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1 Riemannian manifolds - further examples

1.1 Generalities

want to explain a couple of constructions of Riemannian manifolds and their basic prop-

erties

up to now:

- every manifold has a Riemannian metric
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– glue local metrics using a partition of unity

– these metrics do not have interesting special properties

a basic property is completeness

- if g is any metric on M

- can find conformal change efg which is in addition complete

often one is interesting in metrics with symmetry

- assume that a Lie group H acts on M

Lemma 1.1. If H acts properly, then there exists a H-invariant metric on M .

Proof. idea: take any metric g on M , average over H

- H as locally compact group has right-invariant Haar measure dh

- Rl,∗dh = dh for all l in H

– dh unique up to normalization

- H is Lie group ⇒ dh represented by a H-invariant volume form

idea works immediately if H compact:

- H compact ⇒ can normalize volume such that
∫
H dh = 1

- set ḡ :=
∫
H h
∗g dh

– check: l∗ḡ =
∫
H l
∗h∗g dh =

∫
H(hl)∗g dh =

∫
H h
∗gRl−1,∗ dh =

∫
H h
∗g dh = ḡ

choose any metric g

if H is non-compact:

- can not normalize dh (H has infinite volume)

- by properness of the action can choose a function χ in Cc(M) with

– χ ≥ 0
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–
∫
h∈H h

∗χdh = 1

- define ḡ :=
∫
h∈H h

−1,∗χ h∗g dh

check:

l∗ḡ =

∫
h∈G

l∗h∗χ l∗h∗g dh

=

∫
h∈G

(hl)∗χ (hl)∗g dh

=

∫
h∈G

h∗χ h∗gRl−1,∗ dh

=

∫
h∈G

h∗χh∗ g dh

= ḡ

Example 1.2. Exercise?

R× acts on R by multiplication

R has no R×-invariant metric

- assume that g is such a metric

- g = f(x)dx2 with f > 0

- t∗g = f(tx)t2dx for all t in R×

- at x = 0 get f(0) = t2f(0)

- this implies f(0) = 0 (consider limit for t→ 0)

– contradicts f > 0

What goes wrong?

R× does not act properly

- it does act properly on R \ {0}
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- then x−2dx2 is invariant metric

2

M → Rn - submanifold

- has induced metric

- can describe properties by second fundamental form, Gauss-Codazzi equations

Problem 1.3. Given (M, g), is there an isometric embedding M → Rn for some n?

- Whitney: there is an embedding as manifolds if n ≥ 2 dim(M).

- Nash: There is an isometric embedding for n >> dim(M)

1.2 Warped products

Construction 1.4. (N, gN ) Riemannian manifold

f : R→ (0,∞) - warping function

M := R×N

gM := dr2 + f(r)gN

(M, gM ) is called warped product

sometimes one replaces R by subintervals

2

Example 1.5. Rn = R× Rn−1

- coordinates (x, x′)

- gR
n

= dx2 + gR
n−1

- constant warping 2

Example 1.6. cylinder over (N, g)

M = R×N

- gM = dr2 + gN

Rn is cylinder over Rn−1 2
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Example 1.7. Hn

- upper half space model Hn = {(x, x′) ∈ R× Rn−1 | x > 0}

- gH = 1
x2 g

Rn

- solve dr2 = dx2

x2

- dr = dx
x

- r = ln(x)

- x = er

x = er

Hn = R× Rn−1

- gH = dr2 + e−2rgR
n−1

2

Example 1.8. cusp over (N, gN )

- gM = dr2 + r−2rgN

Hn \ {0} is cusp over Rn−1

2

Example 1.9. euclidean cone

- replace R by (0,∞)

- M = (0,∞)×N

- gM = dr2 + r2gN

– not complete at t = 0

Rn \ {0} is euclidean cone over Sn−1 (Polar coordinates)

- in this case can complete at t = 0 2

(N, gN ), f given

(M, gM ) warped product
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Lemma 1.10. (M, gM ) is complete if and only if (N, gN ) is complete

Proof. exercise?

- (t, x) in M

- B((t, x), r) is contained in [t− r, t+ r]×N

- B((t, x), r) is contained in [t− r, t+ r]×B(x, s) with s := 1
minu∈[t−r,t+r] f(u)

- this is compact by completeness of (N, gN )

Example 1.11. volume

volg = dr + f(r)
n−1

2 volgN

Lemma 1.12. If N is compact, then vol(M, gM ) is finite if and only if
∫
R f(r)

n−1
2 dr <∞.

(N, gN ), f given

(M, gM ) warped product

Example 1.13. exercise? When is the fibre Nt := {t} ×N totally geodesic?

Answer: If and only of f ′(t) = 0 2

1.3 Bundles

π : M → B fibre bundle

gM and gB Riemannian metrics on M and B

Definition 1.14. π is called a Riemannian submersion if Dπ : TM → π∗TB is an isom-

etry.

- get orthogonal decomposition TM ∼= T vπ ⊕ T vπ⊥

– set T hM := T vπ⊥ - this is a connection

– Dπ induces isometry T vπ⊥ ∼= π∗TB

reverse construction
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choose connection TM = T vπ ⊕ T hM

choose

- gB -metric on B

- gT
vπ vertical metric

define: gM := gT
vπ ⊕ π∗gB

- then π is Riemannian submersion

Example 1.15. warped products are examples

π : R×N → R

- gR = dr2

- connection is TN ⊆ TR� TN = T (R×N)

- f(r)gN is gT
vπ 2

Lemma 1.16. If π is proper and B is complete, then M is complete.

Proof. Exercise?

fix m in M

fix r in (0,∞)

- B(m, r) ⊆ π−1B(π(m), r)

- this is compact since π is proper and (B, gB) is complete

Example 1.17. G-principal bundles

π : P → B - G-principal bundle

- gg - Ad-invariant metric on g

- action defines isomorphism T vp
∼= g at every p in P

- define gT
vπ so that this is isometric

- choose principal bundle connection ω

- choose metric gB

- get metric gP := gT
vπ ⊕ π∗gB
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Lemma 1.18. gP is G-invariant.

Proof. Exercise

use

T vp π
TRg
//

��

T vpgπ

��
g

Ad(g−1)
// g

2

1.4 Spaces of loops

(W, gW ) Riemannian manifold

L(W ) := C∞(S1,W ) - loop space

- this is a set for the moment, more structure later

γ in L(W )

- (γu)u∈I smooth family of loops at γ

– this is a map S1 × I →W , (t, u) 7→ γu(t)

– write (−)′ for derivative w.r.t. u

- γ′0 ∈ Γ(S1, γ∗TW )

- interpret Γ(S1, γ∗TW ) as TγL(W )

- define scalar product for Y,X in TγL(W )

– 〈X,Y 〉 :=
∫
S1 g

W (X(t), Y (t))dt

want to interpret this as Riemannian metric gL(W ) on L(W )

- consider f : S1 ×M →W - interpret as map f : M → L(W )

- get a scalar product 〈−,−〉 on TmM by:
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- γ := f(−,m)

- dXf(−,m) is in TγL(W )

– 〈X,Y 〉 := 〈dXf, dY f〉

this should be f∗gL(W )

- problem: L(W ) is not a manifold (infinite-dimensional)

use the language of diffeological spaces

- L(W ) is diffeological space:

Cart - category of open subsets of euclidean spaces Rn (for any n) and smooth maps

Definition 1.19. A cartesian sheaf is a functor F : Cartop → Set such that for every U

and open covering (Ui) we have

F (U) = eq(
∏
i

F (Ui) ⇒
∏
i,j

F (Ui ∩ Uj)) .

A morphism between cartesian sheaves is a natural transformation.

get category Sh(Cart) of cartesian sheaves

Example 1.20. example: X a set

X(U) := HomSet(U,X) is a sheaf

2

Definition 1.21. A concrete cartesian sheaf is a subsheaf of a cartesian sheaf of the form

X(−) for some set X.

Remark 1.22. X - concrete sheaf

- can recover set X := X(∗)

- u in U is map u : ∗ → U

- interpret φ in X(U) as map U → X(∗)

– U 3 u 7→ u∗φ ∈ X(∗)

– X(U) is a subset of HomSet(U,X(∗)) 2
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Example 1.23. not every cartesian sheaf is concrete

- consider Ω1 : U 7→ Ω1(U) - sheaf of smooth 1-forms

- Ω1(∗) = {0}

- Ω1(R) is large

2

Definition 1.24. A diffeological space is a subsheaf of a concrete sheaf.

get a full subcategory MfDiff of Sh(Cart) of diffeological spaces

- this is category of diffeological spaces

Example 1.25. manifolds

M a manifold

- induces a diffeological space MDiff(−)

MDiff(U) := C∞(U,M)

one can recover M from MDiff

- underlying set M∞(∗)

- then MDiff(U) ⊆ HomSet(U,M∞(∗)) induced by

- φ 7→ (u 7→ u∗φ) (here u ∈ U is map ∗ → U)

- topology on M(∗): maximal such that all maps in MDiff(U) are continuous

- smooth structure: characterize smooth functions: f : M(∗)→ R is smooth if φ∗f : U → R
is smooth for all φ in MDiff(U)

a map of manifolds f : M → N induces map fDiff : MDiff → NDiff of diffeological spaces

- one can recover f from fDiff

Lemma 1.26. We have a fully faithful unctor Mf →MfDiff .

2

Example 1.27. many more examples of the following kind
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- B Banach space

- BDiff(U) := C∞(U,B) makes sense

- get BDiff - diffeological space 2

Example 1.28. - X topological space

- XDiff(U) := HomTop(U,X) makes sense

- get XDiff - diffeological space

- in general can not recover X from XDiff

– can recover underlying set as X(∗)

– maximal topology such that all maps φ : U → X(∗) for φ ∈ X(U) are continuous is in

general larger than original topology 2

Example 1.29. Mapping spaces between manifolds

this example is the main reason to consider diffeological spaces

HomMf (M,N) extends naturally to a diffeological space

- HomMf (M,N)Diff(U) := HomMf (U ×M,N)

- apply to loop space L(W ) := Hom(S1,W )

- get L(W )Diff

2

Example 1.30. can talk about smooth functions, or forms on diffeological spaces

C∞(X) := HomMfDiff
(X,RDiff)

Ωn(X) := HomSh(Cart)(X,Ω
n)

- de Rham complex d : Ωn(X)→ Ωn+1(X) makes sense

2

use same idea to interpret metrics

- have sheaf S2T in Sh(Cart)
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– S2T (U) = Γ(U, S2TU)

– has subsheaf S2
≥0T - non-negative symmetric tensors

– can not define sheaf of metrics S2
>0T since positivity is not preserved under pull-back

– can only define a notion of possibly degenerate metric

– this makes all construction problematic which use the inverse

Definition 1.31. A possibly degenerate metric on a diffeological space M is a map g :

M → S2
≥0T in Sh(Cart).

Example 1.32. If (M, g) is Riemannian

- get possibly degenerate metric on MDiff

- can recover g from this 2

Example 1.33. (W, gW ) - Riemannian

- L(W )Diff has canonical possibly degenerate Riemannian structure

- the embedding WDiff → L(W )Diff (as constant loops) is isometric 2

Example 1.34. γ 7→ E(γ) is a map L(W )Diff → RDiff

2

Remark 1.35. in order to model all aspects of tangent bundle diffeologically:

- must enlarge category Cart by adding fat points like ∗2 := R[x]/(x2)

- TM = Hom(∗2,M) (in the sense of ringed spaces)

– element is a homomorphism C∞(M)→ R[x]/(x2)

– this is a point m and a derivation X ∈ TmM :

– f 7→ f(m) +X(f)x

- ∗ → ∗2 corepresents projection TM →M 2

1.5 Space of connections

V →M vector bundle

Conn(V ) - set of connections
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- can turn Conn(V ) into diffeological space Conn(V )Diff

consider vector bundle W → N ×M

Definition 1.36. A partical connection on W along M is a R-linear map

∇ : Γ(N ×M,V )→ Γ(N ×M,pr∗MT
∗M ⊗ V )

satisfying the Leibnitz rule

∇X(fv) = f∇Xv +X(f)

for all X in Γ(N ×M,pr∗MTM), f in C∞(N ×M), and v in Γ(N ×M,V ).

ConnM (V ) - set of partial connections

- is an affine space over Γ(N ×M,pr∗1T
∗M ⊗ End(V ))

Definition 1.37. The diffeological space ConnDiff(V ) is defined by

ConnDiff(V )(U) := ConnM (pr∗MV ) .

assume: M is Riemannian and compact

- consider metric on V

- induces notion of adjoint

- get metric on End(V ) by 〈A,B) := trA∗B

- get metric on pr∗1T
∗M ⊗ End(V ) by combining

get metric on ConnDiff(V ):

- fix ∇ in ConnDiff(V )(U)

- X,Y in TuU

- dX∇(u) ∈ Γ(M,T ∗M ⊗ End(V ))

- g(X,Y ) =
∫
M 〈dX∇(u)(m), dY∇(u)(m)〉dgM

in gauge theory
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- consider functions like ∇ 7→
∫
M ‖R

∇‖2dgM (Yang-Mills functional)

– this is smooth function: ConnDiff(V )→ R

- metric allows to consider gradient and gradient flow

2 The group of Isometries

2.1 G-structures

recall:

M - manifold, dim(M) = n

- have frame bundle Fr(M)→M

– a GL(n,R)-principal bundle

– m in M , e in Fr(M)m is isomorphism e : Rn → TmM

– GL(n,R)-action by e · g := e ◦ g

f : M →M ′ local diffeomorphism

- f induces Fr(f) : Fr(M)→ Fr(M ′)

- Fr(f)(e) := Tf(π(e)) ◦ e

κ : G→ GL(n,R) homomorphism of Lie groups

Definition 2.1. A G-structure on M is a G-reduction (Q, r) of the frame bundle.

recall notion of G-reduction :

- Q→M is G-principal bundle

- r : Q→ Fr(M) is G-equivariant bundle map:

Q×G //

r×κ
��

Q

r
��

Fr(M)×GL(n,R) // Fr(M)
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notion of equivalence:

Q
∼= //

r

""

Q′

r′

||

Fr(M)

consider special case: κ : G→ GL(n,R) is inclusion of a sub Liegroup

- r identifies Q with a subbundle of Fr(M)

Corollary 2.2. If κ is an inclusion of a sub-Lie group, then a G-structure on M is a

G-principal subbundle Q of Fr(M).

(M,Q), (M ′, Q′) manifolds with G-structures

f : M →M ′ local diffeomorphism

Definition 2.3. f preserves the G-structures if Fr(f)(Q) = Q′.

