Differential Geometry

Ulrich Bunke

Contents

1 Prerequisites - what do participants know? 3
2 Smooth manifolds 4
2.1 Topological and smooth manifolds manifolds 4
2.1.1 Topological notions 4
2.1.2 Locally euclidean spaces and topological manifolds 6
2.1.3 Smooth manifolds 8
2.2 Examples and constructions of smooth manifolds 10
2.2.1 Regular submanifolds 10
2.2.2 Explicit examples of regular submanifolds 12
2.2.3 Cartesian products 12
2.2.4 Lie groups 14
2.3 Tangent vectors 16
2.3.1 Derivations 16
2.3.2 Tangent vectors 21
2.3.3 Change of coordinates 23
2.3.4 geometric tangent vectors at regular submanifolds 24
2.3.5 Discussion 26
2.4 Fibre bundles 27
2.4.1 Bundles and bundle morphisms 27
2.4.2 Fibre bundles and cocycles 28
2.4.3 Sections 32
2.4.4 Vector bundles and dual bundles 34
2.4.5 Principal bundles 37
2.4.6 Frame bundles and associated vector bundles 39
2.4.7 Pull-back 42
2.5 Vector fields 44
2.5.1 The commutator 44
2.5.2 Integral curves 47
2.5.3 Fundamental vector fields and actions 50
3 Connections 53
3.1 Linear connection on vector bundles bundles 53
3.1.1 Existence and classification 53
3.1.2 Curvature 57
3.1.3 Parallel transport 62
3.1.4 Tensor algebra with connections, the first Chern class 67
3.1.5 Metrics and connections 71
3.2 Connection of fibre bundles 76
3.2.1 Horizontal bundles for submersions 76
3.2.2 Connections on principal bundle 85
3.2.3 Associated vector bundles 92
3.2.4 Quotients 94
4 Riemannian geometry 99
4.1 Connections on the tangent bundle 99
4.2 The Riemannian distance 103
4.3 Geodesics 105
4.4 Families of geodesics and Jacobi fields 109
4.5 Gauss lemma 112
4.6 Completeness 118
4.7 Properties of the Riemannian curvature 123
4.8 Isometries and second fundamental form 130
4.9 Conformal change of the metric 134
4.10 Lie groups 138
4.11 Energy and more 142
4.12 Coverings 146
4.13 Conjugate points 152

1 Prerequisites - what do participants know?

topological spaces

- Hausdorff
- second countable
- basis of topology
- compact subset
diffential calculus in many variables
- differentiability, partial derivatives
- Schwarz Lemma
- implicit function theorem
- submanifolds

DGL

- vector fields on \mathbb{R}^{n}
- existence, uniqueness
- dependence of parameters and initial conditions
- flows
tensor algebra for vector spaces
$-V \otimes W$
- $S^{2}(V)$
$-\Lambda^{3} V^{*}$
- $S O(n)$,
differential forms
- de Rahm
- integration of Stokes?
mathematical language
- category
- functor
- cartesian product
physics:
- lagrange and Hamilton formalism for classical mechanics
- electro-magnetism, Maxwell

2 Smooth manifolds

2.1 Topological and smooth manifolds manifolds

2.1.1 Topological notions

M - topological space:
consider following conditions:

- Hausdorff
- unicity of limits

Example 2.1. A non-Hausdorff space
form push-out

every $x \geq 0$ gives rise to x_{+}and x_{-}in M

- $\left(-\frac{1}{n}\right)_{n}$ has two limits 0_{+}and 0_{-}
- 0_{+}and 0_{-}can not be separated by opens
$-M$ is not Hausdorff
- but locally homeomorphic to \mathbb{R}
- regular
- can separate points from closed subsets
- paracompact: Every covering $\mathcal{U}=\left(U_{i}\right)_{i \in I}$ of M has locally finite subcovering
- locally finite: Every m in M admits open nbhd $m \in U \subseteq M$ such that $\left\{i \in I \mid U \cap U_{i} \neq \emptyset\right\}$ is finite.
- this is stronger then to require: $\left\{i \in I \mid x \in U_{i}\right\}$ is finite for every x
- paracompact implies existence of continuous partitions of unity
- second countable: M has a countable base of topology.
- can work with sequences instead of nets in order to define closures or check continuity of functions
- if M is locally compact and second countable, then it admits an exhaustion by compact subsets

Example 2.2. a (non)second countable space
$\bigsqcup_{i \in I} \mathbb{R}$ is second countable if and only if I is countable.

Proposition 2.3 (Urysohn's metrization theorem). The following conditions on M are equivalent:

1. M is paracompact, second-countable regular space.
2. M is metrizable.
will combine paracompact, second-countable regular by saying metrizable

2.1.2 Locally euclidean spaces and topological manifolds

general principle: some conditions holds locally, if every point admits a nbhd on which this condition holds
call the spaces \mathbb{R}^{n} for $n \geq 0$ euclidean spaces
M - a topological space
Definition 2.4. M is locally euclidean if every m in M admits an open nbhd $m \in U \subseteq M$ such that U is homeomorphic to an euclidean space.

Example 2.5. \mathbb{R}^{n} is locally euclidean: take \mathbb{R}^{n} as neigbourhood.
Lemma 2.6. An open subset of \mathbb{R}^{n} is is locally euclidean.
Proof. $V \subseteq \mathbb{R}^{n}$ open

- can not take \mathbb{R}^{n}
$x \in V \subseteq \mathbb{R}^{n}$
- choose $\epsilon>0$ such that $U:=B(x, \epsilon) \subseteq V$ (open ball)
- there exists homeomorphism $B(x, \epsilon) \rightarrow \mathbb{R}^{n}$
$-y \mapsto \phi(\|y-x\|)(y-x)$
$-\phi:[0, \epsilon) \rightarrow[0, \infty)$ continuous, monotoneous surjective, e.g. $t \mapsto \frac{t}{\epsilon-t}$
M - locally euclidean, $m \in M$,
- $\phi: U \rightarrow \mathbb{R}^{n}$ homeomorphism for neighbourhood U of m
- define the dimension of M at m by $\operatorname{dim}_{m}(M):=n$

Proposition 2.7. For every point m in M the number $\operatorname{dim}_{m}(M)$ is well-defined.

Proof. must show that it does not depend on choice of homeomorphism

- $\phi^{\prime}: U^{\prime} \rightarrow \mathbb{R}^{n^{\prime}}$ a second choice
- get homeomorphism $\phi^{\prime} \phi^{-1}: \phi\left(U \cap U^{\prime}\right) \rightarrow \phi^{\prime}\left(U \cap U^{\prime}\right)$ between opens of euclidean spaces - apply

Theorem 2.8 (invariance of the dimension). If an open subset of \mathbb{R}^{n} is homeomorphic to an open subset of $\mathbb{R}^{n^{\prime}}$, then $n=n^{\prime}$

- this is usually shown in an algebraic topology course using homology

Corollary 2.9. The function $m \mapsto \operatorname{dim}_{m}(M)$ is locally constant.
if it is constant, then its value is called the dimension of M

Definition 2.10. M is a topological manifold if if is metrizable and locally euclidean.

Definition 2.11. A morphism between topological manifolds is just a continuous map.
get category $\mathbf{M f}^{\text {top }}$ of topological manifolds and continuous maps

- it is not easy to provide examples of topological manifolds which do not come from smooth ones
- therefore no specific examples here

2.1.3 Smooth manifolds

M - topological manifold

- a smooth structure on M is an additional datum
- a topological chart is pair (U, ϕ) of
- $U \subseteq M$ open
- $\phi: U \rightarrow \mathbb{R}^{n}$ (for some n) homeomorphism on image
- $\mathcal{A}^{\text {top }}:=\{(U, \phi)\}$ - set of topopogical charts
- since M is topological manifold: $\bigcup_{(U, \phi) \in \mathcal{A}^{\text {top }}} U=M$

Definition 2.12. A subset \mathcal{A} of $\mathcal{A}^{\text {top }}$ is an atlas if $\bigcup_{(U, \phi) \in \mathcal{A}} U=M$.

- $(U, \phi),\left(U^{\prime}, \phi^{\prime}\right) \in \mathcal{A}^{\text {top }}$
- define transition function: $\phi^{\prime} \phi^{-1}: \phi\left(U \cap U^{\prime}\right) \rightarrow \phi^{\prime}\left(U \cap U^{\prime}\right)$
- is homeomorphism between open subsets of euclidean spaces by construction

Definition 2.13. A subset \mathcal{A} of $\mathcal{A}^{\text {top }}$ is called smooth if all transition functions between charts in \mathcal{A} are smooth.

Note that atlasses on M from a poset w.r.t. inclusion
Definition 2.14. A smooth structure on M is a maximal smooth atlas.
Lemma 2.15. Every smooth atlas is contained in a uniquely determined maximal one.

Proof. \mathcal{A} - smooth atlas
Existence:

- call (U, ϕ) in $\mathcal{A}^{\text {top }}$ compatible with \mathcal{A} if $\mathcal{A} \cup\{(U, \phi)\}$ is compatible
- show: if \mathcal{A}^{\prime} is smooth, $\mathcal{A} \subseteq \mathcal{A}^{\prime}$ and (U, ϕ) compatible with \mathcal{A}, then also with \mathcal{A}^{\prime}
- must check that $\phi^{\prime} \phi^{-1}$ is smooth for all $\left(U^{\prime}, \phi^{\prime}\right) \in \mathcal{A}^{\prime}$
- consider $m \in U \cap U^{\prime}$
- consider chart (V, ψ) in \mathcal{A} at m
- factorize as $\left(\phi^{\prime} \psi^{-1}\right)\left(\psi \phi^{-1}\right)$ - is defined near $\phi(m)$
- get smoothness of $\phi^{\prime} \phi^{-1}$ near m
- let $\overline{\mathcal{A}}$ consist of all (U, ϕ) which are compatible with \mathcal{A}
- conclude: $\overline{\mathcal{A}}$ is smooth atlas
- $\overline{\mathcal{A}}$ is maximal, since it already contains all charts which could possibly added
unicity:
- let $\overline{\mathcal{A}}^{\prime}$ is any maximal smooth atlas containing \mathcal{A}
- then $\overline{\mathcal{A}}^{\prime} \cup \overline{\mathcal{A}}$ is smooth
- by maximality conclude $\overline{\mathcal{A}}=\overline{\mathcal{A}}^{\prime}$
we say that \mathcal{A} generates the smooth structure $\overline{\mathcal{A}}$
Definition 2.16. A smooth manifold is a pair (M, \mathcal{A}) of a topological manifold with a smooth structure.
- we use maximal atlas in order to have a good notion of equality of manifolds
- in order to describe a manifold it suffices to provide any generating smooth atlas

Definition 2.17. A smooth map between smooth manifolds $(M, \mathcal{A}) \rightarrow\left(M^{\prime}, \mathcal{A}^{\prime}\right)$ is a continuous map such that composition $\phi^{\prime} f \phi^{-1}: \phi\left(f^{-1}\left(U^{\prime}\right) \cap U\right) \rightarrow \phi^{\prime}\left(U^{\prime}\right)$ is smooth for every pair of charts $(U, \phi) \in \mathcal{A}$ and $\left(U^{\prime}, \phi^{\prime}\right) \in \mathcal{A}^{\prime}$.

Remark 2.18. It suffices to check the condition on f for charts in generating atlasses.

Exercise!
get category Mf of smooth manifolds and smooth maps
have forgetful functor Mf $\rightarrow \mathbf{M f}^{\text {top }}$

Example 2.19.

\mathbb{R}^{n}

- generating atlas $\left(\mathbb{R}^{n}, \mathrm{id}_{\mathbb{R}^{n}}\right)$
any open subset $U \subseteq \mathbb{R}^{n}$
- generating atlas $\left(U, U \rightarrow \mathbb{R}^{n}\right)$
morphisms between these examples are smooth maps in the usual sense

Example 2.20. open subsets of smooth manifolds are smooth manifolds

M - smooth manifold
Definition 2.21. A smooth function on M is a morphism $M \rightarrow \mathbb{R}$.

- the smooth functions on M form the \mathbb{R}-algebra $C^{\infty}(M)$

Definition 2.22. A curve in M is a morphism $\gamma: I \rightarrow M$ with I an open interval in \mathbb{R}.

2.2 Examples and constructions of smooth manifolds

2.2.1 Regular submanifolds

$U \subseteq \mathbb{R}^{n}$ open
$g: U \rightarrow \mathbb{R}^{k}$ smooth
u in U

- have differential $d g(u): \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$, linear map

Definition 2.23. g is regular in u if $d g(u)$ is surjective.
consider subspace $M \subseteq \mathbb{R}^{n}$

- is a metrizable topological space

Definition 2.24. M is a regular if for every m in M there exists a neighbourhood U of m and a smooth function $g: U \rightarrow \mathbb{R}^{k}$ such that $M \cap U=g^{-1}(0)$ and g is regular at M.
call g a defining function of M at m - set $T_{m} M:=\operatorname{ker}(d g(m))$ - linear subspace fo \mathbb{R}^{n}

Remark 2.25. $T_{m} M$ does note depend on choice of defining function g of M at m Exercise!

Theorem 2.26 (Implizit function theorem). There exist open neigbourhoods $0 \in V \subseteq$ $T_{m} M$ and $m \in U^{\prime} \subseteq U$ such that:

1. For every v in V there exists a unique point $\psi(v)$ in $T_{m} M^{\perp}$ such that $v+\psi(v)+m \in$ $M \cap U^{\prime}$.
2. $\psi: V \rightarrow T_{m} M^{\perp}$ is smooth.
the map $V \ni v \mapsto v+\psi(v)+m \in W:=U^{\prime} \cap M$ homeomorphism.

- inverse: $W \ni \phi(x):=x \mapsto \operatorname{pr}_{T_{m} M^{\perp}}(x-m)$
take $\mathcal{A}:=\{(W, \phi)\}$ - set of all charts defined in this way
- domains cover M

Corollary 2.27. M is topological manifold.
Proposition 2.28. \mathcal{A} is a smooth atlas.

Proof. is an atlas by construction

- \mathcal{A} is a smooth:
- consider transition function
$v \mapsto \phi^{\prime} \phi^{-1}(v)=\operatorname{pr}_{T_{m^{\prime}} M^{\perp}}^{\prime}\left(v+\psi(v)+m-m^{\prime}\right)$ - this map is obviously smooth

Definition 2.29. Call M with the smooth manifold structure constructed above a regular submanifold
note that $\operatorname{dim}_{m}(M)=n-k\left(\right.$ when $g: U \rightarrow \mathbb{R}^{k}$ is defining at $\left.m\right)$
Example 2.30. detection of smooth maps into and from a regular submanifold
$f: N \rightarrow M$ is smooth iff $f: N \rightarrow M \rightarrow \mathbb{R}^{n}$ is smooth
$f: M \rightarrow N$ is smooth if it extends to a smooth function $\tilde{f}: \mathbb{R}^{n} \rightarrow N$
Exercise!

2.2.2 Explicit examples of regular submanifolds

$S^{n} \subset \mathbb{R}^{n+1}$ defined by $f(x)=\|x\|^{2}-r$
the following examples have group structures
$G L_{n}(\mathbb{R}) \subseteq \mathbb{R}^{n^{2}}$ - open subset
$S L_{n}(\mathbb{R}) \subseteq \mathbb{R}^{n^{2}}-\operatorname{defined}$ by $A \mapsto \operatorname{det}(A)-1$
$O(n) \subseteq \mathbb{R}^{n^{2}}$ - defined by $A \mapsto A^{t} A \in S^{2}\left(\mathbb{R}^{n}\right) \cong \mathbb{R}^{\frac{n(n+1)}{2}}, \operatorname{dim}(O(n))=\frac{n(n-1)}{2}$
$S O(n) \subseteq O(n)$ open
$U(n) \subseteq \mathbb{R}^{2 n^{2}}$ - defined by $A \mapsto A^{*} A \in\{$ hermitean matrices $\} \cong \mathbb{R}^{n(n-1)+n}, \operatorname{dim}(U(n))=n^{2}$

2.2.3 Cartesian products

Proposition 2.31. The category Mf admits cartesian products.

Proof. $M, M^{\prime} \in \mathbf{M f}$

- consider topological space $M \times M^{\prime}$
- is topological manifold
- a product of metrizable spaces is metrizable (take product metric)
- $M \times M^{\prime}$ is locally euclidean
$-\left(m, m^{\prime}\right) \in M \times M^{\prime}$
- (U, ϕ) chart at $m,\left(U^{\prime}, \phi^{\prime}\right)$ chart at m^{\prime}
- $\left(U \times U^{\prime}, \phi \times \phi^{\prime}\right)$ is a chart of $M \times M^{\prime}$ at $\left(m, m^{\prime}\right)$
- call this chart product chart
define smooth structure on $M \times M^{\prime}$ as generated by product charts of charts of the smooth structures
- check: this is compatible atlas
check
$p: M \times M^{\prime} \rightarrow M$ and $p^{\prime}: M \times M^{\prime} \rightarrow M^{\prime}$ are smooth
- check smoothness using product charts in domain
- use $\phi_{1} p\left(\phi_{0} \times \phi^{\prime}\right)^{-1}=\phi_{1} \phi_{0}^{-1}$
check that ($M \times M^{\prime}, p, p^{\prime}$) satisfies the universal property

$$
\operatorname{Hom}_{\mathbf{M f}}\left(N, M \times M^{\prime}\right) \xrightarrow{\left(p, p^{\prime}\right)} \operatorname{Hom}_{\mathbf{M f}}(N, M) \times \operatorname{Hom}_{\mathbf{M f}}\left(N, M^{\prime}\right)
$$

is bijection

- injective:
- is clear since we have cartesian products of underlying sets
- surjective:
- $f: N \rightarrow M, f^{\prime}: N \rightarrow M^{\prime}$ given
- $f \times f^{\prime}: N \rightarrow M \times M^{\prime}$ is continuous (since work with cartesian product in topological spaces)
- check smoothness using product charts:
$-\left(\phi_{1} \times \phi_{1}^{\prime}\right)\left(f \times f^{\prime}\right)\left(\phi_{0} \times \phi_{0}^{\prime}\right)^{-1}=\left(\phi_{1} f \phi_{0}^{-1}, \phi_{1}^{\prime} f^{\prime} \phi_{0}^{\prime,-1}\right)$ is smooth

Example 2.32. $\mathbb{R}^{n} \times \mathbb{R}^{n^{\prime}} \cong \mathbb{R}^{n+n^{\prime}}$ (as manifolds)
$S^{1} \times \cdots \times S^{1}=: T^{n}$ (n factors) is called the n-torus
$M \subseteq \mathbb{R}^{n}$ regular, $M^{\prime} \subseteq \mathbb{R}^{n^{\prime}}$ regular, then $M \times M^{\prime} \subseteq \mathbb{R}^{n+n^{\prime}}$ is regular

2.2.4 Lie groups

existence of cartesian products in a category \Rightarrow can talk about groups in this category: general:

- \mathcal{C} category with cartesian products
-*-empty cartesian product
$-\operatorname{pr}_{C}: * \times C \xrightarrow{\cong} C$ - will often be used implicitly
idea: write group axioms in terms of diagrams of maps
Definition 2.33. A group in \mathcal{C} is a triple $(C, \mu: C \times C \rightarrow C, e: * \rightarrow C)$ such that

commute and the shear map s:C× $C \xrightarrow{\left(\mathrm{id}_{C}, \mu\right)} C \times C$ is an isomorphism.
- shear maps s encodes inverses $I: C \xrightarrow{\mathrm{id}_{C} \times e} C \times C \xrightarrow{s^{-1}} C \times C \xrightarrow{\mathrm{pr}_{2}} C$
- advantage of using shear map: being a group is a property of (C, μ, e) - no additional datum required
groups in Set are usual groups
groups in Top are topological groups
specialize to Mf
in Mf: $* \cong \mathbb{R}^{0}$
- $\operatorname{Hom}(*, M) \cong$ underlying set of M

Definition 2.34. A group in Mf is called a Lie group.
Example 2.35. $G L(n, \mathbb{R}), S L(n, \mathbb{R}), O(n), S O(n), U(n)$, all with matrix multiplication, are Lie groups and unit given by identity matrix (interpreted as map $* \rightarrow M$) - matrix multiplication $\operatorname{End}\left(\mathbb{R}^{n}\right) \times \operatorname{End}\left(\mathbb{R}^{n}\right) \rightarrow \operatorname{End}\left(\mathbb{R}^{n}\right)$ is smooth and associative, compatible with identity relation

- restricts to the structures on the submanifolds
- shear map is an isomorphism:
- use that $A \mapsto A^{-1}$ is smooth on $G L(n, \mathbb{R})$
- either by formula involving determinants of adjuncts
- or by inverse function theorem
- inverse of shear map $(A, B) \mapsto(A, A B)$ is $(A, B) \mapsto\left(A, A^{-1} B\right)$

Example 2.36. \mathbb{R}^{n} with + is a Lie group
if G is Lie group, then $I: G \rightarrow G, g \mapsto g^{-1}$ is smooth
actions:
general: \mathcal{C} - category with cartesian products

- (G, μ, e) a group in \mathcal{C}
- C an object

Definition 2.37. An action of G on C is a map $a: G \times C \rightarrow C$ such that

and

commute.
Example 2.38. G acts on itself with $a=\mu$
Example 2.39. in Mf:
$G L(n, \mathbb{R})$ acts on \mathbb{R}^{n} by matrix multiplication
$O(n)$ acts on S^{n-1}

2.3 Tangent vectors

idea:

- a tangent vector on a manifold M at m is a direction of an infinitesimal curve starting at m
- can consider the derivative of functions in this direction
- axiomatization of the properties of this derivative \Rightarrow notion of a derivation
- will turn this idea up-side-down and use derivations in order to to define tangent vectors

2.3.1 Derivations

- k - a field
- consider commutative unital k-Algebras (e.g. k)

Definition 2.40. An augmented k-algebra is a pair (A, e) of a k-algebra A with a homomorphism $e: A \rightarrow k$.
A homomorphism of augmented k-algebras $\phi:(A, e) \rightarrow\left(A^{\prime}, e^{\prime}\right)$ is a homomorphism of k-algebras $\phi: A \rightarrow A^{\prime}$ such that $e^{\prime} \phi=e$.

Example 2.41. M a manifold
m in M

- $C^{\infty}(M)$ - is a \mathbb{R}-algebra
$-\mathrm{ev}_{m}: C^{\infty}(M) \rightarrow \mathbb{R}$ given by $\mathrm{ev}_{m}(f):=f(m)$ is an augmentation
$F: M \rightarrow M^{\prime}$ smooth map of manifolds,
- $m^{\prime}:=F(m)$
- get homomorphism $F^{*}:\left(C^{\infty}\left(M^{\prime}\right), \mathrm{ev}_{m^{\prime}}\right) \rightarrow\left(C^{\infty}(M), \mathrm{ev}_{m}\right)$ of augmented \mathbb{R}-algebras
(A, e) - augmented k-algebra
Definition 2.42. A derivation of (A, e) is a k-linear map $X: A \rightarrow k$ such that for all a, b in A we have $X(a b)=X(a) e(b)+e(a) X(b)$.
write $\operatorname{Der}(A, e)$ for k-vector space of derivations of (A, e)
Example 2.43. partial derivatives are derivations
consider $C^{\infty}\left(\mathbb{R}^{n}\right)$ with augmentation ev_{0}
$i \in \mathbb{N}$
- $\partial_{i}(0): C^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{R}$ given by $f \mapsto\left(\partial_{i} f\right)(0)$ is a derivation

Example 2.44. derivations annihilate constants
(A, e) - augmented k-algebra
for X in $\operatorname{Der}(A, e)$

- we have $X\left(1_{A}\right)=0$:
$-X\left(1_{A}\right)=X\left(1_{A}^{2}\right)=2 X\left(1_{A}\right) e\left(1_{A}\right)=2 X\left(1_{A}\right)$
unit: $k \rightarrow A, \lambda \mapsto \lambda 1_{A}$
- these elements are called the constants
$-e\left(\lambda 1_{A}\right)=\lambda$
- by linearity: $X\left(\lambda 1_{A}\right)=0$
consider homomorphism $\phi:(A, e) \rightarrow\left(A^{\prime}, e^{\prime}\right)$ of augmented k-algebras
it induces a homomorphism
$\operatorname{Der}(\phi): \operatorname{Der}\left(A^{\prime}, e^{\prime}\right) \rightarrow \operatorname{Der}(A, e)$ given by $\operatorname{Der}(\phi)(X)(a):=X(\phi(a))$
- check:

$$
\begin{aligned}
\operatorname{Der}(\phi)(X)(a b) & =X(\phi(a b))=X(\phi(a)) e^{\prime}(\phi(b))+e^{\prime}(\phi(a)) X(\phi(b)) \\
& =\operatorname{Der}(\phi)(X)(a) e(b)+e(a) \operatorname{Der}(\phi)(X)(b)
\end{aligned}
$$

- Der is contravariant functor from augemented k-algebras to k-vector spaces

M - a manifold

- m in M
- consider poset \mathcal{U}_{m} of open neighbourhoods of M
- for $U \subseteq V$ in \mathcal{U}_{m} get restriction map $\left(C^{\infty}(V), \mathrm{ev}_{m}\right) \rightarrow\left(C^{\infty}(U), \mathrm{ev}_{m}\right)$

Definition 2.45. The augmented \mathbb{R}-algebra of germs at m of smooth functions on M is defined by $\left(C_{m}^{\infty}(M), \mathrm{ev}_{m}\right):=\operatorname{colim}_{U \in \mathcal{U}_{m}^{\text {op }}}\left(C^{\infty}(U), \mathrm{ev}_{m}\right)$ in augmented \mathbb{R}-algebras.
we will work with the following explicit description:

- an element of $C_{m}^{\infty}(M)$ is represented by a pair (V, f) of $V \in \mathcal{U}_{m}$ and $f \in C^{\infty}(M)$
- if $U \subseteq V$ in \mathcal{U}_{m}, then $\left(U, f_{\mid U}\right)$ represents the same element
for the moment we write $[V, f]$ for the element represented by (V, f)
- the algebra structure is defined as follows:
$-[V, f]+\lambda\left[V^{\prime}, f^{\prime}\right]=\left[V \cap V^{\prime}, f_{\mid V \cap V^{\prime}}+\lambda f_{\mid V \cap V^{\prime}}^{\prime}\right]$
- $[V, f] \cdot\left[V^{\prime}, f^{\prime}\right]=\left[V \cap V^{\prime}, f_{\mid V \cap V^{\prime}} f_{\mid V \cap V^{\prime}}^{\prime}\right]$

Check: well-definedess
augmentation $\mathrm{ev}_{m}: C_{m}^{\infty}(M) \rightarrow \mathbb{R}: \operatorname{ev}_{m}([V, f])=f(m)$
Check: well-definedess
properties

1. $C^{\infty}(M) \rightarrow C_{m}^{\infty}(M), \quad f \mapsto[M, f]$ is surjective

Exercise!
2. $m \in U \subseteq M$ open:

- restriction $C_{m}^{\infty}(M) \rightarrow C_{m}^{\infty}(U)$ is isomorphism preserving augmentation

Exercise!
3. $U \subseteq M$ open, $m \in U$,
$U^{\prime} \subseteq M^{\prime}$ open, $\phi: U \rightarrow U^{\prime}$ isomorphism

- $\phi^{*}:\left(C_{\phi(m)}^{\infty}\left(U^{\prime}\right), \mathrm{ev}_{\phi(m)}\right) \rightarrow\left(C_{m}^{\infty}(U), \mathrm{ev}_{m}\right)$ is isomorphism

Exercise!
from now on instead of $[U, f]$ write f (the precise domain of f is irrelevant)
$n:=\operatorname{dim}(M)$

- conclude using a chart with $\phi(m)=0:\left(C_{m}^{\infty}(M), \mathrm{ev}_{m}\right) \cong\left(C_{0}^{\infty}\left(\mathbb{R}^{n}\right), \mathrm{ev}_{0}\right)$

Example 2.46. have derivation $\partial_{i}(0): C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ is defined by $\partial_{i}(0)(f):=\left(\partial_{i} f\right)(0)$
Check: is well-defined
Proposition 2.47. The derivations $\left(\partial_{i}(0)\right)_{i=1, \ldots, n}$ form a basis of $\operatorname{Der}\left(C_{0}^{\infty}\left(\mathbb{R}^{n}\right), \mathrm{ev}_{0}\right)$.
Proof.
$\left(\partial_{i}(0)\right)_{i=1, \ldots, n}$ is linearly independent:

- assume that $\sum_{i=1}^{n} \lambda_{i} \partial_{i}(0)=0$
- for every j :
$-0=\left(\sum_{i=1}^{n} \lambda_{i} \partial_{i}(0)\right)\left(x^{j}\right)=\sum_{i=1}^{n} \lambda_{i}\left(\partial_{i} x^{j}\right)_{\mid x=0}=\lambda_{j}$
$\left(\partial_{i}(0)\right)_{i=1, \ldots, n}$ spans:
- X in $\operatorname{Der}\left(C_{0}^{\infty}\left(\mathbb{R}^{n}\right)\right)$ given
- set $\mu_{i}:=X\left(x^{i}\right)$
$-\operatorname{set} Y:=\sum_{i=1}^{n} \mu_{i} \partial_{i}(0)$
- we will show that $X=Y$
- consider $f \in C_{0}\left(\mathbb{R}^{n}\right)$
- Taylor: there exists $g_{i} \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ with $g_{i}(0)=0$ such that

$$
f=f(0)+\sum_{i=1}^{n}\left(\partial_{i} f\right)(0) x^{i}+\sum_{i=1}^{n} x^{i} g_{i}
$$

calculate:

$$
\begin{aligned}
X(f) & =X(f(0))+X\left(\sum_{i=1}^{n}\left(\partial_{i} f\right)(0) x^{i}\right)+X\left(\sum_{i=1}^{n} x^{i} g_{i}\right) \\
& =\sum_{i=1}^{n}\left(\partial_{i} f\right)(0) X\left(x^{i}\right)+\sum_{i=1}^{n}\left(X\left(x^{i}\right) g_{i}(0)+x^{i}(0) X\left(g^{i}\right)\right) \\
& =\sum_{i=1}^{n}\left(\partial_{i} f\right)(0) \mu_{i} \\
& =Y(f)
\end{aligned}
$$

M smooth, $m \in M$
Corollary 2.48. $\operatorname{dim}_{m}(M)=\operatorname{dim} \operatorname{Der}\left(C_{m}^{\infty}(M), \mathrm{ev}_{m}\right)$.
Example 2.49. consider germs of continuous functions $C_{0}\left(\mathbb{R}^{n}\right)$

- then $\operatorname{Der}\left(C_{0}\left(\mathbb{R}^{n}\right), \mathrm{ev}_{0}\right) \cong 0$
- consider X in $\operatorname{Der}\left(C_{0}\left(\mathbb{R}^{n}\right), \mathrm{ev}_{0}\right)$
$-f \in C_{0}\left(\mathbb{R}^{n}\right)$
$-g:=\sqrt[3]{f-f(0)} \in C_{0}\left(\mathbb{R}^{n}\right)$
$-f=f(0)+g^{3}$
$-X(f)=X(f(0))+X\left(g^{3}\right)=0+3 g(0)^{2} X(g)=0$
this shows: the concept of tangent space using derivations does not extend to topological manifolds

2.3.2 Tangent vectors

Definition 2.50. The vector space $T_{m} M:=\operatorname{Der}\left(C_{m}^{\infty}(M), \mathrm{ev}_{m}\right)$ is called the tangent space of M at m. Its dual $T_{m}^{*} M$ is called the cotangent space of M at m.
m in M
$-\operatorname{dim} T_{m} M=\operatorname{dim}_{m}(M)=\operatorname{dim} T_{m}^{*} M$
$f \in C_{m}^{\infty}(M)$

- defines element $d f(m) \in T_{m}^{*} M$ by $d f(m)(X):=X(f)$ for all X in $T_{m} M$

Definition 2.51. $d f(m) \in T_{m}^{*} M$ is called the derivative of f at m.
note Leibnitz rule:

$$
d\left(f f^{\prime}\right)(m)=d f(m) f^{\prime}(m)+f(m) d f^{\prime}(m)
$$

- verification:
$d\left(f f^{\prime}\right)(m)(X)=X\left(f f^{\prime}\right)=X(f) f^{\prime}(m)+f(m) X\left(f^{\prime}\right)=d f(m)(X) f^{\prime}(m)+f(m) d f^{\prime}(m)(X)$
(U, ϕ) - a chart
Definition 2.52. The components $x^{i}: U \rightarrow \mathbb{R}$ of ϕ (i.e., $\phi=\left(x^{1}, \ldots, x^{n}\right)$) are called the coordinate functions on U associated to ϕ.

Corollary 2.53. $\left(d x^{i}(m)\right)_{i=1, \ldots, n}$ is a basis of $T_{m}^{*} M$
we let $\left(\partial_{i}(m)\right)_{i=1, \ldots, n}$ be the dual basis of $T_{m} M$

- i.e.: $\partial_{i}(m)\left(x^{j}\right)=\delta_{i}{ }^{j}$
- every tangent vector X in $T_{m} M$ can uniquely be written as $X=\sum_{i=1}^{n} \mu_{i} \partial_{i}(m)$
- must set $\mu_{i}:=X\left(x^{i}\right)$
- note: these bases of $T_{m} M$ and $T_{m}^{*} M$ depend on the choice of the chart (U, ϕ)
$F: M \rightarrow M^{\prime}$ morphism of manifolds
set $m^{\prime}:=F(m)$
- get $F_{m}^{*}:\left(C_{m^{\prime}}^{\infty}(M), \mathrm{ev}_{m^{\prime}}\right) \rightarrow\left(C_{m}^{\infty}(M), \mathrm{ev}_{m}\right)$ - pull-back
- homomorphism of augmented \mathbb{R}-algebras

Definition 2.54. The differential of F at m is the linear map $T F(m):=\operatorname{Der}\left(F_{m}^{*}\right)$: $T_{m} M \rightarrow T_{m^{\prime}} M^{\prime}$.

- often also denoted by $d F(m)$ or $D F(m)$
- explicitly: for $X \in T_{m} M$ the derivation $\operatorname{TF}(m)(X)(f):=X\left(F_{m}^{*} f\right)$
- note: F must only be defined near m in order to get $T F(m)$
- observe chain rule: for $F^{\prime}: M^{\prime} \rightarrow M^{\prime \prime}$:

$$
T\left(F^{\prime} F\right)(m)=T F^{\prime}(F(m)) T F(m): T_{m} M \rightarrow T_{m^{\prime \prime}} M^{\prime \prime}
$$

Exercise!
$f \in C^{\infty}(M)$
$d f(m)=\operatorname{can} \circ d f(m)$
$F: M^{\prime} \rightarrow M, F\left(m^{\prime}\right)=m$
chain rule implies:
Lemma 2.55. We have $d\left(F^{*} f\right)\left(m^{\prime}\right)=d f(m) T F\left(m^{\prime}\right)$
Proof. for X^{\prime} in $T_{m^{\prime}} M^{\prime}$

$$
\begin{aligned}
d\left(F^{*} f\right)\left(m^{\prime}\right)\left(X^{\prime}\right) & =X^{\prime}\left(F^{*} f\right) \\
& =\operatorname{TF}\left(m^{\prime}\right)\left(X^{\prime}\right)(f) \\
& =d f(m) T F\left(m^{\prime}\right)\left(X^{\prime}\right)
\end{aligned}
$$

V - f.d. vector space
$-v$ in V

- as a consequence of Proposition 2.47:

Corollary 2.56. We have a canonical identification can : V $\xlongequal[\rightarrow]{\cong} T_{v} V$ which sends X in V to the derivation $\left.f \mapsto \frac{d}{d t}\right|_{t=0} f(v+t X)$.
we often do not write can in formulas, be careful
consider $\operatorname{map} L_{w}: V \rightarrow V, L_{w}(v):=v+w-\operatorname{translation~by~} w$

- this commutes:

2.3.3 Change of coordinates

(U, ϕ) - a chart of M at m
can consider ϕ as isomorphism $\phi: U \rightarrow \phi(U)$

- get isomorphism $T \phi(m): T_{m} M \rightarrow T_{\phi(m)} \mathbb{R}^{n} \cong \mathbb{R}^{n}$ (canonical iso implicitly used)
- characterized by $T \phi(m)\left(\partial_{i}(m)\right)=e_{i}$ (standard basis vector) for all i
- $\left(U^{\prime}, \phi^{\prime}\right)$ second chart
- have $T\left(\phi^{\prime} \phi^{-1}\right)(\phi(m)) \in G L(n, \mathbb{R})$
- Jacobi matrix of $\phi^{\prime} \phi^{-1}$ at $\phi(m)$
- chain rule for $\phi^{\prime}=\left(\phi^{\prime} \phi^{-1}\right) \circ \phi$ says:

Corollary 2.57.

denote charts by ϕ instead of (U, ϕ)
set $\rho_{\phi^{\prime}, \phi}(m):=T\left(\phi^{\prime} \phi^{-1}\right)(\phi(m))$

- is smooth function $U \cap U^{\prime} \rightarrow G L\left(n, \mathbb{R}^{n}\right)$
- satisfy the cocyle relations:
$-\rho_{\phi, \phi}=1$
- $\rho_{\phi^{\prime \prime}, \phi^{\prime}} \rho_{\phi^{\prime}, \phi}=\rho_{\phi^{\prime \prime}, \phi}\left(\right.$ product in $G L(n, \mathbb{R})$, on $\left.\left.U \cap U^{\prime} \cap U^{\prime \prime}\right)\right)$
- a consequence: $\rho_{\phi^{\prime}, \phi}^{-1}=\rho_{\phi, \phi^{\prime}}$ (inverse in $G L(n, \mathbb{R})$

2.3.4 geometric tangent vectors at regular submanifolds

$M \subseteq \mathbb{R}^{n}$ - regular submanifold

- define $T_{m}^{\text {geom }} M:=\operatorname{ker}(d g(m))$ for defining function g of M at m - call this geometric tangent space
a curve in M at m is a curve $\gamma: I \rightarrow M$ with $0 \in I$ and $\gamma(0)=m$
- interpret $\left(\partial_{t}\right)_{\mid t=0} \gamma$ as vector in \mathbb{R}^{n}

Lemma 2.58. For every X in $T_{m}^{\text {geom }} M$ there exists a curve γ in M at m such that $\left(\partial_{t}\right)_{\mid t=0} \gamma=X$.

