraic topology, volume 82
of Graduate Texts in Mathematics. Springer-Verlag, New York-Berlin, 1982.

[Hel01] Sigurdur Helgason. Differential geometry, Lie groups, and symmetric spaces,
volume 34 of Graduate Studies in Mathematics. American Mathematical Society,
Providence, RI, 2001. Corrected reprint of the 1978 original.

[KN96a] Shoshichi Kobayashi and Katsumi Nomizu. Foundations of differential geometry.
Vol. I. Wiley Classics Library. John Wiley & Sons, Inc., New York, 1996. Reprint
of the 1963 original, A Wiley-Interscience Publication.

107



[KN96b] Shoshichi Kobayashi and Katsumi Nomizu. Foundations of differential geometry.

[Kob95]

[Voi07]

Vol. II. Wiley Classics Library. John Wiley & Sons, Inc., New York, 1996. Reprint
of the 1969 original, A Wiley-Interscience Publication.

Shoshichi Kobayashi. Transformation groups in differential geometry. Classics in
Mathematics. Springer-Verlag, Berlin, 1995. Reprint of the 1972 edition.

Claire Voisin. Hodge theory and complex algebraic geometry. I, volume 76 of
Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cam-
bridge, english edition, 2007. Translated from the French by Leila Schneps.

108



	Riemannian manifolds - further examples
	Generalities
	Warped products
	Bundles
	Spaces of loops
	Space of connections

	The group of Isometries
	G-structures
	Transformation groups
	Automorphism groups of structures
	The isometry group as a Lie transformation group
	Manifolds with large isometry groups

	Construction of E examples from Lie groups
	Symmetric spaces
	Example Sn and SO(n+1) 
	Hn and SO(1,n)
	CPn and U(n+1)
	G and GG 

	Complex manifolds and the Kähler condition
	Complex manifolds
	The complex projective space
	The Fubini-Study metric
	Kähler geometry

	De Rham cohomology
	Basic theory
	Cohomology of quotients
	Chern-Weil theory - characteristic classes
	Duality

	Riemannian geometry and de Rham cohomology
	Hodge *
	The Hodge decomposition
	De Rham cohomology of complex manifold
	The Kähler package
	Lefschetz theory