Remark 2.4. If κ is not injective, then the notion of preservation of G-structure is addi-

tional structure

- a lift of Fr(f)

Q
F̃r(f)

//

r

��

Q′

r′

��

Fr(M)
Fr(f)

//

��

Fr(M ′)

��

M
f

//M ′

this applies e.g. to Spin(n)-structures

2

Example 2.5. Orientation is GL(n,R)+-reduction

Example 2.6. choice of volume form is SL(n,R) - reduction 2
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Example 2.7. choice of Riemannain metric is O(n) - reduction 2

Example 2.8. U(n) ⊆ GL(n,C) ⊆ GL(2m,R)

reductions are called almost complex structures 2

Example 2.9. Sp(n) ⊆ GL(2n,R)

reductions are called symplectic structures 2

Example 2.10. Spin(n)
2:1−−→ SO(n)→ GL(n,R)

a Spin(n) - reduction is a spin structure 2

Example 2.11. consider G = 1

- an 1-structure is a section Φ of Fr(M)

Q
Φ //

∼=

��

Fr(M)

{{

M

- is a trivialization Φ : M × Rn → TM

2

general priciple:

V - real vector space

- T kl (V ) := V ⊗ · · · ⊗ V︸ ︷︷ ︸
k×

⊗V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
l×

- Aut(V ) acts on T kl (V ) by functoriality

consider element K ∈ T kl (Rn)

- define G ⊆ GL(n,R) as stabilizer of K

- given Q→M - a G-structure

– form T kl (TM) ∼= Q×G T kl (Rn) - bundle of (k, l)-tensors

- K induces section K in Γ(M, T kl (TM)):
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– value at m in M : K(m) = [e,K] for any e in Qm

– note [eg,K] = [e, gK] = [e,K] for g ∈ G

– so K(m) well-defined independently of choice of e

given K can recover Q from section K

- take subset of frames e in Fr(M) such that [e,K] = K(π(e))

Example 2.12. Riemannian metrics

K =
∑n

i=1 e
∗
i ⊗ e∗i in S2(Rn,∗) ⊆ T 2(Rn,∗)

– is positive definite

– all positive definite are isomorphic to this one

- stabilizer: O(n)

- a metric on M defines O(n)-structure Q ⊆ Fr(M)

– e ∈ Qm if and only if e : Rn → TmM isometric

– Q is the subundle of orthogonal frames

2

Example 2.13. K := e1 ∧ · · · ∧ en ∈ ΛnRn,∗ ⊆ T n(Rn,∗)

- all volume forms are isomorphic to this one

- SL(n,R) is stabilizer

- SL(n,R) - structure on M is equivalent to datum of volume form K ∈ Ωn(M)

2

Example 2.14. R2n ∼= C

- I ∈ End(R2n) - multiplication by I

– I2 = −1

– every endomorphism J of R2n with J2 = −1 is conjugated to I

- End(R2n) ∼= R2n,∗ ⊗ R2n = T 1
1 (R2n)

18



- stabilizer GL(n,C)

GL(n,C)-structure is the same as a section I ∈ Γ(M,End(TM)) with I2 = −1

- called an almost complex structure 2

Example 2.15. almost symplectic structure

consider R2n

- ω = e∗1 ∧ e∗n+1 + · · ·+ e∗n ∧ e∗2n ∈ Λ2Rn,∗

- every non-degenerate alternating form is isomorphic to ω under GL(2n,R)

- stabilizer ist Sp(n)

- Sp(n)-structure is determined by form ω ∈ Ω2(M) everywhere non-degenerate 2

fix tensor K ∈ T kl (Rn), stabilizer G

G-structure on M determined by K ∈ Γ(M, T kl (TM))

- can one find coordinates locally such that K = K

- in this case we call the G-structure flat

- always possible for SL(n,Z)-structure

- for almost symplectic:

– necessary and sufficient condition dω = 0 (Darboux theorem)

– in this case structure is called symplectic structure

- not always possible for Riemannian metric:

– necessary and sufficient condition: R∇
LC

= 0

– in this case (M, g) is called flat

- not always possible for almost complex structure

– T 0,1M - consider −1-eigenspace of I ⊗ 1 on TM ⊗R C

– this subbundle of TM ⊗R C must be involutive
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— commutator of sections is again a section of the subbundle (Newlander-Nierenberg

Theorem)

– in this case (M, I) is called complex

– has charts with values in Cn and holomorphic transition maps

Example 2.16. T ∗M has a symplectic structure

π : T ∗M →M

- Tπ : T (T ∗M)→ T ∗M

- define α in Ω1(T ∗M) - canonical 1-form

— ξ ∈ T ∗mM

— X ∈ Tξ(T ∗M)

– α(X) := ξ(Tπ(ξ)(X))

— in fact: Tπ(ξ)(X) ∈ TmM

— so can apply ξ

define: ω := dα

- clear dω = 0

- check: ω is non-degenerate

- local coordinates of M : x1, . . . , xn

- local coordinates of T ∗M : x1, . . . , xn, ξ
1, . . . , ξn

- π(x, ξ) = x

- X = Xi∂xi + Yj∂ξj

- Tπ(ξ)(X) = Xi∂xi

- ξ(Tπ(ξ)(X)) = ξiX
i

- read off: α = ξidx
i

- ω = dα = dξi ∧ dxi - this is obviously non-degenerated

– here flatness is clear: we have found suitable coordinates explicitly

2
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2.2 Transformation groups

Definition 2.17. A Lie transformation group is a triple (G,M, a) of a Lie group G, a

manifold M and an effective action a : G×M →M .

- effective means: G→ Diff(M) is injective

get map g→ X (M), X 7→ X]

- X] - fundamental vector field for X

- X](m) = d1a(e,m)(X)

for X in X (M)

- write exp(tX)m for the value of flow at time t with start in m

- recall: X is called complete if exp(tX)m exists for all t in R and m in M

- write X c(M) := {X ∈ X (M) | X is complete} - set of complete vector fields

consider tranformation group (G,M, a),

- g ⊆ X (M)

Lemma 2.18. We have g ⊆ X c(M).

Proof. write etX for one-parameter group in G generated by X

- claim: exp(tX)m = etXm (exercise)

- claim shows assertion

Lemma 2.19. The map g→ X (M) is injective.

Proof. assume: X in g is in kernel

- then eXm = exp(X)m = m for all m

- conclude: eX acts trivially

- contradicts effectiveness
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forming fundamental vector fields realizes g as sub-Lie algebra of X (M)

can reconstruct tranformation group (G,M, a) from g

Theorem 2.20 (Palais). If g is a finite-dimensional sub-Lie algebra of X c(M), then there

exists a unique Lie transfomation group (G,M, a) with G connected and Lie algebra g.

Proof.

want to define G as group generated in AutMf (M) by exp(X) for X in g

- G̃ - simply connected Lie group with Lie algebra g

- want to see that G̃ acts on M such that etXm = exp(tX)m

- obtain G as quotient G̃/GM where GM - stabilizer of M

– But not clear that this action is well-defined!

in order to show this we use fibre bundle theory:

- consider G̃×M → G̃ as fibre bundle

– G̃ acts on G̃×M by h(g,m) = (hg,m)

define G̃-invariant connection on G̃×M

- give horizontal subbundle L of T (G̃×M)

– generated at(g,m) by (gX,X(m)) for all X in g

– this subbundle is G̃-invariant

– check: this subbundle is involutive, i.e., defines a flat connection

in general for flat connection: for any (g,m) in M get unique local horizontal lift

G̃×M

��

U
⊆

//

φ
<<

G̃

– U is open nbhd of g
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– φ(g) = (g,m)

now use: G̃ is simply connected

- for any (g,m) in M get unique global horizontal lift

- G̃×M

��

G̃

φ
<<

G̃

– φ(g) = (g,m)

write ψm for unique lift with ψm(e) = (e,m)

- identify set M with set these horizontal maps

- G̃ acts on this set

– so G̃ acts on M such that gψm = ψg−1m

show that this is the desired action

- X in g

– (etX , exp(tX)m) is horizontal curve which intersects (e,m)

- is in the image of etXφexp(tX)m

– conclude that etXφexp(tX)m = φm

- replace m by exp(tX)m

- conclude etXφm = φexp(tX)m

– hence etXm = exp(tX)m

GM ⊆ G̃ stabilizer of M

- observe GM is discrete

– exp(tX)m = m for all m implies X = 0

set G := G̃/GM
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- then G act effectively

- get desired transformation group

consider the following situation

- M - manifold

- G - group

- G acts by diffeomorphisms on M

- a : G→ AutMf (M) - injective

What additional data makes (G,M, a) into a Lie transformation group?

S := {X ∈ X c(M) | (∀t ∈ R | exp(tX) ∈ G)}

- at the moment this is just a subset

– In general we do not know that a linear combination of complete vector fields are a

commutator of them is again complete!

– so not clear whether linear subspace or even sub-lieagebra

Theorem 2.21. If S generates a finite-dimensional Lie algebra, then (G,M, a) has the

structure of a Lie transformation group with Lie algebra S

Proof. g∗ - Lie algebra generated by S (as subalgebra of X (M))

- is finite-dimensional by assumption

- want to show that S = g

have simply-connected Lie group G̃ with Lie algebra g

- the elements of g have local flows

consider X,Y in g∗

- define Z := Ad(eX)(Y ) in g∗

Lemma 2.22. If X,Y ∈ S, then Z ∈ S.
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Proof.

exp(sX) exp(tY ) exp(−sX)m = esXetY e−sXm = etAd(esX)(Y )m = exp(tAd(esX)(Y ))m

for all small s, t (depending on m) and all m

- conclude: exp(sX) exp(tY ) exp(−sX)m = exp(tAd(esX)(Y ))m for all t, s,m

– conclude exp(X) exp(tY ) exp(−X)m = exp(tZ)m exists for all t and exp(tZ) belongs to

G

— hence Z ∈ S

Lemma 2.23. S spans g as a vector space

Proof. V := spanR(S)

- have seen above: Ad(eS)(V ) ⊆ V

– differentiate in order to get [S, V ] ⊆ V

– by linearity of bracket: [V, V ] ⊆ V

— V is Lie algebra

– conclude from S ⊆ V that g ⊆ V

– by construction V ⊆ g

— hence g∗ = V

Lemma 2.24. S = g

Proof. consider Y ∈ g

- must show that exp(tY )m exists for all t and m and exp(tY ) is in G

- suffices to show that there is δ in (0,∞) such that exp(tY )m exists for all t with |t| ≤ δ

and all m and exp(tY ) is in G

(Xi)i - basis of g

- Rn 3 (t1, . . . , tn) 7→ et1X1 . . . eanXn ∈ G̃ local diffeo
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– ex δ in (0,∞) such that for all t with |t| ≤ δ

— etY = ea1(t)X1 . . . ean(t)Xn

— t 7→ (a1(t), . . . , an(t)) smooth

- exp(tY )m = exp(a1(t)X1) . . . exp(an(t)Xn)m for all t with |t| ≤ δ and all m

- also clear: exp(tY ) is in G

finish proof of Theorem

- use Theorem 2.20 for g

- get transformation group (G∗,M, a) with Lie algebra g

– G∗ = G̃/G̃M - with G̃M stabilizer

consider (Vα)α system of open nbhds of 1 in G∗

- set (hVα)α as system of open nbhds of h in G

- this defines topology on G

- G∗ ⊆ G is open, closed

- G becomes Lie group 1→ G∗ → G→ π0(G)→ 1

- G×M →M becomes smooth action

There is a gap here: π0(G) must be countable

Example 2.25. counterexample:

consider M = R

- consider some uncountable subgroup G of R which is not equal to R

– take any uncountable subset I

– let G be subgroup group generated by I

– then S = 0

– G is discrete 2
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2.3 Automorphism groups of structures

do not say G-structures since we use G to denote the automorphism group

M - manifold with 1-structure

- recall: this is a trivialization of TM

G := {f ∈ AutMf (M) | f preserves 1-structure}

need to consider non-connected manifolds M

- fix i in π0(M)

- Mi component of M

– consider the subgroups G(i) ⊆ G{i} ⊆ G of f which stabilize Mi point- and setwise

— define Gi := G{i}/G(i)

— Gi acts effectively on Mi

Example 2.26. Consider M = R t R t Z/2Z and G := Z/2Z× R× Z/2Z

- components 0, 1, 2

- write elements of M

– as (x, i), x ∈ R, i ∈ Z/2Z for first two components

– and j in Z/2Z

- define action of G

– (σ, 0, 0)(x, i) := (x, i+ σ)

– (0, 0, κ)(x, i) := (x, i)

– (σ, 0, 0)j := j

– (0, 0, κ)j := j + σ

– (0, t, 0)(x, i) := (x+ t, i)

– (0, t, 0)j := j

- G{0} = R× Z/2Z
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- G(0) = Z/2Z

- G0 = R

2

Theorem 2.27. Assume that M has finitely many components.

1. (G,M, a) refines to a Lie transformation group.

2. dim(G) ≤ |π0(M)|dim(M)

3. For every i in π0(M) we have an induced Lie transformation group (Gi,Mi, a).

4. For every i in π0(M) and m in Mi the map Gi → Gim is an embedding onto a closed

submanifold.

Proof. (ei) basis fields of 1-structure

V := spanR((ei)i) ⊆ X (M)

- V 3 v 7→ exp(v)m local diffeo near 0

- g in G preserves V

– g∗v = v for every v in V

– conclude g exp(v) = exp(v)g

l := {X ∈ X (M) | [V,X] = 0}

- l is Lie subalgebra (by Jacobi identity)

- have decomposition l =
⊕

i∈π0(M) li

fix i in π0(M) and m in Mi

Lemma 2.28. The evaluation li → TmM is injective.

Proof. write X =
∑

i aiei

- 0 = [ej , X] =
∑

i ej(ai)ei +
∑

i ai[ej , ei]

– system of homogeneous linear ode’s for the aj
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consider m′ in Mi

–solve ODE along a curve from m to m′

– X(m) = 0 - initial condition - implies X(m′) = 0

- m′ arbitrary in Mi

– conclude X ≡ 0 on Mi

conclude dim(`) ≤ dim(M)|π0(M)|

S := X c(M) ∩ l - set of complete elements in l

- S generates Lie algebra contained in l

- is also finite-dimensional

argue that exp(tX) ∈ G for all t:

- ∂t exp(tX)∗(ei) = exp(tX)∗(ei)[X, ei] = 0

- hence exp(tX)∗ei = ei for all t

– implies claim

conclude by Theorem 2.21 that G is part of Lie transformation group (G,M, a) with Lie

algebra S

consider i in π0(M)

- Gi acts on Mi and preserves (restriction of) 1-structure

apply to Gi and Si := S ∩ li

- conclude by Theorem 2.21 that Gi is part of Lie transformation group (Gi,Mi, a) with

Lie algebra Si

fix m ∈Mi

Lemma 2.29. Gim is closed in Mi
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Proof. (gk)k sequence in Gi

- gkm→ m0

must find g in Gi with gm = m0

want to define g by m′ 7→ limk gkm
′

- consider set M ′i of m′ in Mi such that limk gkm
′ exists

- M ′i is open and closed:

– to see this: parametrize open neighbourhood of m′ in Mi by v 7→ exp(v)m′

lim
k
gk exp(v)m′ = exp(v) lim

k
gkm

′

Mi is connected, hence M ′i = Mi

have by construction have g exp(v)m′ = exp(v) limk gkm
′ - this is smooth in v

- have g in Gi since it preserves V

fix m in Mi

Lemma 2.30. Gi 3 g → gm ∈Mi is injective

Proof. Mg
i - fixed point set of g

- closed by continuity of action of g

- for m in Mg
i

– g exp(v)m = exp(v)gm = exp(v)g

— Mg
i is also open

have two cases:

- Mg
i = Mi and g = 1

- Mg
i = ∅

30



- m ∈Mi

- by Lemma 2.28 Gi → Gm is immersion and hence embedding

Example 2.31. What happens if we drop the condition on finitely many components?

we consider the standard 1-structure on
⊔

NR∏
n∈NR acts

(ti)i∈N acts as x 7→ x+ ti on component with index i

is not a Lie transformation group 2

2.4 The isometry group as a Lie transformation group

(M, g) - Riemannian manifold

- equivalently: O(n) - structure r : Q→ Fr(M)

- I(M) - isometry group

- equivalently: group which preserves O(n)-structure

Theorem 2.32 (Myers-Steenrod 1939). We assume that M is connected.

1. I(M) is part of a Lie transformation group (I(M),M, a)

2. For every m in M the stabiliser I(M)m is compact.

3. If M is compact, then I(M) is compact.

Proof. we use that Q has a canonical connection, the Levi-Civita connection

π : Fr(M)→M

- have tautological Rn-valued 1-form θ in Ω1(Fr(M),Rn)

– θ(e)(X) := e−1(Tπ(e)(X)) ∈ Rn for all X in TeFr(M)
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f in Aut(M)

- induces Fr(f) ∈ Aut(Fr(M))

- Fr(f)∗θ = θ

– indeed use π ◦ Fr(f) = f ◦ π

(Fr(f)∗θ)(e)(X) = θ(Fr(f)(e))(TFr(f)(e)(X))

= Fr(f)(e)−1(Tπ(TFr(f)(e))(X))

= (Tf(π(e)) ◦ e)−1(Tf(π(e))(Tπ(e)(X)))

= e−1(Tπ(e)(X))

= θ(e)(X)

G ⊆ GL(n,R) sub Lie-group with finitely many components

consider G-reduction Q ⊆ Fr(M)

- consider G-principal bundle automorphism

Q

��

f̃
// Q

��

M
f
//M

Lemma 2.33. If f̃∗θ|Q = θ|Q, then f preserves the G-structure and f̃ = Fr(f).

Proof. J := Fr(f)−1 ◦ f̃

- want to show: J is inclusion Q→ Fr(M)

– know already

- π ◦ J = π

- J∗θ = θ

- θ(J(e))(TJ(e)(X)) = J(e)−1(Tπ(J(e))(TJ(e)(X))) = J(e)−1(Tπ(e)(X))

- θ(e)(X) = e−1(Tπ(e)(X))

– both together imply J(e) = e

32



– hence J is the canonical embedding

Aut(M,Q) - group of G-structure preserving automorphisms of M

- consider principal bundle connection ω on Q

Definition 2.34. Call f in Aut(M,Q) affine if Fr(f)∗ω = ω.