Proof. apply Implicit Function Theorem 2.26
get

- suitable neighbourhood of $0 \in V \subseteq T_{m}^{\text {geom }} M$
- map $\psi: V \rightarrow T_{m} M^{\perp}$ such that $v+\psi(v)+m$ is parametrization of M near m
claim: $d \psi(0)=0$
- $g(v+\psi(v)+m) \equiv 0$ implies
$-d_{T_{m} M} g(m)+d_{T^{m} M^{\perp}} g(m) d \psi(0)=0$
$-d_{T^{m} M^{\perp}} g(m) d \psi(0)=0$ since $d_{T_{m} M} g(m)=0$ by definition of $T_{m} M$
$-d_{T^{m} M^{\perp}} g(m)$ is isomorphism by regularity of g at m
- conclude $d \psi(0)=0$
- define $\gamma(t):=t X+\psi(t X)+m$
- then

$$
\left(\partial_{t}\right)_{\mid t=0} \gamma=X+d \psi(0)(X)=X
$$

M manifold, m in M (not necessarily submanifold)

- a curve γ in M at m induces a tangent vector $\gamma^{\prime}(0):=T \gamma\left(\partial_{1}(0)\right) \in T_{m} M$

Proposition 2.59. There is an isomorphism $T_{m}^{\text {geom }} M \cong T_{m} M$ uniquely determined by the condition that $\left(\partial_{t}\right)_{\mid t=0} \gamma$ is sent to $\gamma^{\prime}(0)$ for any curve in M at m.

Proof. observe:

- if γ_{0}, γ_{1} are two curves in M at m and $\left(\partial_{t}\right)_{\mid t=0} \gamma_{0}=\left(\partial_{t}\right)_{\mid t=0} \gamma_{1}$, then also $\gamma_{0}^{\prime}(0)=\gamma_{1}^{\prime}(0)$.
$-f \in C^{\infty}(M)$
- has smooth extension \tilde{f} to nbhd
- chain rule
$-\gamma=\gamma_{0}, \gamma_{1}$
$-d f(m)\left(\gamma^{\prime}(0)\right)=\partial_{1}(0)(f \gamma)=\frac{d}{d t \mid t=0} f(\gamma(t))=\frac{d}{d t \mid t=0} \tilde{f}^{2}(\gamma(t))=d \tilde{f}(m)\left(\left(\partial_{t}\right)_{\mid t=0} \gamma_{i}\right)$
- use: definition of derivative $d f(m)$, definition of partial derivative $\partial_{1}(0)$, that \tilde{f} extends f, and classical chain rule for functions between euclidean spaces
- implies $d f\left(\gamma_{0}^{\prime}(0)\right)=d f\left(\gamma_{1}^{\prime}(0)\right)$
- f arbitrary (note that $C^{\infty}(M) \rightarrow C_{m}^{\infty}(M)$ is surjective): $\gamma_{0}^{\prime}(0)=\gamma_{1}^{\prime}(0)$
define map $\kappa: T_{m}^{\text {geom }} M \rightarrow T_{m} M$ such that it sends X in $T_{m}^{\text {geom }} M$ to $\gamma^{\prime}(0)$ for any curve γ in M at m with $\left(\partial_{t}\right)_{\mid t=0} \gamma=X$
- formula: $\kappa(X)(f)=d \tilde{f}(m)(X)$
- is linear in X, hence κ is linear
κ is isomorphism:
- $\operatorname{pr}_{T_{m}^{\text {geom }} M}: M \rightarrow T_{m}^{\text {geom }} M$ - orthogonal projection
- calculate: $T \operatorname{pr}_{T_{m}^{\text {geom }}}^{M}$ ($\left.m\right)(\kappa(X))=\left(\partial_{t}\right)_{\mid t=0} \operatorname{pr}_{T_{m}^{\text {geom }}}^{M}$ $(t X+\psi(t X)+m)=X$
for dimension reasons κ and $T \operatorname{pr}_{T_{m}^{\text {geom }}}^{M}$ (m) are inverse to each other

2.3.5 Discussion

$f \in C^{\infty}(M)$

- get $m \mapsto d f(m) \in T_{m}^{*} M$
- want to say that this depends smoothly on m
- how?
form set $T^{*} M:=\bigsqcup_{m \in M} T_{m}^{*} M$
- have canonical map $p: T^{*} M \rightarrow M$
- want to interpret $d f$ as a map $d f: M \rightarrow T^{*} M, m \mapsto d f(m)$ such that $p d f=\mathrm{id}_{M}$

must equip $T^{*} M$ with a suitable manifold structure
consider family of derivations $X=(X(m))_{m \in M}, X(m) \in T_{m} M$
- say: X is a smooth vector field if $m \mapsto X(m)(f)$ is smooth for every f in $C^{\infty}(M)$
- how can one formulate this in terms of the family X alone?
form set $T M:=\bigsqcup_{m \in M} T_{m} M$
- have map $p: T M \rightarrow M$
- interpret X as map

- must equip $T M$ with manifold structure

Example 2.60. $T^{\text {geom }} M$ as regular submanifold
$M \subseteq \mathbb{R}^{n}$ - regular submanifold

- define $T^{\text {geom }} M:=\bigcup_{m \in M}\{m\} \times T_{m}^{\text {geom }} M \subseteq \mathbb{R}^{2 n}$ - just a subset

Lemma 2.61. $T^{\text {geom }} M$ is a regular submanifold.
Proof. construct local defining functions
$(m, X) \in T^{\text {geom }} M$

- g on U defining function of M near m
- $(g, d g):(x, \xi) \mapsto(g(m), d g(m)(\xi))$ defines $T^{\text {geom }} M$ on $U \times \mathbb{R}^{n}$
- check regularity:
$-d(g, d g)(m, X)=\left(\begin{array}{cc}d g(m) & 0 \\ d^{2} g(m)(X,-) & d g(m)\end{array}\right)$
- is surjective since $d g(m)$ is so

2.4 Fibre bundles

2.4.1 Bundles and bundle morphisms

B a manifold (the base)
F - a manifold (typical fibre)
Definition 2.62. A fibre bundle over B with typical fibre F is a smooth map $\pi: M \rightarrow B$ such that there exists:

1. $\left(U_{\alpha}\right)_{\alpha}$ - an open covering of B
2. a collection of diffeomorphisms $\psi_{\alpha}: \pi^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times F$ (called local trivializations) such that

commutes.
Example 2.63. the trivial bundle pr : $B \times F \rightarrow B$

- local trivialization is $\psi=\operatorname{id}_{B \times F}$ defined on all of B
later: $T M \rightarrow M$ and $T^{*} M \rightarrow M$ will be fibre bundles with typical fibre \mathbb{R}^{n}
Definition 2.64. A morphism of fibre bundles is a commutative square

If the lower map is id_{B}, then we call this a morphism of fibre bundles over B.

2.4.2 Fibre bundles and cocycles

write $U_{\alpha, \beta}:=U_{\alpha} \cap U_{\beta}$
the local trivializations determine maps (of sets) $\rho_{\alpha, \beta}: U_{\alpha, \beta} \rightarrow \operatorname{Aut}_{\mathbf{M f}}(F)$ such that the following map is smooth

$$
U_{\alpha, \beta} \times F \rightarrow U_{\alpha, \beta} \times F, \quad \psi_{\alpha} \psi_{\beta}^{-1}(u, f)=\left(u, \rho_{\alpha, \beta}(u)(f)\right)
$$

- we have cocycle condition
$-\rho_{\alpha, \beta} \rho_{\beta, \gamma}=\rho_{\alpha, \gamma}$ on $U_{\alpha, \beta, \gamma}$ for all α, β, γ
$-\rho_{\alpha, \alpha} \equiv \operatorname{id}_{F}$
vice versa: a smooth cocycle is a family $\rho=\left(\rho_{\alpha, \beta}\right)$ of maps $\rho_{\alpha, \beta}: U_{\alpha, \beta} \rightarrow \operatorname{Aut}_{\mathbf{M f}}(F)$ such that
- $(u, f) \mapsto\left(u, \rho_{\alpha, \beta}(u)(f)\right)$ is smooth
- cocyle conditions are satified
want to construct fibre bundles from cocycles

Example 2.65. B - a manifold of dimension n
$F:=\mathbb{R}^{n}$
\mathcal{A} - the smooth structure of B

- gives covering by domains of smooth charts (U, ϕ)
- get cocyle with values in $G L(n, \mathbb{R}) \subseteq \operatorname{Aut}_{\mathbf{M f}}\left(\mathbb{R}^{n}\right): \quad \rho_{\phi^{\prime}, \phi}:=T\left(\phi^{\prime} \phi^{-1}\right) \phi$
the fibre bundle constructed from this data is the tangent bundle $T B$ of B
could consider new cocycle $\left(\Lambda^{3}\left(\rho_{\alpha, \beta}^{*,-1}\right)\right)_{\alpha, \beta}$ with values in $\operatorname{Aut}\left(\Lambda^{3} \mathbb{R}^{n, *}\right)$
- associated fibre bundle is bundle of 3 -forms $\Lambda^{3} T^{*} B \rightarrow B$

Construction 2.66. start with the construction of $\pi: M \rightarrow B$ from the following data:

- $\left(U_{\alpha}\right)_{\alpha}$ an open covering of B
- a smooth cocycle $\rho=\left(\rho_{\alpha, \beta}\right)$ with values in $\operatorname{Aut}_{\mathbf{M f}}(F)$
underlying set of M :

$$
M:=\bigsqcup_{\alpha \in A} U_{\alpha} \times F / \sim
$$

- thereby $(u, f) \in U_{\alpha} \times F$ and $\left(u^{\prime}, f^{\prime}\right) \in U_{\alpha^{\prime}} \times F$ are equivalent if $u=u^{\prime}$ and $f^{\prime}=\rho_{\alpha^{\prime}, \alpha}(u) f$ - is equivalence relation by cocycle condition (check)
- write points in M as $[u, f]_{\alpha}$
$\pi: M \rightarrow B$ sends $[u, f]_{\alpha}$ to u
- check: is well-defined
local trivializations:

$$
\psi_{\alpha}: \pi^{-1}\left(U_{\alpha}\right) \xrightarrow{\cong} U_{\alpha} \times F
$$

- $[u, f]_{\alpha} \mapsto(u, f)$
- check well-defineness:
- for every α : the map $U_{\alpha} \times F \ni(u, f) \mapsto[u, f]_{\alpha} \in M$ is injective
- this follows since $\rho_{\alpha, \beta}$ has values in automorphisms
check:

commutes
check:

$$
\psi_{\alpha} \psi_{\beta}^{-1}(u, f)=\left(u, \rho_{\alpha, \beta}(u)(f)\right)
$$

define topology on M : minimal such that all ψ_{α} are continuous

- by definition: $h: X \rightarrow M$ continuous if $\psi_{\alpha} h$ is continuous for all α
claim: ψ_{α} is a homeomorphism
- ψ_{α} is bijective amd continuous
- remains to show that ψ_{α}^{-1} is continuous
- this follows from: $\psi_{\beta} \psi_{\alpha}^{-1}$ is continuous for all β

Lemma 2.67. $f: M \rightarrow X$ continuous if $f \psi_{\alpha}^{-1}$ is continuous for all α

Proof. \Rightarrow : clear
$\Leftarrow:$
U open in X

- must check that $f^{-1}(U)$ is open in M
- consider $m \in f^{-1}(U)$
- chose α s.t. $m \in \pi^{-1}\left(U_{\alpha}\right)$
- since $f \psi_{\alpha}^{-1}$ is continuous there is open nbhd V of $\psi_{\alpha}(m)$ such that $f\left(\psi_{\alpha}^{-1}(V)\right) \subseteq U$
- then $\psi_{\alpha}^{-1}(V)$ is open nbhd of m in $f^{-1}(U)$
conclude: $f^{-1}(U)$ is open
π is continuous:
- use $\pi \psi_{\alpha}^{-1}=\mathrm{pr}: U_{\alpha} \times F \rightarrow U_{\alpha}$ is continuous for all α
M is Hausdorff
- $m \neq m^{\prime}$
- if $\pi(m) \neq \pi\left(m^{\prime}\right)$
- use B is Hausdorff: find open V, V^{\prime} in B with: $\pi(m) \in V, \pi\left(m^{\prime}\right) \in V^{\prime}, V \cap V^{\prime}=\emptyset$
- then $\pi^{-1}(V)$ and $\pi^{-1}\left(V^{\prime}\right)$ separate m and m^{\prime}
- if $\pi(m)=\pi\left(m^{\prime}\right) \in U_{\alpha}, \psi_{\alpha}(m)=(u, f), \psi_{\alpha}\left(m^{\prime}\right)=\left(u, f^{\prime}\right), f \neq f^{\prime}$
- use that F is Hausdorff: find opens W, W^{\prime} in F with $f \in W, f^{\prime} \in W^{\prime}$ and $W \cap W^{\prime}=\emptyset$
- then $\psi_{\alpha}^{-1}\left(U_{\alpha} \times W\right)$ and $\psi_{\alpha}^{-1}\left(U_{\alpha} \times W^{\prime}\right)$ separate m and m^{\prime}
M is locally euclidean: M is locally a product of topological manifolds
M is second countable:
- can cover B by a countable subcover of the given cover
- F is second countable

Proposition 2.68. A second countable locally euclidean Hausdorff space is regular and paracompact, hence a topological manifold.

Exercise: find proof by google
smooth structure:
for every chart (U, ϕ) of B and chart (W, κ) of F define chart $(\phi, \kappa) \psi_{\alpha}: \psi_{\alpha}^{-1}\left(\left(U \cap U_{\alpha}\right) \times W\right) \rightarrow$ $\phi\left(U \cap U_{\alpha}\right) \times \kappa(W)$

- these from an atlas
- transition functions are smooth
- given by $(x, v) \mapsto\left(\phi^{\prime} \phi^{-1}(x), \kappa^{\prime}\left(\rho\left(\phi^{-1}(x)\right)\left(\kappa^{-1}(v)\right)\right)\right)$
equip M with smooth structure generated by this atlas
ψ_{α} is smooth by construction
- check: π is smooth

2.4.3 Sections

Definition 2.69. The set of sections of a fibre bundle is defined by

$$
\Gamma(B, M):=\left\{s \in \operatorname{Hom}_{\mathbf{M f}}(B, M) \mid \pi s=\operatorname{id}_{B}\right\}
$$

we now describe sections in terms of the trivializations consider section $s \in \Gamma(B, M)$

- get family $\left(s_{\alpha}\right)$ with $s_{\alpha}:=\operatorname{pr}_{F} \psi_{\alpha} f: U_{\alpha} \rightarrow F$
- $\left(s_{\alpha}\right)$ satisfies: for all $\alpha, \beta: \rho_{\alpha, \beta}(u)\left(f_{\beta}(u)\right)=f_{\beta}(u)$ for all u in $U_{\alpha, \beta}$
- we say that $\left(s_{\alpha}\right)$ is compatible

Lemma 2.70. There is a bijection between the sets:

1. $\Gamma(B, M)$
2. compatible familes $\left(s_{\alpha}\right)$

Proof. $s \in \Gamma(B, M)$ given:

- get compatible family $\left(s_{\alpha}\right)$ by
$-s_{\alpha}:=\operatorname{pr}_{F} \psi_{\alpha} s$
compatible family $\left(s_{\alpha}\right)$ given
- define $s \in \Gamma(B, M)$ by
$-b \mapsto\left[b, s_{\alpha}(b)\right]_{\alpha}$ for any α with $b \in U_{\alpha}$
- check using compatibility relation: does not depend on choice of α
- check: s is smooth
check: these constructions are inverse to each other

Example 2.71. pr : $M \times \mathbb{R} \rightarrow \mathbb{R}$
$\Gamma(M, M \times \mathbb{R}) \cong C^{\infty}(M)$
$s \mapsto\left(m \mapsto \mathrm{pr}_{\mathbb{R}} s(m)\right)$
$f \mapsto(m \mapsto(m, f(m))$
Example 2.72. - associated to cocycle $\left(\Lambda^{n} T\left(\phi^{\prime} \phi^{-1}\right)^{-1, *}\right) \phi$:
$\Omega^{n}(M):=\Gamma\left(M, \Lambda^{n} T^{*} M\right)$

- n-forms on M
have map $d: C^{\infty}(M) \rightarrow \Omega^{1}(M)$
- describe locally:
- $f \mapsto\left(d f_{\phi}\right)$
$-d f_{\phi}:=d\left(f \phi^{-1}\right) \phi: U \rightarrow \mathbb{R}^{n, *}$
- check:
$d f_{\phi^{\prime}}=d\left(f \phi^{\prime,-1}\right) \phi^{\prime}=d\left(f \phi^{-1} \phi \phi^{\prime,-1}\right) \phi^{\prime}=d\left(f \phi^{-1}\right) \phi \circ T\left(\phi \phi^{\prime,-1}\right) \phi^{\prime}=T\left(\phi^{\prime} \phi^{-1}\right)^{*,-1} \phi\left(d\left(f \phi^{-1}\right) \phi\right)=T\left(\phi^{\prime} \phi^{-1}\right)^{*,-1} d f_{\phi}$

2.4.4 Vector bundles and dual bundles

in case the typical fibre of a bundle has an additional structure which is preserved by the values of cocycle the total space of the bundle has a corresponding structure
a vector bundle is a fibre bundle with a vector bundle structure on fibres
V - vector space
Definition 2.73. A vector bundle with typical V over B is a fibre bundle $\pi: E \rightarrow B$ with typical fibre V together with vector space structures on the fibres E_{b} such that there exists a cover of B by local trivializations $\left(\psi_{\alpha}\right)$ which are fibrewise vector space isomorphisms. Vector bundle morphisms are bundle morphisms which are fibrewise linear.
the associated cocyle to such a trivialization $\rho_{\alpha, \beta}$ takes values in $G L(V)$ - the linear automorphisms of V
vice versa:

- assume that cocycle has values in $G L(V)$
- define linear structure on E_{b} as follows:
- chose α with $b \in U_{\alpha}$
- define structures by $[u, v]_{\alpha}+\lambda\left[u, v^{\prime}\right]_{\alpha}:=\left[u, v+\lambda v^{\prime}\right]_{\alpha}$
- this is well-defined since cocyle is linear
- by construction: $E \rightarrow B$ is a vector bundle
$E \rightarrow B$ - a vector bundle
$-\Gamma(B, E)$ becomes $C^{\infty}(B)$-module
$-s, s^{\prime}$ two sections
- define: $\left(s+s^{\prime}\right)(b):=s(b)+s^{\prime}(b)$
- define: $f s(b):=f(b) s(b)$
- show that the operations produce again smooth sections:
- calculate for local sections: $s+f s^{\prime}$ is represented by $\left(s_{\alpha}+f s_{\alpha}^{\prime}\right)_{\alpha}$ - has smooth members
$\pi: E \rightarrow B$ - vector bundle, $e \in E, b:=\pi(e)$
Lemma 2.74. 1. There exists a section s in $\Gamma(B, E)$ with $s(b)=e$

2. If $s \in \Gamma(B, E)$ satisfies $s(b)=0$, then there exists a finite family of sections $\left(t_{i}\right)$ in $\Gamma(B, E)$ and a finite family $\left(f_{i}\right)$ in $C^{\infty}(B)$ such that $f_{i}(b)=0$ for all i and $s=\sum_{i} f_{i} t_{i}$
the point in 1. is: the section exists globally!

Proof. 1.:
choose local trivialization $\psi: \pi^{-1}(U) \rightarrow U \times V$
$-(b, v):=\psi(e)$

- choose $\chi \in C_{c}^{\infty}(U)$ with $\chi(b)=1$
- define $s \in \Gamma(B, M)$ by: $b \mapsto\left\{\begin{array}{cc}\psi^{-1}(b, \chi(b) v) & b \in U \\ 0 & \text { else }\end{array}\right.$
2.:
- $\left(v_{i}\right)$ basis of V
- $\left(v^{i}\right)$ dual basis of V^{*}
- $u \mapsto s^{i}(u):=v^{i}\left(\operatorname{pr}_{V} \psi(\chi(u) s(u)): U \rightarrow \mathbb{R}\right.$
- i th component of s in trivialization
- vanishes at b and is compactly supported on U
- Taylor
- there is decomposition $s^{i}=\sum_{j=1}^{n} f_{j}^{i} g^{i, j}=$ with $f_{j}^{i} \in C_{c}^{\infty}(U)$ and $f_{j}^{i}(b)=0\left(n=\operatorname{dim}_{b} B\right)$
- define $t^{i, j}: U \rightarrow E$ by: $t^{i, j}(u):=\psi^{-1}\left(u, \chi(u) g^{i, j}(u) v_{i}\right)$
-extend by zero to all of B
- have $s=\left(1-\chi^{2}\right) s+\sum_{i, j} f_{j}^{i} t^{i, j}$
dual bundle of a vector bundle $\pi: E \rightarrow B$:
- define set $E^{*}:=\bigsqcup_{b \in B} E_{b}^{*}$
- have projection $\pi^{*}: E^{*} \rightarrow B$
- $\psi: \pi^{-1}(U) \rightarrow U \times V$
- $\psi^{*}: \pi^{*,-1}(U) \rightarrow U \times V^{*}$
$-\psi^{*}\left(e^{*}\right):=\left(\pi^{*}\left(e^{*}\right),\left(v \mapsto e^{*}\left(\psi^{-1}(u, v)\right)\right)\right)$
- if $\left(\rho_{\alpha, \beta}\right)-G L(V)$-valued cocycle for E, then $\left(\rho_{\alpha, \beta}^{*,-1}\right)$ is $G L\left(V^{*}\right)$-valued cocycle for E^{*} - get topology and smooth structure on E^{*} such that $\pi^{*}: E^{*} \rightarrow B$ is vector bundle

Definition 2.75. $\pi^{*}: E^{*} \rightarrow$ is called the dual bundle of $\pi: E \rightarrow B$.
this works for other functors of tensor algebra as well

- e.g. $V \mapsto S^{2}\left(V^{*}\right)$
- yields bundle of symmetric bilinear forms $E^{2}\left(E^{*}\right) \rightarrow B$
have pairing $\langle-,-\rangle: \Gamma(B, E) \times_{C^{\infty}(B)} \Gamma\left(B, E^{*}\right) \rightarrow C^{\infty}(B)$
- $s \otimes \kappa \mapsto \kappa(b)(s(b))$
- check smoothness

Proposition 2.76. The pairing induces an isomorphism of $C^{\infty}(B)$-modules

$$
\Gamma\left(B, E^{*}\right) \cong \operatorname{Hom}_{C^{\infty}(B)}\left(\Gamma(B, E), C^{\infty}(B)\right)
$$

Proof. κ in $\Gamma\left(B, E^{*}\right)$

- get $\hat{\kappa} \in \operatorname{Hom}_{C^{\infty}(B)}\left(\Gamma(B, E), C^{\infty}(B)\right)$ by: $\hat{\kappa}(s)(b):=\kappa(b)(s(b))$
- $\hat{\kappa}(f s)(b)=\kappa(b)(f(b) s(b))=f(b) \hat{\kappa}(s)(b)$ shows $C^{\infty}(B)$-linearity
$\hat{\kappa}$ in $\operatorname{Hom}_{C^{\infty}(B)}\left(\Gamma(B, E), C^{\infty}(B)\right)$
- define κ in $\Gamma\left(B, E^{*}\right)$ as follows:
$-b \in B$
- define $\kappa(b): E_{b} \rightarrow \mathbb{R}$ such that:
$-\kappa(b)(e)=\hat{\kappa}(s)(b), s$ any section of E with $s(b)=e$
- well-defined: s^{\prime} second section
$-s-s^{\prime}=\sum_{i} f_{i} t_{i}$ for sections t_{i} with $f_{i}(b)=0$
$-\hat{\kappa}\left(s^{\prime}\right)(b)-\hat{\kappa}(s)(b)=\sum_{i} f_{i}(b) \kappa\left(t_{i}\right)=0$
check smoothness of κ
check that these constructions are inverse to each other check $C^{\infty}(B)$-linearity of isomorphism
$s \in \Gamma\left(M, E^{*}\right)$
- define $\tilde{s}: E \rightarrow \mathbb{R}$ by $\tilde{s}(e):=s(\pi(e))(e)$
- is fibrewise linear
- $C_{f-l i n}^{\infty}(E, \mathbb{R}) \subseteq C^{\infty}(E, \mathbb{R})$ functions which are fibrewise linear

Lemma 2.77. We have a bijection $s \mapsto \tilde{s}$ between $\Gamma\left(M, E^{*}\right)$ and $C_{f-l i n}^{\infty}(E, \mathbb{R})$.
Proof. $\tilde{s} \in C_{f-l i n}^{\infty}(E, \mathbb{R})$

- define $s(b)$ such that $s(b)(e)=\tilde{s}(e)$ for all $e \in E_{b}$.

Example 2.78. $T^{*} M$ is the dual bundle of $T X$

- $\Omega^{1}(M) \cong \operatorname{Hom}_{C^{\infty}(M)}\left(\mathcal{X}(M), C^{\infty}(M)\right)$

2.4.5 Principal bundles

G - a Lie group
$\pi: M \rightarrow B$
a fibrewise right action of G on M is a right action $M \times G \rightarrow M$ such that

commutes
Definition 2.79. A G-principal bundle over B is a fibre bundle $\pi: M \rightarrow B$ with typical fibre G together with a fibre-wise right G-action on M such that there exists a cover of B by local trivializations $\left(\psi_{\alpha}\right)$ with $\psi_{\alpha}: \pi^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times G$ which is G-equivariant. Principal bundle morphisms are bundle morphisms which are G-equivariant.

- the associated cocyle has values in right- G-equivariant maps $G \rightarrow G$
- a right G-equivariant map $\rho: G \rightarrow G$ is given by left-multiplication with $\rho(e)$
- hence the coycle $\rho_{\alpha, \beta}$ has values in G (which acts on G by left multiplication) vice versa:
- given a G-valued cocycle the associated fibre bunde is a G-principal bundle
- we define the G-action by $[u, g]_{\alpha} h:=[u, g h]_{\alpha}$.
assume that $M \rightarrow B$ is a G-principal bundle
- assume that there exists a section $s \in \Gamma(B, M)$
- then we define smooth map $B \times G \rightarrow M,(b, g) \mapsto s(b) g$
- is a bijection
- inverse is smooth (check in trivializations)
$-s_{\alpha}: U_{\alpha} \rightarrow G$
$-(u, g) \mapsto s_{\alpha}(u) g$
- inverse $(u, h) \mapsto\left(u, s_{\alpha}(u)^{-1} h\right)$

Corollary 2.80. There is a bijection between $\Gamma(B, M)$ and G-equivariant bundle isomor-
phisms

Corollary 2.81. A G-principal bundle is trivial if and only if it has a section.
Example 2.82. The map $S^{1} \rightarrow S^{1}$ given by $z \mapsto z^{n}$ is a C_{n}-principal bundle. It is not trivial.

2.4.6 Frame bundles and associated vector bundles

$\pi: E \rightarrow B$ - a vector bundle with typical fibre V

- get associated frame bundle $\operatorname{Fr}(E) \rightarrow B$
- a frame of E_{b} is an isomorphism $s: V \rightarrow E$
- the underlying set of $\operatorname{Fr}(E)$ is the set of frames of the fibres of E
- the projection $p: \operatorname{Fr}(E) \rightarrow B$ sends the frames of the fibre E_{b} to b
- the group $G L(V)$ acts from the right on $\operatorname{Fr}(E)$ by precomposition: $(s, g) \mapsto s \circ g$
- in order to define manifold structure find local trivializations and observe that cocycle is smooth
- choose $\psi_{\alpha}: \pi^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times V$ local trivialization for E
- get $\Psi_{\alpha}: p^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times G L(V)$ by $\Psi_{\alpha}(s)=\left(p(s), \psi_{\alpha}(p(s), s(-))\right.$
- reproduces $G L(V)$-valued cocycle $\rho_{\alpha, \beta}$ of E now considered with values in $\operatorname{Aut}_{\mathbf{M f}}(G L(V))$
- this cocycle is smooth (since $G L(V)$ is Lie group)
- get associated $G L(V)$-principal bundle which will be denoted by $\operatorname{Fr}(E) \rightarrow B$
$M \rightarrow B$ - G-principal bundle
$-\kappa: G \rightarrow G L(V)$ homomorphism of Lie groups
- G-valued cocycle $\rho_{\alpha, \beta}$ for $M \rightarrow B$ gives $G L(V)$-valued cocycle $\kappa\left(\rho_{\alpha, \beta}\right)$
- get associated vector bundle: notation $M \times_{G, \kappa} V \rightarrow B$
- have map $M \times V \rightarrow M \times{ }_{G, \kappa} V$ given by
$\left([u, g]_{\alpha}, v\right) \mapsto[u, \kappa(g) v]_{\alpha}$
- this is well-defined and smooth
- induces the equivalence relation such that $(m, \kappa(g) v) \sim(m g, v)$ for all g in G on $M \times V$
- Actually: $M \times{ }_{G, \kappa} V$ is the quotient of $M \times V$ by this equivalence relation
- write $[m, v]$ for the image of (m, v)
have G-action on $C^{\infty}(M, V)$ by
$(g f)(m):=\kappa(g) f\left(m g^{-1}\right)$
- can talk about fixed points $C^{\infty}(M, V)^{G}$

Lemma 2.83. $\Gamma\left(B, M \times_{G, \kappa} V\right) \cong C^{\infty}(M, V)^{G}$
Proof. want that $s(\pi(m))=[m, f(m)]$ for all m in M
given $s \in \Gamma\left(B, M \times_{G, \kappa} V\right)$

- define $f: M \rightarrow V$ as follows:
- let $m \in M$, then $s(\pi(m))=[m, v]$
- this is the unique representative of $s(\pi(m))$ with first entry m
$-\operatorname{set} f(m):=v$
- check: $f(m g)=\kappa(g)^{-1} v$
— check smoothness: $f \circ \psi_{\alpha}^{-1}(u, g)=\kappa(g)^{-1} s_{\alpha}(u)$
given $f \in C^{\infty}(M, V)^{G}$
- define $s \in \Gamma\left(B, M \times_{G, \kappa} V\right)$ by $s(b)=[m, f(m)]$ for any $m \in M_{b}$
- check: well-defined
- check smooth
check: these construction are mutually inverse

Example 2.84. $E \rightarrow B$ - vector bundle with fibre V

- $\operatorname{Fr}(E) \rightarrow B$
$-\kappa=\operatorname{id}_{G L(V)}$
then $\operatorname{Fr}(E) \times_{G L(V), \mathrm{id}_{G L(V)}} V \cong E$
- map $[s, v] \mapsto s(v)$
$E \rightarrow B$ - vector bundle with typical fibre V
$\kappa: G \rightarrow G L(V)$ - homomorphism
Definition 2.85. A reduction of the structure group of E to G is a pair $M \rightarrow B$ of a G-principal bundle and an isomorphism of vector bundles $M \times{ }_{G} V \stackrel{\cong}{\cong} E$.