Aut(M,Q,ω) - subgroup of Aut(M,Q) of affine transformations

Lemma 2.35. Aut(M,Q,ω) is part of a Lie transformation group (Aut(M,Q,ω),M, a).

Proof. θ ⊕ ω ∈ Ω1(Q,Rn ⊕ g)

- is a 1-structure on Fr(M)

- by Lemma 2.33 Aut(M,Q,ω) is 1-structure preserving automorphisms of Fr(M)

- Q has finitely many components

– by Theorem 2.27 get Lie transformation group (Aut(M,Q,ω),Fr(M), a′)

- action descends to action on M by Lemma 2.33

- get Lie transformation group (Aut(M,Q,ω),M, a)

consider G = O(n) ⊆ GL(n,R)

- ω - Levi-Civita connection

- I(M) = Aut(M,Q) = Aut(M,Q,ω)

- get Lie transformation group (I(M),M, a)

m in M

I(M)m stabilizer

- fix e in Qm

- I(M) 3 f 7→ Fr(f)e is embedding onto closed submanifold

- I(M)m has image in fibre Qm
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– hence I(M)m is compact

if M is compact then Q is compact and hence I(M) is compact

2.5 Manifolds with large isometry groups

M - manifold

- n := dim(M)

- gM - Riemannian metric

I(M, gM ) - isometry group

Lemma 2.36. dim(I(M, gM )) ≤ n(n+1)
2

Proof. dimO(TM) = dim(O(n)) + n = n(n−1)
2 + n = n(n+1)

2

- have embedding I(G, gM ) into O(TM)

– fix orthogonal frame e in O(TM)

— embedding is by g 7→ Fr(g)e

- hence estimate

Lemma 2.37. Let M be connected. If dim(I(M, gM )) = n(n+1)
2 , then M is one of

1. Rn

2. Sn

3. Pn(R)

4. Hn

Proof. I(M, gM )e in O(TM) closed

- and open by equal dimension

O(TM) has one or two components
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- if O(TM) is connected: I(M, gM ) = O(TM)

- otherwise: I(M, gM ) is component of O(TM)

- stabilizer of m: I(M, gM )m is O(TmM)

I(M, gM )m acts transitively on 2-planes in TmM

- sectional curvature is invariant

– hence have sectional curvature is constant in m

— can conclude: sectional curvature is constant (last semester)

- I(M, gM ) acts transitively on points of M

– get uniform existence time of geodesic flow

– conclude: (M, gM ) is complete

- M̃ →M universal covering

– M = M̃/Γ - where Γ discrete subgroup of I(M̃, gM̃ )

– has lifted metric g̃

– is also complete and has constant sectional curvature

consider Killing field X on M

- lifts to Killing field X̃ on M̃

- conclude: n(n+1)
2 = dim(I(M, gM )) ≤ dim(I(M̃, gM̃ )) = n(n+1)

2

– hence X 7→ X̃ is isomorphism of Lie algebras

– X̃ is Γ-invariant

I(M̃, gM̃ )0 is generated by exp(X̃) for all X̃

- these vector fields are Γ-invariant (no additional non-invariant ones by maximality of

dimension of I(M, gM ))

- all elements of I(M̃, gM̃ )0 commutes with Γ

35



now invoke classification of complete simply connected manifolds with constant sectional

curvature

use

K ≥ 0: Sn

- have group Γ = C2 generated by antipodal involution

– the antipodal involution commutes with all isometries (is central in I(Sn, gS
n
) ∼= O(n+1))

– hence RPn is non-simply connected example

– this is the only quotient of Sn by central isometries

K = 0: Rn

- exclude quotients: Rn/Γ:

– every isometry which commutes with all translations and rotations is trivial

K < 0: Hn

- exclude quotients Hn/Γ:

– every γ which commutes with all isometries is trivial

3 Construction of E examples from Lie groups

3.1 Symmetric spaces

(M, gM ) - Riemannian

Definition 3.1. (M, gM ) is a symmetric space if every m in M is an isolated fixed point

of an involutive isometry θm.

note: Dθm(m) = −1

- otherwise Dθm(m) would fix some nonzero X

– expm(tX) is then also fixed for all small t
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– hence m not isolated

will provide the construction of Riemannian symmetric spaces using symmetric pairs

consider semisimple Lie group G

- g - semisimple Lie algebra

- Killing form B ∈ S2(g∗)

– B(X,Y ) := tr(ad(X)ad(Y ))

- semisimple is equivalent to: Killing form B ∈ S2(g∗) is non-degenerate

– recall further: G is compact if and only if B is negative definite

consider involution Θ on G

- set K ⊆ GΘ open subgroup of fixed points

Definition 3.2. A pair (G,K) of a Lie group and a closed subgroup is called a symmetric

pair of there exists an involution Θ of G such that K is an open subgroup of GΘ.

– is a subgroup

- then k ⊆ g - fixed points of induced involution θ := dΘ

– is sub Lie algebra of subgroup K

- p := −1-eigenspace of θ

– is not a Lie algebra in general:

g = k⊕ p is called Cartan decomposition

Lemma 3.3. The Cartan decomposition is and Ad(K), θ-invariant, and B-orthogonal

decomposition. We furthermore have

[k, p] ⊆ p, [p, p] ⊆ k .

Proof. θ-invariant by construction
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Ad(K) commutes with θ

- implies Ad(K)-invariance of decomposition

θ is automorphism of Lie algebras and preserves therefore B

- implies B-orthogonality of decomposition

commutator rules: apply automorphism θ

(G,K) - symmetric par

Definition 3.4. We call (G,K) a Riemannian symmetric pair if Ad(K) ⊆ Aut(p) is

compact.

Corollary 3.5. If (G,K) is a Riemannian symmetric pair, then p admits Ad(K)-invariant

scalar product.

Example 3.6. assume G semisimple, compact

- B is negative definite on g, Ad(G)-invariant

– −B|p is positive definite, Ad(K)-incvariant

say in this case: (G,K) is of compact type 2

Example 3.7. assume G semisimple

- assume B is negative definite on k and positive definite on p

- then G is non-compact (necessarily)

– B|p is positive definite, Ad(G)-invariant

say in this case: (G,K) is of non-compact type 2

Example 3.8. Remaining case: B = 0

- g is abelian

- G not semisimple

- say (G,K) is of Euclidean type 2
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Remark 3.9. (up to coverings) every Riemannian symmetric pair is a product of a non-

compact, a compact, and an euclidean type 2

consider Riemannian symmetric pair (G,K) (with involution Θ)

M := G/K manifold

- G acts transitively on M from the left

- G→M is G-equivariant K-principal bundle

– TeG = g = k⊕ p decomposition

– k - vertical

– p - horizontal

– defines G-invariant principal bundle connection T hG on G→M by equivariant extension

T hg G := Lg,∗p

- check: this is right K-invariant:

– use identity: Rk,∗Lg,∗X = Lgk,∗Ad(k−1(X))

– suggestive notation: gXk = gkk−1Xk = gkAd(k−1)(X)

– define isomorphism of vector bundles over M : G×K p ∼= TM

– [g,X] 7→ T (π)(Lg,∗(X))

— for well-definedness

— [gk,X] 7→ Lgk,∗(X) = T (π)(Lg,∗(Ad(k)(X)))

— [g,Ad(k)(X)] 7→ T (π)(Lg,∗(Ad(k)(X)))

any Ad(K)-invariant metric 〈−,−〉 on p defines G-invariant Riemannian metric gM on M

- transitive G-action implies completeness of (M, gM )

Lemma 3.10. (M, gM ) is a Riemannian symmetric space.
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Proof. consider gK in M

- must find involutive isometry with isolated fixed point gK

- Θg := gΘg−1 is in I(M, gM )

– fixes precisely point gK

– acts as −1 on TgM

want to understand the Riemannian geometry of M in group-theoretic terms

the group G and Θ act by principal bundle automorphisms on G→M

- nontrivially also on the base, i.e. not fibrewise

- for g in G: by left tranlation

- for Θ : g 7→ Θ(g)

– note Θ(gk) = Θ(g)Θ(k) = Θ(g)k

- and gK 7→ Θ(gK) = Θ(g)K

the connection T hG on G→M is G- and Θ-invariant

- for G: by construction

- for Θ: TΘ(Lg,∗X) = −LΘ(g)(X)

Lemma 3.11. 1. The (principal bundle) curvature (at e ∈ G) of the connection is given

by Ω(X,Y ) = −[X,Y ] for X,Y ∈ p.

2. For X in p, k in K the curve etXk is horizontal.

Proof. by definition Ω(X,Y ) is the negative vertical part of [Xh, Y h](e)

- here Xh, Y h horizontal fields extending X,Y

- but for X in p the corresponding left invariant field g 7→ Lg,∗X is horizontal by definition

– commutator of left invariant fields is commutator in Lie algbera

– since [X,Y ] ∈ k this is already vertical
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— conclude Ω(X,Y ) = −[X,Y ]

∂t exp(tX)k = Rk,∗LetX ,∗(X) = LetXk,∗(Ad(k−1)(X) is horizontal

the principal bundle connection induces a vector bundle connection ∇ on TM = G×K p

- since Ad(K) acts isometrically on p this connection is automatically metric

- this connection is G and Θ-invariant

Lemma 3.12. 1. We have T∇ = 0, i.e., ∇ is the Levi-Civita connection of (M, gM ).

2. For X in p the curve exp(tX)K is a geodesic.

3. Every G-invariant tensor on M is parallel.

Proof. show that torsion T∇ = 0 at e ∈ G

- then T∇ = 0 by G-invariance

T∇ is Θ-invariant

- Θ acts by −1 on p = TeK

- T∇(ΘX,ΘY ) = ΘT (X,Y )

implies (1)2 = −1 or T (X,Y ) = 0

curve ∂te
tXK = LetX ,∗X in TM is parallel

- since it is image of horizontal curve [etX , X] in G

Assertion 3: exercise

Corollary 3.13. The Riemannian curvature at eK is given by R∇(X,Y ) = −ad([X,Y ])

in End(p).

for the next we assume that (G,K) is of compact or non-compact type
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- 〈−,−〉 = cB|p

– c > for non-compact type

– c < 0 for compact type

— we need that 〈−,−〉 is the restriction to p of an ad(g)-invariant scalar product on g

Corollary 3.14. The sectional curvature is given by K∇(X,Y ) = cB([X,Y ], [X,Y ]).

Proof. R∇ by definition

- sectional curvature

- insert orthonormal X,Y :

–K∇(X,Y ) = cB(−ad([X,Y ])Y,X)) = cB([Y, [X,Y ]], X)) = −cB([X,Y ], [Y,X]) = cB([X,Y ], [X,Y ])

note that [X,Y ] ∈ k and B|k is negative definite

- hence B([X,Y ], [X,Y ]) ≤ 0

consider maximal abelian subspace a in p

Definition 3.15. dim(a) is called the rank of the symmetric space

sectional curvature K∇ vanishes along a

- exp(a)K is a flat submanifold in M

- the rank is the dimension of a maximal flat submanifold

Corollary 3.16. If (G,K) is of compact (non-compact) type, then (M,G) has non-negative

(non-positive) sectional curvature. If rk(M) = 1, then it has positive (negative) sectional

curvature.

Proof. - if rk(M) = 1, then [X,Y ] 6= 0 for any two independent X,Y in p

- B([X,Y ], [X,Y ]) ≤ 0

- ±cB([X,Y ], [X,Y ]) ≤ 0 depending on sign of c

if (G,K) is a product of compact and non-compact factors, then the corresponding sectional

curvature has no definite sign
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3.2 Example Sn and SO(n+ 1)

we consider the group G = SO(n+ 1)

define Θ as conjugation by Θ := diag(1,−1, . . . ,−1)

- in blocks of size (1, n)

-

(
A B

C D

)
7→

(
A −B
−C D

)

- thus K ⊆

(
A 0

0 D

)
- is compact

from orthogonality: det(D) = ±1, i.e. A = det(D)

have two choices for K: SO(n), O(n) (identified with D)

SO(n+ 1) acts transitively on Sn ⊆ Rn+1

- SO(n) is precisely stabilizer of e1 in Rn+1

- SO(n+ 1)/SO(n) = Sn

- SO(n) ∼= SO(n+ 1)N acts transitively on planes in north pole N

- sectional curvature of induced metric is constant

(SO(n+ 1),Θ) presents round sphere as symmetric space

- rk(Sn) = 1

Exercise: determine the value of the sectional curvature precisely

If we take K = O(n), then get RPn

3.3 Hn and SO(1, n)

consider bilinear form on Rn+1 represented by B := diag(1,−1, . . . ,−1)

- O(1, n) group of automorphisms

- SO(1, n) ⊆ O(1, n) - singled out det(g) = 1
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SO(1, n) has again two components

- C := {x ∈ Rn | B(x, x) = 0} light cone

- C∗ := C \ {0} has two componets

– distinguished by sign of x1

– SO(1, n) acts on C∗

- SO(1, n)+ ⊆ SO(1, n) subgroup which fixes the componets setwise

Exercise: Show that that SO(1, n) contains elements which interchanges the components.

define Θ as conjugation by Θ := diag(1,−1, . . . ,−1)

- in blocks of size (1, n)(
A B

C D

)
7→

(
A −B
−C D

)

thus K ⊆

(
A 0

0 D

)
- conclude D ∈ O(n)

- from orthogonality: det(D) = ±1, i.e. A = det(D)

have again two choices for K: SO(n), O(n) (identified with D)

Exercise: Show that that SO(n) = SO(1, n)+,Θ.

consider Hn := SO(1, n)+e1 (hyperboloid: {x ∈ Rn+1 | B(x, x) = 1 & x1 > 0})

- stabilizer of e1 is precisely SO(n)

- Hn = SO(1, n)+/SO(n)

- projection Hn → {0} × Rn (last n coordinates) is a diffeomorphism

- SO(n) acts transitively on planes at e1

- sectional curvature of Hn is constant

- (SO(1, n)+,Θ) defines presents hyperbolic space as symmetric space

Exercise: determine the value of the sectional curvature precisely
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- have rk(Hn) = 1

3.4 CPn and U(n+ 1)

consider group U(n+ 1)

- define Θ as conjugation by Θ := diag(1,−1, . . . ,−1)

- in blocks of size (1, n) (complex matrices)(
A B

C D

)
7→

(
A −B
−C D

)

- thus K ⊆

(
A 0

0 D

)

- A ∈ U(1), D ∈ U(n)

- K = U(1)× U(n) is compact

U(n+ 1) acts transitively on CPn (lines in Cn+1)

- stabilizer of Ce1 is precisely U(1)× U(n)

- U(n+ 1)/U(1)× U(n) ∼= CPn

get Riemannian metric on CPn

- (U(n+ 1),Θ) presents CPn as Riemannian symmetric space

in the following want to study this metric in detail

- K acts transitively on complex hyperplanes of TCe1CPn, but not on all real ones

– can not conclude that sectional curvature is constant

- but know: sectional curvature is non-negative (since U(n+ 1) is compact)

identify p with Cn

embed as X 7→

(
0 −X̄t

X 0

)
in u(n+ 1)
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- consider family of hyperplanes Hs for s in [0, 1]

– intersects all U(1)× U(n)-orbits exercise

let H(s) be generated by E12 − E21 and s1/2i(E12 + E21) + (1− s)1/2(E31 − E13)

– H1 is a complex plane

– H0 is a real plane

[E12 − E21, s
1/2i(E12 + E21) + (1− s)1/2(E31 − E13)]

= s1/2i(E11 − E22) + (1− s)1/2E23 − s1/2i(−E11 + E22)− (1− s)1/2E32

= 2s1/2(E11 − E22) + (1− s)1/2(E23 − E32)

- calculate with scalar product on u(n+ 1) given by trA∗A

– this is U(n+ 1)-invariant

– proportional to Killing form, but easier to calculate

– A∗A:

(2is1/2(E11 − E22) + (1− s)1/2(E23 − E32))∗(2is1/2(E11 − E22) + (1− s)1/2(E23 − E32))