Example 2.86. A reduction of the structure group to the trivial group is the same as a trivialization
$V=V_{0} \oplus V_{1}$

- $G L\left(V_{0}\right) \times G L\left(V_{1}\right) \subseteq G L(V)$
a reduction of the structure group to $G L\left(V_{0}\right) \times G L\left(V_{1}\right)$ is equivalent to an decomposition $E_{0} \oplus E_{1} \cong E$
- $G L(V)^{+}=\{A \in G L(V) \mid \operatorname{det}(A)>0\}$
a reduction of the structure group to $G L(V)^{+}$is the same as the choice of an orientation
if V has a scalar product - get $O(V) \subseteq G L(V)$
a reduction of the structure group to $O(V)$ is the same as the choice of an metric on E

2.4.7 Pull-back

$f: B^{\prime} \rightarrow B$ - map of manifolds

- get $h^{*}: C^{\infty}(B) \rightarrow C^{\infty}\left(B^{\prime}\right)$ - pull-back of functions $h^{*} f:=f \circ h$.
extend this to fibre bundles $M \rightarrow B$
- $s\left(h\left(b^{\prime}\right)\right)$ is in $M_{h\left(b^{\prime}\right)}$
- want a new bundle over B^{\prime} with fibre $M_{h\left(b^{\prime}\right)}$ over b^{\prime}
$\pi: M \rightarrow B$ - fibre bundle with typical fibre F
- $f: B^{\prime} \rightarrow B$ morphism
- consider pull-back in sets

- (U, ψ) - local trivialization of π - induces

$$
\psi^{\prime}: \pi^{\prime,-1}\left(h^{-1}(U)\right) \rightarrow U^{\prime} \times F, \quad m^{\prime} \mapsto\left(\pi^{\prime}(m), \operatorname{pr}_{F} \psi(H(m))\right)
$$

- $\left(U^{\prime}, \psi^{\prime}\right)$ local trivialization of π^{\prime}
- cocycle: $\left(\rho_{\psi_{1}, \psi_{0}}^{\prime}\right)$ (indexed by the local trivializations of π)
$-\rho_{\psi_{1}, \psi_{0}}^{\prime}\left(u^{\prime}\right)=\rho_{\psi_{1}, \psi_{0}}(h(u))$
Definition 2.87. $\pi^{\prime}: M^{\prime} \rightarrow B^{\prime}$ is called the pull-back of $\pi: M \rightarrow B$ along h.
often write $M^{\prime}:=h^{*} M$
- the pull-back of a vector bundle is again a vector bundle
- the pull-back of a principal bundle is again a principal bundle

Lemma 2.88. The square

is a cartesian square in Mf.
Proof. Exercise:
pull-back of sections:

- $h^{*}: \Gamma(B, M) \rightarrow \Gamma\left(B^{\prime}, h^{*} M\right)$
-. $s \mapsto\left(b^{\prime} \mapsto h^{*} s=\left(b^{\prime}, s\left(h\left(b^{\prime}\right)\right)\right) \in M^{\prime}\right.$
Example 2.89. $f: M \rightarrow M^{\prime}$ - morphism of manifolds
- interpret TF: TM $\rightarrow T M$ as:
$D f: T M^{\prime} \rightarrow f^{*} T M$ by universal property of pull-back
Example 2.90. pull-back of forms:
$f: M^{\prime} \rightarrow M$
- $f^{*}: \Omega^{1}(M) \rightarrow \Omega^{1}\left(M^{\prime}\right)$
$-f^{*} T^{*} M \xrightarrow{D f^{*}} T^{*} M^{\prime}$
$-f^{*}: \Omega^{1}(M) \rightarrow \Gamma\left(M^{\prime}, f^{*} T^{*} M\right) \xrightarrow{D f^{*}} \Gamma\left(M^{\prime}, T^{*} M^{\prime}\right)=\Omega^{1}\left(M^{\prime}\right)$
commutes:

exercise:

Example 2.91. M, N - manifolds

- $E \rightarrow M, F \rightarrow N$ - vector bundles
$\operatorname{pr}_{M}: M \times N \rightarrow M, \operatorname{pr}_{N}: M \times N \rightarrow N$ projections
- write $E \boxplus F:=\operatorname{pr}_{M}^{*} E \oplus \operatorname{pr}_{N}^{*} F \rightarrow M \times B$

Example 2.92. have isomorphism $T(M \times N) \rightarrow T M \boxplus T N$

- given by $D \operatorname{pr}_{M} \oplus D \operatorname{pr}_{N}$

2.5 Vector fields

2.5.1 The commutator

Definition 2.93. $\mathcal{X}(M):=\Gamma(M, T M)$ is called the space of vector fields on M
is $C^{\infty}(M)$ module
define action $\Gamma(M, T M) \times C^{\infty}(M) \rightarrow C^{\infty}(M)$

- $(X, f) \mapsto(m \mapsto X(m)(f))$
some formulas:
- have rule $(g X)(f)=g X(f)$
- Leibnitzrule: $X(g f)=X(f) g+f X(g)$
- could say: X is in $\operatorname{Der}\left(C^{\infty}(M), \operatorname{id}_{C^{\infty}(M)}\right)$
- $X(f)(m)=d f(m)(X(m))$

Lemma 2.94. For X, Y in $\mathcal{X}(M)$ there exists a uniquely determined Z in $\mathcal{X}(M)$ such that $Z(f)=X(Y(f))-Y(X(f))$ for all f in $C^{\infty}(M)$

Proof. observe: $f \mapsto X(Y(f))-Y(X(f))(m)$ is a derivation

$$
\begin{aligned}
X(Y(f g))-Y(X(f g))= & X(Y(f) g+f Y(g))-Y(X(f) g+f X(g)) \\
= & X(Y(f)) g+Y(f) X(g)+X(f) Y(g)+f X(Y(g)) \\
& -Y(X(f)) g-X(f) Y(g)-Y(f) X(g)-f Y(X(g)) \\
= & (X(Y(f))-Y(X(f))) g+f(X(Y(g))-Y(X(g)))
\end{aligned}
$$

evaluate at m

- define value $Z(m)$ as this derivation
- Z satisfies the formula
- must check smoothness: Exercise! (already done)
local formula:
- write $[X, Y]:=Z$
- local formula on chart on U
$-[X, Y]_{\mid U}=\left[X^{i} \partial_{i}, Y^{j} \partial_{j}\right]=\left(X^{j} \partial_{j} Y^{i}-Y^{j} \partial_{j} X^{i}\right) \partial_{i}$
Lemma 2.95. $\mathcal{X}(M)$ with $[-,-]$ forms a Lie algebra
note: $[X, f Y]=f[X, Y]+X(f) Y$
- $[-,-]$ is not $C^{\infty}(M)$ - bilinear
$h: M \rightarrow M^{\prime}$ diffeomorphism
- $X \in \mathcal{X}(M)$
define $h_{*} X$ such that $h^{*}\left(h_{*} X f\right)=X\left(h^{*} f\right)$ for all f in $C^{\infty}(M)$
- get $h_{*} X\left(m^{\prime}\right):=\operatorname{Th}\left(h^{-1}\left(m^{\prime}\right)\right) X\left(h^{-1}\left(m^{\prime}\right)\right)$

Lemma 2.96. $h_{*}[X, Y]=\left[h_{*} X, h_{*} Y\right]$
Proof. check chain rule: $h^{*}\left(h_{*}[X, Y]\right)(f)=[X, Y]\left(h^{*} f\right)$
$h^{*}\left[h_{*} X, h_{*} Y\right](f)=h^{*} h_{*} X\left(h_{*} Y(f)\right)-h^{*} h_{*} Y\left(h_{*} X(f)\right)=h^{*} X h^{*}\left(h_{*} Y(f)\right)-Y h^{*}\left(h_{*} X(f)\right)=$ $[X, Y]\left(h^{*} f\right)$

Example 2.97. $X \in \mathcal{X}(M), Y \in \mathcal{X}(N)$
$X \boxplus Y:=D \operatorname{pr}_{M} \operatorname{pr}_{M}^{*} X \oplus D \operatorname{pr}_{N} \operatorname{pr}_{N}^{*} Y \in \mathcal{X}(M \times N)$
$\left[X_{0}, X_{1}\right] \boxplus\left[Y_{0}, Y_{1}\right]=\left[X_{0} \boxplus Y_{0}, X_{1} \boxplus Y_{1}\right]$
the following explains meaning of commutator:
$I \subseteq \mathbb{R}$ open, $0 \in I$

- consider map $\Phi: I \times M \rightarrow M$
- write $\Phi(t, m)=\Phi_{t}(m)$ (family of endomorphisms of M smoothly parametrized by I)
- assume $\Phi_{0}=\operatorname{id}_{M}$
- get vector field $X:=\Phi^{\prime}$ (derivative by time at 0)
$-X(m):=T \Phi(0, m)\left(\partial_{t}\right)$
$-X(m):=\left(\partial_{t}\right)_{\mid t=0} \Phi_{t}(m)$
- Y in $\mathcal{X}(M)$
- define $\Phi_{t, *} Y \in \mathcal{X}(M)$ by
- consider $\left.\Phi_{t, *} Y(m):=T \Phi_{t}\left(\Phi_{t}(m)\right)^{-1}\left(Y\left(\Phi_{t}(m)\right)\right)\right)$
- note that for every $m \in M$ the inverse $T \Phi_{t}(m)^{-1}$ exists for small $|t|$ since $d \Phi_{0}(m)=$ $\mathrm{id}_{T_{m} M}$

Lemma 2.98. $\left(\partial_{t}\right)_{t=0} \Phi_{t, *} Y(m)=[X, Y](m)$

Proof. calculate in chart

- use Taylor expansion and only keep constant and linear terms in t
$\Phi_{t}(m)=m+t X(m)+O\left(t^{2}\right)$
$T \Phi_{t}(\Phi(m))=T(m+t X(m))+O\left(t^{2}\right)=1+t T X(m)+O\left(t^{2}\right)$
$T \Phi_{t}(\Phi(m))^{-1}=1-t T X(m)+O\left(t^{2}\right)$

$$
\begin{aligned}
T \Phi_{t}^{-1}\left(\Phi_{t}(m)\right)\left(Y\left(\Phi_{t}(x)\right)\right) & =(1-t T X(m)) Y\left(m+t X(m)+O\left(t^{2}\right)\right)+O\left(t^{2}\right) \\
& =Y(m)-t T X(m)(Y(m))+t T Y(m)(X(m))+O\left(t^{2}\right) \\
& =Y(m)+t[X, Y](m)+O\left(t^{2}\right)
\end{aligned}
$$

2.5.2 Integral curves

$X \in \mathcal{X}(M)$ given

- consider intervals $I \subseteq \mathbb{R}$
- for curve $\gamma: I \rightarrow M$ set: $\gamma^{\prime}(t):=T \gamma(t)\left(\partial_{t}\right) \in T_{\gamma(t)} M$

Definition 2.99. A curve $\gamma: I \rightarrow M$ is an integral curve of X if $\gamma^{\prime}(t)=X(\gamma(t))$ for all $t \in I$.
fix $m \in M, t_{0} \in \mathbb{R}$
Proposition 2.100. There exists a unique maximal integral curve $\gamma: I \rightarrow M$ of X with $\gamma\left(t_{0}\right)=m$

Proof. local existence and uniqueness:

- in chart at m : apply Picard- Lindeloef
- get interval I such that there is a unique integral curve $\gamma: I \rightarrow M$ with $\gamma\left(t_{0}\right)=m$ unique continuation:
- $\gamma_{0}, \gamma_{1}: I \rightarrow \mathbb{R}$ two integral curves
- $\gamma_{0}\left(t_{0}\right)=\gamma_{1}\left(t_{0}\right)$
- then $\gamma_{0}=\gamma_{1}$
$-J:=\left\{\gamma_{0}=\gamma_{1}\right\}$
- show by contradiction that $J=I$
- J is closed in I and contains t_{0}
- assume: $J \neq I$
- assume: $\sup J<\sup I$
- case: $\inf J>\inf I$ similar
$-t_{1}:=\sup J$
- $\gamma_{0}\left(t_{1}\right)=\gamma_{1}\left(t_{1}\right)$ (since J is closed)
- then also $\left[t_{1}, t_{1}+\epsilon\right) \in J$ for some small $\epsilon>0$ by local uniqueness - contradiction!
apply Zorn to find maximal integral curves
if $\gamma: I \rightarrow M$ is maximal
- if $\sup I \neq \infty$ then $\lim _{t \uparrow \text { sup } I} \gamma(t)$ does not exist
- if inf $I \neq-\infty$ then $\lim _{t \downarrow \text { inf } I} \gamma(t)$ does not exist
consider open subset U such that $\{0\} \times M \subseteq U \subseteq \mathbb{R} \times M$
- $\Phi: U \rightarrow M$ some map
- write $\Phi(t, m):=\Phi_{t}(m)$

Definition 2.101. Φ is called a flow of X if

1. $\Phi_{0}=\mathrm{id}_{M}$
2. For every m in M the curve $t \mapsto \Phi_{t}(m)$ is an integral curve of X.

Proposition 2.102. There exists a unique maximal flow of X.

Proof. - $\Phi_{\mid U \cap \mathbb{R} \times\{m\}}$ is the maximal integral curve of X with $\gamma(0)=m$

- check smoothness and openness of U
- use smooth dependence of solutions of ODE on initial conditions
formulas: $\Phi_{t} \Phi_{s}=\Phi_{t+s}($ where defined $)$
$-\Phi_{-t}=\Phi_{t}^{-1}$
$\frac{d}{d t \mid t=0} \Phi_{t}^{*} f=X(f)$
$\frac{d}{d t \mid t=0} \Phi_{t, *}(Y)=[X, Y]$
Example 2.103. Newton Mechanics
M - position space of a mechanical system (encodes positions)
- $T M$ - phase space (encodes position and velocity)
- $X \in \mathcal{X}(T M)$ - encodes law of involution
- integral curve $\gamma: I \rightarrow T M$ - time evolution of the system with initial condition $\gamma(0)=Z$
- base point of Z in M is initial condition
- Z itself is initial velocity
modelling circle
- Physical problem: find the correct M and X modelling the reality
- Mathematical problem: find γ
- Physical problem, verify model: compare prediction of the model with some measurement
- correct model if necessary
- Application: make predictions for not yet measured evolutions

Examples:

- mass point in force: $M=\mathbb{R}^{3}$
- X by Newtons Law

Example:

- rigid body
- $M=\mathbb{R}^{3} \times S O(3)$ (center of mass and orientation in space)
- X by Newtons Law

2.5.3 Fundamental vector fields and actions

G - Lie group

- use notation $\mathfrak{g}:=T_{e} G$
consider manifold M with right action $a: M \times G \rightarrow M$
- use $T_{(m, g)}(M \times G) \cong T_{m} M \oplus T_{g} G$
$-\mathfrak{g} \rightarrow T_{m} M \oplus \mathfrak{g} \xrightarrow{T a(m, e)} T_{m} M \oplus \mathfrak{g} \xrightarrow{\mathrm{pr}_{T_{m}} M} T_{m} M$
- for X in \mathfrak{g} set $X^{\sharp}(m):=T a(m, e)(X) \in T_{m} M$
- fundamental vector of the action at m for X
- let m vary
- get fundamental vector field $X^{\sharp} \in \mathcal{X}(M)$
consider case $G=M$
- for $g \in G$ let L_{g}, R_{g} left- and right multiplication by g
$-X^{\sharp}(h)=T L_{g}(e)(X)$.
$L_{g} L_{h}=L_{g h}$ implies
- $T L_{g}(h)\left(X^{\sharp}(h)\right)=T L_{g}(h) T L_{h}(e)(X)=T L_{g h}(e)(X)=X^{\sharp}(g h)$
- shorter $L_{g, *} X^{\sharp}=X^{\sharp}$

Definition 2.104. The vector space ${ }^{G} \mathcal{X}(G):=\left\{X \in \mathcal{X}(G) \mid\left(\forall g \in G \mid L_{g, *} X=X\right)\right\}$ is called the space of left invariant vector fields on G.
for X in \mathfrak{g} have $X^{\sharp} \in{ }^{G} \mathcal{X}(G)$ - left invariant vector field

- any left-invariant vector field is uniquely is determined by value at e
- have isomorphism ${ }^{G} \mathcal{X}(G) \xlongequal{\cong} \mathfrak{g}$ given by $X \mapsto X(e)$
- is inverse to $X \mapsto X^{\sharp}$
- $L_{h, *}[-,-]=\left[L_{h, *}, L_{h, *}\right]$ shows:
$-[-,-]$ restricts to ${ }^{G} \mathcal{X}(G)$
- \mathfrak{g} - becomes sub-Lie algebra of $\mathcal{X}(G)$
- get induced Lie algebra structure on \mathfrak{g}

Definition 2.105. \mathfrak{g} is called the Lie algebra of G.

- $X \mapsto X^{\sharp}$ is homomorphism of Lie algebras by definition
$-[X, Y]^{\sharp}=\left[X^{\sharp}, Y^{\sharp}\right]$
Example 2.106. V - vector space
- $G L(V) \subseteq \operatorname{End}(V)$ open
$-T_{e} G L(V)=\operatorname{End}(V)$
- $X^{\sharp}(g)=T L_{g}(e)(X)=g X$
$-[X, Y]=X(g Y)-Y(g X)=X Y-Y X$
consider general action of G on M
Lemma 2.107. The map $\mathfrak{g} \rightarrow \mathcal{X}(M), X \mapsto X^{\sharp}$, is a homomorphism of Lie algebras.
Proof. consider map $f: M \times G \rightarrow M \times G,(m, g) \mapsto(m g, g)$
- is diffeomorphism, inverse $(m, g) \mapsto\left(m g^{-1}, g\right)$
- $f_{*}(0 \oplus X)=\operatorname{pr}_{M}^{*} X^{\sharp} \oplus \operatorname{pr}_{G}^{*} X$
- omit to write pr
$-[(0 \oplus X),(0 \oplus Y)]=0 \oplus[X, Y]$
$-\left[\left(X^{\sharp} \oplus X\right),\left(X^{\sharp} \oplus X\right)\right]=f_{*}[(0 \oplus X),(0 \oplus Y)]=f_{*}(0 \oplus[X, Y])=[X, Y]^{\sharp} \oplus[X, Y]$
$-\operatorname{read}$ of $\left[X^{\sharp}, Y^{\sharp}\right]=[X, Y]^{\sharp}$
$\phi: G \rightarrow H$ - homomorphism of Lie groups
$d \phi(e): \mathfrak{g} \rightarrow \mathfrak{h}$

Lemma 2.108. $d \phi(e)$ is homomorphism of Lie algebras.
Proof. get action of G on H by $(h, g) \mapsto h \phi(g)$

- for X in \mathfrak{h}
- X_{H}^{\sharp} - fundamental vector field of G-action on H
- is in ${ }^{H} \mathcal{X}(H)$
$-X_{H}^{\sharp}(e)=d \phi(e)(X)$

$$
d \phi(e)([X, Y])=\left[X_{H}^{\sharp}, Y_{H}^{\sharp}\right](e)=[d \phi(e)(X), d \phi(e)(Y)]
$$

$L_{g} R_{h}=R_{h} L_{g}$ implies

- $R_{g, *}$ preserves ${ }^{G} \mathcal{X}(G)$
- get (anti)action Ad : $G \rightarrow G L(\mathfrak{g})$ by automorphisms of Lie algebras
- ad $:=d \operatorname{Ad}(e): \mathfrak{g} \rightarrow \operatorname{End}(\mathfrak{g})$ (anti)homomorphism of Lie algebras

Lemma 2.109. $\operatorname{ad}(X)(Y)=-[X, Y]$.
Proof. Exercise?
$X \in \mathfrak{g}$

- $X^{\sharp} \in{ }^{G} \mathcal{X}(G)$

Lemma 2.110. The maximal integral curves of X have domain \mathbb{R}
Proof. $\gamma: I \rightarrow G$ integral curve of X^{\sharp} with $\gamma\left(t_{0}\right)=e$

- then $g \gamma$ is integral curve of X^{\sharp} with $\gamma\left(t_{0}\right)=g$
$-(g \gamma)^{\prime}=d L_{g}(\gamma(t))\left(X^{\sharp}(\gamma(t))\right)=X^{\sharp}(g \gamma(t))$
$\gamma: I \rightarrow G$ maximal integral curve
- assume: $t_{0}:=\sup I<\infty$
- then
$\gamma(t):=\left\{\begin{array}{cc}\gamma(t) & t \in I \\ \gamma\left(t_{0}\right) \gamma\left(t-t_{0}\right) & t \in I-t_{0}\end{array}\right.$ is extension of integral curve to $I \cup\left(t_{0}+I\right)$
- contradiction to maximality
$\Phi: \mathfrak{g} \times \mathbb{R} \times G \rightarrow G, \quad(X, t, g)=\Phi_{t}^{X}(g)$
- flow of X^{\sharp} starting at m at time t

Definition 2.111. We define the exponential map $\exp : \mathfrak{g} \rightarrow G, \exp (X):=\Phi_{1}^{X}(e)$.
Example 2.112. for $G L(V)$

- $\Phi_{t}^{X}(g)=g e^{t X}$
- $\exp (X)=e^{X}$ - usual matrix exponential

Example 2.113. consider G-action on M

- $X \in \mathfrak{g}$
- X_{M}^{\sharp} - fundamental vector field
- $\gamma(t):=m \exp (t X)$ is an integral curve of X_{M}^{\sharp}, hence defined on all of \mathbb{R}
- calculate derivative at t_{0}
$-\left(\partial_{s}\right)_{s=t} m \exp (s X)=\left(\partial_{s}\right)_{s=0} m \exp (t X) \exp (s X)=X_{M}^{\sharp}(\gamma(t))$

3 Connections

3.1 Linear connection on vector bundles bundles

3.1.1 Existence and classification

recall:
have differential $d: C^{\infty}(M) \rightarrow \Omega^{1}(M)$

- consider this as map $\mathcal{X}(M) \times C^{\infty}(M) \ni(X, f) \mapsto X(f):=d f(X)$
- generalizes to V-valued functions $h \in C^{\infty}(M, V)$:
- write $(X, h) \mapsto \nabla_{X}^{\text {triv }} h=X(h)$
- componentwise application of X
- uniquely characterized by
$-v^{*}\left(\nabla_{X}^{\text {triv }} h\right)=X\left(v^{*} h\right)$ for every $v^{*} \in V^{*}$
formulas:

$$
\nabla_{X+X^{\prime}}^{\text {triv }} h=\nabla_{X}^{\text {triv }} h+\nabla_{X^{\prime}}^{\text {triv }} h, \quad \nabla_{f X}^{\text {triv }} h=f \nabla_{X} h
$$

$-C^{\infty}(M)$-linear in the first argument

$$
\nabla_{X}^{\text {triv }}\left(h+h^{\prime}\right)=\nabla_{X}^{\text {triv }} h+\nabla_{X}^{\text {triv }} h^{\prime}, \quad \nabla_{X}^{\text {triv }}(h f)=f \nabla_{X}^{\text {triv }} h+X(f) h
$$

- \mathbb{C}-linear and Leibnitz rule in the second argument
$E \rightarrow B$ - vector bundle
- want to consider $\nabla: \mathcal{X}(M) \times \Gamma(B, E) \rightarrow \Gamma(B, E)$ with these properties:

Definition 3.1. A linear connection on E is a map $\nabla: \mathcal{X}(B) \times \Gamma(B, E) \rightarrow \Gamma(B, E)$ (written as $\nabla(X, s)=\nabla_{X}$ s) which is $C^{\infty}(B)$-linear in the first argument, \mathbb{C}-linear in the second and satisfies the Leibnitzrule $\nabla_{X}(f s)=f \nabla_{X} s+X(f) s$.

Example 3.2. E is trivial

- can choose trivialization $\psi: E \rightarrow B \times V$
- get identification $\Gamma(B, E) \cong C^{\infty}(B, V)$
$-s \mapsto h_{s}: b \mapsto \operatorname{pr}_{V} \psi(s(b))$
$-h \mapsto s_{h}: b \mapsto \psi^{-1}(b, h(b))$
define connection ∇ on E such that $h_{\nabla_{X} s}=\nabla_{X}^{\text {triv }} h_{s}$
- ∇ depends on choice of trivialization
- ψ^{\prime} second trivialization, get $\nabla^{\prime}, s \mapsto h_{s}^{\prime}$ and $h \mapsto s_{h}^{\prime}$
- $\psi^{\prime} \psi^{-1}(u, v)=(u, \rho(u)(v))$ transition function
$-\rho: B \rightarrow G L(V) \subseteq \operatorname{End}(V)$
$-h_{s}^{\prime}=\rho \cdot h_{s}$
have $C^{\infty}(B)$-module isomorphism

$$
\Gamma\left(B, T^{*} M \otimes \operatorname{End}(E)\right) \cong \operatorname{Hom}_{C^{\infty}(B)}\left(\mathcal{X}(B) \otimes_{C^{\infty}(B)} \Gamma(B, E), \Gamma(B, E)\right)
$$

sends ω to map $X \otimes s \mapsto(b \mapsto \omega(b)(X(b)) \cdot s(b))$
write $\omega(X) \cdot s:=\omega(X, s)$

- define $\omega \in \Gamma\left(B, T^{*} M \otimes \operatorname{End}(E)\right)$ such that $h_{\omega(X) \cdot s}=\rho^{-1} d \rho(X) \cdot h_{s}$
$-h_{\nabla_{X}^{\prime}}^{\prime}=\nabla_{X}^{\text {triv }} h_{s}^{\prime}=\nabla_{X}^{\text {triv }}\left(\rho h_{s}\right)=\rho\left(\nabla_{X}^{\text {triv }} h_{s}+\rho^{-1} d \rho(X) h_{s}\right)=\rho h_{\nabla_{X} s+\omega(X) s}=h_{\nabla_{X} s+\omega(X) s}^{\prime}$ read of: $\nabla^{\prime}=\nabla+\omega$
b in B
$X, X^{\prime} \in C^{\infty}(B), s, s^{\prime} \in \Gamma(B, E)$
- $\nabla_{X} s(b)$ is locally determined at b

Lemma 3.3. If $X(b)=X^{\prime}(b)$ and there exists a neighbourhood U of b such that $s_{\mid U}=s_{\mid U}^{\prime}$, then $\left(\nabla_{X} s\right)(b)=\left(\nabla_{X^{\prime}} s^{\prime}\right)(b)$.

Proof. Assume that $f, f^{\prime} \in C^{\infty}(B)$ and $f(b)=0, f^{\prime} \equiv 0$ near B (in particular $f^{\prime}(b)$ but also all derivatives vanish)

- $\left(\nabla_{f X} s\right)(b)=f(b)\left(\nabla_{f X} s\right)(b)=0$
$-\left(\nabla_{X}\left(f^{\prime} s\right)\right)(b)=f^{\prime}(b)\left(\nabla_{X} s\right)(b)+X\left(f^{\prime}\right)(b) s(b)=0$
under the assumption can write $X-X^{\prime}=f Y$ and $s-s^{\prime}=f^{\prime} t$ for such a function
for $X \in T_{b} B$ define: $\nabla_{X} s:=\nabla_{\tilde{X}} s(b)$ for any $\tilde{X} \in \mathcal{X}(B)$ with $\tilde{X}(b)=X$

Lemma 3.4. Linear connections exist and form an affine space over $\Gamma\left(B, T^{*} B \otimes \operatorname{End}(E)\right)$.
Proof. $\left(U_{\alpha}, \psi_{\alpha}\right)$ covering of B by local trivializations

- locally finite
- get connection ∇^{α} in U_{α} (e.g. the trivial one)
- choose partition of unity $\left(\chi_{\alpha}\right)$ subordinate to covering
- define $\nabla=\sum_{\alpha} \chi_{\alpha} \nabla^{\alpha}$
- interpretation:
$-\nabla_{X} s(b)=\sum_{\alpha} \chi_{\alpha}(b)\left(\nabla_{X}^{\alpha} s\right)(b)$
- if $b \in U_{\alpha}$, then $\left(\nabla_{X}^{\alpha} s\right)(b)$ is well-defined by Lemma 3.3
check:
∇ is linear connection:
Leibnitz:

$$
\begin{aligned}
\nabla_{X}(f s)(b) & =\sum_{\alpha} \chi_{\alpha}(b)\left(\nabla_{X}^{\alpha} f s\right)(b) \\
& =f(b) \sum_{\alpha} \chi_{\alpha}(b)\left(\nabla_{X}^{\alpha} s\right)(b)+X(f)(b) \sum_{\alpha} \chi_{\alpha}(b) s(b) \\
& =f \nabla_{X}(s)(b)+X(f) s(b)
\end{aligned}
$$

∇, ∇^{\prime} two linear connections

- $\omega: \mathcal{X}(M) \times \Gamma(B, E) \rightarrow \Gamma(B, E)$
- $(X, s) \mapsto \nabla_{X}^{\prime} s-\nabla_{X} s$
- is $C^{\infty}(B)$-binlinear
- find unique $\omega \in \Gamma\left(B, T^{*} B \otimes \operatorname{End}(E)\right)$ such that $\omega(X) \cdot s=\nabla_{X}^{\prime} s-\nabla_{X} s$
if ∇ is a connection and $\omega \in \Gamma\left(B, T^{*} B \otimes \operatorname{End}(E)\right)$, then $\nabla+\omega$ is also a connection
consider pull-back situation

∇ - linear connection on E
Lemma 3.5. There is a unique linear connection $h^{*} \nabla$ on $h^{*} E$ such that

$$
k\left(\left(h^{*} \nabla_{X^{\prime}} h^{*} s\right)\right)=\nabla_{X} s
$$

for any $b^{\prime} \in B^{\prime}, X^{\prime} \in T_{b^{\prime}} B^{\prime}$ and $X:=\operatorname{Th}\left(b^{\prime}\right)\left(X^{\prime}\right)$ and $s \in \Gamma(B, E)$.
Proof. ∇^{\prime} any connection on E^{\prime}

- write $h^{*} \nabla=\nabla^{\prime}+\omega$
- determined ω from condition:
$-k\left(\omega\left(b^{\prime}\right)\left(X^{\prime}\right) \cdot\left(h^{*} s\right)\left(b^{\prime}\right)\right)=\nabla_{Y} s-k\left(\nabla_{X^{\prime}}^{\prime} h^{*} s\right)$
- in order to see that ω is wel-defined:
- must show that right-hand side only depends on value of s :
$-b:=h\left(b^{\prime}\right)$
- assume $s=f t$ with $f(b)=0$
$-\nabla_{Y} f t-k\left(\nabla_{X^{\prime}}^{\prime} h^{*}(f t)\right)=Y(f) t\left(b^{\prime}\right)-k\left(X\left(h^{*} f\right) h^{*} t\left(b^{\prime}\right)\right)=\left(Y(f)-X\left(h^{*} f\right)\right) t(b)=0$
- used $k\left(h^{*} t\left(b^{\prime}\right)\right)=t(b)$
$-Y(f)=X\left(h^{*} f\right.$ since $Y=T h\left(b^{\prime}\right)(X)$
- hence get ω as desired, is uniquely determined

3.1.2 Curvature

$E \rightarrow B$ vector bundle
∇ - linear connection

- interpret ∇ as map $\Gamma(B, E) \rightarrow \Gamma\left(B, T^{*} B \otimes E\right)=\Omega^{1}(B, E)$
$-s \mapsto\left(X \mapsto \nabla_{X} s\right)$
$s \in \Gamma(B, E)$
Definition 3.6. s is called parallel of $\nabla s=0$.
Example 3.7. consider $\nabla^{\text {triv }}$ on $C^{\infty}(B, V)$
$\nabla^{\text {triv }} h=0$ is equivalent to the assertion that h is constant fix $b \in B$ and $v \in V$
- there exists $h \in C^{\infty}(B, V)$ with $h(b)=v$ and $\nabla^{\text {triv }} h=0$
- take constant function with value h
will see that a similar assertion for general connections on vector bundles is not true
in the following $X, Y \in C^{\infty}(B), s \in \Gamma(B, E)$

Lemma 3.8.

$$
(X, Y, s) \mapsto F^{\nabla}(X, Y) \cdot s:=\nabla_{X}\left(\nabla_{Y} s\right)-\nabla_{Y}\left(\nabla_{X} s\right)-\nabla_{[X, Y]} s
$$

is C^{∞}-linear in each argument and therefore determines an element $F^{\nabla} \in \Omega^{2}(\operatorname{End}(E))$.
Proof.

$$
\begin{aligned}
\nabla_{f X}\left(\nabla_{Y} s\right)-\nabla_{Y}\left(\nabla_{f X} s\right)-\nabla_{[f X, Y]} s & =f \nabla_{X}\left(\nabla_{Y} s\right)-f \nabla_{Y}\left(\nabla_{X} s\right)-f \nabla_{[X, Y]} s-Y(f) \nabla_{X} s+Y(f) \nabla_{X} s \\
& =f\left(\nabla_{X}\left(\nabla_{Y} s\right)-\nabla_{Y}\left(\nabla_{X} s\right)-\nabla_{[X, Y]} s\right)
\end{aligned}
$$

$$
\begin{aligned}
\nabla_{X}\left(\nabla_{Y} f s\right)-\nabla_{Y}\left(\nabla_{X} f s\right)-\nabla_{[X, Y]} f s= & \nabla_{X}\left(f \nabla_{Y} s+Y(f) s\right)-\nabla_{Y}\left(f \nabla_{X} s+X(f) s\right) \\
& -f \nabla_{[X, Y]} s-[X, Y](f) s \\
= & f \nabla_{X}\left(\nabla_{Y} s\right)+X(f) \nabla_{Y} s+Y(f) \nabla_{X} s+X(Y(f)) s \\
& -f \nabla_{Y}\left(\nabla_{X} s\right)-Y(f) \nabla_{X} s-X(f) \nabla_{Y} s-Y(X(f)) s \\
& -f \nabla_{[X, Y]} s-[X, Y](f) s \\
= & f\left(\nabla_{X}\left(\nabla_{Y} s\right)-\nabla_{Y}\left(\nabla_{X} s\right)-\nabla_{[X, Y]} s\right)
\end{aligned}
$$

Definition 3.9. F^{∇} is called the curvature of the connection ∇.
Example 3.10. have $F^{\nabla^{\text {triv }}}=0$

- this is just the equality
- $X(Y(h))-Y(X(h))=[X, Y](h)$ - definition of commutator

Lemma 3.11. If $s \in \Gamma(B, E)$ is parallel, then $F^{\nabla} \cdot s=0$.
Proof. clear
Corollary 3.12. Fix $b \in B$. If for any e in E there exists a parallel section with $s_{e}(b)=e$, then $F^{\nabla}(b)=0$.

Proof. $\left(F^{\nabla}(X, Y)(b) \cdot e\right)(b)=\left(F^{\nabla}(X, Y) \cdot s_{b}\right)(b)=0$

$$
\begin{equation*}
F^{\nabla+\omega}(X, Y)=F^{\nabla}(X, Y)+\nabla_{X} \omega(Y)-\nabla_{Y} \omega(X)-\omega([X, Y])+[\omega(X), \omega(Y)] \tag{1}
\end{equation*}
$$

- define $\nabla \wedge \omega \in \Omega^{2}(M, \operatorname{End}(E))$ by

$$
\nabla \omega(X, Y)(s):=\nabla_{X}(\omega(Y) s)-\nabla_{Y}(\omega(X) s)-\omega([X, Y]) s
$$

- is $C^{\infty}(B)$-multilinear and therefore well-defined

$$
\begin{equation*}
F^{\nabla+\omega}=F^{\nabla}+\nabla \wedge \omega+[\omega, \omega] \tag{2}
\end{equation*}
$$

Example 3.13. $E=B \times \mathbb{R}$

- identify $\operatorname{End}(\mathbb{R})$ with trivial bundle with fibre \mathbb{R}
$-\nabla=\nabla^{\text {triv }}+\omega$
- $\nabla^{\text {triv }} \wedge \omega(X, Y)=X(\omega(Y))-Y(\omega(X))-\omega([X, Y])=d \omega(X, Y)$
- Cartan formula
$-[\omega(X), \omega(Y)]=0$
- hence $F^{\nabla^{\text {triv }}+\omega}=d \omega$
curvature can be non-trivial

Example 3.14. Physics language

- ∇ - gauge field
- for trivialization of bundle $\nabla=\nabla^{\text {triv }}+\omega$
$-\omega$ - gauge potential (depends on the trivialization, nota physical quantity)
- change of trivialization (gauge transformation):
$-\omega^{\prime}=\omega+\rho^{-1} d \rho$
$-F^{\nabla}=\nabla^{\text {triv }} \wedge \omega+[\omega, \omega]$ - field strength (measurable effect of the field)
choice of bundle depends on what one wants to model
- usually additional structures preserved: complex structures, metrics

Example 3.15. if $\operatorname{dim}(B) \leq 1$, then curvature always vanishes
Lemma 3.16. $F^{h^{*} \nabla}=h^{*} F^{\nabla}$

Proof. Exercise.
Example 3.17. $B \times V \rightarrow B$ - trivial bundle

- $\nabla^{\text {triv }}$ - trivial connection
- $h_{\nabla_{X}^{\text {triv }}}=X\left(h_{s}\right)$
- $P \in \Gamma(B, \operatorname{End}(E))$
- family of projections
$-\operatorname{tr} P \in C^{\infty}(M)$
$-\operatorname{tr} P(b)=\operatorname{dim} E_{b} \in \mathbb{Z}$
$-\operatorname{tr} P=\operatorname{rk} P$ locally constant
$-F:=\operatorname{im}(P)=\operatorname{ker}(1-P)$ is subbundle of E
- for $s \in \Gamma(B, F)$ have $\nabla_{X}^{\text {triv }} s \in \Gamma(B, E)$
$-\nabla$ on F by: $\nabla_{X} s:=P \nabla_{X}^{\text {triv }} s$
- check Leibnitz, use $P s=s$
$-\nabla_{X}(f s)=P f \nabla_{X}^{\text {triv }} s+P X(f) s=f \nabla_{X} s+X(f) s$
∇ is the projection of $\nabla^{\text {triv }}$ to X
calculate curvature

$$
\begin{aligned}
& P^{2}=P \\
& -X\left(P^{2}\right)=X(P) P+P X(P)=X(P) \\
& -P X(P) P+P X(P)=P X(P) \text { hence } P X(P) P=0
\end{aligned}
$$

$$
\begin{aligned}
F^{\nabla}(X, Y) s & =P \nabla_{X}^{\text {triv }} P \nabla_{Y}^{\text {triv }} s-P \nabla_{Y}^{\text {triv }} P \nabla_{X}^{\text {triv }} s-P \nabla_{[X, Y]}^{\text {triv }} s \\
& =P F^{\nabla^{\text {triv }}} s+P X(P) \nabla_{Y}^{\text {triv }} s-P Y(P) \nabla_{X}^{\text {triv }} s \\
& =P X(P)(1-P) \nabla_{Y}^{\text {triv }} s-P Y(P)(1-P) \nabla_{X}^{\text {triv }} s \\
& =P X(P)(1-P) \nabla_{Y}^{\text {triv }} P s-P Y(P)(1-P) \nabla_{X}^{\text {triv }} P s \\
& =P X(P)(1-P) Y(P) P s-P Y(P)(1-P) X(P) P s
\end{aligned}
$$

$F^{\nabla}(X, Y)=P X(P)(1-P) Y(P) P-P X(P)(1-P) Y(P) P$
Example 3.18. $i: S_{r}^{2} \subseteq \mathbb{R}^{3}$

- sphere of radius r
- $E=r^{*} T \mathbb{R}^{3} \rightarrow S_{r}^{2}$ - trivial
- P : $E \rightarrow T S_{r}^{2}$ - orthogonal projection
- get connection ∇ by projecting $\nabla^{\text {triv }}$
- $P(\xi)(Z)=Z-r^{-2}\langle\xi, Z\rangle \xi$
choose coordinates near northpole
$\xi(x, y) \mapsto\left(x, y, \sqrt{r^{2}-x^{2}-y^{2}}\right)$
matrix for P

$$
P(x, y)=\left(\begin{array}{ccc}
1-r^{-2} x^{2} & 1-r^{-2} y x & r^{-2} x \sqrt{r^{2}-x^{2}-y^{2}} \\
1-r^{-2} x y & 1-r^{-2} y^{2} & y r^{-2} \sqrt{r^{2}-x^{2}-y^{2}} \\
1-x r^{-2} \sqrt{r^{2}-x^{2}-y^{2}} & 1-r^{-2} y \sqrt{r^{2}-x^{2}-y^{2}} & \left(x^{2}+y^{2}\right) r^{-2}
\end{array}\right)
$$

$X(P)(0)=r^{-1}\left(\begin{array}{ccc}0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0\end{array}\right) \quad Y(P)(0)=r^{-1}\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0\end{array}\right)$
$P(0)=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right), \quad 1-P(0)=\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$
$(1-P(0)) X(P)(0) P(0)=r^{-1}\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ -1 & 0 & 0\end{array}\right), \quad(1-P(0)) Y(P)(0) P(0)=r^{-1}\left(\begin{array}{ccc}0 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & -1 & 0\end{array}\right)$
$F^{\nabla}(X, Y)=P(0) Y(P)(0)(1-P(0)) X(P)(0) P(0)=r^{-2}\left(\begin{array}{ccc}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$

3.1.3 Parallel transport

$B=I$ - interval, $t_{0} \in I$
$E \rightarrow B$ - vector bundle, $e_{0} \in E_{t_{0}}$
∇ - connection
Lemma 3.19. There exists a unique parallel section $s \in \Gamma(I, E)$ such that $s\left(t_{0}\right)=e_{0}$.

Proof. - solve ODE $\nabla_{\partial t} s=0$ with initial condition $s\left(t_{0}\right)=e_{0}$
local existence:

- analyse locally in trivialization
$-\nabla=\nabla^{\text {triv }}+\omega$
$-\nabla_{\partial_{t}}=\partial_{t}+\omega\left(\partial_{t}\right)$
- consider s as V-valued function in t
$-I \ni t \mapsto A(t):=\omega(t)\left(\partial_{t}\right) \in \operatorname{End}(V)$
- solve linear system of ODE with non-constant coefficients
$-\partial_{t} s=-A(t) s, s\left(t_{0}\right)=e_{0}$
- is solvable and solution exists on I
global uniqueness
- s, s^{\prime} to solutions on I
- $J=\left\{s=s^{\prime}\right\}$ is non-empty (contains t_{0})
- is closed (solutions are continuous)
- from local uniqueness: $J=I$
let $J \subseteq I$ maximal interval on which parallel extension s exists
- argue: $J=I$ using local uniqueness
$h: I^{\prime} \rightarrow I$ map
$-s \in \Gamma(I, E), \nabla s=0$
- then $h^{*} \nabla h^{*} s=0$
observe: let $s_{e_{0}}$ be the parallel section with $s_{e_{0}}\left(t_{0}\right)=e_{0}$
- the map $e_{0} \mapsto s_{e_{0}}$ is linear
$E \rightarrow B$ - vector bundle
∇ - connection
- $\gamma:[0,1] \rightarrow B$ curve
- get map $E_{\gamma(0)} \rightarrow E_{\gamma(1)}$
- get linear map $\|^{\gamma}: E_{\gamma(0)} \ni e \mapsto s_{e}(1) \in E_{\gamma_{1}}$
— here s_{e} parallel section of $\gamma^{*} E \rightarrow[0,1]$ (w.r.t. $\gamma^{*} \nabla$) with value $s(0)=e$
Definition 3.20. The map $\|^{\gamma}: E_{\gamma(0)} \rightarrow E_{\gamma(1)}$ is called the parallel transport along γ. some simple properties of parallel transport: reparametrization invariant:
$-\phi:[0,1] \rightarrow[0,1]$ smooth, endpoint preserving
$-\left\|^{\gamma}=\right\|^{\phi^{*} \gamma}$
every path can be reparametrized such that it is constant near endpoints
- can restrict to path's which are constant near endpoints
- can then concatenate

$$
\gamma^{\prime} \sharp \gamma=\left\{\begin{array}{cc}
\gamma(2 t) & t \leq 1 / 2 \\
\gamma^{\prime}(2 t-1) & t>1 / 2
\end{array}\right.
$$

we have
$\left\|\gamma^{\gamma^{\prime} \sharp \gamma}=\right\|\left\|^{\gamma^{\prime}} \circ\right\|^{\gamma}$
$\left\|^{\gamma^{-1}}=\right\|^{\gamma,-1}$

- set $\gamma_{\tau}(t)=\gamma(t \tau)$ - piece of curve from $\gamma(0)$ to $\gamma(\tau)$
- s any section of E
$\|^{\gamma_{\tau}^{1}} s(\gamma(\tau)) \in E_{\gamma(0)}$ - depends on τ
- how?

Lemma 3.21. $\partial_{\tau}\left\|^{\gamma_{\tau}^{-1}} s(\gamma(\tau))=\right\| \|^{\gamma_{\tau}^{-1}} \nabla_{\gamma^{\prime}(\tau)} s$
Proof. - is correct if s is parallel along γ (both sides vanish)

- more general section $s=f \sigma$ with σ parallel
$\partial_{\tau}\left\|^{\gamma_{\tau}^{-1}}(f \sigma)(\gamma(\tau))=f(\gamma(\tau)) \partial_{\tau}\right\|^{\gamma_{\tau}^{-1}} \sigma(\gamma(\tau))+\gamma^{\prime}(\tau)(f) \|^{\gamma_{\tau}^{-1}} \sigma(\gamma(\tau))$
$\left\|^{\gamma_{\tau}^{-1}}\left(\nabla_{\gamma^{\prime}(\tau)} f \sigma\right)=f(\gamma(\tau))\right\|^{\gamma_{\tau}^{-1}} \nabla_{\gamma^{\prime}(\tau)} \sigma+\gamma^{\prime}(\tau)(f) \|^{\gamma_{\tau}^{-1}} \sigma(\gamma(\tau))$
- is correct for sections of the form $f \sigma$ with σ parallel along γ
- any section is \mathbb{R}-linear combination of such
from now one:
- consider $U \subseteq \mathbb{R}^{n}$ - starlike rel 0
- bundle $E \rightarrow U$
- $V:=E_{0}$
- connection ∇
- define trivialization $\Psi: E \rightarrow U \times V$ by radial parallel transport
$-x \in U$ yields curve $\gamma_{x}(t):=t x$ from 0 to x
- set $\Psi(e):=\left(\pi(e), \|^{\gamma_{\pi(e)},-1}(e)\right)$

Corollary 3.22. A vector bundle on a starlike domain in \mathbb{R}^{n} is trivial.

Proof. one can choose a connection

- then have radial trivialization
write
$-\nabla=\nabla^{\text {triv }}+\omega$
- $\omega-\operatorname{End}(V)$-valued one-form
- investigate Taylor expansion of ω at 0

Lemma 3.23. We have $\omega(t X)(Y)=\frac{t}{2} F^{\nabla}(0)(X, Y)+O\left(t^{2}\right)$.
Proof. - s radially parallel

- $\nabla^{\text {triv }} s=0$ by definition of $\nabla^{\text {triv }}$
consider X as constant vector field
- $0=\nabla_{X} s(t X)=\omega(t X)(X) s(t X)$ for all radially parallel s
$-\omega(t X)(X) \equiv 0($ as function of $t)$
- evaluate at $t=0$
$-\omega(0)(X)=0$ for all X
- derive at $t=0$
- hence $X \omega(X)(0)=0$
- polarization
X, Y - constant vector fields
$-X \omega(Y)+Y \omega(X)=0$
$-\frac{1}{2}(X \omega(Y)-Y \omega(X))=X \omega(Y)=\left(\partial_{t}\right)_{\mid t=0} \omega(t X)(Y)$
$-\frac{1}{2}(\nabla \wedge \omega)(X, Y)=X \omega(Y)$
- no commutator
- by (2): $\frac{1}{2}(\nabla \wedge \omega)(0)(X, Y)=\frac{1}{2} F^{\nabla}(0)(X, Y)$
$-\omega(t X)(Y)=\frac{t}{2} F^{\nabla}(0)(X, Y)+o\left(t^{2}\right)$
interpretation:
consider concatenation of linear paths:
$0 \rightarrow t X \rightarrow t X+t Y \rightarrow 0$
- calculate parallel transport up to order t
- $e \rightarrow e \rightarrow e-\omega(t X)(t Y) e \rightarrow(e-\omega(t X)(t Y) e)$
- alltogether $e \mapsto e-\frac{t^{2}}{2} F^{\nabla}(X, Y) s+O\left(t^{3}\right)$

Lemma 3.24. We have $\nabla=\nabla^{\text {triv }}$ if and only if $F^{\nabla}=0$.

Proof. \Rightarrow

- clear
\Leftarrow
s - radially parallel section
$-\nabla_{Y}^{\text {triv }} s=0$ by definition
- must show that $\nabla_{Y} s=0$
- fix vector X in U
- show $\nabla_{Y} s(X)=0$
$-\nabla_{X} s(t X)=0$ (s radially parallel)
$-\gamma_{t X}$ curve from 0 to X
$-\partial_{t}\left\|^{\gamma_{t X},-1} \nabla_{Y} s(t X)=\right\| \gamma^{\gamma_{t X},-1} \nabla_{X} \nabla_{Y} s(t X)=\|^{\gamma_{t x},-1} F^{\nabla}(X, Y) s(t X)=0$
$-\nabla_{Y} s_{e}(0)=0$ (initial condition)
- set $t=1$
hence $\nabla_{Y} s(t X)=0$ for all t
U - starlike
- $x, y \in U$
- γ curve from x to y

Corollary 3.25. If $F^{\nabla}=0$, then the parallel transport $\|^{\gamma}: E_{x} \rightarrow E_{y}$ is independent of γ.

3.1.4 Tensor algebra with connections, the first Chern class

$E, F \rightarrow B$ vector bundles
∇^{E}, ∇^{F} connections

Lemma 3.26. 1. There is a unique connection $\nabla^{E \oplus F}$ on $E \oplus F$ such that

$$
\nabla^{E \oplus F}(s \oplus t)=\nabla^{E} s \oplus \nabla^{F} t .
$$

2. There is a unique connection $\nabla^{E \otimes F}$ on $E \otimes F$ such that

$$
\nabla^{E \otimes F}(s \otimes t)=\nabla^{E} s \otimes t+s \otimes \nabla^{F} t .
$$

3. There is a unique connection $\nabla^{\operatorname{Hom}(E, F)}$ such that

$$
\left(\nabla^{\operatorname{Hom}(E, F)} \phi\right)(s)=\nabla^{F}(\phi(s))-\phi\left(\nabla^{E} s\right) .
$$

Proof. Exercise. Here is a trick for the tensor product:
write $E \otimes F$ as $\operatorname{Hom}\left(E^{*}, F\right)$
$E \rightarrow B$ - vector bundle

- ∇ - connection
- define $\nabla \wedge-: \Omega^{k}(B, E) \rightarrow \Omega^{k+1}(B, E)$

$$
\begin{aligned}
\nabla \wedge \omega\left(X_{0}, \ldots, X_{k}\right):= & \sum_{i=0}^{k}(-1)^{i} \nabla_{X_{i}} \omega\left(X_{0}, \ldots, \hat{X}_{i} \ldots, X_{k}\right) \\
& +\sum_{i<j}(-1)^{i+j} \omega\left(\left[X_{i}, X_{j}\right], X_{0}, \ldots, \hat{X}_{i}, \ldots, \hat{X}_{j} \ldots, X_{k}\right)
\end{aligned}
$$

Lemma 3.27. $\nabla \wedge \omega$ is well-defined.

Proof. must check:

- formula is alternating in $\left(X_{i}\right)$
- formula ist $C^{\infty}(B)$-linear in the X_{i}
for 1-form:

$$
\nabla \wedge \omega(X, Y)=\nabla_{X} \omega(Y)-\nabla_{Y} \omega(X)-\omega([X, Y])
$$

for 2-form

$$
\begin{aligned}
\nabla \wedge \omega(X, Y, Z)= & \nabla_{X} \omega(Y, Z)+\nabla_{Y} \omega(Z, X)+\nabla_{Z} \omega(X, Y) \\
& +-\omega([X, Y], Z)-\omega([Y, Z], X)-\omega([Z, X], Y)
\end{aligned}
$$

for trivial bundle under $\Omega(B, B \times \mathbb{R}) \cong \Omega(B)$ and $\nabla=\nabla^{\text {triv }}: \nabla \wedge-=d$ - de Rham differential
calculate:
$\nabla \wedge \nabla(s)(X, Y)=\nabla_{X} \nabla_{Y}-\nabla_{Y} \nabla_{X} s-\nabla_{[X, Y]} s=F^{\nabla} s$
Corollary 3.28. $\nabla \wedge-: \Omega(M, E) \rightarrow \Omega(M, E)$ is a differential of a chain complex if and only if $F^{\nabla}=0$
note:

- $\Omega(B, E)$ is $\Omega(B)$ - module
- $\nabla(\omega \wedge s)=d \omega \wedge s+(-1)^{|\omega|} \omega \wedge \nabla^{E} s$
$-\nabla \wedge \nabla \wedge=F^{\nabla} \wedge$
$E \rightarrow B$ - vector bundle
∇ connection
Lemma 3.29. (Bianchi identity)

$$
\nabla^{\operatorname{End}(E)} \wedge F^{\nabla}=0
$$

Proof. verify locally

- can assume that commutators of X, Y, Z vanish
- take coordinate vector fields
- $F^{\nabla}(X, Y)=\left[\nabla_{X}, \nabla_{Y}\right]$
$-\nabla_{X}^{\operatorname{End}(E)} F^{\nabla}(Y, Z)=\left[\nabla_{X},\left[\nabla_{Y}, \nabla_{Z}\right]\right]$
assertion is now Jacobi identity for endomorphisms of a vector space
$E \rightarrow B$ - vector bundle
- $\operatorname{tr}: \operatorname{End}(E) \rightarrow B \times \mathbb{R}$ bundle morphism
- ∇ on E
- $\nabla^{\text {triv }}$ on $B \times \mathbb{R}$

Lemma 3.30. $\nabla^{\operatorname{Hom}(\operatorname{End}(E), B \times \mathbb{R})} \operatorname{tr}=0$

Proof. - to show: $X(\operatorname{tr}(\phi))=\operatorname{tr}\left(\nabla_{X} \phi\right)$

- local trivialization
- sections of E are vector valued functions
- sections of $\operatorname{End}(E)$ are matrix valued functions
- $\nabla^{E}=d+\omega$
$-\nabla_{X}^{\operatorname{End}(E)} \phi=X(\phi)+[\omega(X), \phi]$
$-\operatorname{tr}\left(\nabla_{X}^{\operatorname{End}(E)} \phi\right)=\operatorname{tr}(X(\phi))+\operatorname{tr}([\omega(X), \phi])=X(\operatorname{tr}(\phi))$
$E \rightarrow B$ - vector bundle
- ∇ - connection
$-\operatorname{tr} F^{\nabla} \in \Omega^{2}(B)$
Lemma 3.31. $d \operatorname{tr} F^{\nabla}=0$

Proof. - assume that mutual commutators of X, Y, Z vanish

- Cartan formula
- $d \operatorname{tr} F^{\nabla}(X, Y, Z)=X\left(\operatorname{tr} F^{\nabla}(Y, Z)\right)-Y\left(\operatorname{tr} F^{\nabla}(X, Z)\right)+Z\left(\operatorname{tr} F^{\nabla}(X, Y)\right)$
- get $d \operatorname{tr} F^{\nabla}(X, Y, Z)=\operatorname{tr}\left(\nabla_{X}^{\operatorname{End}(E)} F^{\nabla}(Y, Z)+\nabla_{Y}^{\operatorname{End}(E)} F^{\nabla}(Z, X)+\nabla_{Z}^{\operatorname{End}(E)} F^{\nabla}(X, Y)\right)=0$ with Bianchi
dependence on the connection
$\operatorname{tr} F^{\nabla+\omega}=\operatorname{tr} F^{\nabla}+\operatorname{tr}(\nabla \wedge \omega)+\operatorname{tr}[\omega, \omega]$
$-\operatorname{tr}[\omega, \omega]=0$
$-\operatorname{tr}(\nabla \wedge \omega)(X, Y)=\operatorname{tr}\left(\nabla_{X}^{\operatorname{End}(E)} \omega(Y)-\nabla_{Y}^{\operatorname{End}(E)} \omega(X)\right)=X \operatorname{tr}(\omega(Y))-Y \operatorname{tr}(\omega(X))=(d \operatorname{tr} \omega)(X, Y)$
- Cartan formula

Definition 3.32. The vector space

$$
H_{d R}^{n}(B):=\frac{\operatorname{ker}\left(d: \Omega^{n}(B) \rightarrow \Omega^{n+1}(B)\right)}{\operatorname{im}\left(d: \Omega^{n-1}(B) \rightarrow \Omega^{n}(B)\right)}
$$

is called the nth de Rham cohomology of B.
Corollary 3.33. The class $c_{1}(E):=\left[\operatorname{tr} F^{\nabla}\right] \in H_{d R}^{2}(B)$ is independent of the choice of the connection.

Definition 3.34. $c_{1}(E)$ is called the first Chern class of E.
if E is trivial

- E admits trivial connection $\nabla^{\text {triv }}$ with zero curvature
- conclude $c_{1}(E)=0$
vice versa:
- if $c_{1}(E) \neq 0$, then E is not trivial.

Note: we will see later that $c_{1}(E)=0$ always

3.1.5 Metrics and connections

$E \rightarrow B$ - vector bundle

- $h \in \Gamma\left(B, S^{2}\left(E^{*}\right)\right)$
$-b \in B$
- $h(b) \in S^{2}\left(E_{b}^{*}\right)$ - symmetric bilinear form

Definition 3.35. h is called a metric on E if $h(b)>0$ for every b in B.
Definition 3.36. The pair (E, h) is called an euclidean vector bundle.

Example 3.37. $\psi: E \cong B \times V$ - trivialization

- choose metric h^{V} on V
- get metric on E such that ψ is fibrewise isometry
$E \rightarrow B$ vector bundle
Lemma 3.38. There exists a metric on E.
Proof. cover B by local trivializations $\left(U_{\alpha}, \psi_{\alpha}\right)$
- $\left(\chi_{\alpha}\right)$ - partition of unity
- get local metrics h^{α}
- define for $b \in B$ and $e, e^{\prime} \in E_{b}$:

$$
h\left(e, e^{\prime}\right):=\sum_{\alpha} \chi_{\alpha}(b) h^{\alpha}(b)\left(e, e^{\prime}\right)
$$

- h is a metric on E

Lemma 3.39. Every subbundle $F \subset E$ has a complement.
Proof. choose metric on E

- $P \in \Gamma(B, \operatorname{End}(E))$
- $P(b)$ - orthogonal projection onto F
$-F^{\perp}:=\operatorname{ker}(1-P)$
have deomposition $E \cong F \oplus F^{\perp}$
note: $h=h^{F} \oplus h^{F^{\perp}}$
$E \rightarrow B$ vector bundle
- h^{V} - metric on V
- h metric on E
- a frame $\phi: V \rightarrow E$ is orthogonal if it is an isometry
- get subbundle $O(E, h) \subseteq \operatorname{Fr}(E)$ of orthogonal frames
- is a $O\left(V, h^{V}\right)$ - principal bundle
- have isomorphism $O(E, h) \times_{O\left(V, h^{V}\right)} V \cong E$
- metric provides reduction of structure group to $O\left(V, h^{V}\right)$
vice versa: assume $E \cong P \times_{O\left(V, h^{V}\right)} V$
- get metric h such that $h\left([p, v],\left[p, v^{\prime}\right]\right)=h^{V}\left(v, v^{\prime}\right)$
∇ - connection
Definition 3.40. h is compatible with ∇ if $\nabla^{S^{2}\left(E^{*}\right)} h=0$.
also say: ∇ is a metric connection
note: $\nabla_{X}^{S^{2}\left(E^{*}\right)} h(s, t)=X(h(s, t))-h\left(\nabla_{X} s, t\right)-h\left(s, \nabla_{X} t\right)$
- hence compatibility is equivalent to relation
- $d h(s, t)=h(\nabla s, t)+h(s, \nabla t)$

Example 3.41. $E \cong B \times V$
h induced from h^{V}

- $\nabla^{\text {triv }}$ is compatible with h

Example 3.42. $E \rightarrow B$ vector bundle

- ∇ connection
- h metric, compatible with ∇
$P \in \Gamma(B, \operatorname{End}(E))$ - family of projections
- $F=\operatorname{im}(P)$
- have restricted metric h^{F}
- if $P^{*}=P$, then $P \nabla$ is compatible with h^{F}
$d h^{F}(s, t)=h(\nabla s, t)+h(s, \nabla t)=h(\nabla s, P t)+h(P s, \nabla t)=h(P \nabla s, t)+h(s, P \nabla t)=$ $h^{F}\left(\nabla^{F} s, t\right)+h\left(s, \nabla^{F} t\right)$
(E, h) euclidean vector bundle
$\gamma:[0,1] \rightarrow B$ - a curve
- $\|^{\gamma}: E_{\gamma(0)} \rightarrow E_{\gamma(1)}$

Lemma 3.43. If ∇ and h are compatible, then $\|^{\gamma}$ is isometric.
Proof. s, t - parallel sections along γ
$-e=s(0), e^{\prime}=s^{\prime}(0)$
$\partial_{t} h\left(s, s^{\prime}\right)=h\left(\nabla_{\gamma^{\prime}(t)} s, s^{\prime}\right)+h\left(s, \nabla_{\gamma^{\prime}(t)} s^{\prime}\right)=0$
$-h\left(e, e^{\prime}\right)=h\left(s, s^{\prime}\right)(0)=h\left(s, s^{\prime}\right)(1)=h\left(\left\|^{\gamma}(e),\right\|^{\gamma}\left(e^{\prime}\right)\right)$
(E, h) euclidean vector bundle

- ∇ - connection
- define new connection characterized by

$$
h\left(\nabla_{X}^{*} s, t\right)=X(h(s, t))-h\left(s, \nabla_{X} t\right)
$$

- $t \mapsto X(h(s, t))-h\left(s, \nabla_{X} t\right)$ is $C^{\infty}(B)$-linear
- hence there is a unique section $\nabla_{X}^{*} s \in \Gamma(B, E)$ satisfying condition
- check that $(X, s) \mapsto \nabla_{X}^{*} s$ is a connection

Definition 3.44. ∇^{*} is called the adjoint connection.
∇ and h are compatible if and only if $\nabla=\nabla^{*}$
$\left(\nabla^{*}\right)^{*}=\nabla$

- interpret h as isomorphism $h: E \rightarrow E^{*}$
- then $\nabla^{*}=h^{-1} \nabla^{E^{*}} h$
define $\omega:=\nabla^{*}-\nabla$

Definition 3.45. The connection $\nabla^{u}:=\nabla+\frac{1}{2} \omega$ is called the orthogonalization of ∇

- ∇^{u} is compatible with h

Corollary 3.46. Every euclidean vector bundle admits a metric connection.
$\nabla, \nabla+\omega$ are both compatible if and only $\omega(X)=-\omega(X)^{*}$ for all X

Lemma 3.47. If ∇ is compatible, then $F^{\nabla}(X, Y)=-F^{\nabla}(X, Y)^{*}$

Proof. Exercise

Corollary 3.48. For any vector bundle $E \rightarrow B$ we have $c_{1}(E)=0$.

Proof. E has metric

- can choose metric connection
- $F^{\nabla}(X, Y)$ is antisymmetric
$-\operatorname{tr} F^{\nabla^{u}}(X, Y)=0$
- cohomology class $c_{1}(E)$ contains 0

Remark 3.49. to get non-trivial cohomology classes consider
$s(\nabla)_{n}:=\operatorname{tr}(\underbrace{F^{\nabla} \wedge \ldots F^{\nabla}}_{2 n}) \in \Omega^{4 n}(B)$

- then $d s_{n}(\nabla)=0$
- $s_{n}(E):=\left[s_{n}(\nabla)\right] \in H_{d R}^{4 n}(B)$ does not depend on ∇
these classes may indeed be non-trivial

3.2 Connection of fibre bundles

3.2.1 Horizontal bundles for submersions

$\pi: M \rightarrow B$ smooth map
Definition 3.50. π is called:

1. a submersion if $T \pi(m): T_{m} M \rightarrow T_{\pi(m)} B$ is surjective for every m in M.
2. an immersion if $T \pi(m): T_{m} M \rightarrow T_{\pi(m)} B$ is injective for every m in M.

Example 3.51. $\pi: M \rightarrow B$ - a locally trivial fibre bundle

- then π is a submersion
consider submersion $\pi: M \rightarrow B$
- $D \pi: T M \rightarrow \pi^{*} T B$ surjective
- $\operatorname{dim}(\operatorname{ker}(D \pi))$ has locally constant rank
- $T^{v} \pi:=\operatorname{ker} D \pi \rightarrow M$ is a vector bundle bundle

Definition 3.52. The subbundle $T^{v} \pi$ of $T M$ is called the vertical subbundle of π.
Definition 3.53. A horizontal bundle for π is a subbundle $T^{h} M$ of $T M$ such $D \pi_{\mid T^{h} M}$: $T^{h} M \rightarrow \pi^{*} T B$ is an isomorphism.
observe: assume that $T^{h} M$ is horizontal bundle
$T^{v} \pi \oplus T^{h} M \rightarrow T M$ is bundle isomorphism

- injective: $T^{v} \pi \cap T^{h} M=0$ (since otherwise $D \pi_{\mid T^{h} M}$ not injective)
- surjective: both bundles have the same dimension

Lemma 3.54. Horizontal bundles for $\pi: M \rightarrow B$ exist.
Proof. choose metric on TM

- get notion of orthogonal complement
- take $T^{h} M:=T^{v} \pi^{\perp}$

Example 3.55. $\pi: E \rightarrow B$ vector bundle

- have canonial isomorphism $i: \pi^{*} E \cong T^{v} \pi$
- fix base point $e \in E_{b}$
- fibre of $\left(\pi^{*} E\right)_{e}$ is canonically isomorphic to E_{b}
- for $f \in\left(\pi^{*} E\right)_{e}$ consider curve $t \mapsto e+t f$ in E
- tangent vector $i(e)(f)$ at $t=0$ is element of $T E$
$-\pi(e+t f)=b$ for all t implies $T \pi(e)(i(e)(f))=0$
- hence $i(e)(f) \in T^{v} \pi$
check in chart: i is a bundle isomorphism
∇ - connection on E
- will see that it determines a horizontal subbundle $T^{h, \nabla^{*}} E$
$-e \in E_{b}$
- describe $T_{e}^{h, \nabla} E$
- we can find a section s with $s(b)=e$ and $\nabla s(b)=0$
- only in the single point b, in general not on a larger subset
- in local trivialization:
$-\nabla=\nabla^{\text {triv }}+\omega$
$-\nabla_{X} s(b)=0$ means $X(s)(b)+\omega(b)(X) e=0$
$-s(b+X)=s(b)-\omega(b)(X) e+O\left(X^{2}\right)$
—— $\operatorname{Ts}(b)(X)=-\omega(b)(X)($ does not depend on choice of $s)$
——define $T_{e}^{h, \nabla} E=T s(b)\left(T_{b} B\right)$
- $\pi \circ s=$ id implies $D \pi(e)_{\mid T_{e}^{h, \nabla}}$ is isomorphism
note: can recover ∇ from $T^{h, \nabla} M$
$\pi: M \rightarrow B$ submersion
- $T^{h} M$ given
- can define horizontal lift of vectors and vector fields.
b in B
- $m \in M_{b}$
- $X \in T_{b} B$

Definition 3.56. $X^{h} \in T_{m} M$ is called the horizontal lift of X if $T \pi(m)\left(X^{h}\right)=X$ and $X^{h} \in T_{m}^{h} M$.

- X^{h} is uniquely determined by X
- $X^{h}=\left(T \pi_{\mid T_{m}^{h} M}\right)^{-1}(X)$
consider now vector fields
- $X \in \mathcal{X}(B)$
- define $X^{h} \in \mathcal{X}(M)$ such that $X^{h}(m)$ is the horizontal lift of $X(\pi(m))$

Definition 3.57. X^{h} is called the horizontal lift of X.

- get map $\mathcal{X}(B) \rightarrow \mathcal{X}(M), X \mapsto X^{h}$ horizontal lift
- ist $C^{\infty}(B)$-linear: $(f X)^{h}=\pi^{*}(f) X^{h}$
consider curve $\gamma: I \rightarrow B$
Definition 3.58. A horizontal lift of γ is a curve $\tilde{\gamma}: I \rightarrow M$ with

1. $\pi \circ \tilde{\gamma}=\gamma$
2. $\gamma^{\prime}(t)$ is horizontal for every $t \in I$
consider deviation from being a Lie algebra homomorphism
Lemma 3.59. The map $\mathcal{X}(B) \times \mathcal{X}(B) \rightarrow \Gamma\left(M, T^{v} \pi\right)$

$$
\mathcal{X}(B) \times \mathcal{X}(B) \ni(X, Y) \mapsto T(X, Y)=\left[X^{h}, Y^{h}\right]-[X, Y]^{h}
$$

takes values in $\Gamma\left(M, T^{v} \pi\right)$ and is $C^{\infty}(B)$-linear.

Proof. $C^{\infty}(B)$-linearity

$$
\begin{aligned}
T(f X, Y) & =\left[(f X)^{h}, Y^{h}\right]-[f X, Y]^{h} \\
& =\left[\pi^{*}(f) X^{h}, Y^{h}\right]-[f X, Y]^{h} \\
& =\pi^{*}(f)\left[X^{h}, Y^{h}\right]-f[X, Y]^{h}-Y^{h}\left(\pi^{*}(f)\right) X^{h}+\pi^{*}(Y(f)) X^{h} \\
& =\pi^{*}(f) T(X, Y)
\end{aligned}
$$

used: $Y^{h}\left(\pi^{*}(f)\right)(m)=T \pi(m)\left(Y^{h}(m)\right)(f)=Y(\pi(m))(f)=\pi^{*}(Y(f))(m)$ - hence $Y^{h}\left(\pi^{*}(f)\right)=\pi^{*}(Y(f))$
verticality:
must show that $D \pi(m)(T(X, Y))(m)=0$ for all m

- suffices to show that $T(X, Y)\left(\pi^{*}(f)\right)=0$ for all $f \in C^{\infty}(B)$

$$
\begin{aligned}
T(X, Y)\left(\pi^{*}(f)\right) & =\left[X^{h}, Y^{h}\right]\left(\pi^{*}(f)\right)-[X, Y]^{h}\left(\pi^{*}(f)\right) \\
& =X^{h}\left(Y^{h}\left(\pi^{*}(f)\right)-Y^{h}\left(X^{h}\left(\pi^{*}(f)\right)\right)-\pi^{*}([X, Y](f))\right. \\
& =X^{h}\left(\pi^{*}(Y(f))\right)-Y^{h}\left(\pi^{*}(X(f))\right)-\pi^{*}([X, Y](f)) \\
& =\pi^{*}(X(Y(f)))-\pi^{*}(Y(X(f)))-\pi^{*}([X, Y](f)) \\
& =0
\end{aligned}
$$

Definition 3.60. T is called the curvature of $T^{h} \pi$
thus $T \in \Gamma\left(M, \Lambda^{2} T^{h} M \otimes T^{v} \pi\right)$
Example 3.61. Example: $M=B \times F$

- $T^{h} M=\operatorname{pr}^{*} T B \subseteq T B \boxplus T F \cong M$
- $T=0$
$m \in M_{b}, X, Y \in T_{b} B$
- then $T(m)(X, Y) \in T_{m}^{v}(X, Y)$ is defined

Definition 3.62. T is called the curvature of the horizontal subbundle $T^{h} M$.
Example 3.63. $\pi: E \rightarrow B$ vector bundle

- ∇ - connection
- $T^{h, \nabla} M$ - associated horizontal subbundle

Lemma 3.64. For $e \in E_{b}$ and $X, Y \in T_{b} B$ we have $T(X, Y)(e)=-i(e)\left(F^{\nabla}(b)(X, Y)(e)\right)$

Proof. - have explicit formula for horizontal lift in coordinates:

- notation for coordinates:
- for $E:(b, v)$,
$-b \in \mathbb{R}^{n}$ base coordinate,
$-v \in V$ - fibre coordinate
- for $T E:(b, v, \beta, \xi)$,
$-b, \beta \in \mathbb{R}^{n}$,
$-v, \xi \in V$
$\pi(b, v):=b$
- $T \pi(b, v)(\beta, \xi)=(b, \beta)$
$-(b, \beta) \in T_{n} B$
- vertical vectors: $(b, v, 0, \xi) \in T_{(b, v)}^{v} E$
$-\nabla=\nabla^{\text {triv }}+\omega$
- horizontal lift of (b, β) at $(b, v):(b, \beta)^{h}=(b, v, \beta,-\omega(b)(\beta)(v))$
- for coordinate field: $b \mapsto(b, \beta)$ (consider β as constant function in b)
- horizontal lift: $(b, v) \mapsto(b, v, \beta,-\omega(b)(\beta)(v))$
rite in the target $[b, v, 0, \ldots]$

$$
\begin{aligned}
T(b, v)\left((b, \beta),\left(b, \beta^{\prime}\right)\right)= & {\left[(b, v) \mapsto(b, v, \beta,-\omega(b)(\beta)(v)),(b, v) \mapsto\left(b, v, \beta^{\prime},-\omega(b)\left(\beta^{\prime}\right)(v)\right)\right] } \\
= & -\beta\left(\omega(-)\left(\beta^{\prime}\right)(v)\right)+\beta^{\prime}(\omega(-)(\beta)(v))+ \\
& \omega(b)\left(\beta^{\prime}\right)(\omega(b)(\beta)(v))-\omega(b)(\beta)\left(\omega(b)\left(\beta^{\prime}\right)(v)\right) \\
= & (\nabla \wedge \omega)(b)\left(\beta^{\prime}, \beta\right)(v)+\left[\omega(b)\left(\beta^{\prime}\right), \omega(b)(\beta)\right](v) \\
= & -F^{\nabla}(b)\left((b, \beta),\left(b, \beta^{\prime}\right)\right)(v)
\end{aligned}
$$

consider pull-back situation

connection $T^{h} \pi$ induces connection $T^{h} \pi^{\prime}$ by pull-back
$d k: T M^{\prime} \rightarrow k^{*} T M \cong T^{v} M \oplus T^{h} M$

- restricts to isomorphism $d k_{\mid T^{v} \pi^{\prime}}: T^{v} \pi^{\prime} \rightarrow T^{v} \pi$
- $T^{h} M^{\prime}$ characterized by: $T_{m^{\prime}}^{h} M^{\prime}=\left(D k\left(m^{\prime}\right)\right)^{-1}\left(T_{k\left(m^{\prime}\right)}^{h} M^{\prime}\right)$
- then $d k=d k_{\mid T^{v} \pi^{\prime}} \oplus d k_{T_{m^{\prime}}^{h} M^{\prime}}: T^{v} \pi^{\prime} \oplus T^{h} M^{\prime} \rightarrow T^{v} \pi \oplus T^{h} M$
- write $T^{h} M^{\prime}=h^{*} T^{h} M$
obervation:
Corollary 3.65. If γ^{\prime} is horizontal curve in M^{\prime}, then $k \circ \gamma^{\prime}$ is horizontal in M
Definition 3.66. A morphism $\pi: M \rightarrow B$ between manifold (topological spaces) is called proper if for every compact $K \subseteq B$ the preimage $\pi^{-1}(K)$ is compact.