= (−2is1/2(E11 − E22)− (1− s)1/2(E23 − E32))(2is1/2(E11 − E22) + (1− s)1/2(E23 − E32))

= 4s(E11 + E22) + (1− s)(E22 + E33) + off diagonal

– trA∗A:

– the generators are orthogonal and have norm
√

2 (this is a similar calculation)

— 8s+ 2(1− s) = 6s+ 2

— K(H(0)) = 1

— K(H(1)) = 4

conclusion: minimal sectional curvature at real plane is 1/4 of maximal sectional curvature

of complex plane
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- rk(CPn) = 1

- this is a the scale invariant statement

3.5 G and G×G

L - a compact Lie group

- G := L× L

- Θ = flip: Θ(l, l′) := (l′, l)

- K := GΘ = L (diagonally embedded)

- L = G/K,

– projection G→ L: (l, l′) 7→ ll′,−1

– metric on L is left-invariant metric determined by Ad(L)-invariant scalar product on L

– every Lie group L with the left-invariant metric associated to the Killing form (or any

other Ad(L)-invariant metric) is Riemannian symmetric

– θe = (−)−1

note: every scalar product on l induces left invariant metric

- get symmetric space property only for Ad-invariant metrics

4 Complex manifolds and the Kähler condition

4.1 Complex manifolds

recall from function theory:

- U open in C

- f : U → C smooth

Definition 4.1. f is called holomorphic if df(z) is complex linear.

equivalently: df commutes with i

- check, that this is equivalent to Cauchy-Riemann equations
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– z = x+ iy

– i∂x = ∂y, i∂y = −∂x

– dxi = −dy dy = dxi

– write f = u+ iv

df = ∂xudx+ ∂yudy + i∂xvdx+ i∂yvdy

- idf = −∂xvdx− ∂yvdy + i∂xudx+ i∂yudy

- dfi = ∂xudxi+ ∂yudyi+ i∂xvdxi+ i∂yvdyi = −∂xudy + ∂yudx− i∂xvdy + i∂yvdx

– read off: ∂xu = ∂yv, ∂yu = −∂xv, −∂xv = ∂yu, ∂yv = ∂xu

– these are the Cauchy-Riemann equations:

U open in Cn

f : U → Cm smooth

Definition 4.2. f is holomorphic if df is complex linear.

this is equivalent to: the components of f are holomorphic in each variable separately

globalize to manifolds:

M - manifold

- n = 2m = dim(M)

- consider GL(m,C)-structure (represented by I ∈ Γ(End(TM)), I2 = 1)

– i.e. (M, I) is almost complex

Definition 4.3. We say that M is a complex manifold if the almost complex structure is

integrable.

this means:

- we can find at every point m coordinates z := (z1, . . . , zm) in Cn

– such that Tz(m′) ◦ Im′ = iTz(m′) in Hom(Tm′M,Cn) for all m′ near m

– this implies: the transition functions z 7→ z′(z) between two coordinate systems are

holomorphic
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Example 4.4. basic example: open subsets of Cn with standard coordinates 2

(M, I), (M ′, I ′) almost complex manifolds

- f : M →M ′ smooth map

Definition 4.5. We say that f is holomorphic if Tf(m) ◦ I(m) = I ′(f(m)) ◦ Tf(m) for

all m in M .

- can talk about holomorphic functions on complex manifold

- note: if (M, I) is only almost complex, then there might by only very few of them

Example 4.6. this is without proof:

recall TM ⊗ C ∼= T 1,0M ⊕ T 0,1M decomposition into ±1-eigenspaces of I ⊗ idC

- X 0,1(M) and X 1,0(M) - sections of T 0,1M and T 1,0M

Lemma 4.7. f : M → C is holomorphic if and only if Xf = 0 for all X in X 0,1(M).

Theorem 4.8 (Newlander-Nierenberg). Integrability of I is equivalent to [X 0,1(M),X 0,1(M)] ⊆
X 0,1(M).

Say that I is maximally non-integrable if for every m in M and every X in TmM there are

Y,Z in X 0,1(M) such that [Y,Z](m) = X.

- this is the extreme case

- exists locally

- if I is maximally non-integrable, then all holomorphic functions are constant

– in general: if I is not integrable, then there not enough holomorphic functions to build

charts 2

f : (M, I)→ (M ′, I ′) - almost holomorphic

Proposition 4.9. If m′ is a regular value of f , then the restriction I ′′ of I to TN turns

N := f−1(m′) into an almost complex manifold. If (M, I) and (M ′, I ′) are complex, then

(N, I ′′) is again complex.
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Proof. for m in N :

Tf(m) ◦ I(m) = I ′(f(m)) ◦ Tf(m) shows that I preserves ker(Tf(m)) = TmN

- can restrict I to I ′′

- for the second assertion we use that the implicit function theorem holds in the holomorphic

context

Exercise: deduce the statement from the usual implicit function theorem

Example 4.10. . quadrics

- f(z1, . . . , zn) = z2
1 + · · ·+ z2

n + 1

– (0, 0 . . . , 0) is only singular point of f

– 1 is only non-regular value

– 0 is regular value

– f−1(0) is a quadric

– make picture for n = 2 (real/imaginary part) 2

Lemma 4.11. (M, I) is a compact connected complex manifold, then every holomorphic

function on M is constant.

Proof. - by maximum principle

– φ : M → C holomorphic

– |φ| must have maximum at m

– φ is constant along every holomorphic map C ⊇ U →M with 0→ m

– use holomorphic coordinates in order to produce many such linear (in coordinates) maps

– conclude that φ is constant near m

– use connectedness of M to conclude that φ is constant on M
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Corollary 4.12. If (M, I) is a compact connected complex manifold, then every holomor-

phic map M → Cn is constant.

in particular: there is no holomorphic embedding of M into Cn for any n

- this is in contrast to the real case

Example 4.13. complex torus

A := Cn/(Zn + iZn)

- is compact complex manifold (has even group structure)

- has no holomorphic embedding into Cn 2

4.2 The complex projective space

CPn - lines in Cn+1

- (z0, . . . , zn) ∈ Cn+1 \ {0} gives line C(z0, . . . , zn)

- (z′0, . . . , z
′
n) gives same line if an only if (z0, . . . , zn) = λ(z′0, . . . , z

′
n) for λ ∈ C∗

write [z0 : · · · : zn] for equivalence class, i.e., the point in CPn

- Ui := {zi 6= 0} is open

- φi : Ui → Cn chart

– φi([z0 : · · · : zn]) := ( z0zi , . . . ,
ẑi
zi
, . . . znzi )

– check coordinate transition

– say: φ1 ◦ φ−1
0

– (u1, . . . , un) 7→ [1, u1, . . . , un] 7→ ( 1
u1
, u2
u1
, . . . , unu1

)

– is holomorphic

the charts above determine a complex structure on CPn

Definition 4.14. A complex manifold (M, I) is called projective if it admits a holomorphic

embedding (M, I)→ CPn.

- not every complex manifold is projective

- will see an obstruction later using Kähler class
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4.3 The Fubini-Study metric

know U(n+ 1) acts transitively on CPn

- (u, [z]) 7→ [uz] - this is matrix multiplication

– it acts by holomorphic transformations

– U(1)× U(n) stabilizes [1, 0, . . . , 0]

– want to determine Riemannian metric from symmetric space presentation at this point

explicitly

– know: work with form A 7→ tr(A∗A) on u(n+ 1)

T[1,0,...,0]CPn ∼= Cn using chart φ0

- is identified with p in u(n+ 1) by

(x1, . . . , xn) 7→ A(x) :=
∑n

i=1 xiEi,0 − x̄iE0,i

A(x)∗A(x) = (

n∑
i=1

xiEi,0 − x̄iE0,i)
∗(

n∑
i=1

xiEi,0 − x̄iE0,i)

= (

n∑
i=1

x̄iE0,i − xiEi,0)(

n∑
i=1

xiEi,0 − x̄iE0,i)

=
∑
i

|xi|2E00 +
∑
i

|xi|2Eii

tr(A(x)∗A(x)) = (n+ 1)‖x‖2

- thus metric at [1, 0, . . . , 0] in chart is (up to scale) standard metric on Cn

- metric is completely determined by value at T[1,0,...,0]CPn and U(n+ 1)-invariance

Remark 4.15. for curiosity determine formula on all of Cn (image of the chart):

– U(n+ 1) acts on S2n+1 in Cn+1

– stabilizer of (1, 0, . . . , 0) is U(n)

– U(1) still acts from the right
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– get S2n+1 → CPn - U(1)-principal bundle

– is necessarily Riemannian submersion if we equip S2n+1 with standard metric (by invari-

ance)

on U0 have split

– s0 : Cn → S2n+1

– s0(z1, . . . , zn) = (1,z1,...,zn)√
1+‖z‖2

– ds0 = (0,dz1,...,dzn)√
1+‖z‖2

− 1
(1+‖z‖2)2/3 (1, z1, . . . , zn)⊗ z · dz

– second component is vertical

- vertical part of first component is (1,z1,...,zn)

(1+‖z‖2)3/2 z̄ · dz

- horizontal component is

- (0,dz1,...,dzn)√
1+‖z‖2

− (1,z1,...,zn)

(1+‖z‖2)3/2 z̄ · dz

- metric is

dz̄ ⊗ dz
1 + ‖z‖2

+
z · dz̄ ⊗ z̄ · dz
(1 + ‖z‖2)2

− 2
z · dz̄ ⊗ z̄ · dz
(1 + ‖z‖2)2

=
dz̄ ⊗ dz
1 + ‖z‖2

− z · dz̄ ⊗ z̄ · dz
(1 + ‖z‖2)2

2

4.4 Kähler geometry

(M, I) almost complex manifold

- g Riemannian metric

Definition 4.16. We say that I and g are compatible if I∗ = −I.

Example 4.17. on Cn with standard metric z 7→ <(z̄ · z)

- multiplication by i satiesfies: i∗ = −i

- hence the same on CPn with Fubini-Study - I∗ = −I (the complex structure is antiselfadjoint)2
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assume that g and I are compatible

Definition 4.18. The form ω := g(I−,−) in Ω2(M) is called the Kähler form.

Definition 4.19. (M, g, I) is called almost Kähler of dω = 0. It is Kähler if in addition I

is integrable.

assume (M, g, I) given

- g, I compatible

Lemma 4.20. (M, g, I) is Kähler if and only if ∇I = 0.

Proof. only one conclusion feasable at this point:

∇I = 0 implies dω = 0:

- since ∇g = 0 have

- (∇Xω)(Y, Z) = g((∇XI)Y,Z)

- the following conditions are equivalent

– ∇I = 0

– ∇ω = 0

– 0 = (∇Xω)(Z, Y ) = X(ω(Y, Z))− ω(∇XY,Z)− ω(Y,∇XZ)

dω(X,Y, Z) = X(ω(Y,Z))− Y ω(X,Z) + Zω(X,Y )− ω([X,Y ], Z) + ω([X,Z], Y )− ω([Y,Z], X)

= ω(∇XY,Z) + ω(Y,∇XZ)− ω(∇YX,Z)− ω(X,∇Y Z) + ω(∇ZX,Y ) + ω(X,∇ZY )

−ω([X,Y ], Z) + ω([X,Z], Y )− ω([Y,Z], X)

= 0

Lemma 4.21. CPn is Kähler.

Proof. ω is U(n+ 1) invariant (since I and g are) - ω is parallel

- dω = 0

54



- I is integrable

– have seen this independently (also ∇I = 0 since I is invariant)

(M ′, g′, I ′) - Kähler (e.g. Cn or CPn)

consider complex submanifold i : M ⊆M ′

- get an induced metric gM := i∗gM
′

- complex structure integrable

- induced Kähler form ωM = i∗ωM
′

– dωM = di∗ωM
′

= i∗dωM
′

= 0

Corollary 4.22. A complex submanifold of a Kähler manifold is again Kähler (with the

induced structure).

affine or projective manifolds admit Kähler metrics

consider almost Kähler manifold (M, I, g)

- ω- Kähler form

- ωn is a volume form

- i.e. ω is symplectic

- GL(n,C) ⊆ GL(2n,R)+ - i.e. complex manifolds are oriented

– M is closed, then
∫
M ωn > 0

- [ω] ∈ H2
dR(M)

- [ω]n 6= 0

Corollary 4.23. A closed almost almost Kähler manifold has a class c in H2
dR(M) such

that cn 6= 0.

Example 4.24. S2n for n ≥ 2 does not have such a class

- has no almost Kähler metric 2
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5 De Rham cohomology

5.1 Basic theory

M - manifold

- consider chain complex

(Ω∗(M), d) : Ω0(M)
d−→ Ω1(M)

d−→ Ω2(M)
d−→ . . . .

- the de Rham complex, often denoted shortly by Ω∗(M)

Definition 5.1. The de Rham cohomology of M is the cohomology of the de Rham complex:

Hk
dR(M) :=

ker(d : Ωk(M)→ Ωk+1(M))

im(d : Ωk−1(M)→ Ωk(M))
.

by definition: Hk
dR(M) is a real vector space

Example 5.2.

Hk
dR(∗) ∼=

{
R k = 0

0 else

Example 5.3. H0
dR(M) = R[π0(M)]

- ker(d : Ω0(M)→ Ω1(M)) is vector space of locally constant functions 2

consider smooth map f : M →M ′

- induces f∗ : (Ω∗(M ′), d)→ (Ω∗(M), d)

– morphism of chain complexes: df∗ = f∗d

- get induced map: f∗ : Hk
dR(M ′)→ Hk

dR(M)

– composition: (f ◦ g)∗ = g∗ ◦ f∗

Corollary 5.4. We have a de Rahm cohomology functor H∗dR : Mfop → VectZgrR .

consider smooth homotopy: h : [0, 1]×M →M ′ between h0 and h1

- define H : Ω(M ′)→ Ω(M)[−1]
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– degree −1-map

– H(ω) :=
∫ 1

0 ι∂th
∗ωdt

– make clear that you understand the meaning of this formula

— here are the details

—- h∗ω(t,−) = ω0(t) + dt ∧ ω1(t)

—- ωi(t) ∈ Ω∗(M)

—-
∫ 1

0 ι∂th
∗ωdt =

∫ 1
0 ω1(t)dt

- use Cartan formula: L∂t = ι∂td+ dι∂t

dHω =

∫ 1

0
dι∂th

∗ωdt

=

∫ 1

0
(L∂th∗ω − ι∂tdh∗ω)dt

= h∗1ω − h∗0ω −Hdω

dH +Hd = h∗1 − h∗0

- H is chain homotopy between h∗1 and h∗0

Corollary 5.5. The functor HdR is homotopy invariant: In the above situation h∗0 = h∗1 :

HdR(M ′)→ HdR(M).

Example 5.6. H∗dRn(R) ∼= H∗dR(∗)

- the inclusion i : ∗ → Rn is a homotopy equivalence

- inverse p : Rn → ∗

– p ◦ i = id∗

– h : [0, 1]× Rn → Rn

- h(u, x) := ux is homotopy from i ◦ p to idRn 2
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M manifold

- U, V open u : U →M , v : V →M inclusions

- U ∪ V = M

- a : U ∩ V → U , b : V ∩ U → V inclusions

have exact sequence

0→ Ω(M)
u∗⊕v∗−−−−→ Ω(U)⊕ Ω(V )

a∗−b∗−−−−→ Ω(U ∩ V )→ 0

Exercise: prove exactness

- exactness at Ω(M) and Ω(U)⊕ Ω(V ) is clear

– sheaf property of smooth sections of a vector bundle

— exactness as Ω(U ∩ V ):

— choose partition of unity (χ, κ) associated to (U, V )

—- assume α ∈ Ω(U ∩ V )

—- consider κα⊕−χα ∈ Ω(U)⊕ Ω(V )

—- a∗κα− b∗(−χα) = (κ|U∩V + χ|U∩V )α = α

Corollary 5.7 (Mayer-Vietoris sequence). We have a long exact sequence

Hk−1
dR (U ∩ V )

∂−→ Hk
dR(M)

u∗⊕v∗−−−−→ Hk
dR(U)⊕Hk

dR(V )
a∗−b∗−−−−→ Hk

dR(U ∩ V ) .