Example 3.67. $\pi: M \rightarrow B$ a fibre bundle with compact fibre F

- then π is proper
$\pi:(0, \infty) \rightarrow \mathbb{R}$ is not proper
$-\pi^{-1}([-1,1])=(0,1]$ is not compact

If M is compact, then every map out of M is proper.
$\pi: M \rightarrow B$ submersion

- $T^{h} M$ - horizontal bundle
- $\gamma: I \rightarrow B$ - curve
$-t_{0} \in I$
Proposition 3.68. If π is proper, then for every $m_{0} \in M_{\gamma\left(t_{0}\right)}$ there exists a unique horizontal lift $\tilde{\gamma}$ of γ with $\tilde{\gamma}\left(t_{0}\right)=m_{0}$.

Proof. assume $B=I \subseteq \mathbb{R}$ - interval

- $\partial_{t} \in \mathcal{X}(I)$
- $\partial_{t}^{h} \in \mathcal{X}(M)$
- $\tilde{\gamma}$ must be integral curve of ∂_{t}^{h}
- therefore uniqueness
existence
claim: the integral curve γ^{h} of ∂_{t}^{h} with $\gamma^{h}\left(t_{0}\right)=m_{0}$ exists on I by contradiction
- $J \subseteq I$ max. existence interval of γ^{h}
$-\pi \circ \gamma^{h}(t)=t$
- assume $\sup (J)=t<\sup (I)$
- from ODE theory: $\gamma^{h}(s)$ does not have accumulation point for $s \uparrow t$
- chose $\epsilon>0$ such that $[t-\epsilon, t] \subseteq I$
- note that for $s \geq t-\epsilon$ we have $\gamma^{h}(s) \in \pi^{-1}([t-\epsilon, t])$
$-\pi^{-1}([t-\epsilon, t])$ is compact
- hence such accumulation point exists
- contradiction
general base
- pull-back along $\gamma: I \rightarrow B$

- find horizontal lift $\tilde{\gamma}^{\prime}: I \rightarrow M^{\prime}$
- then $\tilde{\gamma}=k \circ \tilde{\gamma}^{\prime}$

Example 3.69. properness is necessary:
here is a counterexample
$-(0, \infty) \rightarrow \mathbb{R}$
$-t_{0}=1$
$-\gamma^{h}(t):=t$ exists only on $(0, \infty)$ (and not on $\left.\mathbb{R}\right)$
consider parallel transport
$\pi: M \rightarrow B$ - submersion
$T^{h} M$ given

- $\gamma:[0,1] \rightarrow B$ - a curve
- pull-back

- get induced $\gamma^{*} T^{h} M$
- $m_{0} \in M_{\gamma(0)}$
assume that π is proper (or γ^{h} exists for other reasons)
- can define horizontal lift of γ with start in m_{0}
- take $k \circ \gamma^{h}$
- denote now also as γ^{h}
- define $\|^{\gamma}\left(m_{0}\right):=\gamma^{h}(1)$

Definition 3.70. The map $\|^{\gamma}: M_{\gamma(0)} \rightarrow M_{\gamma(1)}$ is called the parallel transport along γ with respect to $T^{h} M$.
here is a list of (essentially obvious) properties

- $\|^{\gamma}: M_{\gamma(0)} \rightarrow M_{\gamma(1)}$ is diffeomorphism
- is reparametrization invariant
- $\left\|^{\gamma^{\prime} \sharp \gamma}=\right\|^{\gamma^{\prime}} \circ \|^{\gamma}$
$-\left\|^{\gamma^{-1}}=\right\|^{\gamma,-1}$
- if $T=0$, then $\|^{\gamma}$ is deformation invariant in γ

Lemma 3.71. A proper submersion $M \rightarrow I$ is a trivial bundle.

Proof. use parallel transport
fix $t_{0} \in I$
for $t \in i$ define $\gamma_{t}(u):=(1-u) t_{0}+u t$

- curver from t to t_{0}
define
$\Psi: M \times I \times M_{t_{0}}$
$-\Psi(m):=\|^{\gamma_{\pi(m)}}(m)$

Lemma 3.72 (Ehresmann Theorem). A proper submersion is a locally trivial fibre bundle.

Proof. - choose connection

- b in B
- choose chart at B with range a starlike domain in \mathbb{R}^{n}
- use radial parallel transport to trivialize
- $M \rightarrow B \times M_{b}$
- $M \ni m \mapsto\left(\pi(m), \|^{\gamma_{\pi(m)},-1}(m)\right) \in B \times M_{b}$
- here γ_{x} is curve $t \mapsto t x$ from 0 to x

3.2.2 Connections on principal bundle

G - Lie group
$\pi: P \rightarrow B$ - a G-principal bundle

- have right G-action $g \mapsto R_{g}$
- can ask that horizontal bundles are G-invariant.

Definition 3.73. A principal bundle connection on $\pi: P \rightarrow B$ is a G-invariant horizontal bundle.
\mathfrak{g} - Lie algebra of G

- $X \in \mathfrak{g}-X^{\sharp} \in \mathcal{X}(P)$ fundamental vector field of action
$-X^{\sharp}(p)=\left(\partial_{t)}^{\mid t=0} R_{\operatorname{exP}(t X)}(p)\right.$
- in trivialization $P=B \times G$
- interpret X in ${ }^{G} \mathcal{X}(G)$
- have $X^{\sharp}(b, g)=0 \oplus X(g) \in T_{b} B \oplus T_{g} G \cong T_{(b, g)}(B \times G)$
- the values of $X^{\sharp}(p)$ for all $X \in \mathfrak{g}$ generates $T^{v} \pi$
- G acts on itself by conjugation: $(g, h) \mapsto \alpha_{g}(h):=g^{-1} h g$
- action fixes e
- G acts on $T_{e} G=\mathfrak{g}$ by Lie algebra homomorphism $\operatorname{Ad}(g):=T \alpha_{g}(e) \in \operatorname{End}(\mathfrak{g})$
- by definition: $\left(\partial_{t}\right)_{\mid t=0} g^{-1} \exp (t X) g=\operatorname{Ad}\left(g^{-1}\right)(X)$

$$
\begin{aligned}
T R_{g}(p)\left(X^{\sharp}(p)\right) & =T R_{g}\left(\partial_{t}\right)_{\mid t=0} R_{\exp (t X)}(p) \\
& =\left(\partial_{t}\right)_{\mid t=0} R_{g} R_{\exp (t X)}(p) \\
& =\left(\partial_{t}\right)_{\mid t=0} R_{g^{-1}} \exp (t X) g \\
& =\left(\operatorname{Ad}\left(g^{-1}(X)\right)^{\sharp}(p g)\right.
\end{aligned}
$$

write \mathfrak{g} instead of $P \times \mathfrak{g}$
define form $\omega: \Omega^{1}(M, \mathfrak{g})$ by the following conditions:

- $T^{h} P=\operatorname{ker}(\omega)$
- $\omega(p)\left(X^{\sharp}(p)\right)=X$ for all $X \in \mathfrak{g}$
- this determines $\omega(p)$ since $T_{p} P \cong T_{p}^{h} P \oplus T_{p}^{v} \pi$ and $X \mapsto X^{\sharp}(p), \mathfrak{g} \rightarrow T_{p}^{v} \pi$ is isomorphism
- G-invariance of $T^{h} P$ implies G-invariance of ω

Lemma 3.74. For every g in G we have $R_{g}^{*} \omega=\operatorname{Ad}(g) \omega$
Proof. $\operatorname{Ad}(g) \in \operatorname{End}(\mathfrak{g})$ is applied to the values
for horizontal vectors: $H \in T_{p}^{h} P$
$\left(R_{g}^{*} \omega\right)(p)(H)=\omega(p g)\left(T R_{g}(X)\right)=0$ since $T R_{g}(X) \in T_{p g}^{h} P$ by invariance of $T^{h} P$
for vertical vectors:

$$
\begin{aligned}
\left(R_{g}^{*} \omega\right)(p)\left(X^{\sharp}(p)\right) & =\omega(p g)\left(T R_{g}(p) X^{\sharp}(p)\right) \\
& =\omega(p g)\left(\left(\operatorname{Ad}\left(g^{-1}\right)(X)\right)^{\sharp}(p g)\right)=\operatorname{Ad}\left(g^{-1}\right)(X) \\
& =\operatorname{Ad}\left(g^{-1}\right)\left(\omega(p)\left(X^{\sharp}(p)\right)\right)
\end{aligned}
$$

Definition 3.75. A form $\omega \in \Omega^{1}(P, \mathfrak{g})$ with

1. $\omega(p)\left(X^{\sharp}(p)\right)=X$ for all $X \in \mathfrak{g}$ and $p \in P$
2. $R_{g}^{*} \omega=\operatorname{Ad}\left(g^{-1}\right) \omega$ for all g in G
is called a connection 1-form.
Connection one-form provide an alternative description of principal bundle connections

- $T^{h} P$ determines ω
- ω determines $T^{h} P$ by $T^{h} P=\operatorname{ker}(\omega)$

Maurer-Cartan form
$\theta \in \Omega^{1}(G, \mathfrak{g})$

- is the unique principal bundle connection 1-form on $G \rightarrow *$
- θ is determined by: for X left invariant: $\theta(X)=X(e)$
$-\theta(g)=d L_{g^{-1}}(g)$
- write often as $g^{-1} d g$
leads to
$d\left(g^{-1} d g\right)=-g^{-1} d g \wedge g^{-1} d g=\left[g^{-1} d g, g^{-1} d g\right]$
structure equation:
$d \theta=[\theta, \theta]$
$P \rightarrow B$ - G - principal bundle
$p \in P$ induces map $i_{p}: G \rightarrow P, i_{p}(g):=p g$
Corollary 3.76. $\omega \in \Omega^{1}(P, \mathfrak{g})$ is a connection 1 -form if and only if $i_{p}^{*} \omega=\theta$ for every p in P.
we say that ω is fibrewise Mauerer-Cartan
P - G-principal bundle
write $\operatorname{Ad}(P):=P \times_{G} \mathfrak{g}$ for associated vector bundle

Lemma 3.77. Principal bundle connections exists and from an affine space over $\Omega^{1}(B, \operatorname{Ad}(P))$
Proof. $P=B \times G$ trivial

- $\operatorname{pr}_{G}^{*} \theta$ is connection 1-form
$\pi: P \rightarrow B$ general
- choose local trivializations $\left(U_{\alpha}, \Psi_{\alpha}\right)$
- get principal bundle connections $\omega_{\alpha} \in \Omega^{1}\left(\pi^{-1}\left(U_{\alpha}\right), \mathfrak{g}\right)$
- pull-back of Maurer-Cartan form
- choose partition of unity $\left(\chi_{\alpha}\right)$
$-\omega(p):=\sum_{\alpha} \chi(\pi(p)) \omega_{\alpha}(p)$
- check that it is fibrewise Maurer-Cartan
ω, ω^{\prime} - two connection 1-forms
$-\delta:=\omega^{\prime}-\omega \in \Omega^{1}(P, \mathfrak{g})$
$-\delta_{\mid T^{v} \pi}=0$
- define $\bar{\delta}(b) \in T_{b}^{*} B \otimes \operatorname{Ad}(P)$
- $\bar{\delta}(b)(X)=[p, \delta(p)(\tilde{X})]$ for any $p \in P$ and lift \tilde{X} in $T_{p} P$
- indepence of lifts: two lift differ by vertical vectors
- independence of p :
$-\left[p g, \delta(p g)\left(T R_{g}(\tilde{X})\right)\right]=\left[p g, \operatorname{Ad}\left(g^{-1}\right)(\delta(p)(X))\right]=[p, \delta(p)(X)]$
- get $\bar{\delta} \in \Omega^{1}(B, \operatorname{Ad}(P))$
- vice versa: $\bar{\delta}$ given
if ω is connection 1-form and $\bar{\delta} \in \Omega^{1}(B, \operatorname{Ad}(P))$
- define $\delta(p)(\tilde{X}):=Z \in \mathfrak{g}$ such that $[p, Z]=\bar{\delta}(\pi(p))(T \pi(X))$
check: $\omega^{\prime}:=\omega+\delta$ is connection 1-form
note: if G is not compact then $\pi: P \rightarrow B$ is not proper
- so the general result about existence horizontal lifts of curves do not apply
- but such lifts exist

Lemma 3.78. Horizontal lifts of curves with respect to a principal bundle connection exist.
Proof. $\pi: P \rightarrow I-G$-principal bundle

- $T^{h} P$ - principal bundle connection
- $\gamma: J \rightarrow I$ max. horizontal lift
$-\operatorname{assume} \sup (J)=t_{1}<\sup (I)$
choose any point $p \in P_{t}$
- there is horizontal curve $\sigma:(t-\epsilon, t+\epsilon) \rightarrow P$ with $\sigma(t)=p$
- for any g in $G: \sigma g$ is also horizontal
- there is g in G such that $\gamma(t-\epsilon / 2)=\sigma(t-\epsilon / 2) g$
- can prolong γ up to $t+\epsilon$ with $s \mapsto \sigma(s) g$
- contradiction to maximality of J
consider curvature
$T \in \Gamma\left(P, \Lambda^{2} \pi^{*} T^{*} B \otimes T^{v} P\right)$
- want to express this in terms of ω
set
$\Omega:=d \omega+[\omega, \omega] \in \Omega^{2}(P, \mathfrak{g})$
$-\Omega(X, Y)=X(\omega(Y))-Y(\omega(X))+\omega([X, Y])-[\omega(X), \omega(Y)]$
Lemma 3.79. 1. $R_{g}^{*} \Omega=\operatorname{Ad}\left(g^{-1}\right) \Omega$

2. If X is vertical, then $\Omega(X, Y)=0$
3. $\omega(p)(T(p)(X, Y))=-\Omega(p)\left(X^{h}, Y^{h}\right)$ for $X, Y \in T_{\pi(p)} B$

Proof. use
$-\operatorname{Ad}(g)$ is Lie algebra auto of \mathfrak{g}

- $R_{g}^{*} d=d R_{g}^{*}$

$$
\begin{aligned}
R_{g}^{*} \Omega & =R_{g}^{*}(d \omega+[\omega, \omega]) \\
& \left.=d R_{g}^{*} \omega+\left[R_{g}^{*} \omega, R_{g}^{*} \omega\right]\right) \\
& \left.=d \operatorname{Ad}\left(g^{-1}\right) \omega+\left[\operatorname{Ad}\left(g^{-1}\right) \omega, \operatorname{Ad}\left(g^{-1}\right) \omega\right]\right) \\
& =\operatorname{Ad}\left(g^{-1}\right) d \omega+\operatorname{Ad}\left(g^{-1}\right)[\omega, \omega] \\
& =\operatorname{Ad}\left(g^{-1}\right) \Omega
\end{aligned}
$$

X in \mathfrak{g}
$\omega\left(X^{\sharp}\right)=X$ - constant function with value X

- $X^{\sharp}(f)=\left(\partial_{t}\right)_{\mid t=0} R_{\exp (t X)}^{*} f$
$-\left[X^{\sharp}, Y\right]=\left(\partial_{t}\right)_{\mid t=0} D R_{\exp (t X)}^{-1}\left(R_{\exp (t X)}^{*}(Y)\right)$
- $R_{g}^{*}(\omega(Y))=R_{g}^{*}(\omega)\left(D R_{g}^{-1}\left(R_{g}^{*}(Y)\right)\right)$
- $\left(\partial_{t}\right)_{\mid t=0} \operatorname{Ad}\left(\exp (t X)\left(Y^{\prime}\right)\right)=-\left[X, X^{\prime}\right]$

$$
\begin{aligned}
\Omega\left(X^{\sharp}, Y\right)= & X^{\sharp}(\omega(Y))-Y\left(\omega\left(X^{\sharp}\right)\right)-\omega\left(\left[X^{\sharp}, Y\right]\right)+\left[\omega\left(X^{\sharp}\right), \omega(Y)\right] \\
= & X^{\sharp}(\omega(Y))-Y(X)+\omega\left(\left[X^{\sharp}, Y\right]\right)+[X, \omega(Y)] \\
= & \left(\partial_{t}\right)_{\mid t=0} R_{\exp (t X)}^{*}(\omega(Y))-\omega\left(\left(\partial_{t}\right)_{\mid t=0} D R_{\exp (t X)}^{-1}\left(R_{\exp (t X)}^{*}(Y)\right)\right)+[X, \omega(Y)] \\
= & \left(\partial_{t}\right)_{\mid t=0} \operatorname{Ad}(\exp (t X)) \omega(Y)+\omega\left(\left(\partial_{t}\right)_{\mid t=0} D R_{\exp (t X)}^{-1}\left(R_{\exp (t X)}^{*}(Y)\right)\right) \\
& -\omega\left(\left(\partial_{t}\right)_{\mid t=0} D R_{\exp (t X)}^{-1}\left(R_{\exp (t X)}^{*}(Y)\right)\right)+[X, \omega(Y)] \\
= & -[X, \omega(Y)]+[X, \omega(Y)] \\
= & 0
\end{aligned}
$$

use that ω vanishes on horizontal vectors:
$-\Omega\left(X^{h}, Y^{h}\right)=d \omega\left(X^{h}, Y^{h}\right)=-\omega([\tilde{X}, \tilde{Y}])$
$-\omega(T(X, Y))=\omega\left(\left[X^{h}, Y^{h}\right]\right)$
$\rho: G \rightarrow G L(V)$ any representation

- write also $\rho: \mathfrak{g} \rightarrow \operatorname{End}(V)$ for derivative at e (Lie algebra homomorphism)
$-P(V):=P \times_{G} V$ associated bundle
- define $\Omega^{n}(P, V)^{h, G}$ (horizontal and G-invariant sections) as the subspace of $\Omega^{n}(P, V)$ of sections with:

1. $\alpha\left(X_{1}, \ldots, X_{n}\right)=0$ if X_{1} is vertical
2. $R_{g}^{*} \alpha=\rho\left(g^{-1}\right) \alpha$

Lemma 3.80. We have a bijection between

$$
\Omega^{n}(P, V)^{h, G} \cong \Omega^{n}(B, P(V)), \quad \omega \mapsto \bar{\omega}
$$

such that

$$
\bar{\alpha}(b)\left(X_{1}, \ldots, X_{n}\right)=\left[p, \alpha(p)\left(\tilde{X}_{1}, \ldots, \tilde{X}_{n}\right)\right]
$$

for any $p \in P_{b}$ and lifts \tilde{X}_{i} of X_{i}
Proof. well defined:

- independent of choice of lifts:
- two lifts differ by vertical vector
$-\alpha$ vanishes on vertical vectors
- independent on p
- $p^{\prime}=p G$
- can take lifts $R_{g, *} \tilde{X}_{i}$
$-\alpha(p g)\left(R_{g, *} \tilde{X}_{1}, \ldots, R_{g, *} \tilde{X}_{n}\right)=\rho\left(g^{-1}\right) \alpha(p)\left(\tilde{X}_{1}, \ldots, \tilde{X}_{n}\right)$
$-\left[p g, \rho\left(g^{-1}\right) v\right]=[p, v]$
inverse map:
$\alpha(p)\left(\tilde{X}_{1}, \ldots, \tilde{X}_{n}\right)=Z$ where
$-\bar{\alpha}\left(X_{1}, \ldots, X_{n}\right)=[p, Z]$
- $X_{i}=T \pi_{*}\left(\tilde{X}_{i}\right)$
$R^{\omega} \in \Omega^{2}(B, \operatorname{Ad}(P))$ correspond to Ω.
Definition 3.81. $R^{\omega} \in \Omega^{2}(B, \operatorname{Ad}(P))$ is called the curvature of the principal bundle connection ω
note: $R^{\omega+\delta}=R^{\omega}+\nabla \wedge \delta+[\delta, \delta]$

3.2.3 Associated vector bundles

$\rho: G \rightarrow \operatorname{End}(V)$ representation

- $\rho(P):=P \times_{G} V$ - associated vector bundle
- apply ρ to the cocycle for P
identify section spaces $\Gamma(B, \rho(P)) \cong \Omega^{0}(B, \rho(P)) \cong C^{\infty}(P, V)^{G}$
$-s \mapsto \tilde{s}$
- recall $\tilde{s}: P \rightarrow V, R_{G}^{*} \tilde{s}=\rho\left(g^{-1}\right) \tilde{s}$
- get s back: $s(b)=[p, \tilde{s}(p)]$
$T^{h} P$ - principal bundle connection
- define linear connection such that for X in $\mathcal{X}(B)$

$$
\widetilde{\nabla_{X} s}=X^{h}(\tilde{s})
$$

checks

1. $X^{h}(\tilde{s})$ corresponds to section:

- use that X^{h} is invariant
- X^{h} commutes with R_{g}^{*}

$$
-R_{g}^{*}\left(X^{h}(\tilde{s})\right)=X^{h}\left(R_{g}^{*} \tilde{s}\right)=X^{h}\left(\rho\left(g^{-1}\right)(\tilde{s})\right)=\rho\left(g^{-1}\right)\left(X^{h}(\tilde{s})\right)
$$

2. $(X, s) \mapsto \nabla_{X} s$ is $C^{\infty}(B)$-linear in X : clear
3. $(X, s) \mapsto \nabla_{X} s$ satisfies Leibnitz rule: exercise
relation between curvatures:
have bundle morphism $\operatorname{Ad}(P) \rightarrow \operatorname{End}(\rho(P))$

- $P(\rho):[p, X] \mapsto[p, \rho(X)]$
- well defined: $\left[p g, \operatorname{Ad}\left(g^{-1}\right)(X)\right] \mapsto\left[p g, d \rho\left(\operatorname{Ad}\left(g^{-1}\right)(X)\right)\right]=\left[p g, \rho\left(g^{-1}\right) \rho(X) \rho\left(g^{-1}\right)\right]=$ $[p, \rho(X)]$
- extends to $P(\rho): \Omega^{2}(B, \operatorname{Ad}(P)) \rightarrow \Omega^{2}(B, \operatorname{End}(\rho(P))$

Lemma 3.82. We have the relation $F^{\nabla}=P(\rho)\left(R^{\omega}\right)$

Proof. Exercise!
$\gamma:[0,1] \rightarrow B$ - curve in B

- $\tilde{\gamma}$ horizontal lift an P
- $t \rightarrow[\tilde{\gamma}(t), v]$ is parallel section of $\rho(P)$ along γ
- the parallel transport $\|^{\gamma}: \rho(P)_{\gamma(0)} \rightarrow \rho(P)_{\gamma(1)}$ is given by
- $[\tilde{\gamma}(0), v] \mapsto[\tilde{\gamma}(1), v]$
from vector bundle connection to principal bundle connection on frame bundle
- ∇ linear connection on $E \rightarrow B$ given
- p in $\operatorname{Fr}(E), \pi(p)=b$
- can choose local section $f: B \rightarrow P$ such that
- $f(b)=p$
- the section $b^{\prime} \mapsto f(b)(v) \in E$ is parallel in b
- define $T_{p}^{h} P:=T f\left(T_{b} B\right)$
- check: this determines a principal bundle connection
- under $\operatorname{id}(\operatorname{Fr}(E)) \cong E$ get back ∇ as associated linear connection

3.2.4 Quotients

M - manifold
G - Lie group

- G acts from the right on M

Definition 3.83. G acts freely if $m g=m$ for some m in M implies that $g=e$.
Definition 3.84. G acts properly if $M \times G \rightarrow M \times M,(m, g) \mapsto(m, m g)$ is proper.

- properness is a topological propery
G acts on topological space M
in the following: G is a group acting from the right on a topological space
Lemma 3.85. The quotient map $\pi: M \rightarrow M / G$ is open.
Proof. the quotient is characterized by universal property
- it follows that topology of M / G is generated by the subsets U with $\pi^{-1}(U)$ open
- this is the maximal topology such that π continuous
consider $W \subseteq M$ open
- want to show that $\pi(W)$ is open
- enough to show that $\pi^{-1}(\pi(W))$ is open
- but $\pi^{-1}(\pi(W))=\bigcup_{g \in G} W g$ is open
- this last step uses that we consider quotient by group action and not an arbitrary quotients by some equivalence relation

Lemma 3.86. If M is Hausdorff and G acts properly, then M / G is Hausdorff.

Proof. by contradiction:
consider $\bar{m}, \bar{m}^{\prime}$ in \bar{M}
assume: they are not separated by open sets

- consider preimages m, m^{\prime}
- for every V, V^{\prime} separating m, m^{\prime} in M
- $V G \cap V^{\prime} G \neq \emptyset$
- equiv: $V \cap V^{\prime} G \neq \emptyset$
- consider decreasing families for such neighborhoods: $\left(V_{i}\right),\left(V_{i}^{\prime}\right)$
- get for every i :
$-m_{i} \in V_{i}, m_{i}^{\prime} \in V_{i}^{\prime}, g_{i} \in G$ with $m_{i}^{\prime} g_{i}=m_{i}$
- conclude:
$-m_{i} \rightarrow m$
$-m_{i}^{\prime} \rightarrow m^{\prime}$
- conclude: $\left(m_{i}^{\prime}, m_{i}^{\prime} g_{i}\right) \rightarrow\left(m^{\prime}, m\right)$
- by properness of $M \times G \rightarrow M \times M:\left(m_{i}^{\prime}, g_{i}\right)$ has accumulation point $\left(m^{\prime}, g\right)$
- by continuity: $\mathrm{gm}^{\prime}=m$
- this implies: $\bar{m}^{\prime}=\bar{m}$ - a contradiction

Proposition 3.87. If G acts freely and properly, then the set M / G has a manifold structure such that $\pi: M \rightarrow M / G$ is smooth and a G-principal bundle.

Proof. set $B:=G / M$ as topological quotient

- clarify general topological properties:
$-\pi: M \rightarrow B$ is open
- by properness of action: B is Hausdorff
- B is second countable
- $\left(U_{i}\right)_{i}$ - countable base of topology of M
- $\left(\pi\left(U_{i} G\right)\right)_{i}$ is a countable base of topology of B
$-B$ is paracompact
- we will show that B is locally euclidean:
- in particular it is locally compact
- a locally compact second countable Hausdorff space is paracompact
construct vertical bundle:
- $X \in \mathfrak{g}$
- for every m in M :
- $\mathfrak{g} \ni X \mapsto X^{\sharp}(m)$ is injective
- here is the argument:
— if $X^{\sharp}(m)=0$, then (by uniqueness of integral curves) $m \exp (t X)=m$ for all t
- by freeness of action: $\exp (t X)=e$ for all t
- apply $\left(\partial_{t}\right)_{\mid t=0}: X=0$
- define $T^{v} \pi \subseteq T M$ to be generated by the values of fundamental vector fields
- has constant rank $\operatorname{dim}(\mathfrak{g})$
- is a subbundle
$-b \in B$
- construct chart of B at b
- choose $m \in M_{b}$
- choose vector fields Y_{1}, \ldots, Y_{r} near m complementary to $T^{v} \pi$ at m
- there exists nbhd $0 \in U \subseteq \mathbb{R}^{r}$ such that
$-H\left(t_{1}, \ldots, t_{r}\right):=\Phi_{t_{r}}^{Y_{r}} \circ \cdots \circ \Phi_{t_{1}}^{Y_{1}}(m)$ is defined for $\left(t_{1}, \ldots, t_{r}\right) \in U$
consider G-equivariant map $F: U \times G \rightarrow M$ given by $(t, g) \mapsto H(t) g$
claim: $T F(0, e)$ is isomorphism:
- $T F(0, e)\left(\partial_{i}\right)=Y_{i}(m)$
$-T F(0, e)(X)=X^{\sharp}(m)$
- one can choose U and $e \in V \subseteq G$ such that $F: U \times V \rightarrow M$ is diffeomorphism
- claim: can make U smaller such that $F: U \times G \rightarrow M$ is diffeomorphism into image
- differential $D F$ is isomorphism (by G-invariance calculation at m implies same at $m g$)
- enough to show first: this map is injective
- otherwise: find sequences $\left(x_{i}\right),\left(x_{i}^{\prime}\right)$ in U and $\left(g_{i}\right),\left(g_{i}^{\prime}\right)$ in G such that
- $\left(x_{i}, g_{i}\right) \neq\left(x_{i}^{\prime}, g_{i}^{\prime}\right)$ for all i
- $F\left(x_{i}, g_{i}\right)=F\left(x_{i}^{\prime}, g_{i}^{\prime}\right)$
$-x_{i} \rightarrow 0, x_{i} \rightarrow 0$.
- set $h_{i}:=g_{i}^{-1} g_{i}^{\prime}$
- then by equivariance: $F\left(x_{i}, e\right)=F\left(x_{i}^{\prime}, h_{i}\right)$
- $H\left(x_{i}^{\prime}\right) h_{i}=H\left(x_{i}\right) \rightarrow m$ converges
- by properness $h_{i} \rightarrow h$ (after going to subsequence)
- get $m h=m$
- by freeness: $h=e$
- but then $\left(x_{i}, e\right)$ and $\left(x_{i}^{\prime}, h_{i}\right)$ belong to $U \times V$ for large i
- conclude $x_{i}=x_{i}^{\prime}, h=e$
- $\left(x_{i}, g_{i}\right)=\left(x_{i}^{\prime}, g_{i}^{\prime}\right)$ for large i - contradiction
define chart ϕ of B near $b=[m]$ by:
$\phi\left(\left[m^{\prime}\right]\right)=\operatorname{pr}_{1}\left(F^{-1}\left(m^{\prime}\right)\right)$
- is independent of choice of representative of $[m]$
- is continuous: $\phi^{-1}(W)=\operatorname{pr}_{1}\left(\pi^{-1}(W)\right)$ is open since π is continuous and pr_{1} is open.
- its inverse is $t \mapsto \pi \circ H(t)$ is also continuous
transition functions
define ϕ^{\prime} similarly using F^{\prime}
- $\phi^{\prime}\left(\phi^{-1}(t)\right)=\operatorname{pr}_{1}\left(F^{\prime-1}(H(t))\right)$ is smooth

Example 3.88. G- Lie group
$P \rightarrow B-G$ - principal bundle

- $B \cong P / G$
- $\rho: G \rightarrow G L(V)$ - representation
- G acts on $P \times V$ by $(p, v) g \mapsto\left(p g, \rho\left(g^{-1}\right) v\right)$
- $P \times V \rightarrow(P \times V) / G=P \times_{G, \rho} V$ is G-principal bundle

Corollary 3.89. If G is compact and acts freely on M, then we have a G-principal bundle $M \rightarrow M / G$.

Corollary 3.90. If G is a closed subgroup of a Lie group H, then we have a G-principal bundle $H \rightarrow H / G$.
here we use "Cartan's Theorem": A closed subgroup of a Lie group is a submanifold.
Example 3.91. many interesting manifolds arrise as quotients in this way

1. $G L(V) / O\left(V, h^{V}\right)$ - manifold of scalar products on V
2. $S O(n+1) / S O(n) \cong S^{n}$ - oriented lines in \mathbb{R}^{n+1}
3. $U(n+1) / U(n) \times U(1) \cong \mathbb{C P}^{n}$ - lines in \mathbb{C}^{n+1}
4. $O(n+m) / O(n) \times O(m)=\operatorname{Gr}(n, m)-n$-planes in \mathbb{R}^{n+m}
5. $U(n) / \underbrace{U(1) \times \cdots \times U(1)}_{n \times}$ - manifold of decompositions $\mathbb{C}^{n}=L_{1} \oplus \cdots \oplus L_{n}$ into lines

4 Riemannian geometry

4.1 Connections on the tangent bundle

M manifold

- consider connections ∇ on $T M$
- have torsion tensor
$-T^{\nabla} \in \Omega^{2}(M, T M): T(X, Y)=\nabla_{X} Y-\nabla_{Y} X-[X, Y]$
- we say that ∇ is torsion-free if $T^{\nabla}=0$
- for $\omega \in \Omega^{1}(M, \operatorname{End}(T M))$
$-T^{\nabla+\omega}(X, Y)=T^{\nabla}(X, Y)+\omega(X)(Y)-\omega(Y)(X)$
Example 4.1. ∇ - any connection on $T M$
- $\nabla^{\prime}:=\nabla-\frac{1}{2} T^{\nabla}$ is torsionfree:
- interpret: $T^{\nabla} \in \Omega^{1}(M, \operatorname{End}(T M))$
$-T^{\nabla}(X)(Y):=T^{\nabla}(X, Y)$
$-\nabla_{X}^{\prime} Y:=\nabla_{X} Y-\frac{1}{2} T^{\nabla}(X, Y)$
Definition 4.2. A Riemannian metric on M is a metric g on TM. A Riemannian manifold is a pair (M, g)

Proposition 4.3 (Levi-Civita connection). On a Riemannian manifold there exists a unique connection which is compatible with the metric and torsion free.

Proof. uniqueness: ∇, ∇^{\prime} two such connections

- $\nabla^{\prime}=\nabla+\omega$
- torsionfreeness of both: $\omega(X) Y-\omega(Y) X=0$
- compatibility with metric: $g(\omega(X) Y, Z)=-g(Y, \omega(X) Z)$
- will show: these two conditions imply that $\omega=0$
- calculate for arbitrary X, Y, Z :

$$
\begin{aligned}
g(\omega(X) Y, Z) & =g(\omega(Y) X, Z) \\
& =-g(X, \omega(Y) Z) \\
& =-g(X, \omega(Z) Y) \\
& =g(\omega(Z) X, Y) \\
& =g(\omega(X) Z, Y) \\
& =-g(Z, \omega(X) Y) \\
& =-g(\omega(X) Y, Z)
\end{aligned}
$$

- hence $g(\omega(X) Y, Z)=0$ for all X, Y, Z
- this shows that $\omega=0$
existence:
want to define $\nabla_{X} Y$ by :

$$
\begin{aligned}
2 g\left(\nabla_{X} Y, Z\right):= & X g(Y, Z)+Y g(X, Z)-Z g(X, Y) \\
& -g([X, Z], Y)-g([Y, Z], X)+g([X, Y], Z)
\end{aligned}
$$

here $X, Y, Z \in \mathcal{X}(M)$

- claim: $\nabla_{X} Y \in \mathcal{X}(M)$
- must check $C^{\infty}(M)$-linearity of r.h.s. in Z :
- insert $f Z$:
- terms which derive $f: X(f) g(Y, Z)+Y(f) g(X, Y)-X(f) g(Z, Y)-Y(f) g(X, Z)=0$
- must check $C^{\infty}(M)$-linearity of r.h.s. in X :
- insert $f X$:
- terms which derive $f: Y(f) g(X, Z)-Z(f) g(X, Y)+Z(f) g(X, Y)-Y(f) g(X, Z)=0$
- must check Leibnitzrule of r.h.s. in Y :
- insert $f Y$:
- terms which derive $f: X(f) g(Y, Z)-Z(f) g(X, Y)+Z(f) g(X, Y)+X(f) g(Y, Z)=$ $2 X(f) g(Y, Z)$
- this the expected term
have now well-defined connection ∇
compatible with metric:
- use vector fields with vanishing commutator
$-2 g\left(\nabla_{X} Y, Z\right)+2 g\left(\nabla_{X} Z, Y\right)=2 X g(Y, Z)$ ok
torsion free :
- use vector fields with vanishing commutator
$2 g\left(\nabla_{X} Y, Z\right)-2 g\left(\nabla_{Y} X, Z\right)=0$ ok

Definition 4.4. The connection described in Prop. 4.3 is called the Levi-Civita connection.
Example 4.5. (M, g) Riemannian

- ∇^{M} - Levi-Civita connection
- $i: N \subseteq M$ submanifold
- $g^{N}:=D i^{*} g$ is Riemannian metric
- $P: i^{*} T M \rightarrow T N$ orthogonal projection

Lemma 4.6. $P \nabla^{M}$ is Levi-Civita connection on N.