Remark 5.8. here is an explicite description of the boundary operator using the partition

of unity from above

- [ω] ∈ Hk
dR(U ∩ V )

– dχ|U∩V − dκ|U∩V has compact support in U ∩ V

– define (dχ|U∩V − dκ|U∩V ) ∧ ω in Ωk+1(M) by extension by zero

get

∂[ω] = [(dκ|U∩V − dχ|U∩V ) ∧ ω]

2
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Example 5.9. decompose Sn into complements Sn+ and Sn− of south and north pole

- Sn± are homotopy equivalent to ∗

- Sn+ ∩ Sn− is homotopy equivalent to Sn−1

conclude inductively for n ≥ 1

Hk
dR(Sn) ∼=

{
R k = 0, n

0 else

exercise: details

Example 5.10. assume M is oriented, closed

- dim(M) = n

-
∫
M dω = 0 by Stokes

- get
∫
M : Hn

dR(M)→ R

- let ω be any volume form

–
∫
M ω > 0 shows: Hn

dR(M) 6= 0 2

∧ : Ω(M)⊗ Ω(M)→ Ω(M) is map of complexes

- d(α ∧ ω) = dα ∧ ω + (−1)|α|α ∧ dω

- get cup product ∪ : H∗dR(M)⊗H∗dR(M)→ H∗dR(M)

– is natural for maps

Example 5.11. H∗dR(Sn) = R[x]/(x2)

- deg(x) = n

have map: Ω(M)⊗ Ω(M ′)→ Ω(M ×M ′)

Proposition 5.12 (Küenneth formula). If one of the factors is compact, then induced map

H∗dR(M)⊗H∗dR(M ′)→ H∗dR(M ×M ′) is an isomorphism

Proof. Note: Ω(M)⊗ Ω(M ′)→ Ω(M ×M ′) is not an isomorphism

cover M ′ by finitely open sets such that all multiple intersections are contractible

- choose Riemannian metric and take small convex geodesic balls
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- argue by induction by the number of members of such a covering

- then argue by induction

– add one member of the covering in each step

- use Mayer-Vietoris and five Lemma

Example 5.13. Tn = S1 × · · · × S1 - n factors

H∗dR(S1) ∼= R[x], x in degree 1 (therefore x2 = 0)

HdR(Tn) ∼= R[x1]⊗ · · · ⊗ R[xn] ∼= R[x1, . . . , xn] (this is Λ∗Rn) 2

5.2 Cohomology of quotients

Γ- finite group

- R[Γ] - group ring

- generated over R by elements of Γ subject to relation γ · γ′ = γγ′

– here · - ring multiplication

Lemma 5.14. We have an equivalence of categories:

R-vector spaces with Γ-action ' R[Γ]-modules

Proof. - every action of Γ extends uniquely to an R[Γ]-module structure

- as Γ ⊆ R[Γ]× - every R[Γ]-module induces a Γ-action on the underlying R-vector space

Example 5.15. R has R[Γ]-module structure corresponding to trivial Γ-action 2

have functor V 7→ V Γ

- in the langue of R[Γ]-modules: V Γ := HomR[Γ](R, V )

Lemma 5.16. The functor V 7→ V Γ from real vector spaces with Γ-action to real vector

spaces is exact.
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Proof. P := 1
|Γ|
∑

γ∈Γ γ in R[Γ]

- is projection onto submodule V Γ

- can decompose any exact sequence into a sum of images of P and 1− P

- these are exact too

general: an exact functor like (−)Γ descends through cohomology

M̃ - with free action of Γ

- M := M̃/Γ

- π : M̃ →M

Lemma 5.17. π∗ : HdR(M)→ HdR(M̃)Γ is an isomorphism.

Proof. - p∗ : Ω(M)→ Ω(M̃)Γ is isomorphism

- hence H∗dR(M) = H∗(Ω(M))
p∗∼= H∗(Ω(M̃)Γ) ∼= H∗(Ω(M̃))Γ = H∗dR(M̃)Γ

Example 5.18. antipodal map acts on Hn
dR(Sn) by (−1)n+1

- H∗dR(RP2n) ∼=

{
R k = 0

0 else

- H∗dR(RP2n+1) ∼=

{
R k = 0, 2n+ 1

0 else
2

G compact Lie group

- G0 connected component of identity

1→ G0 → G→ π0(G)→ 0

assume G acts on M

- G0 acts trivially on H∗dR(M) by homotopy invariance

- π0(G) acts on H∗dR(M)
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Lemma 5.19. We have an isomorphism

H∗(Ω(M)G) ∼= H∗dR(M)π0(G) .

Proof. 1.) show H∗(Ω(M)G0) ∼= H∗dR(M)

2.) then apply (−)π0(G) and conclude H∗(Ω(M)G) ∼= H∗dR(M)π0(G)

remains to show 1.)

define P : Ω(M)→ Ω(M)

Pω :=
∫
G g
∗ωdg

-normalize dg such that
∫
G dg = 1

- is chain map: dP (ω) := d
∫
G g
∗ωdg =

∫
G dg

∗ωdg =
∫
G g
∗dωdg = P (dω)

- is projection into Ω(M)G

- cover G0 by finitely many contractible sets U1, . . . , Ur

– can assume that all contain e

- choose partition of unity χ1, . . . , χn

- use homotopy formula applied to contraction of Ui to find

- H(g)i : Ω(M)→ Ω(M)[−1] for g in Ui (continuous in g)

- dH(g)iω −H(g)idω = g∗ω − ω

- define H :=
∑r

i=1

∫
G0
χi(g)H(g)idg

- dHω −Hdω =
∑r

i=1

∫
G0
χi(g)(g∗ω − ω)dg = P (ω)− ω

P is chain homotopic to identity

- inclusion Ω(M)G0 → Ω(M) is chain homotopy equivalence

consider Riemann symmetric pair (G,K) of compact type

- assume that G is connected

- set M := G/K
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- g = k⊕ p Cartan decomposition

Proposition 5.20. We have an isomorphism of rings H∗dR(G/K) ∼= (Λ∗p∗)K .

Proof. H∗dR(G/K) ∼= H∗(Ω(G/K)G) by Lemma 5.19

- every G-invariant form is determined by its value at e, this is an element in Λ∗p∗

- K still acts, hence G-invariance implies that value is in (Λ∗p∗)K

- vice versa, every element in (Λ∗p∗)K extends uniquely to G-invariant form

– conclude Ω(G/K)G ∼= (Λ∗p∗)K - is isomorphism of rings

– every G-invariant tensor is parallel

– every G-invariant form is parallel

— hence every G-invariant form is closed

— hence differential on Ω(G/K)G is trivial

conclude

H∗(Ω(G/K)G) ∼= (Λ∗p∗)K

Example 5.21. want to calculate HdR(Sn) using this method

Sn ∼= SO(n+ 1)/SO(n)

- p ∼= Rn with standard action of SO(n)

- (Λ∗Rn,∗)SO(n) ∼= R[x]/(x2)

– deg(x) = n

how to see this:

- SO(n) acts degree-preserving

- can calculate invariants degree-wise

- Ikn := (ΛkRn,∗)SO(n)

induction by n
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n = 0, 1

- I∗0
∼= R[x]/(x1), deg(x) = 0

- I∗1
∼= Λ0R∗ ⊕ Λ1R∗ ∼= R[x]/(x2), deg(x) = 1

- for step n− 1→ n (with n ≥ 2) : have SO(n− 1)-equivariant split exact sequence

-

0→ Λk−1Rn−1,∗ en∧−−→ ΛkRn,∗ res−−→ ΛkRn−1,∗ → 0

- induces

0→ Ik−1
n−1 → (ΛkRn,∗)SO(n−1) → Ikn−1 → 0

- have Ikn ⊆ (ΛkRn,∗)SO(n−1)

have I0
n = (Λ0Rn,∗)SO(n) ∼= R

- by induction In−1
n−1 is generated by e1 ∧ · · · ∧ en−1

- the image of en ∧ In−1
n−1 → (ΛnRn)SO(n−1) is generated by e1 ∧ · · · ∧ en is SO(n) invariant

– contributes to Inn

- Inn−1 = 0

– together Inn
∼= R

- show Ikn = 0 for k = 1, . . . , n− 1

– k = 1

— (Λ1Rn)SO(n) ∼= 0

- k = 2, . . . , n− 2:

– Ik−1
n−1 = 0 and Ikn−1 = 0 by induction assumption

— conclude Ikn = 0

remains k = n− 1: In−1
n = (Λn−1Rn,∗)SO(n) ∼= (Λ1Rn)SO(n) ∼= 0

2
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Example 5.22. this example shows that compactness of G is relevant:

Hn = SO(1, n)/SO(n)

- (Λ∗p)SO(n) = (Λ∗Rn)SO(n) ∼= R[x]/(x2) -

- x in degree n

- but Hn is contractible

– Hn
dR(Hn) ∼= 0

– but (ΛnRn)SO(n) ∼= R

2

Example 5.23. want to calculate HdR(CPn)

claim: HdR(CPn) ∼= R[x]/(xn+1) with deg(x) = 2

- CPn ∼= U(n+ 1)/U(1)× U(n)

- p ∼= Cn with standard action of U(n) and U(1)

- (Λ∗Cn)U(n)×U(1) - note that we consider Cn as real vector space

- argue by induction

– I∗n := (Λ∗Cn)U(n)×U(1)

– use Cn ∼= Cn−1 ⊕ C

— this is U(n− 1)× U(1)-equivariant

- have inclusion I∗n ↪→ I∗n−1 ⊗ I∗1
- now I∗1

∼= R⊕ R[2]

– use U(1) = SO(2) , C ∼= R2

– show: I2n
n
∼= I2n−2

n−1 ⊗ I2
1 by showing that the elements of the r.h.s. are U(n)-invariant

– have restriction I∗n → I∗n−1 whose kernel is I∗n−1 ⊗ I
≥1
1

– show that this is surjective

– conclude above inclusion is surjective in all degrees (details exercise?)

2
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(G,K) - symmetric pair

g = k⊕ p

- recall: Ω(G/K)G ∼= (Λ∗p∗)K

How to construct elements in (Λ∗p)K?

- R : Λ2p→ k , R(X,Y ) := [X,Y ] is Ad(K)-equivariant

- R∗ : S∗(k∗)→ S∗(Λ2p∗)→ Λevp∗

- restricts to R∗ : S∗(k∗)K → (Λevp∗)K

Example 5.24. Grassmannian G(k, n,C):

manifold of k-dimensional subspaces of Cn

- G := U(n) acts transitively on G(k, n,C)

- stabilizer of Ck: K := U(k)× U(n− k)

- G(k, n,C) ∼= U(n)/(U(k)× U(n− k)) as homogeneous space

is symmetric:

-use involution given by conjugation by diag(1, . . . , 1︸ ︷︷ ︸
k×

,−1, . . . ,−1︸ ︷︷ ︸
n−k×

)

- block matrices (
A B

C D

)

p =

(
0 B

−B∗ 0

)
, B ∈ Mat(k, n− k,C)

- adjoint action of U(k)× U(n− k) is (u, v)B = uBv−1

construct elements of S∗(k)K

- consider u(k)

- u(k) 3 X 7→ det(1 + tX) := 1 + te1 + t2e2 + · · ·+ tkek

– ei are homogeneous polynomials on u(k)
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– deg(ei) = i

– ei is Ad(U(k)) - invariant

— ei ∈ Si(u(k)∗)U(k)

special cases:

– e1(X) = Tr(X)

– ek(X) = det(X)

– S∗(u(k)∗ ⊕ u(n− k)∗) ∼= S∗(u(k)∗)⊗ S(u(n− k)∗) contains

— ai := ei ⊗ 1, i = 1, . . . , k

— bj := 1⊗ ej , j = 1, . . . , n− k

— ci := R∗ai in i = 1, . . . , k,

— deg(ci) = 2i

— dj := R∗bj , j = 1, . . . , n− k

— deg(dj) = 2j

get homomorphism of graded rings R[c1, . . . , ck, d1, . . . , dn−k]→ (Λ∗p∗)K

Proposition 5.25. This map induces an isomorphism

R[c1, . . . , ck, d1, . . . , dn−k]

(
∑l

i=0 cidi−l = 0 | l = 1, . . . , n)
→ (Λ∗p∗)K .

- set c0 = 1, d0 = 1 and ci = 0 for i > k and dj = 0 for j > n− k

proof and determination of relations goes beyond this course

- can calculate cohomology ring using algebraic topology (Serre spectral sequence)

- deduce proposition and relations from this

Corollary 5.26. We have an isomorphism

R[c1, . . . , ck, d1, . . . , dn−k]

(
∑l

i=0 cidi−l = 0 | l = 1, . . . , n)
→ HdR(G(k, n,C)) .

67



check case k = 1 (projective space)

generators: c1, d1, . . . , dn−1

- relations: c1 + d1 = 0, c1d1 + d2 = 0, . . . c1dn−2 + dn−1 = 0

– can eliminate c1, d2, . . . , dn−1

– d2 = d2
1, . . . dn−1 = dn−1

1 , 0 = dn1

– R[d1[/(dn1 ) ∼= H∗dR(CPn−1)

2

in the next section we generalize this method

5.3 Chern-Weil theory - characteristic classes

G - Lie group

- π : P →M - G-principal bundle

Definition 5.27. A form α in Ω(P ) us called horizontal, if ιXα = 0 for every vertical X

in TP . It is called G-invariant, if R∗gα = α for all g in G

Ω(P )Ghor ⊆ Ω(P ) - subspace of horizontal G-invariant forms

π∗ : Ω∗(M)→ Ω∗(P )

Lemma 5.28. π∗ induces an isomorphism π∗ : Ω∗(M)→ Ω∗(P )Ghor

Proof. ω ∈ Ω∗(M)

- π ◦Rg = π implies R∗gπ
∗ω = π∗ω

– conclude π∗ω ∈ Ω(P )G

X vertical

- dπ(X) = 0

– ιXπ
∗ω = 0

– conclude π∗ω ∈ Ω(P )hor
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π is surjective submersion

- π∗ is injective

- assume: α ∈ Ω(P )Ghor

- s : U → P local section

- s∗α

- claim: s∗α is independent of the choice of section

– s′ another section

– s′(u) = s(u)g(u) for unique g : U → G

—u in U , X in TuM

s′,∗α(u)(X) = α(s(u)g(u))(dRg(u)(ds(u)(X))) + α(s(u)g(u))(X])

= (R∗g(u)α)(s)(ds(u)(X))

= s∗α(u)(X)

where X] = dg(u)(X)](s(u)) is vertical

- get globally defined ω in Ω(M) with ω|U = s∗α

- π∗ω = α

choose connection ω in Ω1(P, g)G

- Ω := dω + [ω, ω] - curvature

- recall: Ω ∈ Ω2(P, g)Ghor

consider p in S∗(g∗)G

- form p(Ω) in Ωev(P )Ghor

- interpret Ω : Λ2TP → g

- interpret p : S∗(g)G → R
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- then p(Ω) := p ◦ S∗(Ω)) : S∗(Λ2TP )→ R

– or equivalently: p(Ω) ∈ S∗(Ω2(P )) ⊆ Ωev(P )

– actually: p(Ω) ∈ Ωev(P )Ghor

Lemma 5.29. We have dp(Ω) = 0

Proof. note: dp(X)([Y,X]) = 0 by Ad(G)-invariance

– differentiate identity p(gXg−1) = p(X) w.r.t g

- Ω = dω + [ω, ω]

- [ω, [ω, ω]] = 0 by Jacobi

- dΩ = 2[dω, ω] = 2[Ω, ω]

dp(Ω) = 2dp(Ω)(dΩ)

= 2dp(Ω)([Ω, ω])

= 0

let cp(ω) ∈ Ω(M) denote the closed form on M such that π∗cp(ω) = p(Ω)

f : M ′ →M

-

P ′
F //

��

P

��

M ′
f
//M

- pull-back

- F ∗ω := ω′ connection

- have f∗cp(ω) = cp(ω
′)

Lemma 5.30. The class [cp(ω)] in HdR(M) does not depend on ω.
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Proof. ω′- second choice

P̃ := pr∗MP → [0, 1]×M

- Pi = P̃|{i}×M

- Pi ∼= P canonically

- arrange ω̃ on P̃ such that ω̃|P0
= ω and ω̃|P1

= ω′

– e.g ω̃ = tω′ + (1− t)ω

– cp(ω̃) ∈ Ω([0, 1]×M)

– cp(ω̃){0}×M = cp(ω) and cp(ω̃){1}×M = ω′

– d
∫

[0,1]×M/M cp(ω̃) = ω′ − ω

fix Lie group G

Definition 5.31. A characteristic class c (of degree k) associates to every manifold M

and G-principal bundle P →M a class c(P ) in Hk
dR(M) such that for every pull-back

f∗P //

��

P

��

M ′
f
//M

we have f∗c(P ) = c(f∗P ).

characteristic classes from a ring ChW(G)

Remark 5.32. one can show that

ChW(G) ∼= H∗(BG;R) .