Proof. P is orthogonal

- $P \nabla^{M}$ is compatible with metric
- locally near N have product structure: $\mathbb{R}^{n} \times \mathbb{R}^{m-n}$ such that N corresponds to $\mathbb{R}^{n} \times\{0\}$
$-X, Y \in \mathcal{X}(N)$
- can extend to \tilde{X}, \tilde{Y} in M (constant in \mathbb{R}^{m-n}-direction)
- then $[\tilde{X}, \tilde{Y}]$ has values in $T N$

$$
\begin{aligned}
T^{P \nabla^{M}}(X, Y) & =P \nabla_{\tilde{X}} \tilde{Y}-P \nabla_{\tilde{Y}} \tilde{X}-[X, Y] \\
& =P\left(\nabla_{\tilde{X}} \tilde{Y}-P \nabla_{\tilde{Y}} \tilde{X}-[\tilde{X}, \tilde{Y}]\right. \\
& =P T^{\nabla}(\tilde{X}, \tilde{Y}) \\
& =0
\end{aligned}
$$

Example 4.7. $\left(\mathbb{R}^{m}, g_{e u}\right)$ is Riemannian manifold

- $g_{\text {eu }}$. - canonical metric
- $\nabla^{\text {triv }}$ is Levi-Civita connection
$N \subseteq \mathbb{R}^{m}$ submanifold
- $i: N \rightarrow \mathbb{R}^{m}$. - inclusion
- $D i: T N \rightarrow i^{*} T \mathbb{R}^{m}$
- $i^{*} g_{e u}=: g$ is induced Riemannian metric
- $P \nabla^{\text {triv }}$ is Levi-Civita connection
- is the tangential component of the derivative
historically important observation:
- a priori: the connection $P \nabla^{\text {triv }}$ depends on the embedding
- Levi-Civita: (1917 for surfaces) $P \nabla^{\text {triv }}$ only depends on induced metric, but not on embedding
- we already know this
- later generalized by Weyl
notation for curvature $R:=F^{\nabla} \in \Omega^{2}(M, \operatorname{End}(T M))$
- note $R(X, Y)$ is antisymmetric since ∇ is compatible with metric

4.2 The Riemannian distance

(M, g) Riemannian

- $\gamma:[0,1] \rightarrow M$ path
$-\gamma^{\prime}:[0,1] \rightarrow T M$ speed
Definition 4.8. The length of γ is defined by

$$
\ell(\gamma)=\int_{0}^{1} \sqrt{g\left(\gamma^{\prime}(t), \gamma^{\prime}(t)\right)} d t
$$

properties of the length:
Lemma 4.9.

1. $\ell(\gamma)$ is reparametrization invariant.
2. $\ell\left(\gamma^{\mathrm{op}}\right)=\ell(\gamma)$
3. $\ell\left(\gamma_{0} \sharp \gamma_{1}\right)=\ell\left(\gamma_{0}\right)+\ell\left(\gamma_{1}\right)$

Proof. Exercise:
assume: M is path-connected

- write $\gamma: m \rightarrow m^{\prime}$ for path from m to m^{\prime}

Definition 4.10. We define $d: M \times M \rightarrow[0, \infty)$ by

$$
d\left(m, m^{\prime}\right):=\inf _{\gamma: m \rightarrow m^{\prime}} \ell(\gamma) .
$$

Lemma 4.11. d is a metric on M which defines the topology.
Proof.
$d(m, m)=0$

- use constant path
$d\left(m, m^{\prime}\right)=d\left(m^{\prime}, m\right)$
- use $\ell\left(\gamma^{\mathrm{op}}\right)=\ell(\gamma)$
$d\left(m, m^{\prime}\right) \leq d\left(m, m^{\prime \prime}\right)+d\left(m^{\prime \prime}, m^{\prime}\right)$
- if $\gamma_{0}: m \rightarrow m^{\prime \prime}$ and $\gamma_{1}: m^{\prime \prime} \rightarrow m$, then $\gamma_{1} \sharp \gamma_{0}: m \rightarrow m^{\prime \prime}$
$-\ell\left(\gamma_{1} \sharp \gamma_{0}\right)=\ell\left(\gamma_{0}\right)+\ell\left(\gamma_{1}\right)$
- but we have more path's from m to m^{\prime} to approximate $d\left(m, m^{\prime}\right)$ which do not go over $m^{\prime \prime}$
consider chart $\phi: U \rightarrow \mathbb{R}^{n}, \phi(m)=0$
- have Euclidean metric $d_{e u}$ on U (induced via ϕ)
- Claim: There exists a constants $c, C>0$ such that $c d_{e u}\left(m, m^{\prime}\right) \leq d\left(m, m^{\prime}\right) \leq C d_{e u}\left(m, m^{\prime}\right)$.
- this implies assertion about topology
- both metrics define the neighborhood filter at m
define $\|X\|^{2}$ using $g_{e u}$
- by continuity and local compactness after making U smaller:
- there exists $C, c>0$ such that: $c^{2}\|X\|^{2} \leq g(x)(X, X) \leq C^{2}\|X\|^{2}$ for all X
$x \in U$
assume that $B_{d_{e u}}(0,\|x\|) \subseteq U$
- upper estimate:
- take linear curve $\gamma(t):=t x$ from 0 to x
$d(0, x) \leq \int_{0}^{1} \sqrt{g\left(\gamma^{\prime}(t), \gamma^{\prime}(t)\right)} d t \leq \int_{0}^{1} \sqrt{g(t x)(x, x)} d t \leq \int_{0}^{1} C\|x\| d t=C\|x\|$
lower estimate
- $\gamma: 0 \rightarrow x$ in U any curve
- first inequality below:
- straight curves are shortest in euclidean space
- mean value theorem
$-c\|x\| \leq c \int_{0}^{1}\left\|\gamma^{\prime}(t)\right\| d t \leq \int_{0}^{1} \sqrt{g\left(\gamma^{\prime}(t), \gamma^{\prime}(t)\right)} d t=\ell(\gamma)$
- every curve which leaves U is even longer
- minimize over all $\gamma: c\|x\| \leq d(0, x)$
this also shows that $d\left(m, m^{\prime}\right)=0$ implies $m=m^{\prime}$

Question:

- can the distance be realized by a curve?
- how can one characterize such a curve?

4.3 Geodesics

(M, g) - Riemannian
$\gamma:[0,1] \rightarrow M$
Definition 4.12. The energy of γ is defined by

$$
E(\gamma):=\int_{0}^{1} g\left(\gamma^{\prime}(t), \gamma^{\prime}(t)\right) d t
$$

no square root
Cauchy-Schwarz: $\ell(\gamma) \leq \sqrt{E(\gamma)}$

- equality if $g\left(\gamma^{\prime}(t), \gamma^{\prime}(t)\right)=$ const
- in this case $g\left(\gamma^{\prime}(t), \gamma^{\prime}(t)\right)=\ell(\gamma)^{2}$
a family of curves with fixed ends is a smooth map $\gamma: I \times[0,1] \rightarrow M$ such that $\gamma(u, 0)$ and $\gamma(u, 1)$ are constant
- here $I \subseteq \mathbb{R}$
- write $\gamma(u, t):=\gamma_{u}(t)$

Definition 4.13. γ is critical for E if for every family of curves with fixed ends $\left(\gamma_{u}\right)_{u \in I}$ with $\gamma=\gamma_{0}$

$$
\left(\partial_{u}\right)_{\mid u=0} E\left(\gamma_{u}\right)=0 .
$$

∇ - Levi-Civita

Proposition 4.14. γ is critical for E if and only if

$$
\nabla_{\partial_{t}} \gamma^{\prime}(t)=0 .
$$

Proof. write $\partial_{u} \gamma=\gamma^{\sharp}$
use that ∇ is compatible with metric and torsion free

$$
\begin{aligned}
\left(\partial_{u}\right)_{\mid u=0} E\left(\gamma_{u}\right) & =\int_{0}^{1}\left(\partial_{u}\right)_{\mid u=0} g\left(\gamma_{u}^{\prime}(t), \gamma_{u}^{\prime}(t)\right) d t \\
& =2 \int_{0}^{1} g\left(\nabla_{\partial_{u}} \gamma_{u}^{\prime}(t), \gamma^{\prime}(t)\right)_{\mid u=0} d t \\
& \stackrel{T^{\nabla}=0}{=} 2 \int_{0}^{1} g\left(\nabla_{\partial_{t}} \gamma^{\sharp}(t), \gamma^{\prime}(t)\right) d t \\
& =\int_{0}^{1} \partial_{t} g\left(\gamma^{\sharp}(t), \gamma^{\prime}(t)\right) d t-\int_{0}^{1} g\left(\gamma^{\sharp}(t), \nabla_{\partial_{t}} \gamma^{\prime}(t)\right) d t \\
& =\left.g\left(\gamma^{\sharp}, \gamma^{\prime}\right)\right|_{0} ^{1}-\int_{0}^{1} g\left(\gamma^{\sharp}(t), \nabla_{\partial_{t}} \gamma^{\prime}(t)\right) d t \\
& =-\int_{0}^{1} g\left(\gamma^{\sharp}(t), \nabla_{\partial_{t}} \gamma^{\prime}(t)\right) d t
\end{aligned}
$$

- can arrange $\left(\gamma_{u}\right)$ such that γ^{\sharp} is arbitrary vector field along γ
- in chart $\gamma_{u}=\gamma+u \gamma^{\sharp}$
- globally glue using partition of unity
- conclude $\nabla_{\partial_{t}} \gamma^{\prime}(t)=0$ as necessary and sufficient condition

Definition 4.15. A curve γ in M satisfying $\nabla_{\partial_{t}} \gamma^{\prime}=0$ is called a geodesic.

- in ccordinates
$-\nabla=\nabla^{\text {triv }}+\omega$
$-\nabla_{\partial_{t}}=\partial_{t}+\omega(\gamma(t))\left(\gamma^{\prime}(t)\right)$
- $\nabla_{\partial_{t}} \gamma^{\prime}$ is equation: $\partial_{t} \gamma^{\prime}+\omega(\gamma(t))\left(\gamma^{\prime}(t)\right)\left(\gamma^{\prime}(t)\right)=0$
- is second order ODE
- in ccordinates:
$-\operatorname{set} \Gamma_{j, k}^{i} \partial_{i}=\omega\left(\partial_{j}\right)\left(\partial_{k}\right)$
- ODE: $\gamma^{\prime \prime, i}=-\Gamma_{j, k}^{i} \gamma^{j} \gamma^{k}$
corresponds to vector field $S \in \Gamma(T M, T(T M))$
- S is called the geodesic spray
- in coordinates
- x of M
- (x, ξ) of $T M$
$-S(x, \xi)=(\xi,-\omega(x)(\xi)(\xi))$
- solution of geodesic equation uniquely determined by $\gamma^{\prime}(0) \in T M$

Lemma 4.16. A geodesic has constant (absolute) speed

Proof.
γ - a geodesic

- $\partial_{t} g\left(\gamma^{\prime}, \gamma^{\prime}\right)=2 g\left(\nabla_{\partial_{t}} \gamma^{\prime}, \gamma^{\prime}\right)=0$
- for every X in $T M$ there exists maximal interval $[0, a(X))$ such that the geodesic with initial condition X exists
- scale invariance
— if $\gamma: I \rightarrow M$ is geodesic, then $\gamma(s t): s^{-1} I \rightarrow M$ is also one
- for $a<a(X)$
- then $t \rightarrow \gamma(a t):[0,1] \rightarrow M$ exists with $\gamma^{\prime}(0)=a X$

Corollary 4.17. There exists a maximal neighbourhood U of the zero section of TM such that for every $X \in U$ there exists a geodesic $\gamma^{X}:[0,1] \rightarrow M$ with $\gamma^{X, \prime}(0)=X$. This geodesic is unique

Definition 4.18. The map $\exp : U \rightarrow M, X \mapsto \gamma^{X}(1)$ is called the exponential map.
for m in M write $\exp _{m}:\left(U \cap T_{m} M\right) \rightarrow M$ for the restriction

Lemma 4.19. $\exp _{m}$ is diffeomorphism near 0
Proof. - $X \in T_{m} M$

- interpret X in $T_{0}\left(T_{m} M\right)$
$-T \exp _{m}(X)=\left(\partial_{t}\right)_{\mid t=0} \exp _{m}(t X)=X$
- $D \exp _{m}(0)=\mathrm{id}_{T_{m} M}$
- in particular: is invertible
- $\exp _{m}$ is called exponential chart/coordinates
- $t \mapsto \exp _{m}(t X)$ is geodesic with $\gamma^{\prime}(0)=X$

Example 4.20. $\left(\mathbb{R}^{n}, g_{e u}\right)$

- Levi-Civita connection is $\nabla^{\text {triv }}$
- x in \mathbb{R}^{n}
- X in $T_{x} \mathbb{R}^{n} \cong \mathbb{R}^{n}$
- geodesic with initial condition (x, X) is $\gamma(t):=x+t X$
- indeed: $\gamma^{\prime}(t) \equiv X$
$-\nabla_{\partial_{t}}^{\text {triv }}\left(\gamma^{\prime}(t)\right)=0$

Exponential map: $\exp (x)(X)=x+X$
Example 4.21. $S^{2} \subseteq \mathbb{R}^{3}$

- induced metric:
- claim: big circles are geodesics
consider w.l.o.g. $S^{2} \cap\{z=0\}$ parametrized as $\gamma(t)=(\cos (t), \sin (t), 0)$
- $\gamma^{\prime}(t)=(-\sin (t), \cos (t), 0)$
$-\nabla_{\partial_{t}} \gamma^{\prime}(t)=P \nabla_{\partial_{t}}^{\text {triv, } \mathbb{R}^{3}} \gamma^{\prime}(t)=P(-\cos (t),-\sin (t), 0)=0$
- vector points perpendicular to sphere
consider circle of latitude
- $\sigma(t):=\left(\sqrt{1-h^{2}} \cos (t), \sqrt{1-h^{2}} \sin (t), h\right)$
- $\sigma^{\prime}(t)=\left(-\sqrt{1-h^{2}} \sin (t), \sqrt{1-h^{2}} \cos (t), 0\right)$
- $\nabla_{\partial_{t}}^{\text {triv }} \sigma^{\prime}(t)=\left(-\sqrt{1-h^{2}} \cos (t),-\sqrt{1-h^{2}} \sin (t), 0\right)$
- $P \nabla_{\partial_{t}}^{\text {triv }} \sigma^{\prime}(t) \neq 0$ (h-component is missing) -
$-\sigma$ is not a geodesic

4.4 Families of geodesics and Jacobi fields

want to understand $T \exp _{m}$

- $\left(X_{u}\right)_{u}$ - family of vectors in $T_{m} M$
- $\left(t \rightarrow \exp _{m}\left(t X_{u}\right)\right)$ - family of geodesics
- want to understand vector field $\left(\partial_{u}\right)_{\mid u=0} \exp _{m}\left(t X_{u}\right)$ as function of t
$\left(\gamma_{u}\right)_{u}$ - family of curves
- smooth map $I \times J \rightarrow M, I, J$ intervals

Definition 4.22. $\left(\gamma_{u}\right)_{u}$ is a family of geodesics if γ_{u} is a geodesic for every u in I.
notation:

- γ^{\prime} - derivative by t
$-\gamma^{\sharp}$ - derivative by u
- interpret formulas on pull-back of $T M$ to $I \times J$

$$
\begin{array}{ccl}
\nabla_{\partial_{t}} \nabla_{\partial_{t}} \gamma^{\sharp} & \stackrel{T}{=}=0 & \nabla_{\partial_{t}} \nabla_{\partial_{u}} \gamma^{\prime} \\
\stackrel{R}{=} & \nabla_{\partial_{u}} \nabla_{\partial_{t}} \gamma^{\prime}+R\left(\gamma^{\prime}, \gamma^{\sharp}\right) \gamma^{\prime} \\
& \nabla_{\partial_{t} \gamma^{\prime}=0}^{=} & R\left(\gamma^{\prime}, \gamma^{\sharp}\right) \gamma^{\prime}
\end{array}
$$

$\gamma: I \rightarrow M$ - geodesic
Definition 4.23. A section $J \in \Gamma\left(I, \gamma^{*} T M\right)$ is called a Jacobi field if it satisfies the $O D E$

$$
\nabla_{\partial_{t}} \nabla_{\partial_{t}} J-R\left(\gamma^{\prime}, J\right) \gamma^{\prime}=0
$$

- second order linear ODE
- space of Jacobi field is $2 n$-dimensional with $n=\operatorname{dim}(M)$
- fix $t_{0} \in I$
- Jacobi field Y is uniquely determined by $J\left(t_{0}\right)$ and $\left(\nabla_{\partial_{t}} J\right)\left(t_{0}\right)$

Example 4.24. Jacobi fields in \mathbb{R}^{n}

- $\gamma(t)=t X$
- fix Y, Z in \mathbb{R}^{n}
- then $J(t)=Y+t Z$ is Jacobi field
- in fact $t X+u(Y+t Z)=t(X+Z)+u Y$ is family of geodesics
- alternatively: check ODE

Lemma 4.25. $T \exp _{m}(X): T_{m} M \rightarrow T_{\exp _{m}(X)} M$ is the linear map which sends Y in $T_{m} M$ to the value of the Jacobi field J at $t=1$ along $t \mapsto \exp _{m}(t X)$ with initial values $J(0)=0$ and $\nabla_{\partial_{t}} J(0)=Y$.

Proof. consider $J:=t \mapsto T \exp _{m}(t X)(Y)=\left(\partial_{u}\right)_{\mid u=0} \exp _{m}(t(X+u Y))$

- is Jacobi field J with
- $J(0)=0($ set $t=0$ and differentiate by $u)$
$-\nabla_{\partial_{t}} J(0)=\left(\nabla_{\partial_{t}}\right)_{\mid t=0}\left(t T \exp _{m}(t X)(Y)\right)=Y$
evaluate map at 1
Definition 4.26. (M, g) has negative/positive curvature if $\pm g(R(X, Y) Y, X)<0$ for all m in M and lin. independent $X, Y \in T_{m} M$.

Proposition 4.27. If (M, g) has non-positive curvature, then $T \exp _{m}(X)$ is an isomorphism for every X in the domain of definition.

Proof. suiffices to show injective

- by contradiction:
- assume:
$-\exp _{m}(X)$ define
$-T \exp _{m}(X)(Y)=0$, but $Y \neq 0$
$\gamma(t):=\exp _{m}(t X)$ geodesic
- there exists Jacobi field J with
$-J(0)=0$
$-\nabla_{\partial_{t}} J(0)=Y$
$-J(1)=0$
calculate
- scalar multiply ODE for J with J

$$
\begin{aligned}
0 & =g\left(\nabla_{\partial_{t}} \nabla_{\partial_{t}} J, J\right)-g\left(R\left(\gamma^{\prime}, J\right) \gamma^{\prime}, J\right) \\
& =\partial_{t} g\left(\nabla_{\partial_{t}} J, J\right)-g\left(\nabla_{\partial_{t}} J, \nabla_{\partial_{t}} J\right)-g\left(R\left(\gamma^{\prime}, J\right) \gamma^{\prime}, J\right)
\end{aligned}
$$

integrate from 0 to 1
$-0=\left.g\left(\nabla_{t} J, J\right)\right|_{0} ^{1}-\int_{0}^{1} g\left(\nabla_{\partial_{t}} J, \nabla_{\partial_{t}} J\right) d t-\int_{0}^{1} g\left(R\left(\gamma^{\prime}, J\right) \gamma^{\prime}, J\right) d t$ - use:
$-\int_{0}^{1} g\left(\nabla_{\partial_{t}} J, \nabla_{\partial_{t}} J\right) d t>0\left(\right.$ since $\left.\nabla_{\partial_{t}} J(0) \neq 0\right)$

- use $J(0)=0, J(1)=0$
- get $\int_{0}^{1} g\left(R\left(\gamma^{\prime}, J\right) J, \gamma^{\prime}\right) d t>0$
- contradicts non-positive curvature

Corollary 4.28. Assume that (M, g) has non-positive curvature. If $U \subseteq T_{m} M$ is in the domain of definition and $\left(\exp _{m}\right)_{\mid U}$ is injective, then it is a diffeomorphism into its image.

Example 4.29. \mathbb{R}^{n} is flat

- curvature is non-positive
$-\exp (0)(X)=X$
- is diffeomorphism
$T^{n}:=\mathbb{R}^{n} / \mathbb{Z}^{n}$
- $\pi: \mathbb{R}^{n} \rightarrow T^{n}$ projection $\pi(x)=[x]$
- $T_{[x]} R^{n} \cong T_{x} \mathbb{R}^{n}$ via $T \pi(x)$
$-\exp _{[x]}(d \pi(x)(X))=\pi\left(\exp _{x}\left(T \pi(x)^{-1}(X)\right)=\pi\left(x+T \pi(x)^{-1}(X)\right)\right.$
- $T \exp _{[x]}=T \pi(x) \circ T \exp (x) \circ T \pi(x)^{-1}$ is isomorphism for all x
$-\exp _{[x]}$ is not injective

Example 4.30. S^{2} in \mathbb{R}^{3}
$N=(0,0,1)$ - northpole

- $\exp _{m}(\pi X)=S=(0,0,-1)$ for every unit vector X in $T_{N} S^{2}$
- $T \exp _{m}(\pi X)=0$, in particular not injective
- but S^{2} has positive curvature - hence not contradiction

4.5 Gauss lemma

geodesic balls

- $T_{m} M$ has metric $g(m)$
- write || - || for length
- use this metric to define ball $B(0, r):=\left\{X \in T_{m} M \mid\|X\|<r\right\}$
- assume: $r>0$ such that $\exp _{m}$ is defined and diffeomorphism on $B(0, r)$ in $T_{m} M$
γ - geodesic
- J Jacobi field along γ

Lemma 4.31. We have $g\left(J(t), \gamma^{\prime}(t)\right)=t g\left(\nabla_{\partial_{t}} J(0), \gamma^{\prime}(0)\right)+g\left(J(0), \gamma^{\prime}(0)\right)$.

Proof. - scalar product of ODE by γ^{\prime} :

- use $g\left(R\left(\gamma^{\prime}, J\right) \gamma^{\prime}, \gamma^{\prime}\right)=0$ by antisymmetry
- get $g\left(\nabla_{\partial_{t}} \nabla_{\partial_{t}} J, \gamma^{\prime}\right)=0$
$-0=\partial_{t} g\left(\nabla_{\partial_{t}} J, \gamma^{\prime}\right)-\partial_{t} g\left(\nabla_{\partial_{t}} J, \nabla_{\partial_{t}} \gamma^{\prime}\right)=\partial_{t} g\left(\nabla_{\partial_{t}} J, \gamma^{\prime}\right)$
hence $g\left(\nabla_{\partial_{t}} J, \gamma^{\prime}\right)$ is constant in t
- again: $g\left(\nabla_{\partial_{t}} J, \gamma^{\prime}\right)=\partial_{t} g\left(J, \gamma^{\prime}\right)$
- hence $g\left(J(t), \gamma^{\prime}(t)\right)=t g\left(\nabla_{\partial_{t}} J(0), \gamma^{\prime}(0)\right)+g\left(J(0), \gamma^{\prime}(0)\right)$

Corollary 4.32. For every X in $B(0, r)$ and $Y \in T_{m} M$ we have

$$
g\left(T \exp _{m}(X)(Y), T \exp _{m}(X)(X)\right)=g(Y, X)
$$

Proof. geodesic $t \mapsto \exp (m)(t X)$

- apply Lemma to Jacobi field with $J(0)=0, \nabla_{\partial_{t}} J(0)=Y$
- evaluate at $t=1$
$T \exp _{m}$ preserves scalar products with radial vectors
assume: $r>0$ such that $\exp _{m}$ is defined and diffeomorphism on $B(0, r)$ in $T_{m} M$

Proposition 4.33.

1. For every $s \in(0, r)$ the subset $\exp _{m}(S(0, s))$ is the metric distance s-sphere at m
2. $\exp _{m}(B(0, r))$ is the metric ball at m of radius r in M.
3. For X in $B(0, r)$ the curve $t \mapsto \exp _{m}(t X)$ realizes the distance between m and $\exp _{m}(X)$.
4. If $\sigma:[0, T]$ is any curve from 0 to $\exp _{m}(X)$ with $\ell(\sigma)=\|X\|$, then $\sigma(t)=\exp (f(t) X)$ for $f:[0, T] \rightarrow[0,1]$ monotoneous.

Proof. $1 \Rightarrow 2$ is clear
show 2

- if $\|X\|<s$, then $d\left(m, \exp _{m}(X)\right) \leq\|X\|<s$
- hence $\exp _{m}(X) \notin \exp _{m}(S(0, s))$
- take $s<s^{\prime}<r$
- assume that $m^{\prime} \in M \backslash \exp _{m}\left(\bar{B}\left(0, s^{\prime}\right)\right)$

Lemma 4.34. We have $d\left(m, m^{\prime}\right) \geq s^{\prime}$.

- hence $d\left(m, m^{\prime}\right)=s$ implies $m \in \exp _{m}(S(0, s))$

Proof. γ - curve from m to m^{\prime}

- a maximal such that $\gamma([0, a])=\{m\}$
- last time that γ meets m
- b minimal such that $\gamma(v) \in \exp _{m}\left(S\left(0, s^{\prime}\right)\right)$
- first time of exit the s^{\prime}-Ball
- $\sigma:=\exp _{m}^{-1}\left(\gamma_{\mid(a, b]}\right)$
- a curve from 0 to the s^{\prime}-sphere in $T_{m} M$ (0 excluded)
- write $g(m)$ as $\langle-,-\rangle$ (scalar product on $T_{m} M$)
- express $\sigma(t)$ in polar coordinates (for $t \in(a, b])$
- $\sigma(t)=\rho(t) \xi(t), \xi(t)$ unit vector, $\rho(t):=\|\sigma(t)\|$
$-\xi(t)$ is well-defined since $\sigma(t) \neq 0$ since $t>a$
- $\sigma^{\prime}=\rho^{\prime} \xi+\rho \xi^{\prime}$
- define vector field $Z(X)=X /\|X\|$ on $T_{m} M \backslash\{0\}$
- is radial unit-norm
$-\xi(t)=Z(\sigma(t))$
$\left\langle Z(\sigma(t)), \sigma^{\prime}(t)\right\rangle=\left\langle\xi(t), \rho^{\prime}(t) \xi(t)+\rho(t) \xi^{\prime}(t)\right\rangle=\rho^{\prime}(t)\langle\xi(t), \xi(t)\rangle=\rho^{\prime}(t)$
here we use: $0=\partial_{t}\langle\xi(t), \xi(t)\rangle=2\left\langle\xi(t), \xi^{\prime}(t)\right\rangle$
- \tilde{Z} - image under $\exp _{m}(B(0, r))$
- also unit-norm, since $T \exp _{m}$ preserves length of radial fields
- by Gauss Lemma and since $\tilde{Z}(\gamma(t))$ is radial at $\gamma(t)$:
$-g\left(\tilde{Z}(\gamma(t)), \gamma^{\prime}(t)\right)=\left\langle Z(\sigma(t)), \sigma^{\prime}(t)\right)=\rho^{\prime}(t)$
— use that \tilde{Z} has unit-norm for second inequality (Cauchy-Schwarz)

$$
\begin{align*}
\ell(\gamma) & \geq \ell\left(\gamma_{\mid(a, b]}\right) \tag{3}\\
& \left.=\int_{a}^{b} \sqrt{g\left(\gamma^{\prime}(t), \gamma^{\prime}(t)\right.}\right) d t \\
& \geq \int_{a}^{b} g\left(\tilde{Z}\left(\gamma^{\prime}(t)\right), \gamma^{\prime}(t)\right) d t \\
& =\int_{a}^{b} \rho^{\prime}(t) d t \\
& =\rho(b)-0 \\
& =s^{\prime}
\end{align*}
$$

- γ was aritrary
$-d\left(m, m^{\prime}\right) \geq s^{\prime}$
- see that $\exp _{m}(S(0, s))$ is s-distance sphere in M at m.

3:
clear: $\ell\left(t \mapsto \exp _{m}(t X)\right)=\|X\|$

- constant speed $\|X\|$
$-d\left(m, \exp _{m}(X)\right)=\|X\|$ by 1. since $X \in S(0, X)$

4:
$\gamma: m \rightarrow \exp _{m}(X)$ with length $\|X\|$

- $0 \leq a$ - last time with $\gamma(a)=0$
- write $\gamma(t)=\exp _{m}(\rho(t) \xi(t))$
- Cauchy-Schwarz

$$
\begin{aligned}
\|X\| & =\ell(\gamma) \\
& \geq \int_{a}^{T} \sqrt{g\left(\sigma^{\prime}(t), \sigma^{\prime}(t)\right)} d t \\
& \geq \int_{0}^{T} g\left(\tilde{Z}\left(\sigma^{\prime}(t)\right), \sigma^{\prime}(t)\right) d t \\
& =\int_{0}^{T} \rho^{\prime}(t) d t \\
& =\|X\|
\end{aligned}
$$

conclude: second inequality is equality
$-\sqrt{g\left(\sigma^{\prime}(t), \sigma^{\prime}(t)\right)}=g\left(\tilde{Z}\left(\sigma^{\prime}(t)\right), \sigma^{\prime}(t)\right)$ for all t

- hence by converse of Cauchy-Schwarz in equality case:
—conclude $\sigma^{\prime}(t) \sim \tilde{Z}(\sigma(t))$, i.e. σ^{\prime} points in positive radial direction
- solve $f^{\prime}(t) \tilde{Z}(\sigma(t))\|X\|=\sigma^{\prime}(t)$ for f
- f is monotoneous
- with initial condition $f(T)=1$
- then $\exp _{m}(f(t) Y)=\sigma(t)$ for $t \in(a, T]$
- since $\exp _{m}(f(T) X)=\exp _{m}(X)=\sigma(T)$
$-\partial_{t} \exp _{m}(f(t) X)=f^{\prime}(t)\|X\| \tilde{Z}(\sigma(t))=\sigma^{\prime}(t)$
conclude further: σ is constant for $t \leq a$ (otherwise this piece contributes to length)
- set $f(t)=0$ for $t \in[0, a]$
$m \in M$
Lemma 4.35. There exists an open neighbourhood $m \in W \subseteq M$ and $r>0$ such that $\left(\exp _{m^{\prime}}\right)_{\mid B(0, r)}$ is a diffeomorphism for all $m^{\prime} \in W$

Proof. $U \subseteq T M$ open domain of exp
consider map $f: U \rightarrow M \times M$

- $U \ni X \mapsto\left(\pi(X), \exp _{\pi(X)}(X)\right)$
$-0 \rightarrow T_{m} M \rightarrow T_{0_{m}}(T M) \rightarrow T_{m} M \rightarrow 0$ exact
- first map vertical embedding i
- second map $T \pi(m)$
- choose split $s: T_{m} M \rightarrow T_{0_{m}}(M)$
- $d f\left(0_{m}\right)(s(Y)+i(X))=(Y, X+A(Y))$
- A - some linear map
$-d f\left(0_{m}\right)$ is upper triangular, hence invertible
- f is diffeomorphism on neighbourhood $U^{\prime} \subseteq U$ of 0_{m}
- choose r and $m \in W$ such that
- r-ball-bundle over W is in U^{\prime}
m, m^{\prime} in M
$\gamma: m \rightarrow m^{\prime}$ curve
on $[0, T]$

Lemma 4.36. If $\ell(\gamma)=d\left(m, m^{\prime}\right)$, then at every $t \in(0, T)$ there exists $\epsilon>0$ such that $0<t-\epsilon$ and $t+\epsilon<T$ and $\gamma(t+s)=\exp _{\gamma(t)}(f(s) X)$ for some vector X in $T_{\gamma(t)} M$ for all $s \in(-\epsilon, \epsilon)$.

Proof. for any $0 \leq a<b \leq T$
$\gamma_{\mid[a, b]}$ realizes distance between $\gamma(a)$ and $\gamma(b)$

- otherwise could shorten path from m to m^{\prime}
fix t
- can find $r>0$ and $s>0$ such that $\left(\exp _{m^{\prime}}\right)_{\mid B(0, s)}$ is diffeomorphism for all m^{\prime} in $B(0, r)$
- take ϵ so small that
$-0<t-\epsilon<t+\epsilon<T$
$-d(\gamma(t-\epsilon), \gamma(t+\epsilon))<s$
- conclude: $\gamma_{\mid(t-\epsilon, t+\epsilon)}$ is reparametrized geodesic
- X is tangent at of this geodesic when it hits $\gamma(t)$

Corollary 4.37. If γ is a constant speed curve which realizes the distance between its endpoints, then it is a geodesic.

4.6 Completeness

(M, g) - Riemannian manifold assume: connected

- have metric d
- (M, d) is metric space
- have notion of completeness

Definition 4.38. M is metrically complete if (M, d) is a complete metric space
Definition 4.39. M is metrically proper if (M, d) is a proper metric space
Example 4.40. M compact - then metrically complete
$\left(\mathbb{R}^{n}, d\right)$ is complete

Definition 4.41. (M, g) is called geodesically complete at m if the exponential map $\exp _{m}$ is defined on all of $T_{m} M$. It is geodesically complete if it is geodesically complete at all points.

- geodesically complete means: for every X in $T M$ the geodesic with initial condition X exists on all of \mathbb{R}

Theorem 4.42 (Hopf-Rinow). Assume that M is connected. The following assertions are equivalent.

1. (M, g) is geodesically complete.
2. (M, g) is geodesically complete at a point m.
3. The balls $\bar{B}(m, r)$ are compact for all $r>0$.
4. (M, g) is metrically proper.
5. (M, d) is metrically complete.

In this case the distance between every two points in M can be realized by a curve (which can be taken as a geodesic).

Proof. proof shema:
$1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 4 \Rightarrow 5 \Rightarrow 1$
and $2 \Rightarrow$ realization of distance (is used for $2 \Rightarrow 3$)
$1 \Rightarrow 2$
trivial
$3 \Rightarrow 4$:

- consider $\bar{B}\left(m^{\prime}, r^{\prime}\right)$
- it is contained in $\bar{B}\left(m, r^{\prime}+d\left(m, m^{\prime}\right)\right)$
- closed subset of compact, hence itself compact
$4 \Rightarrow 5$:
$\left(m_{i}\right)_{i \in \mathbb{N}}$ - Cauchy sequence
$-\sup _{i} d\left(m_{i}, m\right)<\infty$
- sequence is contained in compact $\bar{B}(m, r)$ for r sufficiently large
- Cauchy sequence has accumulation point
$5 \Rightarrow 1$:
- by contradiction
- (M, g) not geodesically complete
- take X in $T M$ such that maximal geodesic γ with inital X defined on $[0, T]$
- $\gamma^{\prime}([0, T])$ is not relative compact by ODE-theory
- but $g\left(\gamma^{\prime}(t), \gamma^{\prime}(t)\right)=g(X, X)$ for all t
- for any sequence $0 \leq t_{n} \uparrow T$
- $\left(\gamma\left(t_{n}\right)\right)$ is Cauchy sequence in M
- use: $d\left(\gamma\left(t_{n}\right), \gamma\left(t_{m}\right)\right) \leq\left|t_{n}-t_{m}\right|$
- has limit in M by metric completeness
- conclude: $\gamma^{\prime}([0, T])$ is relatively compact
- contradiction
must show
$2 \Rightarrow 3:$
Lemma 4.43. If (M, m) is geodesically complete at m, then every two points can be connected by a distance-realizing geodesic.