2

let c be a characteristic class

Lemma 5.33. If deg(c) > 0 and P is trivial, then c(P ) = 0.
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Proof. have pull-back

P //

��

G

��
M

f
// ∗

- c(G→ ∗) = 0 (for degree-reasons)

- c(P ) = f∗c(G→ ∗) = 0

consider p in S∗(g∗)G

Definition 5.34. We let cp(P ) ∈ HdR(M) denote the class of cp(ω).

this is the characteristic class cp for G-principal bundles associated to p

- if p is homogeneous: cP is of degree 2 deg(p)

Corollary 5.35. We have a homomorphism c : S∗(g∗)G → ChW(G) (of degree 2)

Example 5.36. G = U(k)

- det(1 + tX) = 1 + tc1 + · · ·+ tkck defines ci ∈ Si(u(k)∗)U(k)

- these are non-zero

- cci has degree 2i

- is called the ith Chern class for U(k)-bundles

- U(n)/U(k) = V (k, n,C) is Stiefel manifold of k-dimensional subspaces with framed or-

thocomplement in Cn

- get U(k) principal bundle U(n)→ V (k, n,C)

- get classes cci ∈ H2i
dR(V (k, n,C))

– one can show that they generate cohomology 2

Example 5.37. U(k)× U(n− k)

- U(n)/U(k)× U(n− k) = G(k, n,C) is Grassman manifold of k-dimensional subspaces in

Cn
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- get U(k)× U(n− k) principal bundle U(n)→ G(k, n,C)

- we used the classes cai and cbj in the calculation of HdR(G(k, n,C)) 2

5.4 Duality

M - manifold

Ωc(M) ⊆ Ω(M) subspace of compactly supported forms

- d preserves compact support

- get subcomplex (Ωc(M), d) of (Ω(M), d)

Definition 5.38. The cohomology H∗c,dR(M) := H∗(Ωc(M), d) is called the compactly

supported de Rham cohomology

- contravariant functorial for proper maps

– f : M →M ′ is proper if f−1(K) is compact for every compact K in M ′

– supp(f∗ω) = f−1(supp(ω))

— supp(ω) compact implies supp(f∗ω) is compact

- homotopy invariant for proper homotopies

– h : [0, 1]×M →M ′ is proper homotopy if f is proper

inclusion Ωc(M)→ Ω(M) induces

ι : H∗c,dR(M)→ H∗dR(M)

– is ring homomorphism

– is an isomorphism if M is compact

wedge product : ∧ : Ωc(M)⊗ Ωc(M)→ Ωc(M)

- induces cup product

∪ : H∗c,dR(M)⊗H∗c,dR(M)→ H∗c,dR(M)
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(right) module structure Ωc(M)⊗ Ω(M)→ Ωc(M)

- induces module structure

∪ : H∗c,dR(M)⊗H∗dR(M)→ H∗c,dR(M)

new feature:

- (Ωc(M), d) and therefore H∗c,dR(−) are covariantly functorial for open embedding:

– extension by zero

– notation i!

M = U ∪ V open decomposition

Lemma 5.39. The complex

0→ Ωc(U ∩ V )
a!⊕b!−−−→ Ωc(U)⊕ Ωc(V )

u!−v!−−−→ Ωc(M)→ 0

is exact.

Proof. use partition of unity χ ∈ Cc(U), κ = 1− χ ∈ Cc(V )

check exactness:

Ωc(U ∩ V ): is clear

Ωc(U)⊕ Ωc(V ):

- (α, β) in Ωc(U)⊕ Ωc(V )

– assume u!α− v!β = 0

– implies supp(α) = supp(β) ⊆ U ∩ V

– (α, β) = (a!α, b!α)

Ωc(M):

- consider γ in Ωc(M)

- (u! − v!)(χγ,−κγ) = γ
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Corollary 5.40. We have a long exact Mayer-Vietoris sequence

Hk−1
c,dR(M)

∂−→ Hk
c,dR(U ∩ V )→ Hk

c,dR(U)⊕Hk
c,dR(V )→ Hk

c,dR(M) .

formula for ∂:

- [γ] in Hk−1
c,dR(M)

- claim: ∂[γ] = [dχ ∧ γ]

– d(χγ,−κγ) = (dχ ∧ γ,−dκγ)

– supp(dχ ∧ γ) ⊆ supp(dχ) ∩ supp(γ)

— is closed subset of supp(γ) and hence compact in M

— is contained U ∩ V

—- hence supp(dχ ∧ γ) is compact in U ∩ V

consider M × R

- integration map

P :

∫
M×R/M

Ωc(R×M)→ Ωc(M)[−1]

- note that differential in Ω(M)[n] is (−1)nd

Stokes: P is chain map

- must check dP = Pd

– decompose ω = ω0 + dt ∧ ω1

— −dP (ω) = −d
∫
R×M/M ω = −

∫
R dω1(t)dt

— Pd(ω) =
∫
R ∂tω0(t)−

∫
R dω1(t)dt = −

∫
R dω1(t)dt

Lemma 5.41. P induces an isomorphism

Hc,dR(R×M)→ Hc,dR(M)[−1] .
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Proof. let χ ∈ C∞(R)

- χ ≡ 1 for t ≥ 1

- χ ≡ 0 for t < 1

- dχ ∈ Ω1
c(R)

define E : Ωc(M)[−1]→ Ωc(R×M), ω 7→ dχ ∧ pr∗Mω

claim: E is a homotopy inverse

P (E(ω)) = ω is clear

- construct chain homotopy idΩc(R×M) ∼ E ◦ P

- h : R× R×M → R×M

- h(u, t,m) = (u+ t,m)

- define H : Ωc(R×M)→ Ωc(R×M)

- H(ω)(t,m) :=
∫ 0
−∞ ι∂uh

∗(ω)(u, t,m)du− χ(t)E(ω)

– first term term is also
∫ t
−∞ ω1(u)du

– second term term is also χ(t)
∫∞
−∞ ω1(u)du

– get H(ω)(m, t) = 0 for |t| >> 0

- (dH +Hd)(ω) = ω − dχ ∧ E(P (ω))

– H is desired chain homotopy

– alltogether this shows: E is chain homotopy inverse to P

Corollary 5.42. Hk
c,dR(Rn) ∼=

{
R k = n

0 else

Proof. induction starting with k = 0

from now on assume: M is oriented

define duality map D : Ωc(M)→ Ω(M)∗[−n]
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- ω 7→ (α 7→
∫
M ω ∧ α)

check: this is chain map

D(dω)(α) =

∫
M
dω ∧ α

=

∫
M
d(ω ∧ α− (−1)deg(ω)ω ∧ dα)

= −(−1)deg(ω)D(ω)(dα)

= (−1)nD(ω)((−1)deg(α)dα)

= dD(ω)(α)

- dualization V 7→ V ∗Hom(V,R) is exact functor on R-vector spaces

- descends to cohomology

- for chain complex Cof real vector spaces: Hk(C∗) ∼= H−k(C)∗

– apply to de Rham complex: Hk(Ω(M)∗[−n]) ∼= Hn−k
dR (M)∗

get induced duality map

- D : Hk
c,dR(M)→ Hk(Ω(M)∗[−n]) ∼= Hn−k

dR (M)∗

Example 5.43. D : Hk
c,dR(Rn)→ Hn−k

dR (Rn)∗ is an isomorphism 2

i : M ′ →M open embedding

Lemma 5.44.

H∗c,dR(M ′)
i! //

D
��

H∗c,dR(M)

D
��

Hn−k
dR (M ′)

(i∗)∗
// Hn−k

dR (M)

commutes

Proof.
∫
M ′ α ∧ i

∗ω =
∫
M i!α ∧ ω

M manifold
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- U = (Uα)α a covering

- U is called a good covering if all intersections Uα1 ∩ · · · ∩ Uαr are diffeo to Rn

Lemma 5.45. If M admits a finite good covering, then D : H∗c,dR(M) → H∗dR(M)∗ is an

isomorphism.

Proof. induction by the size of covering

start: one set

- this is Example 5.43

induction:

May-Vietoris

- add one set

- M ′ ∪ U = M

– induction hypothesis applies to M ′ and M ′ ∩ U

Hk−1
c,dR(M)

��

∂ // Hk
c,dR(U ∩M ′) //

��

Hk
c,dR(U)⊕Hk

c,dR(M ′)

��

// Hk
c,dR(M)

��

Hn−k+1
dR (M)∗

∂∗ // Hn−k
dR (U ∩M ′)∗ // Hn−k

dR (U)∗ ⊕Hn−k
dR (M ′)∗ // Hn−k

dR (M)∗

must check that square involving boundary maps commutes

a : U →M , b : M ′ →M , j : U ∩M ′ →M inclusions

[γ] ∈ Hk−1
c,dR(M)

- ω ∈ Hn−k
dR (U ∩M)

– choose χ ∈ Cc(U) such that 1− χ ∈ Cc(M ′)

– then ∂[γ] = [dχ ∧ α]

D(∂[γ])([ω]) =

∫
U∩M ′

dχ ∧ α ∧ ω
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– then ∂[ω] = [dχ ∧ ω]

∂∗D[γ](ω) = (−1)n+k−1D[α](∂ω)

= (−1)n+k−1

∫
M
α ∧ dχ ∧ ω

=

∫
M
dχ ∧ α ∧ φ

= D(∂[γ])([ω])

finish argument by Five Lemma

Corollary 5.46 (Poincar’e duality). If M is n-dimensional, compact and oriented, then

D : HdR(M)→ HdR(M)∗[−n] is an isomorphism.

Corollary 5.47. If M is n-dimensional, compact, oriented and connected, then Hn
dR(M) ∼=

R.

Example 5.48. HdR(Sn) = R[x]/(x2)

- duality: (p, q) 7→ ∂xpq|x=0

HdR(CPn) = R[x]/(xn+1), deg(x) = 2

- duality: (p, q) 7→ ( 1
n!∂

n
xpq)|x=0

HdR(Tn) = R[x1, . . . , xn], deg(xi) = 1

- duality: (p, q) 7→
∫
B pq

– Berezin integral: takes coefficient at x1 . . . xn

2

Example 5.49. signature

M compact, connected, oriented, n = 4m-dimensional

- D : H2n
dR(M) ∼= H2n

dR(M)∗ - duality

- (x, y)M := D(x)(y) =
∫
M x ∪ y
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– (−,−)M is symmetric bilinear form on H2n
dR(M)

– this is called the intersection form of M

– it is non-degenerated by Poincaré duality

classification of bilinear forms over R:

(−,−)M is determined by b±2m:

- b+2m + b−2m = b2m - Betti number

Definition 5.50. sign(M) := b+2m − b
−
2m is called the signature of M

- sign(M) is oriented homotopy invariant of M

- sign(Mop) = −sign(M) (orientation change)

- sign(S4m) = 0

- sign(S2m × S2m) = 1

- sign(T 4m) = 0

- sign(CP2n) = 1

2

6 Riemannian geometry and de Rham cohomology

6.1 Hodge ∗

M manifold

- n := dim(M)

- g Riemannian metric

- induces metrics (−,−) on ΛkT ∗M

at a point:

- V - euclidean vector space

– e1, . . . , en - ONB of V
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– e1, . . . , en - dual basis of V ∗

– ei1 ∧ · · · ∧ eik for i1 < · · · < ik forms ONB of ΛkV ∗

assume M is oriented

- metric induces volume form vol in Ωn(M)

at a point:

e1, . . . , en oriented ONB

- vol = e1 ∧ · · · ∧ en

have non-degenerate pairing

- 〈−,−〉 : ΛkT ∗M ⊗ Λn−kT ∗M
∧−→ ΛnT ∗M

vol−1

−−−→M × R

at a point:

- i = i1 < . . . ik

- j = j1 · · · < jk

- i′ complementary sequence to i

– (2, 4)′ = (1, 3) (if n = 4)

- σ(i) - sign of permutation which orders concatenation i]i′

– σ((1, 3)) = −1

– σ((3, 4)) = 1

〈ei, ej〉 = σ(i)δi,j

- this shows non-degeneracy

there exists a uniquely determined ∗ : ΛkT ∗M → Λn−kT ∗M such that

(α, ∗ω) = 〈α, β〉

Definition 6.1. ∗ is called the Hodge ∗-operator
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at a point:

∗ei = σ(i)ei
′

- check:

– (ei, ∗ej′) = (ei, ej) = δi,j

– 〈ei, ej′〉 = σ(i, j′)δi,j

∗ ∗ ei = σ(i)σ(i′)ei

- σ(i)σ(i′) = (−1)k(n−k)

n = 4

- ∗e1 = e2 ∧ e2 ∧ e3

- ∗e2 = −e1 ∧ e3 ∧ e4

- ∗e1 ∧ e2 = e3 ∧ e4

6.2 The Hodge decomposition

M manifold, vol - volume measure

- E →M vector bundle

- h metric on E

- get pairing on sections

– φ ∈ Γ(M,E), ψ ∈ Γc(M,E)

(φ, ψ) :=
∫
M h(m)(φ(m), ψ(m))vol(m)

F second vector bundle with metric

D : Γ(M,E)→ Γ(M,F ) - differential operator

- preserves supports

– restricts to

- D : Γc(M,E)→ Γc(M,F )

Definition 6.2. A formal adjoint of D is a differential operator D∗ : Γ(M,F )→ Γ(M,E)

such that (Dφ,ψ) = (φ,D∗ψ) for all φ ∈ Γ(M,E) and ψ ∈ Γc(M,F ).

82



a formal adjoint exists and is unique

locally

- in chart of M

- trivialization of E,F ,

– e := dim(E), f := dim(F )

– D =
∑d

k=0

∑
i∈Ik ai∂

i

– where

— Ik = {i1 ≤ · · · ≤ ik} - set of multi-indices

— ai ∈ C∞(M,Mat(f, e))

— vol = vdx

(Dφ,ψ) =

∫
M

(
d∑

k=0

∑
i∈Ik

ai∂
iφ)∗ψvdx

=

d∑
k=0

∑
i∈Ik

∫
M
∂iφ∗ · a∗i · ψvdx

=

d∑
k=0

∑
i∈Ik

(−1)k
∫
M
φ∗ · v−1∂i(va∗i · ψ)vdx

=

∫
M
φ∗ · (

d∑
k=0

∑
i∈Ik

(−1)kv−1∂i(va∗i · ψ))vdx

= (φ,D∗ψ)

read off:

D∗ψ =
∑d

k=0

∑
i∈Ik(−1)kv−1∂i(va∗i · ψ) =

∑d
k=0

∑
i∈Ik a

′
i∂
iψ

- use Leibnitz rule for second equality

consider dk : Ωk(M)→ Ωk+1(M)

Definition 6.3. The formal adjoint of dk is δk : Ωk+1(M)→ Ωk(M).
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note dk+1 ◦ dk = 0 implies

δk ◦ δk+1 = d∗k ◦ d∗k+1 = (dk+1 ◦ dk)∗ = 0

Lemma 6.4. δk = (−1)k+1 ∗ dn−k−1∗.

Proof. deg(α) = k, deg(ω) = k + 1

(dkα, ω) = (−1)(k+1)(n−k−1)(dkα, ∗ ∗ ω)

= (−1)(k+1)(n−k−1)

∫
M
dkα ∧ ∗ω

= (−1)(k+1)(n−k−1)+k+1

∫
M
α ∧ dn−k−1 ∗ ω

= (−1)(k+1)(n−k)+(n−k+1)(k+1)

∫
M
α ∧ ∗ ∗ dn−k−1 ∗ ω

= (α, (−1)k+1 ∗ dn−k−1 ∗ ω)

general fact:

D differential operator between vector bundles E and F

- E,F with metrics

- M with volume

Lemma 6.5. We have ker(D) = im(D∗)⊥.

Proof. φ ∈ ker(D) implies (φ,D∗ψ) = (Dφ,ψ) = 0 for all ψ, hence φ ∈ im(D∗)⊥

φ ∈ im(D∗)⊥ implies (φ,D∗ψ) = (Dφ,ψ) = 0 for all ψ, hence φ ∈ ker(D)

- d in N

Definition 6.6. We say that ord(D) ≤ d if for any f0, . . . , fd in C∞(M) we have

[fd, [fd−1, . . . [f0,D] . . . ]] = 0 .
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Lemma 6.7. We have ord(D) ≤ d if and only if M can be covered by charts and trivial-

izations of the bundles such that locally

D =

d∑
k=0

∑
i∈Ik

ai∂
i .

Proof. exercise

if ord(d) ≤ d, then

etfDe−tf = σd(D)(f)td + · · ·+ σ0(D)(f)

Lemma 6.8. Assume that ord(D) ≤ d. Then σd(D)(f)(x) only depends on df(x). We

have σd(D) ∈ Γ(M,Sd(T ∗M)⊗Hom(E,F )).

Proof. estimate of order of etfDe−tf in t

- (∂kt )|t=0e
tfDe−tf = [f, [f, . . . [f,D] . . . ]] = 0 (k commutators) for k ≥ d+ 1

locally

- σd(D)(f)(x) =
∑

(i1≤···≤id)∈Id ∂i1f(x) . . . ∂idf(x)ai1≤···≤id

Definition 6.9. σd(D) is called the principal symbol of order d of D.

Definition 6.10. A differential operator D of order ≤ d is called elliptic if σd(D)(ξ) :

Ex → Fx is invertible for all ξ in T ∗xM \ 0 and x in M .

Theorem 6.11 (from analysis, without proof!). If D is an elliptic differential operator

and M is compact, then

Γ(M,E) ∼= ker(D)⊕ im(D∗) .

Moreover dim ker(D) <∞ and ker(D) = im(D∗)⊥.

note that D∗ is also elliptic and hence Γ(M,F ) ∼= ker(D∗)⊕ im(D).

M Riemannian manifold

Definition 6.12.

∆k := δk−1dk−1 + δkdk : Ωk(M)→ Ωk(M)
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is called the Hodge Laplacian.

have ord(∆k) = 2

Lemma 6.13. We have σ2(∆k)(ξ) = 2‖ξ‖2.

Proof. [f, d] = −εdf

- εξ := ξ∧

[f, δ] = [f, d∗] = [d, f ]∗ = ε∗df = idf

here is the argument for last equality

- i ∈ {1, . . . , n}, j ∈ Ik−1, h ∈ Ik

- (εe1(ej), eh) = δ{1}]j,h = (ej , ie1e
h)

[f, [f, δd]] = [f, [f, δ]d] + [f, δ[f, d]

= [f, idfd] + [f, δεd]

= idf εdf + idf εdf

= 2idf εdf

analoguously

[f, [f, dδ]] = 2εdf idf

have

2εdf idf + 2εdf idf = 2‖df‖2

here is the argument

- (εe1ie1 + εe1ie1)ej = ej

– if j contains 1, then first term contributes, other wise second term contributes
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hence

σ2(∆k) = ‖df‖2

Corollary 6.14. The Hodge Laplacian ∆k is elliptic.

Theorem 6.15. Let M be a compact Riemannian manifold. Then we have decompositions

Ωk(M) ∼= im(dk−1)⊕ im(dk−1)⊥ and Ωk(M) ∼= im(δk)⊕ im(δk)
⊥.

Proof. show first assertion, the second is similar

consider Laplace operator ∆k := δk−1dk−1 + δkdk : Ωk(M)→ Ωk(M)

- elliptic and formally selfadjoint op

- Theorem 6.11 gives Ωk(M) ∼= ker(∆k)⊕ im(∆k)

- ω ∈ Ωk

- ω = ω0 + ∆kω
′ with

∆ω0 = 0

the following is the desired decomposition: ω = dk−1δk−1ω
′ + (ω0 + δkdkω

′)

- dk−1δk−1ω
′ ∈ im(dk−1)

- show: (ω0 + δkdkω
′) ∈ im(dk−1)⊥

– (dk−1β, ω0 + δkdkω
′) = (β, δk−1ω0 + δk−1δkdkω

′)

– δk−1δkdkω
′ = 0 is clear

(δk−1ω0, δk−1ω0) ≤ (δk−1ω0, δk−1ω0) + (dkω0, dkω0)

= (ω0, (dk−1δk−1 + δkdk)ω0)

= (ω0,∆kω0)

= 0
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the following is for compact M :

Definition 6.16. We define the space of harmonic forms by Hk(M) := ker(δk−1)∩ker(dk).

Theorem 6.17. Assume that M is compact. We have a decomposition

Ωk(M) ∼= im(dk−1)⊕Hk(M)⊕ im(δk) .

Furthermore, im(dk−1)⊕Hk(M) = ker(dk) and Hk(M) = ker(∆k).

Proof. Ωk(M) ∼= im(dk−1)⊕ im(dk−1)⊥ and Ωk(M) ∼= im(δk)⊕ im(δk)
⊥.

show orthogonality α = dk−1α
′ ∈ im(dk−1)

ω = δkω
′ ∈ im(δk)

γ ∈ ker(δk−1) ∩ ker(dk)

- (α, γ) = (dk−1α
′, γ) = (α′, δkγ) = 0

- (ω, γ) = (δkω
′, γ) = (ω′, dkγ) = 0

- (α, ω) = (dk−1α
′, δkω

′) = (α′, δk−1δkω
′) = 0

completeness:

θ ∈ Ωk(M)

- θ = α+ σ with α = dk−1α
′ ∈ im(dk−1), σ ∈ im(dk−1)⊥

- σ = γ + δkω
′ with γ ∈ im(δk)

⊥

θ = dk−1α
′ + γ + δkω

′ is desired decomposition

must show that γ is harmonic

- claim: δk−1γ = 0

— ker(δk−1) = im(dk−1)⊥

— implies δk−1σ = 0.

— since also δk−1δkω
′ = 0 conclude:
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— δk−1γ = 0

must show: dkγ = 0

- ker(dk) = im(δk)
⊥ 3 γ

im(dk−1)⊕Hk(M) ⊆ ker(dk)

im(δk) ⊥ ker(dk) implies

im(dk−1)⊕Hk(M) = ker(dk)

- ∆k(Hk) = 0 is clear

- vice versa: assume ∆kω = 0

- then 0 = (∆kω, ω) = ‖dkω‖2 + ‖δk−1ω‖2

- hence ω ∈ ker(dk ∩ ker(δk) = Hk(M)

Corollary 6.18. If M is compact, then Hk(M) → ker(dk) → Hk
dR(M) is an isomor-

phism. In particular, every class [ω] in Hk
dR(M) has a unique representative ω in Hk(M)

characterized by the additional equation δk−1ω = 0.

Example 6.19. M = G/K compact symmetric

- Hk(M) = Ωk(M)G

speciality: H∗(M) is an algebra

in general: the wedge product of harmonic forms is not necessarily harmonic

2

Definition 6.20. M is called formal if there exists a zig-zag of quasi-isomorphisms of

differential-graded algebras

H∗dR(M)→ A1 ← A2 → · · · → Ω∗(M) .

Corollary 6.21. If M is closed and admits a Riemannian metric such that H∗(M) is an

algebra under ∧, then M is formal.

89



Corollary 6.22. Compact symmetric spaces are formal.

M compact, oriented Rimannian

Proposition 6.23. The Hodge ∗-operator preserves harmonic forms and ∗ : Hk(M) →
Hn−k is the Poincaré duality isomorphism: ∗ = (−1)k(n−k)D

Proof. ω ∈ H(M)

d ∗ ω = ± ∗ ∗d ∗ ω = ± ∗ δω = 0

δ ∗ ω = ± ∗ ∗d ∗ ω = ∗dω = 0

- hence ∗ω ∈ H(M)

ω ∈ Hk(M), α ∈ Hn−k(M)

(∗ω, α) = (α, ∗ω)

=

∫
M
α ∧ ω

= (−1)k(n−k)D(ω)(α)

Example 6.24. dim(M) = 4m

- ∗ : H2n(M)→ H2n(M)

- sign(M) = sign(∗) on H2n(M)

6.3 De Rham cohomology of complex manifold

M - manifold

TCM := TM ⊗ C

- ⊗ := ⊗R

use ΛkC(Rn ⊗ C) ∼= ΛkRRn ⊗ C

set: Ak(M) := Γ(M,ΛkCTCM) ∼= Γ(M,ΛkRT
∗M ⊗ R) ∼= Ωk(M)⊗ C
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- complex differential forms

- d : Ak(M)→ Ak+1(M) - complex linear extension of de Rham differential

- −⊗ C is exact functor

Hk
dR,C(M) := Hk(A∗(M), d) ∼= Hk(Ω∗(M)⊗ C, d) ∼= Hk(Ω(M), d)⊗ C ∼= Hk

dR(M)⊗ C

assume now that (M, I) is almost complex manifold

- write also I for induced complex structure on End(T ∗M)

- T ∗CM
∼= T ∗.1,0M ⊕ T ∗.0,1M

– T ∗,1,0M - i-eigenspace of I ⊗ idC

– T ∗,0,1M - −i-eigenspace of I ⊗ idC

complex conjugation: (−) : T ∗CM → T ∗CM

- (−) : T ∗,1,0C M
∼=−→ T ∗,0,1C M

- (−) : T ∗,0,1C M
∼=−→ T ∗,1,0C M

T ∗CM
∼= T ∗,1,0M ⊕ T ∗,0,1M induces

ΛkT ∗CM
∼=
⊕
p+q=k

ΛpT ∗,1,0M ⊗ ΛqT ∗,0,1M

– define Λp,qT ∗CM := ΛpT ∗,1,0M ⊗ ΛqT ∗,0,1M

– set Ap,q(M) := Γ(M,Λp,qT ∗CM)

— then Ak(M) ∼=
⊕

p+q=k A
p,q(M)

how does d interact with this decomposition

Lemma 6.25. d : Ap,q(M) ⊆ Ap−1,q+2(M) +Ap,q+1(M) +Ap+1,q(M) +Ap+2,q−1(M)

Proof. local argument

- choose basis e1, . . . , en of T ∗,1,0M

- apply (−) - get basis ē1, . . . , ēn of fT ∗,1,0
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- fei1 ∧ · · · ∧ eip ∧ ēj1 ∧ · · · ∧ ējq - in Ap,q(M)

df =
∑
k

∂kfdx
k ∧ ei1 ∧ · · · ∧ eip ∧ ēj1 ∧ · · · ∧ ējq

+f

p∑
l=1

(−1)lei1 ∧ · · · ∧ deik ∧ · · · ∧ eip ∧ ēj1 ∧ · · · ∧ ējq

+f

q∑
h=1

(−1)h+pei1 ∧ · · · ∧ eip ∧ ēj1 ∧ · · · ∧ dējh ∧ · · · ∧ ējq

dxk ∈ A0,1(M) +A1,0(M)

- first term in Ap+1,q(M) +Ap,q+1(M)

dek, dēk is just 2-form, any bidegree

- second term in Ap−1,q+2(M) +Ap,q+1(M) +Ap+1,q(M)

- third term in Ap,q+2(M) +Ap+1,q(M) +Ap+2,q−1(M)

assume now that I is integrable

- study consequences for de Rham complex

- here is one

Lemma 6.26. If I is integrable, then d : Ap,q(M) ⊆ Ap+1,q(M)⊕Ap,q+1(M).

local structure

- by assumption on I have complex coordinates zk = xk + iyk

- dzk := dxk + idyk

- dz̄k := dxk − idyk

- ∂i := ∂zi := 1
2(∂xi − i∂yi)

- ∂̄i := ∂z̄i := 1
2(∂xi + i∂yi)

- basis of Λp,qTCM is dzi1 ∧ · · · ∧ dzip ∧ dz̄j1 ∧ · · · ∧ dz̄jq

- but now ddzi = 0 and ddz̄i = 0
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– this shows Lemma 6.26

d =
∑n

i=1(εdxi∂xi + εdyi∂yi) =
∑n

i=1(εdzi∂i + εdz̄i ∂̄i)

- set ∂ :=
∑n

i=1 εdzi∂i and ∂̄ :=
∑n

i=1 εdz̄i ∂̄i

∂ : Ap,q(M)→ Ap+1,q(M)

∂̄ : Ap,q(M)→ Ap,q+1(M)

have [∂i, ∂j ] = 0 and [∂̄i, ∂̄j ] = 0

- hence ∂2 = 0 and ∂̄2 = 0

- hence 0 = d2 = (∂ + ∂̄)2 = ∂̄∂ + ∂∂̄

get double complex (A∗,∗(M), ∂, ∂̄)

- interesting homological algebra, spectral sequences

Definition 6.27. The pth Dolbeault-complex of M is the complex (Ap,∗(M), ∂̄).

Definition 6.28. For p, q ∈ N2 we define the Dolbeault cohomology Hp,q(M) := Hq((Ap,∗(M), ∂̄)

and the Hodge numbers hp,q(M) := dimHp,q(M).

Remark 6.29.

Ωp
hol(M) := ker(∂̄ : Ap,0(M)→ Ap,1(M))

is the space of holomorphic p-forms

- complex of sheaves (Ap,∗, ∂̄) is a soft resolution of sheaf Ωp
hol(M)

– Hp,q(M) ∼= Hq
sheaf(M,Ωp

hol)

– Dolbeault cohomology calculates sheaf cohomology of the sheaf of holomorphic p-forms

2

Example 6.30. M compact complex surface dimR(M) = 2

- also called curve in algebraic geometry since dimCM = 1

- g - genus

Riemann Roch Theorem:

h0,0(M)− h0,1(M) = 1− g
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- h0,0 = 1 (holomorphic functions are constant), h0,1(M) = g

h1,0(M)− h1,1(M) = 2g − 2 + 1− g = g − 1

- What can one say about h1,0(M) and h1,1(M) separately?

Serre duality - see later

2

f : M →M ′ holomorphic.

Proposition 6.31. f induces map of double complexes f∗ : (A∗,∗(M ′), ∂, ∂̄)→ (A∗,∗(M), ∂, ∂̄)

and f∗ : H∗,∗(M ′)→ H∗,∗(M).

Proof. df commutes with I

- it restricts to

- df ⊗ id|T 1,0M : T 1,0M → f∗T 1,0M ′ and same for (0, 1)

- hence f∗ restricts to f∗ : Ap,q(M ′)→ Ap,q(M)

- f∗ preserves d and hence ∂, ∂′

Remark 6.32. Ωk(M)⊗ C has decreasing filtration

- F lΩk(M)⊗ C :=
⊕

p+q=k,p≥lA
p,q(M)

- compatible with d

- d : F lΩk(M) ⊆ F lΩk+1(M)

- get filtration of HdR(M)⊗ C by images of
⊕

p+q=k,p≥lH
p,q(M)

the spectral sequence associated to this filtration is called the Hodge-de Rham spectral

sequence.

zero page

- Ap,q(M),

- d0 = ∂̄

first page:
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- Ep,q1 := Hp,q(M)

- d1 := ∂ : Hp,q(M)→ Hp+1,q(M)

conclude: estimate of Betti numbers

bk(M) ≤
∑
p

hp,k−p(M)

check for surfaces:

- 1 = b0(M) ≤ h0,0(M) = 1

- b1(M) ≤ 2g ≤ h1,0 + h0,1(M) = g + h1,0(M)

– hence h1,0(M) ≥ g

– will see that we have equality here later

- 1 = b2(M) ≤ h1,1(M)

- h1,1(M) = h1,0(M) + 1− g ≥ 1 is compatible with 2

Riemannian metric on M

M compact

- induces hermitean metric on Λp,qTCM

- can define ∂̄∗ - formal adjoint of ∂̄

- ∆̄ := ∂̄∗∂̄ + ∂̄∂̄∗

- ∆̄ is elliptic

Theorem 6.33. If M is compact, then we have a decomposition Ap,q(M) ∼= im(∂̄q−1) ⊕
Hp,q(M) + im(∂̄∗q ). Furthermore we have an isomorphism Hp,q(M) ∼= Hp,q(M) and hp,q =

dimHp,q(M) <∞.