Proof. choose $r>0$ such that $\left(\exp _{m}\right)_{\mid B(0,2 r)}$ is diffeomorphism
m^{\prime} in M
if $d\left(m, m^{\prime}\right)<r$: write $m^{\prime}=\exp _{m}(X)$

- $t \mapsto \exp _{m}(t X)$ is geodesic $m \rightarrow m^{\prime}$ which realizes distance
assume now $d\left(m, m^{\prime}\right) \geq r$
- choose sequence $\left(\gamma_{k}\right)_{k \in \mathbb{N}}$ of curves $\gamma_{k}: m \rightarrow m^{\prime}$ with: $\ell\left(\gamma_{k}\right) \rightarrow d\left(m, m^{\prime}\right)$
- define $t_{k} \in(0,1)$ first time with $d\left(m, \gamma_{k}\left(t_{k}\right)\right)=r$
- by compactness of $S(m, r)$: take subsequence - can assume $\gamma_{k}\left(t_{k}\right) \rightarrow q$ in $S(m, r)$
$-d\left(m, m^{\prime}\right) \leq d\left(m, \gamma_{k}\left(t_{k}\right)\right)+d\left(\gamma_{k}\left(t_{k}\right), m^{\prime}\right) \leq \ell\left(\gamma_{k}\right)$
$-k \rightarrow 0$ gives
$-d\left(m, m^{\prime}\right)=d(m, q)+d\left(q, m^{\prime}\right)$
- chose unique unit vector $X \in T_{m} M$ such that $q=\exp _{m}(r X)$
- consider curve $\gamma:\left[0, d\left(m, m^{\prime}\right)\right] \rightarrow M, \gamma(t):=\exp (t X)$
- it exists by assumption of geodesic completeness at m
- define subset $I \subseteq\left[0, d\left(m, m^{\prime}\right)\right]$

$$
I:=\left\{t \in\left[0, d\left(m, m^{\prime}\right)\right] \mid d(m, \gamma(t))=t \& d(m, \gamma(t))+d\left(\gamma(t), m^{\prime}\right)=d\left(m, m^{\prime}\right)\right\}
$$

- know $r \in I$
- claim: $\sup I=d\left(m, m^{\prime}\right)$
assume claim:
- $d\left(m, \gamma\left(d\left(m, m^{\prime}\right)\right)\right)=d\left(m, m^{\prime}\right)$
- $d\left(m, \gamma\left(d\left(m, m^{\prime}\right)\right)\right)+d\left(\gamma\left(d\left(m, m^{\prime}\right)\right), m^{\prime}\right)=d\left(m, m^{\prime}\right)$, hence $d\left(\gamma\left(d\left(m, m^{\prime}\right)\right), m^{\prime}\right)=0$
- hence $\gamma\left(d\left(m, m^{\prime}\right)\right)=m^{\prime}$
$-\ell(\gamma)=d\left(m, m^{\prime}\right)$
- hence γ realizes distance between m and m^{\prime}
proof of claim:
- by contradiction:
$-t:=\sup I<d\left(m, m^{\prime}\right)$
- know: $r \leq t$
$-p:=\gamma(t)$
- consider $s>0$ such that $t+2 s<d\left(m, m^{\prime}\right)$ and $\left(\exp _{p}\right)_{\mid B(0,2 s)}$ is diffeomorphism
- find x (as above) in $S(p, s)$ such that $d(p, x)+d\left(x, m^{\prime}\right)=d\left(p, m^{\prime}\right)$
- let $Y \in T_{p} M$ be unit vector such that $\exp _{p}(s Y)=x$

$$
\begin{aligned}
d(m, x) & \leq d(m, p)+d(p, x) \\
& =d(m, p)+d\left(p, m^{\prime}\right)-d\left(x, m^{\prime}\right) \\
& =d\left(m, m^{\prime}\right)-d\left(p, m^{\prime}\right)+d\left(p, m^{\prime}\right)-d\left(x, m^{\prime}\right) \\
& =d\left(m, m^{\prime}\right)-d\left(x, m^{\prime}\right) \\
& \leq d(m, x)
\end{aligned}
$$

hence $d(m, x)=d(m, p)+d(p, x)=t+s$
set $\sigma(t)=\exp _{p}(t Y)$
$-\ell\left(\gamma_{\mid[0, t]}\right)=d(m, p)$
$-\ell\left(\sigma_{[[0, s]}\right)=s$
$-\theta:=\gamma_{[0, t]] \sharp \sigma_{\mid[0, s]}}$ realizes distance between m and x

- this implies that $Y=\gamma^{\prime}(t)$ by Lemma 4.36
- hence $x=\gamma(t+s)$
$-t+s \in I$ contradiction
$2 \Rightarrow 3:$
m in M
$-r>0$
- must show: $\bar{B}(m, r)$ is compact
$\left(m_{k}\right)_{k \in \mathbb{N}}$ sequence in $\bar{B}(m, r)$
- $\gamma_{k}: m \rightarrow m_{k}$ geodesic on [0, 1], distance realizing
set $X_{k}:=\gamma_{k}^{\prime}(0)$
$-\exp _{m}\left(X_{k}\right)=m_{k}$
- $\left\|X_{k}\right\| \leq r$ for all k
- assume after passing to subsequence: $X_{k} \rightarrow X$ by compactness of $\bar{B}(0, r)$
- $\|X\| \leq r$
- then $\exp _{m}(X)=m^{\prime} \in \bar{B}(m, r)$
$-m_{k}=\exp _{m}\left(X_{k}\right) \rightarrow \exp _{m}(X)=m^{\prime}$
thus $\left(m_{k}\right)_{k}$ has converging subsequence

4.7 Properties of the Riemannian curvature

(M, g) - Riemannian manifold

- ∇ - Levi-Civita connection
- $R \in \Gamma\left(M, \Lambda^{2} T^{*} M \otimes \operatorname{End}(T M)^{a}\right)$ curvature
- recall: $R(X, Y)(Z)<:=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z$

Remark 4.44. in some books R is defined with the opposite sign
define $R \in \Gamma\left(M, \Lambda^{2} T^{*} M \otimes \Lambda^{2} T^{*} M\right)$

$$
R(X, Y, Z, W):=g(R(X, Y) Z, W)
$$

Lemma 4.45 (First Bianchi identity). $R(X, Y) Z+R(Y, Z) X+R(Z, X) Y=0$
Proof. use torsion freeness

- extend X, Y, Z to local fields, vanishing commutator,

$$
\begin{aligned}
& R(X, Y) Z+R(Y, Z) X+R(Z, X) Y \\
& \quad=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z+\nabla_{Y} \nabla_{Z} X-\nabla_{Z} \nabla_{Y} X+\nabla_{Z} \nabla_{X} Y-\nabla_{X} \nabla_{Z} Y \\
& \quad=\nabla_{X} \nabla_{Z} Y-\nabla_{Y} \nabla_{Z} X+\nabla_{Y} \nabla_{Z} X-\nabla_{Z} \nabla_{X} Y+\nabla_{Z} \nabla_{X} Y-\nabla_{X} \nabla_{Z} Y \\
& \quad=0
\end{aligned}
$$

Lemma 4.46 (Second Bianchi identity). $\nabla \wedge R=0$
Proof. special case of Bianchy for linear connections
for fields X, Y, Z with mutually vanishing commutator 2 . Bianchi means:

- $\nabla_{X} R(Y, Z)+\nabla_{Y} R(Z, X)+\nabla_{Z} R(X, Y)=0$

Lemma 4.47. $R(X, Y, Z, W)=R(Z, W, X, Y)$.

Proof. antisymmetrie in $X, Y+$ first Bianchy
$R(X, Y, Z, W)=-R(Y, X, Z, W)=R(X, Z, Y, W)+R(Z, Y, X, W)$
antisymmetrie in $Z, W+$ first Bianchy
$R(X, Y, Z, W)=-R(X, Y, W, Z)=R(Y, W, X, Z)+R(W, X, Y, Z)$
add
$2 R(X, Y, Z, W)=R(X, Z, Y, W)+R(Z, Y, X, W)+R(Y, W, X, Z)+R(W, X, Y, Z)$
also
$2 R(Z, W, X, Y)=R(Z, X, W, Y)+R(X, W, Z, Y)+R(W, Y, Z, X)+R(Y, Z, W, X)$
compare term by term + use antisymmetries
hence $R \in \Gamma\left(M, S^{2}\left(\Lambda^{2} T^{*} M\right)\right)$
consider linear map $R(X,-) Y: T M \rightarrow T M$

Definition 4.48. The Ricci curvature is defined by $\operatorname{Ric}(X, Y)=-\operatorname{Tr}(R(X,-) Y)$.
Lemma 4.49. We have $\operatorname{Ric}(X, Y)=\operatorname{Ric}(Y, X)$
Proof. (e_{i}) - ONB
$\operatorname{Ric}(X, Y)=-\sum_{i} R\left(X, e_{i}, Y, e_{i}\right)$

- symmetry now obvious

Definition 4.50. The scalar curvature of M is defined by $S=\sum_{i} \operatorname{Ric}\left(e_{i}, e_{j}\right)$.
Example 4.51. Einstein equation
Definition 4.52. g satisfies the Einstein equation if Ric $=\lambda g$ for some $\lambda \in C^{\infty}(M)$.
Lemma 4.53 (Schur). If $n \geq 3$ and g satisfies the Einstein equation, then λ is constant.

Proof. calculate at point use fields whose derivative vanish in this point

- then commutators also vanish (torsion freeness)
- use second Bianchy

$$
\begin{aligned}
U \operatorname{Ric}(X, Y) & =\sum_{i} g\left(\nabla_{U} R\left(X, e_{i}\right) e_{i}, Y\right) \\
& =-\sum_{i} g\left(\nabla_{X} R\left(e_{i}, U\right) e_{i}, Y\right)-g\left(\nabla_{e_{i}} R(U, X) e_{i}, Y\right) \\
& =-\sum_{i} X g\left(R\left(e_{i}, U\right) e_{i}, Y\right)-e_{i} g\left(R(U, X) e_{i}, Y\right) \\
& =X \operatorname{Ric}(U, Y)+e_{i} g\left(R(U, X) Y, e_{i}\right)
\end{aligned}
$$

set $X=Y=e_{j}$ and sum

$$
\begin{aligned}
U S & =e_{j} \operatorname{Ric}\left(U, e_{j}\right)+e_{i} \operatorname{Ric}\left(U, e_{i}\right) \\
& =2 e_{j} \operatorname{Ric}\left(U, e_{j}\right)
\end{aligned}
$$

insert equation Ric $=\lambda g$ and get:

- $U(\lambda) n=2 e_{j}(\lambda) g\left(U, e_{j}\right)=2 U(\lambda)$
$-(n-2) U(\lambda)=0$
- use $n \neq 2$
- conclude: $U(\lambda)=0$

Definition 4.54. A metric satisfying Ric $=\lambda g$ is called an Einstein metric.
is a second order non-linear PDE for g

- $\lambda=\frac{S}{n}$
- field equation of general relativity

Given M : does M admit an Einstein metric?
not much known in general, many examples

Example 4.55. if (M, g) is Einstein, then $S=n \lambda$ is constant
famous question:
Given M : does M admits a metric with $S>0$
much is known
$H \subseteq T_{m} M$ 2-plane
choose $X, Y \in H$ orthonormal
Definition 4.56. The sectional curvature of M in direction H is defined by

$$
K(H):=R(X, Y, Y, X)
$$

independent of choice of X, Y, depends only on H

- second choice
- $X^{\prime}=a X+b Y$
$-Y^{\prime}=-b X+a Y$
- with $a^{2}+b^{2}=1$

$$
\begin{aligned}
R\left(X^{\prime}, Y^{\prime}, Y^{\prime}, X^{\prime}\right) & =R(a X+b Y,-b X+a Y,-b X+a Y, a X+b Y) \\
& =a^{2} R(X, Y,-b X+a Y, a X+b Y)-b^{2} R(Y, X,-b X+a Y, a X+b Y) \\
& =R(X, Y,-b X+a Y, a X+b Y) \\
& =R(X, Y, Y, X)
\end{aligned}
$$

consider V - an euclidean vector space
$R \in V^{*, \otimes 4}$
algebraic symmetries of the curvature tensor

1. $R(X, Y, Z, W)=-R(Y, X, Z, W)$
2. $R(X, Y, Z, W)=-R(Z, W, X, Y)$
3. $R(X, Y, Z, W)+R(Y, Z, X, W)+R(Z, X, Y, W)=0$
note that then also $R(X, Y, Z, W)=-R(X, Y, W, Z)$
for $X, Y \in V$ define $K(X, Y):=R(X, Y, Y, X)$

- this is quadratic in X and Y

Lemma 4.57. The K determines R. If $R, R^{\prime} \in V^{*, \otimes 4}$ satisfy the algebraic curvature identities and $K(X, Y)=K^{\prime}(X, Y)$ for all $X, Y \in V$, then $R=R^{\prime}$.

Proof. polarize in X
$R(X+Z, Y, X+T, Y)=R(X, Y, X, Y)+R(T, Y, T, Y)+2 R(X, Y, Z, Y)$

- use symmetry for last term
same with R^{\prime}
- get $R(X, Y, Z, Y)=R^{\prime}(X, Y, Z, Y)$
polarise in Y
$R(X, Y+W, Z, Y+W)=R(X, Y, Z, Y)+R(X, W, Z, W)+R(X, Y, Z, W)+R(X, W, Z, Y)$
- no symmetry anymore
get
$R(X, Y, Z, W)+R(X, W, Z, Y)=R^{\prime}(X, Y, Z, W)+R^{\prime}(X, W, Z, Y)$
or
$R(X, Y, Z, W)-R^{\prime}(X, Y, Z, W)=R^{\prime}(X, W, Z, Y)-R(X, W, Z, Y)$
or
$R(X, Y, Z, W)-R^{\prime}(X, Y, Z, W)=R(Y, Z, X, W)-R^{\prime}(Y, Z, X, W)$
$R(X, Y, Z, W)-R^{\prime}(X, Y, Z, W)$ is invariant under cyclic permutations of X, Y, Z
use first Bianchi $3\left(R(X, Y, Z, W)-R^{\prime}(X, Y, Z, W)\right)=0$

Lemma 4.58. Assume that $R \in V^{*, \otimes 4}$ satisfies the algebraic curvature identities. If $K(X, Y)=k\|X\|^{2}\|Y\|^{2}$ for all X, Y with $X \perp Y$, then

$$
R(X, Y, Z, W)=k(\langle Y, Z\rangle\langle X, W\rangle-\langle X, Z\rangle\langle Y, W\rangle)
$$

Proof. RHS satisfies with $Y=Z$ and $X=W$
$k(\langle Y, Y\rangle\langle X, X\rangle-\langle X, Y\rangle\langle Y, X\rangle)=k\|X\|^{2}\|Y\|^{2}$
also satisfies curvature identities:

- antisymmetry in X, Y : inspection
- symmetry for exchange $(X, Y) \leftrightarrow(Z, W)$: inspection
- antisymmetry in X, Y : inspection
- first Bianchy

$$
\begin{aligned}
& \langle Y, Z\rangle\langle X, W\rangle-\langle X, Z\rangle\langle Y, W\rangle \\
& +\langle Z, X\rangle\langle Y, W\rangle-\langle Y, X\rangle\langle Z, W\rangle \\
= & +\langle X, Y\rangle\langle Z, W\rangle-\langle Z, Y\rangle\langle X, W\rangle \\
= & 0
\end{aligned}
$$

apply Lemma 4.57
Remark 4.59. assume $R(X, Y, Z, W)=k(\langle Y, Z\rangle\langle X, W\rangle-\langle X, Z\rangle\langle Y, W\rangle)$
$\operatorname{Ric}(X, W)=k\left(\sum_{i}\left(\left\langle E_{i}, E_{i}\right\rangle\langle X, W\rangle-\left\langle X, E_{i}\right\rangle\left\langle E_{i}, W\right\rangle\right)=k(n-1)\langle X, W\rangle\right.$
$R=k n(n-1)$
Definition 4.60. We say that the sectional curvature of (M, g) is constant at m if $H \mapsto$ $K(m)(H)$ is constant.

Corollary 4.61. If the sectional curvature of M is constant at each point m in M, then

$$
R(X, Y, Z, W)=\frac{S}{n(n-1)}(\langle Y, Z\rangle\langle X, W\rangle-\langle X, Z\rangle\langle Y, W\rangle)
$$

for some constant S (equal to the scalar curvature).

Proof. at every point m :
apply Lemma 4.58

- $R(m)(X, Y, Z, W)=k(m)(\langle Y, Z\rangle\langle X, W\rangle-\langle X, Z\rangle\langle Y, W\rangle)$
$-\operatorname{Ric}(m)(X, W)=k(m)\left(\sum_{i}\left(\left\langle E_{i}, E_{i}\right\rangle\langle X, W\rangle-\left\langle X, E_{i}\right\rangle\left\langle E_{i}, W\right\rangle\right)=k(m)(n-1)\langle X, W\rangle\right.$
- hence (M, g) is Einstein and k is locally constant by Lemma 4.53
$S=k n(n-1)(S-$ scalar curvature $)$
this gives formula

Example 4.62. 1. $\left(\mathbb{R}^{n}, g_{e u}\right)$ has constant sectional curvature 0 .
2. $\left(S^{n}, g_{S^{n}}\right)$ (unit sphere in \mathbb{R}^{n+1}) has constant sectional curvature 1.
3. $H:=\left\{(x, y) \in \mathbb{R}^{n-1} \times \mathbb{R} \mid y>0\right\}$ with metric: $y^{-2} g_{\text {eu }}$ (the hyperbolic space, upper half-space model) has constant sectional curvature -1 .
the calculations for the last two examples can be done directly, but are lengthy - easier by using some theory

4.8 Isometries and second fundamental form

$(M, g),\left(M^{\prime}, g^{\prime}\right)$ - Riemannian manifolds
$f: M \rightarrow M^{\prime}$
Definition 4.63. f is isometric of $f^{*} g^{\prime}=g$.
an isometric map is an immersion
Remark 4.64. $\left(M^{\prime}, g^{\prime}\right)$ - Riemannian manifold
$f: M \rightarrow M^{\prime}$ - immersion

- define $g:=f^{*} g^{\prime}$
- this is a Riemannian metric on M
- $f:(M, g) \rightarrow\left(M^{\prime}, g^{\prime}\right)$ is isometric
- $D f: T M \rightarrow f^{*} T M^{\prime}$
- $f^{*} T M^{\prime} \cong T M \oplus T M^{\perp}$
- first summand identified via $D f$
- P: $f^{*} T M^{\prime} \rightarrow T M$ orthogonal projection
have already seen:
- can express Levi-Civita connection of M in terms of that of M^{\prime}

Lemma 4.65. $\nabla=P f^{*} \nabla^{\prime}$

- ∇ is tangential component of $f^{*} \nabla^{\prime}$
what about the normal component
- define: $N:=(1-P): f^{*} T M^{\prime} \rightarrow T M^{\perp}$ - projection on normal direction
- consider $X, Y \in \mathcal{X}(M)$
- $N \nabla_{X}^{\prime} Y \in \Gamma\left(M, T M^{\perp}\right)$

Proposition 4.66. The map $I: \mathcal{X}(M) \times \mathcal{X}(M) \rightarrow \Gamma\left(M, T M^{\perp}\right)$ given by $(X, Y) \mapsto$ $I(X, Y):=-N \nabla_{X}^{\prime} Y$ is C^{∞}-linear and symmetric.

Proof. - calculate at $m \in M$

- extend here X, Y to vector fields in an open nbhd of $f(m)$
$N \nabla_{f X}^{\prime} Y=f N \nabla_{X}^{\prime} Y$
$N \nabla_{X}^{\prime}(f Y)=f N \nabla_{X}^{\prime} Y+X(f) N Y=f N \nabla_{X}^{\prime} Y$ since $N Y=0$
for symmetry: $N \nabla_{X}^{\prime} Y-N \nabla_{Y}^{\prime} X=N[X, Y]=0$
hence get $I \in \Gamma\left(M, S^{2} T M^{*} \otimes T M^{\perp}\right)$
Definition 4.67. I is called the second fundamental form of f.
Example 4.68. $f: \mathbb{R}^{1} \rightarrow \mathbb{R}^{2}$ canonical embedding
- get $I=0$

Example 4.69. $f: S^{2} \rightarrow \mathbb{R}^{3}$

- ξ - out-pointing normal vector vector field
- trivializes $\left(T S^{2}\right)^{\perp}$
- calculate $\langle I(X, Y), \xi\rangle$
- because of rot. invariance suffices to calculate it at northpole
$-\langle I(X, Y), \xi\rangle=-\left\langle\nabla_{X}^{\prime} Y, \xi\right\rangle$
- coordinates: (x, y) - projection to (x, y)-plane
$-r:=\sqrt{x^{2}+y^{2}}$
$-\xi(x, y)=\left(x, y, \sqrt{1-r^{2}}\right)$
- extend Y to tangential field by $Y-\langle Y, \xi\rangle \xi$
- check: is $\perp \xi$
$-\left\langle\nabla_{X}^{\prime}(Y-\langle Y, \xi\rangle \xi), \xi\right\rangle=-X\langle Y, \xi\rangle=-\left\langle Y, \nabla_{X}^{\prime} \xi\right\rangle$
- use here that $\nabla_{X} \xi \perp \xi$ since ξ is unit vector field
- $\left(\nabla_{X}^{\prime} \xi\right)(0,0)=(X, 0)$
- hence $I(X, Y)=\langle Y, X\rangle$
same calculation also shows for $S^{n} \subseteq \mathbb{R}^{n+1}$
- the second fundamental form satisfies $\langle I(-,-), \xi\rangle=g_{S^{n}}$
$(M, g),\left(M^{\prime}, g^{\prime}\right)$ - Riemannian manifolds
- $f: M \rightarrow M^{\prime}$ isometry
- consider geodesic γ in M
- Question: Is $f \circ \gamma$ geodesic in M^{\prime} ?
$-\nabla_{\partial_{t}}^{\prime} \gamma^{\prime}=\nabla_{\partial_{t}} \gamma^{\prime}-I\left(\gamma^{\prime}, \gamma^{\prime}\right)$
Corollary 4.70. $f \circ \gamma$ is a geodesic if and only of $I\left(\gamma^{\prime}, \gamma^{\prime}\right) \equiv 0$
Definition 4.71. f is called totally geodesic if $I=0$.
Corollary 4.72. The following are equivalent:

1. If f is totally geodesic.
2. then f sends all geodesics in M to geodesics in M^{\prime}.

Example 4.73. $\mathbb{R}^{n} \subseteq \mathbb{R}^{n+m}$ is totally geodesic
$S^{n} \subseteq \mathbb{R}^{n+1}$ is not totally geodesic

Gauss equation expresses curvature of M in terms of curvature of M^{\prime}
$f: M \rightarrow M^{\prime}$ isometric

- will write X for $T f(m)(X)$ and $X \in T_{m} M$
I - second fundamental form
Theorem 4.74. For $X, Y, Z, W \in T_{m} M$ we have

$$
R(X, Y, Z, W)-R^{\prime}(X, Y, Z, W)=g^{\prime}(I(Y, Z), I(X, W))-g^{\prime}(I(X, Z), I(Y, W))
$$

Proof. $\nabla_{X} \nabla_{Y} Z=\nabla_{X}^{\prime} \nabla_{Y} Z+I\left(X, \nabla_{Y} Z\right)=\nabla_{X}^{\prime} \nabla_{Y}^{\prime} Z+\nabla_{X}^{\prime} I(Y, Z)+I\left(X, \nabla_{Y} Z\right)$
$g^{\prime}\left(\nabla_{X}^{\prime} I(Y, Z), W\right)=-g^{\prime}\left(I(Y, Z), \nabla_{X}^{\prime} W\right)=g^{\prime}(I(Y, Z), I(X, W))$

- calculate with commuting vector fields which are parallel at the given point m
$-I\left(X, \nabla_{Y} Z\right)(m)=0$
$g(R(X, Y) Z, W)=g\left(R^{\prime}(X, Y) Z, W\right)+g^{\prime}(I(Y, Z), I(X, W))-g^{\prime}(I(X, Z), I(Y, W))$

Example 4.75. calculation of curvature of S^{n}

- have seen $I=g \xi$ for unit outward normal field ξ
- $R^{\prime}=0$
get:
- $R(X, Y, Z, W)=\langle Y, Z\rangle\langle X, W\rangle-\langle X, Z\rangle\langle Y, W\rangle$
- S^{n} has constant sectional curvature 1

Ric $=(n-1) g$

- S^{n} is Einstein with $\lambda=n-1$
$R=n(n-1)$ - constant positive scalar curvature

4.9 Conformal change of the metric

(M, g) - Riemannian manifold
$f \in C^{\infty}(M)$

- $e^{f} g$ - new metric

Definition 4.76. We call $g^{\prime}:=e^{f} g$ the conformal change of g by e^{f}.
Question: how does the Levi-Civita connection and the curvature change
prep:

- vector space V
- $\left(e_{i}\right)_{i}$ - base of V
- $\left(e^{i}\right)_{i}$ - dual base of V^{*}
- consider $V^{*} \otimes \operatorname{End}(V) \cong V^{*} \otimes V^{*} \otimes V$
- $\phi \in V^{*}$
- can consider:
$-\phi \otimes 1:=\phi \otimes \mathrm{id}_{V}=\phi \otimes e^{i} \otimes e_{i}$
$-\phi(X)(Y)=\phi(X) Y$
$-\phi_{\sharp}:=e^{i} \otimes \phi \otimes e_{i}$
$-\phi_{\sharp}(X)(Y)=\phi(Y) X$
$-\phi_{\sharp}^{*}:=e^{i} \otimes\left\langle e_{i}, e_{k}\right\rangle e^{k} \otimes\left\langle\phi, e^{j}\right\rangle e_{j}=e^{i} \otimes e^{i} \otimes \phi\left(e_{j}\right) e_{j}$
- use symbol a for antisymmetrization (without $1 / 2$) in X, Y and in the endormorphism part
$-a(U(X, Y)):=U(X, Y)-U(Y, X)-U(X, Y)^{*}+U(Y, X)^{*}$
for $h \in C^{\infty}(M)$
- $d h \in \Omega^{1}(M)$

Definition 4.77. We define the gradient $\operatorname{grad}(h) \in \mathcal{X}(M)$ of h by

$$
g(\operatorname{grad}(h),-)=d h .
$$

locally in ONB $\left(e_{i}\right)_{i}$:
$-\operatorname{grad}(h)=d h\left(e_{i}\right) e_{i}$
locally in coordinates:
$-\operatorname{grad}(h)=g^{i j} \partial_{j} h \partial_{j}$
$-g^{i j}$ is inverse to $g_{i j}=g\left(\partial_{i}, \partial_{j}\right)$
Lemma 4.78. We have

$$
\nabla^{\prime}=\nabla+\frac{1}{2}\left(d f \otimes 1+d f_{\sharp}-d f_{\sharp}^{*}\right)
$$

and

$$
R^{\prime}(X, Y)=R(X, Y)+a\left(\frac{1}{2} \nabla_{X} d f \otimes Y-\frac{1}{8}\|d f\|^{2}\left(Y^{*} \otimes X\right)+\frac{1}{4} d f \otimes Y(f) X\right) .
$$

Proof. recall formula for Levi-Civita connection

$$
\begin{aligned}
2 g\left(\nabla_{X} Y, Z\right):= & X g(Y, Z)+Y g(X, Z)-Z g(X, Y) \\
& -g([X, Z], Y)-g([Y, Z], X)+g([X, Y], Z)
\end{aligned}
$$

replace g by $e^{f} g$ get ∇^{\prime}
$2 g\left(\nabla_{X}^{\prime} Y, Z\right)=2 g\left(\nabla_{X} Y, Z\right)+X(f) g(Y, Z)+Y(f) g(X, Z)-Z(f) g(X, Y)$
$2\left(\nabla_{X}^{\prime} Y-\nabla_{X} Y\right)=X(f) Y+Y(f) X-g(X, Y) \operatorname{grad}(f)$
$\nabla_{X}^{\prime}-\nabla_{X}=\omega$

- with $2 \omega=d f \otimes 1+d f_{\sharp}-d f_{\sharp}^{*}$
calculate R^{\prime} :
$R^{\prime}=R+\nabla \wedge \omega+[\omega, \omega]$
calculate with fields with vanishing commutator
$(\nabla \wedge \omega)(X, Y)=\nabla_{X} \omega(Y)-\nabla_{Y} \omega(X)$
$(\nabla \wedge(d f \otimes 1))(X, Y)=\nabla_{X} d f(Y) 1-\nabla_{Y} d f(X) 1=X(Y(f))-Y(X(f))=0$
- use $\nabla 1=0$ and $[X, Y]=0$

$$
\begin{aligned}
\left(\nabla \wedge d f_{\sharp}\right)(X, Y) & =\nabla_{X}(d f \otimes Y)-(X \leftrightarrow Y) \\
& =\nabla_{X} d f \otimes Y+d f \otimes \nabla_{X} Y-(X \leftrightarrow Y) \\
& =\nabla_{X} d f \otimes Y-(X \leftrightarrow Y)
\end{aligned}
$$

- use torsion-free

$$
\begin{aligned}
\left(\nabla \wedge d f_{\sharp}^{*}\right)(X, Y) & =\nabla_{X}\left(Y^{*} \otimes \operatorname{grad}(f)\right)-(X \leftrightarrow Y) \\
& \left.=\nabla_{X} Y^{*} \otimes \operatorname{grad}(f)\right)+Y^{*} \otimes \nabla_{X} \operatorname{grad}(f)-(X \leftrightarrow Y) \\
& =Y^{*} \otimes \nabla_{X} \operatorname{grad}(f)-(X \leftrightarrow Y) \\
& =\left(\nabla \wedge d f_{\sharp}\right)(X, Y)^{*}
\end{aligned}
$$

$$
2(\nabla \wedge \omega)(X, Y)=a\left(\nabla_{X} d f \otimes Y\right)
$$

$$
\begin{aligned}
4[\omega(X), \omega(Y)]= & \left((d f \otimes X) \circ(d f \otimes Y)+\left(X^{*} \otimes \operatorname{grad}(f)\right) \circ\left(Y^{*} \otimes \operatorname{grad}(f)\right)-(d f \otimes X) \circ\left(Y^{*} \otimes \operatorname{grad}(f)\right)\right. \\
& -\left(X^{*} \otimes \operatorname{grad}(f)\right) \circ(d f \otimes Y)-(X \leftrightarrows Y) \\
= & Y(f) d f \otimes X+X(f) Y^{*} \otimes \operatorname{grad}(f)-\|d f\|^{2} Y^{*} \otimes X-\langle X, Y\rangle d f \otimes \operatorname{grad}(f) \\
& -(X \leftrightarrows Y) \\
= & a\left(d f \otimes Y(f) X-\frac{1}{2}\|d f\| Y^{*} \otimes X\right)
\end{aligned}
$$

thus

$$
R^{\prime}(X, Y)=R(X, Y)+a\left(\frac{1}{2} \nabla_{X} d f \otimes Y-\frac{1}{8}\|d f\|^{2} Y^{*} \otimes X+\frac{1}{4} d f \otimes Y(f) X\right)
$$

- a means antisymmetrization (without $1 / 2$) in X, Y and in the endormorphism part
- factor $1 / 8$ instead of $1 / 4$ correct!

Example 4.79. $f=\mathrm{constant}$
$\nabla^{\prime}=\nabla$
$R^{\prime}=R$ for curvature tensor
but $R^{\prime}(X, Y, Z, W)=e^{f} R(X, Y, Z, W)$
$-\operatorname{Ric}^{\prime}=e^{-f}$ Ric

- $S^{\prime}=e^{-2 f} S$
- $K=e^{-f} K$
e.g. sphere S_{r}^{n-1} of radius r is isometric to conformal change of unit sphere $g^{\prime}=r^{2} g$ - sectional curvature of S_{r} is r^{-2}

Example 4.80. the upper half plane

- $H:=\left\{(x, y) \in \mathbb{R}^{n-1} \times \mathbb{R} \mid y>0\right\}$
- metric: $y^{-2} g_{e u}$

Definition 4.81. $\left(H, y^{-2} g_{e u}\right)$ is called the hyperbolic space.
Lemma 4.82. The hyperbolic space is complete and has constant sectional curvature -1 .
Proof. - $y^{-2}=e^{f}$
$-f=-2 \log (y)$
$-d f=-2 y^{-1} d y$
$-\frac{1}{2}\left(\nabla_{X} d f \otimes Y\right)=y^{-2} X^{n} d y \otimes Y$
$-\frac{1}{8}\|d f\|^{2}\left(Y^{*} \otimes X\right)=2^{-1} y^{-2} Y^{*} \otimes X$
$-\frac{1}{4}(d f \otimes Y(f) X)=Y^{n} y^{-2} d y \otimes X$
$y^{4} R^{\prime}(X, Y, Z, W)=X^{n} Z^{n}\langle Y, W\rangle-2^{-1}\langle Y, Z\rangle\langle X, W\rangle+Y^{n} Z^{n}\langle X, W\rangle+($ anti - symm $)$

- sum of first and third term is symmetric in X, Y
- get
$y^{4} R^{\prime}(X, Y, Z, W)=-(\langle Y, Z\rangle\langle X, W\rangle-\langle X, Z\rangle\langle Y, W\rangle)$
- $R^{\prime}(X, Y, Z, W)=-\left(g^{\prime}(Y, Z) g^{\prime}(X, W)-g^{\prime}(X, Z) g^{\prime}(Y, W)\right)$
- constant sectional curvature $K=-1$
show completeness:
$\mathbb{R}^{+} \times \mathbb{R}^{n-1}$ acts by isometry: $(\lambda, z)(x, y)=(\lambda x+z, \lambda y)$
- this action is transitive
- the existence time for the unit speed geodesics on H has a uniform lower bound given by the existence time at some base point
- H is geodesically complete

4.10 Lie groups

G - a Lie group

- Ad : $G \rightarrow \operatorname{Aut}(\mathfrak{g})$ - adjoint representation
- consider Ad-invariant invariant scalar products on \mathfrak{g}

Example 4.83. assume: G is compact

- then such a scalar product exists
- $d g$ - normalized invariant volume
- fix any scalar product \tilde{B} on \mathfrak{g}
- define $B(X, Y):=\int_{G} \tilde{B}(\operatorname{Ad}(g)(X), \operatorname{Ad}(g)(Y)) d g$
- B is Ad-invariant scalar product

Lemma 4.84. If \mathfrak{g} is simple, then B is unique up to normalization.
Proof. - B^{\prime} second Ad-invariant scalar product

- $B^{\prime}(X, Y)=B(A X, Y)$ for some symmetric $A \in \operatorname{End}(\mathfrak{g})$
- Ad-invariance of B, B^{\prime} implies: $\operatorname{Ad}(g) A \operatorname{Ad}\left(g^{-1}\right)=A$ for all $g \in G$
- differentiate: $[\operatorname{ad} X, A]=0$
- if A is not $\lambda 1$, then it has at least two eigenvalues
- λ - eigenvalue
$-\mathfrak{g}(\lambda) \subseteq \mathfrak{g}$ proper eigensubspace
- is an ideal in \mathfrak{g}
$-X \in \mathfrak{g}(\lambda)$
$-A([Y, X])=A(\operatorname{ad}(Y)(X))=\operatorname{ad}(Y)(A(X))=\lambda \operatorname{ad}(Y)(X)=\lambda[Y, X]$
- existence of proper ideal is contradiction to simpleness of \mathfrak{g}
call G simple if \mathfrak{g} is simple
- G compact, simple
- Killingform $-B_{G}$ is invariant and positive definite
- hence any invariant scalar product is multiple of $-B_{G}$
back to general situation
- for any scalar product B on \mathfrak{g}
- define Riemannian metric g_{B} in G by left-invariant extension of B
$-g_{B}(h):=T L_{h^{-1}}^{*} B$
- for left invariant fields $X, Y \in{ }^{G} \mathcal{X}(G)$
$-g_{B}(X, Y)=B(X(e), Y(e))$
Corollary 4.85. $\left(G, g_{B}\right)$ is complete.

Proof. G acts transitively isometrically by isometries on $\left(G, g_{B}\right)$
if we assume that B is Ad-invariant, then can understand Riemannian geometry of $\left(G, g_{B}\right)$ in a simple manner

Lemma 4.86. The following are equivalent:

1. The Riemannian metric g on G is left-and right invariant.
2. $B=g(e)$ is Ad-invariant.

Proof. Exercise!
Lemma 4.87. If B is Ad-invariant, then the Levi-Civita connection on $\left(G, g_{B}\right)$ is determined by $\nabla_{X} Y=\frac{1}{2}[X, Y]$ for $X, Y \in{ }^{G} \mathcal{X}(G)$.

Proof. show first: there is a unique connection ∇ on $T G$ such that $\nabla_{X} Y=\frac{1}{2}[X, Y]$ for $X, Y \in{ }^{G} \mathcal{X}(G)$

- have trivialization $\Phi: T G \cong G \times \mathfrak{g}$
$-X \in T_{g} G \mapsto\left(g, T L_{g^{-1}}(g)(X)\right)$
- this determines trivial connection $\nabla^{\text {triv }}$
$-X \in{ }^{G} \mathcal{X}(G)$ goes to constant function with value $X(e)$
- this trivial connection satisfies for $\nabla_{X} Y=0$ for $X, Y \in{ }^{G} \mathcal{X}(G)$
- consider $\omega \in \Omega^{1}(G, T G)$ defined by:
$-\omega(X)(Y)=\frac{1}{2} T L_{g}(e)\left(\left[T L_{g^{-1}}(g)(X), T L_{g^{-1}}(g)(Y)\right]\right)$
- i.e. for $X, Y \in{ }^{G} \mathcal{X}(G): \omega(X)(Y)=\frac{1}{2}[X, Y]$
- then $\nabla:=\nabla^{\text {triv }}+\omega$ is a connection
$-\nabla$ satisfies the condition
-- uniqueness is clear since ω is determined by condition
∇ is Levi-Civita:
- calculate with $X, Y, Z \in{ }^{G} \mathcal{X}(G)$
- torsion-free:
$-\nabla_{X} Y-\nabla_{Y} X=\frac{1}{2}[X, Y]-\frac{1}{2}[Y, X]=[X, Y]$
- compatible with metric:
$-X g(Y, Z)=0$
$-g_{B}\left(\nabla_{X} Y, Z\right)+g_{B}\left(Y, \nabla_{X} Z\right)=\frac{1}{2} B([X(e), Y(e)], Z(e))+\frac{1}{2} B(Y(e),[X(e), Z(e)])=0$
- it is here where we use invariance of B
$X \in \mathfrak{g}$
- interpret $X \in{ }^{G} \mathcal{X}(G)$
- get integral curve curve $t \mapsto \gamma(t):=\exp (t X)$ in G
$-\gamma(0)=e$
- $\gamma^{\prime}(t)=X(\gamma(t))$
$-\gamma(t):=\exp ((t+s) X)=\exp (t X) \exp (s X)$ (one-parameter subgroup
Lemma 4.88. Assume that $\left(G, g_{B}\right)$ is defined with invariant B. The curve γ is a geodesic
Proof. $\gamma^{\prime}(t)=X(\gamma(t))$
- $\nabla_{\partial_{t}} \gamma^{\prime}(t)=\nabla_{\gamma^{\prime}(t)} X=\nabla_{X(\gamma(t))} X=[X, X](\gamma(t))=0$
conclude: $\exp =\exp _{e}$
- exp: exponential map of G in the sense of Lie groups
- $\exp _{e}$: exponential map of G in the sense of Riemannian geometry
all geodesics are of the form
$t \mapsto g \exp (t X)$ for some g in G and X in \mathfrak{g}
Corollary 4.89. A Lie subgroup H of G is a totally geodesic submanifold.
curvature:
$R(X, Y) Z=\frac{1}{2}([X,[Y, Z]]-[Y,[X, Z]]-[[X, Y], Z])=[[X, Y], Z]$
by Jacobi
$\operatorname{Ric}(X, W)=\sum_{i} g_{B}\left(\left[\left[X, e_{i}\right], e_{i}\right], W\right)=-\sum_{i} g_{B}\left(\left[X, e_{i}\right],\left[W, e_{i}\right]\right)=\sum_{i} g\left(\left[W,\left[X, e_{i}\right], e_{i}\right)=\right.$ $K(W, X)$
- K is the Killing form

Corollary 4.90. If we choose B proportional to the Killing form, then $\left(G, g_{B}\right)$ is Einstein.
Remark 4.91. one could ask more generally: for which scalar products B on \mathfrak{g} is $\left(G, g_{B}\right)$ Einstein

- there are many more examples (quite recent)

4.11 Energy and more

(M, g) - Riemannian

- recall definitions of energy and length of a curve $\gamma:[0, a] \rightarrow M$
$-E(\gamma)=\int_{0}^{a} g\left(\gamma^{\prime}(t), \gamma^{\prime}(t)\right) d t$
$-\ell(\gamma)=\int_{0}^{a} \sqrt{g\left(\gamma^{\prime}(t), \gamma^{\prime}(t)\right)} d t$

Cauchy-Schwarz: $\ell(\gamma)^{2} \leq a E(\gamma)$ (for any curve)
$\gamma: m \rightarrow m^{\prime}$

- note: $\ell(\gamma)=d\left(m, m^{\prime}\right)$ implies that γ is geodesic

Lemma 4.92. Assume $\ell(\gamma)=d\left(m, m^{\prime}\right)$. Then for any curve $\sigma: m \rightarrow m^{\prime}$ we have $E(\gamma) \leq E(\sigma)$ with equality iff σ is a minimizing geodesic.

Proof. γ is geodesic

- speed ${ }^{2} g\left(\gamma^{\prime}(t), \gamma^{\prime}(t)\right)$ is constant
- speed $d\left(m, m^{\prime}\right) / a$
$-E(\gamma)=a \cdot d\left(m, m^{\prime}\right)^{2} / a^{2}=\ell(\gamma)^{2} / a$
- $a E(\gamma)=\ell(\gamma)^{2} \leq \ell(\sigma)^{2} \leq a E(\sigma)$
- if equality: $\ell(\sigma)=d\left(m, m^{\prime}\right)$ and hence σ is minimizing geodesic

Example 4.93. meridians from north to southpole on S^{2} show:

- $E(\gamma)=E(\sigma)$ does not imply $\gamma=\sigma$
already know: geodesics are precisely critical curves for E
- $\left(\gamma_{u}\right)_{u}$ variation of geodesic γ rel endpoints
$-0=\left(\partial_{u}\right)_{\mid u=0} E\left(\gamma_{u}\right)$
- we now consider second derivative of $E\left(\gamma_{u}\right)$
- variation field $\gamma_{u}^{\sharp}(t):=\partial_{u} \gamma_{u}(t)$
- is a section of $\gamma^{*} T M$

Lemma 4.94.

$$
\left(\partial_{u}\right)_{\mid u=0} E\left(\gamma_{u}\right)=-2 \int_{0}^{a} g\left(\gamma^{\sharp}, \nabla_{\partial_{t}}^{2} \gamma^{\sharp}+R\left(\gamma^{\sharp}, \gamma^{\prime}\right) \gamma^{\prime}\right) d t .
$$

Proof.

$$
\begin{aligned}
\partial_{u} E\left(\gamma_{u}\right) & =\int_{0}^{a} \partial_{u} g\left(\gamma_{u}^{\prime}, \gamma_{u}^{\prime}\right) d t \\
& =2 \int_{0}^{a} g\left(\nabla_{\partial_{u}} \gamma_{u}^{\prime}, \gamma_{u}^{\prime}\right) d t \\
& =2 \int_{0}^{a} g\left(\nabla_{\partial_{t}} \gamma_{u}^{\sharp}, \gamma_{u}^{\prime}\right) d t \\
& =-2 \int_{0}^{a} g\left(\gamma_{u}^{\sharp}, \nabla_{\partial_{t}} \gamma_{u}^{\prime}\right) d t
\end{aligned}
$$

- use here ∇ is torsion free for $\nabla_{\partial_{u}} \gamma_{u}^{\prime}=\nabla_{\partial_{t}} \gamma_{u}^{\sharp}$
$-\gamma_{u}^{\sharp}(0)=0$ and $\gamma_{u}^{\sharp}(a)=0$ for partial integration
$\operatorname{apply}\left(\partial_{u}\right)_{\mid u=0}$

$$
\begin{aligned}
\left(\partial_{u}^{2} E\left(\gamma_{u}\right)\right)_{\mid u=0} & \left.=-2\left(\int_{0}^{a} g\left(\nabla_{\partial_{u}} \gamma_{u}^{\sharp}, \nabla_{\partial_{t}} \gamma_{u}^{\prime}\right) d t\right)\right)_{\mid u=0}-2\left(\int_{0}^{a} g\left(\gamma_{u}^{\sharp}, \nabla_{\partial_{u}} \nabla_{\partial_{t}} \gamma_{u}^{\prime}\right) d t\right)_{\mid u=0} \\
& =-2\left(\int_{0}^{a} g\left(\gamma_{u}^{\sharp}, \nabla_{\partial_{u}} \nabla_{\partial_{t}} \gamma_{u}^{\prime}\right) d t\right)_{\mid u=0} \\
& =-2 \int_{0}^{a} g\left(\gamma^{\sharp},\left(\left.\nabla_{\partial_{u}} \nabla_{\partial_{t}} \gamma_{u}^{\prime}\right|_{\mid u=0}\right) d t\right.
\end{aligned}
$$

- use here γ_{0} is geodesic to drop first summand

$$
\left(\nabla_{\partial_{u}} \nabla_{\partial_{t}} \gamma_{u}^{\prime}\right)_{\mid u=0}=\nabla_{\partial_{t}}\left(\nabla_{\partial_{u}} \gamma_{u}^{\prime}\right)_{\mid u=0}+R\left(\gamma^{\sharp}, \gamma^{\prime}\right) \gamma^{\prime}=\nabla_{\partial_{t}}^{2} \gamma^{\sharp}+R\left(\gamma^{\sharp}, \gamma^{\prime}\right) \gamma^{\prime}
$$

- drop subscript 0 (for u-variable)
insert this formula - get result
Remark 4.95. assume γ^{\sharp} is Jacobi field
- then $\left(\partial_{u}^{2} E\left(\gamma_{u}\right)\right)_{\mid u=0}=0$
- Hessian of E has a zero at γ
- the existence of a Jacobi field which vanishes at the endpoints of the geodesic is a strong condition
- the endpoints are called conjugate (will be discussed later)
lower estimates of symmetric bilinear forms
- V real euclidean vector space
- B - symmetric bilinear form on V
$-c \in \mathbb{R}$
- say: $B \geq c$ if $B(v, v) \geq c$ for every unit vector v in V
- equivalently: write $B(v, w)=\langle A v, w\rangle$ for symmetric endomorphism A
- $B \geq c$ iff all eigenvalues of A are bounded below by c
(M, g) Riemannian manifold
- $\operatorname{Ric}(m)$ is symmetric bilinear form on $T_{m} M$
- condition $\operatorname{Ric}(m) \geq c$ makes sense
- say: $\operatorname{Ric} \geq c$ if $\operatorname{Ric}(m) \geq c$ for all m in M
recall definition of diameter of metric space $(X, d): \operatorname{diam}(X)=\sup _{x, x^{\prime} \in X} d\left(x, x^{\prime}\right)$
Theorem 4.96 (Bonnet-Myers). If (M, g) is complete and Ric $\geq c>0$, then M is compact and $\operatorname{diam}(M) \leq \pi \sqrt{\frac{n-1}{c}}$.

Proof. by contradiction

- assume that there exists m, m^{\prime} in M with $\ell:=d\left(m, m^{\prime}\right)>\pi \sqrt{\frac{n-1}{c}}$
- chose minimizing geodesic $\gamma:[0,1] \rightarrow M$ from m to m^{\prime}
- this is possible by completeness assumption
$-\gamma$ is also energy minimizing
$\left(e_{i}\right)_{i=1, n}$ parallel ONB $\gamma^{*} T M$
- such that $e_{n}:=\frac{\gamma^{\prime}}{\ell}$
$-V_{j}(t):=\sin (\pi t) e_{j}(t)$ section of $\gamma^{*} T M$
- observe: $V_{j}(0)=0, V_{j}(1)=0$
insert in formula for second variation of energy formula

$$
\begin{aligned}
E_{j}^{\prime \prime} & :=-2 \int_{0}^{1} g\left(V_{j}, V_{j}^{\prime \prime}+R\left(V_{j}, \gamma^{\prime}\right) \gamma^{\prime}\right) d t \\
& =2 \int_{0}^{1} \sin (\pi t)^{2}\left(\pi^{2}-\ell^{2} K(\gamma(t))\left(e_{j}(t), e_{n}(t)\right) d t\right.
\end{aligned}
$$

sum over $j=1, \ldots, n-1$

- use
$\sum_{j} K(\gamma(t))\left(e_{j}(t), e_{n}(t)\right)=\operatorname{Ric}\left(e_{n}(t), e_{n}(t)\right) \geq c>\frac{(n-1) \pi^{2}}{\ell^{2}}$

$$
\sum_{j=1}^{n-1} E_{j}^{\prime \prime}<2 \int_{0}^{1} \sin (\pi t)^{2}\left((n-1) \pi^{2}-\ell^{2} \frac{(n-1) \pi^{2}}{\ell^{2}}\right) d t=0
$$

hence $E_{j}^{\prime \prime}<0$ for at least one j

- can find variation of γ which decreases energy
- contradiction to γ being energy minimizing

Remark 4.97. the constant in Bonnet-Myers is optimal

- S_{r}^{n} has diameter πr
- Ric $=(n-1) r^{-2}$

4.12 Coverings

M - a connected manifold
Definition 4.98. A covering of M is a fibre bundle $\tilde{M} \rightarrow M$ with discrete fibres. can characterize coverings by the unique path lifting property $-\pi: \hat{M} \rightarrow M$ a smooth map between manifolds

Lemma 4.99. The following are equivalent:

1. $\pi: \hat{M} \rightarrow M$ is a covering.
2. π has the unique path lifting property saying: Given any bold diagram

there exists a unique dotted arrow rendering the diagram commutative
Proof. sketch:
$1 \Rightarrow 2$:

- $\hat{M} \rightarrow M$ has a canonical flat connection $T^{h} \hat{M}:=T \hat{M}$
- (since $T^{v} \pi=0$ by discreteness of fibres)
- given bold diagram:
$-\hat{\gamma}^{\hat{m}_{0}}$ is unique horizontal lift of γ with $\hat{\gamma}\left(t_{0}\right)=\hat{m}_{0}$
$2 \Rightarrow 1$:
- $m_{0} \in M$
- choose small ball $m_{0} \in B \subseteq M$
- for $m \in B$ let $\gamma_{m}:[0,1] \rightarrow B$ be radial curve from m_{0} to m
- define $\Phi: B \times \hat{M}_{m_{0}} \rightarrow M$ local trivialization such that $\Phi\left(b, \hat{m}_{0}\right)=\hat{\gamma}_{m}^{\hat{m}_{0}}(1)$

Definition 4.100. M is simply connected if every connected covering $\tilde{M} \rightarrow M$ is an isomorphism.
more facts about coverings:
Proposition 4.101. There exists a connected covering $\tilde{M} \rightarrow M$ such that \tilde{M} is simply connected (it is called the universal covering).

Proof. idea of construction:

- fix point m_{0}
- a point in \tilde{M} is a pair $(m,[\gamma])$ where $m \in M, \gamma: m_{0} \rightarrow m$ a curve, $[\gamma]$ - homotopy class
- $\tilde{M} \rightarrow M$ given by $(m,[\gamma]) \rightarrow m$
- define manifold structure such that this is local diffeomorphism
- check unique path lifting:
—— if σ is path in M starting in m
- unique lift starting in $(m,[\gamma])$ is $t \mapsto\left(\sigma(t),\left[\sigma_{\leq t \sharp \gamma}\right]\right)$
show \tilde{M} is connected
$-\left(\gamma(t),\left[\gamma_{\leq t}\right]\right.$ is path from $\left(m_{0},\left[\right.\right.$ const $\left.\left._{m_{0}}\right]\right)$ to $(m,[\gamma])$
check \tilde{M} is simply connected
- $\hat{M} \rightarrow \tilde{M}$ covering, connected
- must show that injective:
- assume $\hat{m}_{0}, \hat{m}_{0}^{\prime}$ two points in fibre at $\left(m_{0},\left[\right.\right.$ const $\left.\left._{m_{0}}\right]\right)$
- chose path $\hat{\gamma}$ from $\hat{m} \rightarrow \hat{m}^{\prime}$
- $\tilde{\gamma}$ - path in \tilde{M}
— is closed loop at ($m_{0},\left[\right.$ const $\left.\left._{m_{0}}\right]\right)$
- is zero homotopic
—- this implies $\hat{m}_{0}=\hat{m}_{0}^{\prime}$ (it is at this point where the argument is sketchy since this fact has not been shown above)

Lemma 4.102. The universal covering has the following universal property: Given bold part of the diagram

the dotted arrow exists and is unique making the diagram commutative.

Proof. existence:

- \tilde{m}^{\prime} in \tilde{M}
- choose path $\tilde{\sigma}: \tilde{m} \rightarrow \tilde{m}^{\prime}$
- σ - image in M
- $\hat{\sigma}$ - unique lift in \hat{M} starting in \hat{m}
- define $\phi\left(\tilde{m}^{\prime}\right)=\hat{\sigma}(1)$
- check continuity of ϕ
- uniqueness of ϕ

Corollary 4.103. The universal covering is uniquely determined up to isomorphism of fibre bundle.

Definition 4.104. The group $\pi_{1}(M)$ of fibrewise diffeomorphisms of \tilde{M} is called the fundamental group of M.

Lemma 4.105. $\tilde{M} \rightarrow M$ is a $\pi_{1}(M)$-principal bundle.

Proof. must show: $\pi_{1}(M)$ acts simply transitively on fibres

- consider fibre over given point m
- $g \in \pi_{1}(M)$
- $\tilde{m}^{\prime}, \tilde{m} \in \tilde{M}$ over m
- apply universal property for $\hat{M}=\tilde{M}$
- if $g \tilde{m}=\tilde{m}$, then $g=$ id by uniqueness clause
- can find g such that $g(\tilde{m})=\tilde{m}^{\prime}$ by existence clause
(follows easily from universal property)
Remark 4.106. - the usual definition of $\pi_{1}(M)$ is as the group of homotopy classes of loops [σ] in M at some base point m_{0} with concatenation
- right-action in the model by $(m,[\gamma])[\sigma]=(m,[\gamma \sharp \sigma])$

Corollary 4.107. If (M, g) is a complete Riemannian manifold with Ric $\geq c>0$, then $\pi_{1}(M)$ is finite.

Proof. - $\pi: \tilde{M} \rightarrow M$ is immersion

- $\tilde{g}:=\pi^{*} g$ satisfies Ric $\geq c>0$
- (\tilde{M}, \tilde{g}) is also complete
- hence \tilde{M} is compact by Bonnet-Myers
- π has finite fibres
- hence $\pi_{1}(M)$ is finite

Example 4.108. choose p, q a primes, different

- let C_{p} act on \mathbb{C}^{2} by $[n]\left(z_{1}, z_{2}\right)=\left(e^{2 \pi i \frac{n}{p}} z_{1}, e^{2 \pi i \frac{n q}{p}} z_{2}\right)$
- this is isometric
- preserves $S^{3} \subseteq \mathbb{C}^{2}$
- acts freely on S^{3}

Definition 4.109. The lense space $L(p, q)$ is the quotient S^{3} / C_{p} with respect to this action.
have covering $S^{3} \rightarrow L(p, q)$

- can choose metric on $L(p, q)$ such that the covering is isometric
- then $L(p, q)$ has constant sectional curvature 1
- $S^{3} \rightarrow L(p, q)$ is the universal covering
- $\pi_{1}(L(p, q))=C_{p}$

Recall: (M, g)

- if M has $K \leq 0$, then $\exp _{m}$ is diffeo near every point of $T_{m} M$

Lemma 4.110. If (M, g) is complete and has $K<0$, then $\exp _{m}: T_{m} M \rightarrow M$ is a covering.

Proof. we check unique path lifting property

- equip $T_{m} M$ with metric $g^{\prime}:=\exp _{m}^{*} g$
- radial curves $t \mapsto t X$ are geodesics in this metric
- exist for all times
- $\left(T_{m} M, g^{\prime}\right)$ is complete by Hopf-Rinow
$\gamma:[0,1] \rightarrow M$ path
- $x \in \exp _{m}^{-1}(\gamma(0))$ start point for lift
- if lift of γ exists, then it is unique (since $\exp _{m}$ is local diffeo)
- for some $t>0$ there exists lift $\tilde{\gamma}$ on $[0, t)$ (again by local diffeo)
- let t be maximal with this property
- want to show: $t=1$
assume $t<1$
- $t_{n} \uparrow t$
$-\gamma\left(t_{n}\right) \rightarrow \gamma(t)$
$\left.-d(\tilde{\gamma}(0)), \tilde{\gamma}\left(t_{n}\right)\right) \leq \ell\left(\tilde{\gamma} \leq t_{n}\right)=\ell\left(\gamma_{\leq t_{n}}\right)$ is uniformly bounded
- by compactness of balls of $\left(T_{m} M, g^{\prime}\right)$
- get converging subsequence $\tilde{\gamma}\left(t_{n}\right) \rightarrow x^{\prime}$
- consider lift $\tilde{\sigma}$ of γ with $\tilde{\sigma}(t)=x^{\prime}$ near t
- same limit point as $\tilde{\gamma}$
- $\exp _{m}$ local diffeo near x^{\prime}
$-\tilde{\gamma}=\tilde{\sigma}$ for $t^{\prime} \leq t$
- $\tilde{\sigma}$ extends $\tilde{\gamma}$ to some times larger than t
- contradiction to maximality of t

Corollary 4.111. If (M, g) is complete with $K \leq 0$, then the universal covering of M is diffeomorphic to \mathbb{R}^{n}.

Example 4.112. $T^{n}=\mathbb{R}^{n} / \mathbb{Z}^{n}$ (this is the universal covering of the torus)

- has $K=0$
- $\tilde{T}^{n} \cong \mathbb{R}^{n}$

Example 4.113. - here many examples of compact quotients of the hyperbolic space

- these are compact Riemannian manifolds with constant negative sectional curvature

4.13 Conjugate points

(M, g) - Riemannian manifold
$\gamma: I \rightarrow M$ geodesic
$p, q \in I$
Definition 4.114. The pair of points p, q is called conjugate if there exists a non-zero Jacobi field along γ with $J(p)=0=J(q)$.

Remark 4.115. if p, q is conjugate, and $\gamma(t)=\exp _{m}((t-p) X)$, then $T \exp _{m}((q-p) X)$ is not an isomorphism

Remark 4.116. in the condition for conjugate points can assume that $J \perp \gamma^{\prime}$

- $n=\operatorname{dim}(M)$
- can decompose space of Jacobi fields into 2-dim subspaces of Jacobifields parallel to γ^{\prime} and $2 n-2$-dim subspace of fields orthogonal to γ^{\prime}
- this is because of $g\left(J(t), \gamma^{\prime}(t)\right)=g\left(J(p), \gamma^{\prime}(p)\right)+(t-p) g\left(\nabla_{\partial_{t}} J(p), \gamma^{\prime}(p)\right)$
- if $J \simeq \gamma^{\prime}$ then:
- if $J(p)=0, \nabla_{\partial_{t}} J(p) \simeq \gamma^{\prime}(p)$
- $g\left(J(t), \gamma^{\prime}(t)\right)=(t-p) g\left(\nabla_{\partial_{t}} J(p), \gamma^{\prime}(p)\right)$ non-zero linear
- J has no zero other than p

Jacobi fields with two zeros are orthgonoal to γ^{\prime}
consider manifold $(M, g),(\tilde{M}, \tilde{g})$
$-\operatorname{dim}(\tilde{M}) \geq \operatorname{dim} M$
$\gamma:[0, a] \rightarrow M, \tilde{\gamma}:[0, a] \rightarrow \tilde{M}$ geodesics

- $\left\|\gamma^{\prime}(t)\right\|=\|\tilde{\gamma}(t)\|$ - same velocity
J Jacobi along γ, \tilde{J} Jacobi along $\tilde{\gamma}$
write $\nabla_{t} J=J^{\prime}$ etc

Theorem 4.117 (Rauch Comparison). Assume:

1. $J(0)=0, \tilde{J}(0)=0$
2. $g\left(J^{\prime}(0), \gamma^{\prime}(0)\right)=\tilde{g}\left(\tilde{J}^{\prime}(0), \tilde{\gamma}^{\prime}(0)\right)$
3. $\left\|J^{\prime}(0)\right\|=\left\|\tilde{J^{\prime}}(0)\right\|$
4. $\tilde{\gamma}$ has no conjugate point on $(0, a]$
5. for all $t \in[0, a]$ and planes $H \subseteq T_{\gamma(t)} M$ containing $\gamma^{\prime}(t)$ and $\tilde{H} \subseteq T_{\tilde{\gamma}(t)} \tilde{M}$ containing $\tilde{\gamma}^{\prime}(t)$ we have $K(H) \leq \tilde{K}(\tilde{H})$ (sectional curvature).

Then $\|\tilde{J}\| \leq\|J\|$ with equality at some t only if $\tilde{K}\left(\tilde{J}(s), \tilde{\gamma}^{\prime}(s)\right)=K\left(J(s), \gamma^{\prime}(s)\right)$ for all $s \in[0, t]$.

Example 4.118. assume: (M, g) has constant section curvature K

- γ geodesic of speed $\left\|\gamma^{\prime}(t)\right\|=v$
- $R(X, Y, Z, W)=K(g(Y, Z) g(X, W)-g(X, Z) g(Y, W))$
- implies with $J \perp \gamma^{\prime}$
$-R\left(\gamma^{\prime}, J\right) \gamma^{\prime}=-K v^{2} J$
- conclude: $J^{\prime \prime}=R\left(\gamma^{\prime}, J\right) \gamma^{\prime}=-K v^{2} J$
- for $K>0$
$-J(t)=J(0) \cos (\sqrt{K} v t) J(0)+\frac{1}{\sqrt{K} v} \sin (\sqrt{K} v t) J^{\prime}(0)$
discuss conjugate points:
$J(0)=0$
$J(q)=0, J^{\prime}(0) \neq 0$
then $\sin (\sqrt{K} v q)=0$
- smallest q :

$$
q=\frac{2 \pi}{v \sqrt{K}}
$$

- distance between conjugate points is $\frac{2 \pi}{\sqrt{K}}$
(M, g) general
Corollary 4.119. If M has upper sectional curvature bound $k>0$, then the distance between any two conjugate points on a geodesic with speed v bounded below by $\frac{2 \pi}{v \sqrt{k}}$.

Example 4.120. If M has non-positive curvature than γ has no pairs of conjugate points.
the following prepares the proof:
$\gamma:[0, a]$ curve in (M, g)

- $V \in \Gamma\left(M, \gamma^{*} T M\right)$
$-t \in[0, a]$
- define index form by:

$$
I_{t}(V):=\int_{0}^{t}\left(\left\|V^{\prime}(s)\right\|^{2}+R\left(\gamma^{\prime}(s), V(s), \gamma^{\prime}(s), V(s)\right)\right) d s
$$

$\gamma:[0, a]$ geodesic in (M, g)

- no conjugate points in $(0, a]$
- J - Jacobi along $\gamma, J \perp \gamma^{\prime}$
- $V \in \Gamma\left(M, \gamma^{*} T M\right), V \perp \gamma^{\prime}$

Lemma 4.121. Jacobi-fields minimize index form for fields $\perp \gamma^{\prime}$ with given boundary values: If J is a Jacobi field along γ with $J(0)=V(0)=0$ and $J(t)=V(t)$, then $I_{t}(J) \leq I_{t}(V)$ with equality only if $V=J$.

Proof. choose basis $\left(J_{i}\right)_{i=1, \ldots, n-1}$ of Jacobi fields along γ with $J_{i}(0)=0 J_{i} \perp \gamma^{\prime}$

- $J=\sum_{i} a_{i} J_{i}$ for constants $\left(a_{i}\right)_{i}$
- $V=\sum_{i} f_{i} J_{i},\left(f_{i}\right)_{i}$ real-valued functions
- note: f_{i} is smooth at $t=0$

$$
\begin{aligned}
\left\|V^{\prime}\right\|+R\left(\gamma^{\prime}, V, \gamma^{\prime}, V\right)= & g\left(\sum_{i}\left(f_{i}^{\prime} J_{i}+f_{i} J_{i}^{\prime}\right), \sum_{j}\left(f_{j}^{\prime} J_{j}+f_{j} J_{j}^{\prime}\right)\right)-R\left(\gamma^{\prime}, \sum_{i} f_{i} J_{i}, \gamma^{\prime}, \sum_{j} f_{j} J_{j}\right) \\
= & g\left(\sum_{i} f_{i}^{\prime} J_{i}, \sum_{j} f_{j}^{\prime} J_{j}\right)+g\left(\sum_{i} f_{i}^{\prime} J_{i}, \sum_{j} f_{j} J_{j}^{\prime}\right)+g\left(\sum_{i} f_{i} J_{i}^{\prime}, \sum_{j} f_{j}^{\prime} J_{j}\right) \\
+ & g\left(\sum_{i} f_{i} J_{i}^{\prime}, \sum_{j} f_{j} J_{j}^{\prime}\right)+g\left(\sum_{i} f_{i} J_{i}^{\prime \prime}, \sum_{j} f_{j} J_{j}\right) \\
g\left(\sum_{i} f_{i} J_{i}, \sum_{j} f_{j} J_{j}^{\prime}\right)^{\prime}= & g\left(\sum_{i} f_{i}^{\prime} J_{i}, \sum_{j} f_{j} J_{j}^{\prime}\right)+g\left(\sum_{i} f_{i} J_{i}^{\prime}, \sum_{j} f_{j} J_{j}^{\prime}\right)+g\left(\sum_{i} f_{i} J_{i}, \sum_{j} f_{j}^{\prime} J_{j}^{\prime}\right) \\
& +\left(\sum_{i} f_{i} J_{i}, \sum_{j} f_{j} J_{j}^{\prime \prime}\right)
\end{aligned}
$$

substract:

$$
\begin{align*}
& \left\|V^{\prime}\right\|+R\left(\gamma^{\prime}, V, \gamma^{\prime}, V\right)-g\left(\sum_{i} f_{i} J_{i}, \sum_{j} f_{j} J_{j}^{\prime}\right)^{\prime} \tag{4}\\
& \quad=g\left(\sum_{i} f_{i}^{\prime} J_{i}, \sum_{j} f_{j}^{\prime} J_{j}\right)+g\left(\sum_{i} f_{i} J_{i}^{\prime}, \sum_{j} f_{j}^{\prime} J_{j}\right)-g\left(\sum_{i} f_{i} J_{i}, \sum_{j} f_{j}^{\prime} J_{j}^{\prime}\right)
\end{align*}
$$

will show: the last two terms cancel

- follows from $\left(g\left(J_{i}^{\prime}, J_{j}\right)-g\left(J_{i}, J_{j}^{\prime}\right)\right)(t)=0$
- have $\left(g\left(J_{i}^{\prime}, J_{j}\right)-g\left(J_{i}, J_{j}^{\prime}\right)\right)(0)=0$

$$
\begin{aligned}
\left(g\left(J_{i}^{\prime}, J_{j}\right)-g\left(J_{i}, J_{j}^{\prime}\right)\right)^{\prime} & =\left(g\left(J_{i}^{\prime \prime}, J_{j}\right)+g\left(J_{i}^{\prime}, J_{j}^{\prime}\right)-g\left(J_{i}^{\prime}, J_{j}^{\prime}\right)-g\left(J_{i}, J_{j}^{\prime \prime}\right)\right. \\
& =R\left(\gamma^{\prime}, J_{i}, \gamma^{\prime}, J_{j}\right)-R\left(\gamma^{\prime}, J_{j}, \gamma^{\prime}, J_{i}\right) \\
& =0
\end{aligned}
$$

- hence $g\left(\sum_{i} f_{i} J_{i}^{\prime}, \sum_{j} f_{j}^{\prime} J_{j}\right)-g\left(\sum_{i} f_{i} J_{i}, \sum_{j} f_{j}^{\prime} J_{j}^{\prime}\right)=0$
integrate (4) from 0 to t
$I_{t}(V)=g\left(V(t), \sum_{j} f_{j} J_{j}^{\prime}(t)\right)+\int_{0}^{t}\left\|\sum f_{i}^{\prime} J_{i}\right\|^{2} d s$
$I_{t}(J)=g\left(J(t), \sum_{j} a_{j} J_{j}^{\prime}(t)\right)$
$V(t)=J(t)$ implies $a_{i}=f_{i}(t)$
$I_{t}(V)-I_{t}(J)=\int_{0}^{t}\left\|\sum f_{i}^{\prime} J_{i}\right\|^{2} d$
this implies both assertions

Proof of Rauch. $J=J^{\perp} \oplus J^{\top}$
$\tilde{J}=\tilde{J}^{\perp} \oplus \tilde{J}^{\top}$
$\left\|J^{\top}\right\|=\left\|J^{\top}(0)\right\|+t\left\|J^{\top}(0)^{\prime}\right\|$
$\left\|\tilde{J}^{\top}\right\|=\left\|\tilde{J}^{\top}(0)\right\|+t\left\|\tilde{J}^{\top}(0)^{\prime}\right\|$
hence $\left\|J^{\top}\right\|=\left\|\tilde{J}^{\top}\right\|$
consider now length of orthogonal component

- assume $J \perp \gamma^{\prime} \tilde{J} \perp \tilde{\gamma}^{\prime}$
$-J \neq 0$
- set $v:=\|J\|, \tilde{v}:=\|\tilde{J}\|$
- \tilde{v} has no zero on ($0, a]$ (by absense of conjugate points assumption)
l'Hospital
$\lim _{t \rightarrow 0} \frac{v(t)}{\tilde{v}(t)}=\lim _{t \rightarrow 0} \frac{v^{\prime \prime}(t)}{\tilde{v}^{\prime \prime}(t)}=\frac{\left\|J^{\prime}(0)\right\|^{2}}{\tilde{v}^{\prime \prime}(t)}=1$
- use $v^{\prime \prime}(0)=g\left(J^{\prime \prime}(0), J(0)\right)+2\left\|J^{\prime}(0)\right\|^{2}$ and $J^{\prime}(0) \neq 0($ since $J \neq 0)$
will show $\left(\frac{v(t)}{\tilde{v}(t)}\right)^{\prime} \geq 0$
equivalently: $v^{\prime} \tilde{v} \geq v \tilde{v}^{\prime}$
- this implies assertion
fix t
- if $v(t)=0$, then $v^{\prime}(t)=2 g\left(J^{\prime}(t), J(t)\right)=0$
- inequality holds
- similarly if $\tilde{v}(t)=0$
assume $v(t) \neq 0, \tilde{v}(t) \neq 0$
$-\operatorname{set} U(s):=\frac{J(s)}{v(t)}, \tilde{U}(s):=\frac{\tilde{J}(s)}{\tilde{v}(t)}$

$$
\begin{aligned}
\frac{v^{\prime}(t)}{v(t)} & =\frac{2 g\left(J^{\prime}(t), J(t)\right)}{v(t)^{2}} \\
& =2 g\left(U^{\prime}(t), U(t)\right) \\
& =\left(\|U\|^{2}\right)^{\prime} \\
& =\int_{0}^{t}\left(\|U\|^{2}\right)^{\prime \prime}(s) d s \\
& =2 \int_{0}^{t}\left(\left\|U^{\prime}(s)\right\|^{2}+R\left(\gamma^{\prime}(s), U(s), \gamma^{\prime}(s), U(s)\right)\right) d s \\
& =2 I_{t}(U)
\end{aligned}
$$

analoguous
$\frac{\tilde{v}^{\prime}(t)}{\tilde{v}(t)}=2 I_{t}(\tilde{U})$
must show
$I_{t}(\tilde{U}) \leq I_{t}(U)$
choose parallel basis $\left(e_{i}\right)_{i=1, \ldots, n}$ of $\gamma^{*} T M$
choose parallel basis $\left(\tilde{e}_{i}\right)_{i=1, \ldots, \tilde{n}}$ of $\tilde{\gamma}^{*} T \tilde{M}$
such that

- $\gamma^{\prime}(t)=\left\|\gamma^{\prime}\right\| e_{1}, \tilde{\gamma}^{\prime}(t)=\left\|\tilde{\gamma}^{\prime}\right\| \tilde{e}_{1}$
$-e_{2}(t)=U(t), \tilde{e}_{2}(t)=\tilde{U}(t)$
this gives isometric and parallel map
$-\phi: \Gamma\left([0, a], \gamma^{*} T M\right) \rightarrow \Gamma\left([0, a], \tilde{\gamma}^{*} T \tilde{M}\right)$
$-e_{i} \mapsto \tilde{e}_{i}, i=1, \ldots, n$
have $I_{t}(U) \leq I_{t}(\phi(U))$ (by curvature inequality)
apply Lemma 4.121
$I_{t}(\tilde{U}) \leq I_{t}(\phi(U)) \leq I_{t}(U)$
this gives estimate:
for equality:
$\|\tilde{J}(t)\|=\|J(t)\|$
- then $v^{\prime}(s) \tilde{v}=v(s) \tilde{v}^{\prime}(s)$ for all $s \in[0, t]$
- $I_{t}(\tilde{U})=I_{t}(\phi(U))$
- hence $\phi(U)$ is Jacobi field
- compare initial condition and value at $t: \phi(U)=\tilde{U}$
- $\tilde{K}\left(\tilde{\gamma}^{\prime}(s), \tilde{J}(s)\right)=K\left(\gamma^{\prime}(s), J(s)\right)$