- in general: hp,q is sensitive to complex structure, difficult to calculate

6.4 The Kähler package

M manifold
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- 2n := dimR(M)

- I almost complex structure

- g metric such that I = −I∗

- ω = g(I,−,−) - Kähler form in Ω2(M)

define L : ΛkT ∗M → Λk+2T ∗M

- L(α) = ω ∧ α

Lemma 6.34. L(Λp,qT ∗CM) ⊆ Λp+1,q+1T ∗CM)

Proof. must show: ω ∈ A1,1(M)

choose local ONB of the form (ej , Iej)j=1,...,n of TM

g =
∑n

j=1(ej ⊗ ej + Iej ⊗ Iej)

ω =

n∑
j=1

(Iej ⊗ ej − ej ⊗ Iej)

=

n∑
j=1

Iej ∧ ej

=
n∑
j=1

(iej + Iej) ∧ ej

= i
n∑
i=1

(iej + Iej) ∧ (−iej +
1

2
(iej + Iej))

=
i

2

n∑
j=1

(iej + Iej) ∧ (−iej + Iej)

- I(iej + Iej) = Iiej − ej = i(iej + Iej) hence (iej + Iej) ∈ T ∗,1,0M

- I(−iej + Iej) = −Iiej − ej = −i(−iej + Iej) hence (−iej + Iej) ∈ T ∗,0,1M

– conclude: ω ∈ A1,1(M)
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define Λ := L∗ : Λk+2T ∗M → ΛkT ∗M

X in TM

- notation: X̂ = g(X,−) - the dual 1-form to X

Lemma 6.35. We have [ιX ,Λ] = 0 and [ιX , L] = ε
ÎX

.

Proof. [ιX ,Λ] since Λ is even

[ιX , L] = ειXω = εg(IX,−) = ε
ÎX

recall: (M, g, I) Kähler if dω = 0 (then also I is integrable)

Lemma 6.36. If (M, I, g) is Kähler, then [L, d] = 0 and [Λ, δ] = 0.

Proof. [L, d] = −dω ∧ − = 0

take adjoints to get [Λ, δ] = 0

∗ - Hodge ∗

- consider C-linear extension to Λ∗T ∗CM

Lemma 6.37. ∗ restricts to maps ∗ : Λp,qT ∗CM → Λn−q,n−pT ∗CM .

Proof. use basis dz1, . . . , dzn, dz̄1, . . . , dz̄n

recall: d = ∂ + ∂̄

- ∂ : Ap,q(M)→ Ap+1,q(M)

- ∂̄ : Ap,q(M)→ Ap,q+1(M)

– consider formal adjoints: ∂∗ and ∂̄∗

– define ∆∂ := ∂∂∗ + ∂∗∂, ∆∂̄ := ∂̄∂̄∗ + ∂̄∗∂̄

- both preserve summands Ap,q(M) of Ap+q(M)

Theorem 6.38. If (M, I, g) is Kähler, then ∆ = 2∆∂ = 2∆∂̄. In particular ∆ preserves

Ap,q(M),
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define

dc := [L, δ] : Ω(M)→ Ω(M)[1]

δc := (dc)∗ = [d,Λ] : Ω(M)[1]→ Ω(M) .

calculate local formula at some point p

(ei)i=1,...,2n - local basis dual to (ei)i=1,...,2n

recall: d =
∑

i εei∇ei
- calculate formal adjoint of ∇ei
– use definition diverence div : X (M)→ C∞(M)

– div is formal adjoint of grad : C∞(M)→ X (M)

(div(X), f) = (X, grad(f)) forall f in C∞c (M)

∫
M

(∇eiα, β)vol =

∫
M
ei(α, β)vol−

∫
M

(α,∇eiβ)vol

=

∫
M

(α, β)div(ei)vol−
∫
M

(α,∇eiβ)vol

- hence ∇∗ei = −∇ei + div(ei)

- get δ =
∑

i(−∇ei + div(ei))ιei

– want to switch ιei to the left

- claim: δ = −
∑

i ιei∇ei
– consider u :=

∑
i(−∇ei + div(ei))ιei − (−

∑
i ιei∇ei)

– u is bundle endomorphism

– is independent of choice of basis (ei)

— fix point p in M

— at p can assume that ei (and hence ei) are parallel

— at this point div(ei) = 0 and [ιei ,∇ei ] = 0
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— hence u(p) = 0

— since p is arbitrary conclude u = 0

M Kähler implies ∇ω = 0 and hence [L,∇] = 0

dc = [L, δ] = −
∑
i

[L, ιei∇ei ] = −
2n∑
i=1

[L, ιei ]∇ei =
2n∑
i=1

εIei∇ei

now use complex coordinates

- write zk = xk + iyk

- ei := dxi, Iei := dyi

use −iεei+iIei = εIei+iIIei

∂ =
∑n

i=1 εdzi∂i =
∑

i ε(ei+iIei)
1
2(∂ei − i∂Iei) = 1

2(
∑n

i=1 ε(ei+iIei)∂ei +
∑n

i=1 ε(Iei+iIIei)∂Iei)

use iεei−iIei = εIei−iIIei

∂̄ =
∑n

i=1 εdz̄i ∂̄i =
∑

i ε(ei−iIei)
1
2(∂ei + i∂Iei) = 1

2(
∑n

i=1 ε(ei−iIei)∂ei +
∑n

i=1 ε(Iei−iIIei)∂Iei)

get

i(∂̄ − ∂) =
∑n

i=1 εIei∂ei + εIIei∂Iei = dc

i(∂∗ − ∂̄∗) = δc

[L, ∂∗ + ∂̄∗] = [L, δ] = dc = i(∂̄ − ∂)

part Ap,q(M)→ Ap+1,q: [L, ∂̄∗] = −i∂,

part Ap,q(M)→ Ap,q+1: [L, ∂∗] = i∂̄

[L, ∂ + ∂̄] = [L, d] = 0

part Ap,q(M)→ Ap+2,1: [L, ∂] = 0

part Ap,q(M)→ Ap+1,q+2: [L, ∂̄] = 0

take adjoints and get identities

[Λ, ∂̄] = −i∂∗, [Λ, ∂] = i∂̄∗, [Λ, ∂∗] = 0 , [Λ, ∂̄∗] = 0
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use ∂̄2 = 0

−i(∂̄∂∗ + ∂∗∂̄) = ∂̄[Λ, ∂̄] + [Λ, ∂̄]∂̄ = 0

analogously −i(∂∂̄∗ + ∂̄∗∂) = 0

∆ = dδ + δd

= (∂ + ∂̄)(∂∗ + ∂̄∗) + (∂∗ + ∂̄∗)(∂ + ∂̄)

= ∆∂ + ∆∂̄

remains to show: ∆∂ = ∆∂̄

−i∆∂ = −i(∂∂∗ + ∂∗∂)

= ∂[Λ, ∂̄] + [Λ, ∂̄]∂

= ∂Λ∂̄ − ∂∂̄Λ + Λ∂̄∂ − ∂̄Λ∂

= ∂Λ∂̄ + ∂̄∂Λ− Λ∂∂̄ − ∂̄Λ∂

= [∂,Λ]∂̄ + ∂̄[∂,Λ]

= −i∂̄∗∂̄ − i∂̄∂̄∗

= −i∆∂̄

Lemma 6.39. If (M, I, g) is Kähler, then [∆, L] = 0.

Proof. dω = 0

- part in A2,1(M) is ∂ω = 0

use ∆ = 2∆∂

[∆, L] = 2([∂∂∗, L] + [∂∗∂, L]) = 2∂[∂∗, L] + [∂∗, L]∂

- already shown: [∂∗, L] = −i∂̄

- ∂̄∂ + ∂∂̄ = 0
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get [∆, L] = 0

Corollary 6.40. 1. If (M, I, g) is a compact Kähler manifold of complex dimension n,

then we have an orthogonal decomposition Hk(M) ∼=
⊕

p+q=kHp,q(M)

2. ∗ induces an isomorphism Hp,q(M) ∼= Hn−q,n−p(M) (Serre duality). In particular,

hp,q(M) = hn−q,n−p(M).

3. We have bk(M) =
∑

p+q=k h
p,q(M) for every k ∈ N.

4. We have 0 6= [ωl] ∈ Hl,l(M) for l = 0, . . . , n. In particular, hl,l(M) ≥ 1

5. Complex conjugation induces an isomorphism Hp,q(M) → Hq,p(M) and hp,q(M) =

hq,p(M). In particular, b2k+1(M) ∈ 2Z.

6. The Hodge de-Rham spectral sequence degenerates at the E1-term.

Example 6.41. Hodge numbers for connected complex curve, genus g

- h0,1 = h1,0 = g

- h0,0 = h1,1 = 1 2

6.5 Lefschetz theory

start with some linear algebra with hermitean vector spaces

Cn - with standard C-basis (ej)j=1,...,n

- R-basis is (ej , iej)j=1,...,n

- (ej)j=1,...,n - dual C-basis

- (ej , iej)j=1,...,n - dual R-basis

euclidean metric: g =
∑n

j=1 e
j ⊗ ej + iej ⊗ iej

- Kähler form ω(−,−) = g(i−,−) =
∑n

j=1

(
iej ⊗ ej − ej ⊗ iej

)
=
∑n

i=1 ie
j ∧ ej

consider operators on Λ∗R2n,∗ ⊗R C ∼= Λ∗RCn,∗ ⊗R C
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- L := ω ∧ − =
∑n

j=1 εiej εej

- Λ := L∗ =
∑n

j=1 ιej ιiej

- deg : Λ∗RCn,∗ ⊗R C→ Λ∗RCn,∗ ⊗R C - degree operator

– for α ∈ ΛkRCn,∗ ⊗R C: deg(α) = k

- N := deg−n

Lemma 6.42. We have [L,Λ] = N , [N,L] = 2L, [N,Λ] = −2Λ.

Proof. L increases degree by 2

- [deg, L] = 2L

- take adjoint: [Λ, deg] = 2Λ

- implies: [N,L] = 2L, [N,Λ] = −2Λ

let neh = εehιeh ∈ End(Λ∗RCn,∗ ⊗R C)

- neh(ei1∧· · ·∧eir∧iej1∧· · ·∧iejs) =

{
ei1 ∧ · · · ∧ eir ∧ iej1 ∧ · · · ∧ iejs h = il for some l

0 else

- nieh(ei1∧· · ·∧eir∧iej1∧· · ·∧iejs) =

{
ei1 ∧ · · · ∧ eir ∧ iej1 ∧ · · · ∧ iejs h = jl for some l

0 else

- ιehεeh = 1− neh , ιiehεieh = 1− nih

102



[L,Λ] =
n∑

j,k=1

(εiej εej ιekιiek − ιekιiekεiej εej )

=

n∑
j=1

(εiej εej ιej ιiej − ιej ιiej εiej εej )

=
n∑
j=1

εiej ιiejnej −
n∑
j=1

ιej εej (1− niej )

=
n∑
j=1

niejnej −
n∑
j=1

(1− nej )(1− niej )

=

n∑
j=1

(nej + niej )− n

= deg−n

= N

recall Lie algebra sl(2,R)

- linear generators: L,Λ, N

- relations: [N,L = 2L], [N,Λ] = −2Λ, [L,Λ] = N

Corollary 6.43. Λ∗RCn,∗ ⊗R C carries a representation of sl(2,R).

sl(2,R) is semisimple

- every finite-dimensional complex representation completely decomposes into irreducible

representations

- the list of irreducible representations up to isomorphism is (Vk)k∈N

– dim(Vk) = k + 1

– weights (eigenvalues of N) in Vk are −k,−k + 2, . . . , k − 2, k

– lowest weight vector v−k

– (Lrv−k)r=0,...,k is C-basis of Vk
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— weight of Lrv−k is 2r − k

– Lk+1v−k = 0

provide explicit description

SL(2,R) acts on C2 - usual matrix multiplication

- acts on Sk(C2,∗) - homogenous polynomials on x, y of degree k

- basis xk, xk−1y, . . . , xyk−1, xk

- get action by sl(2,R) by differentiation

N :=

(
1 0

0 −1

)
, L :=

(
0 1

0 0

)
, Λ :=

(
0 0

1 0

)

etN =

(
et 0

0 e−t

)
- etNx = etx, etNy = e−ty

- etNxk−lyl = et(k−2l)xk−lyl

- Nxk−lyl = (k − 2l)

- etL =

(
1 t

0 1

)
- etLx = x, Lx = 0, Ly = x

- Lxk−lyl = lxk−l+2yl−2

yk - generates Sk(C2,∗) under powers of L

- is lowest weight vector of weight −k

- conclude irreducibility

- Vk ∼= Sk(C2,∗) as sl(2,R)- representations

W any finite-dimensional representation of sl(2,R)

- have canonical sl(2,R) -equivariant decompostion W ∼=
⊕

k∈ZWk
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– Wk is isomorphic to a finite sum of copies of Vk

– want to describe this explicitly

W ∼=
⊕

k∈ZW (k) - weight decomposition (eigenvalues of N)

for k ∈ N

- W (k)− := ker(Lk+1 : W (−k)→W (k+ 2)) is the subspace of lowest weight vectors of Wk

- get canonical sl(2,R)-equivariant isomorphism W (k)− ⊗ Vk
∼=−→Wk

– uniquely determined by w ⊗ v−k → w

– explicitly:

⊕kr=0L
r :

k⊕
r=0

W (k)−
∼=−→Wk

– get sl(2,R)-equivariant isomorphism

∞⊕
k=0

k⊕
r=0

W (k)− ⊗ Vk
∼=−→W

– explicitly

⊕∞k=0 ⊕kr=0 L
r :

∞⊕
k=0

k⊕
r=0

W (k)−
∼=−→W

apply this to Λ∗RCn,∗ ⊗R C

recall: N = deg−n

- (Λ∗RCn,∗ ⊗R C)(k) = Λn+k
R Cn,∗ ⊗R C

for k ≤ n set

- set (Λn−kR Cn,∗ ⊗R C)prim := (Λ∗RCn,∗ ⊗R C)(−k)−

Corollary 6.44. 1. For k ≤ n we have an isomorphism

Lr : (Λn−kR Cn,∗ ⊗R C)→ (Λn+k
R Cn,∗ ⊗R C) .
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2. We have a decomposition

⊕∞k=0 ⊕kr=0 L
r :

∞⊕
k=0

k⊕
r=0

(Λn−kR Cn,∗ ⊗R C)prim
∼=−→ Λ∗RCn,∗ ⊗R C

note:

⊕rLr :

min(n−l/2,l/2)⊕
r=0

(Λl−2r
R Cn,∗ ⊗R C)prim

∼=−→ ΛlRCn,∗ ⊗R C

applies to Λ∗T ∗CM fibrewise

L,Λ, N := deg−n define an action of sl(2,R) by bundle endomorphisms

[L, d] = 0 from Kähler condition

Corollary 6.45. 1. For k ≤ n the operator Lk : An−k(M) → An+k(M) is an isomor-

phism.

2. It induces an isomorphism (Hard Lefschetz)

H2n−k
dR,C (M)→ H2n+k

dR,C (M)

3. It restricts to isomorphisms

Hn−p,n−q
dR,C (M)→ Hn+q,n+p

dR,C (M) .

Definition 6.46. For k ≤ n Define

An−k(M)prim := ker(Lk+1 : An−k(M)→ An+k+1(M) ,

Hn−k(M)dR,C,prim := ker(Lk+1 : Hn−k
dR,C(M)→ Hn+k+2

dR,C (M)

and for p+ q = n− k

Hp,q(M)dR,C,prim := ker(Lk+1 : Hp,q
dR,C(M)→ Hp+k+1,q+k+1

dR,C (M) .

L commutes with ∆

106



Corollary 6.47. We have an isomorphisms

⊕rLr :

min(n−l/2,l/2)⊕
r=0

Al−2r
prim(M)

∼=−→ Al(M) ,

⊕rLr :

min(n−l/2,l/2)⊕
r=0

H l−2r
dR,C,prim(M)

∼=−→ H l
dR,C(M)

and for and for p+ q = l

⊕rLr :

min(n−l/2,l/2)⊕
r=0

Hp−r,q−r
prim (M)

∼=−→ Hp,q(M) .

Corollary 6.48.

⊕rLr :

min(n−l/2,l/2)⊕
r=0

Hl−2r
prim(M)

∼=−→ Hl(M)

and for and for p+ q = l

⊕rLr :

min(n−l/2,l/2)⊕
r=0

Hp−r,q−rprim (M)
∼=−→ Hp,q(M) .
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