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1 Prerequisites - what do participants know?

topological spaces

- Hausdorff

- second countable

- basis of topology

- compact subset

diffential calculus in many variables

- differentiability, partial derivatives

- Schwarz Lemma

- implicit function theorem

- submanifolds

DGL
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- vector fields on Rn

- existence, uniqueness

- dependence of parameters and initial conditions

- flows

tensor algebra for vector spaces

- V ⊗W

- S2(V )

- Λ3V ∗

- SO(n),

differential forms

- de Rahm

- integration of Stokes?

mathematical language

- category

- functor

- cartesian product

physics:

- lagrange and Hamilton formalism for classical mechanics

- electro-magnetism, Maxwell

2 Smooth manifolds

2.1 Topological and smooth manifolds manifolds

2.1.1 Topological notions

M - topological space:
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consider following conditions:

- Hausdorff

– unicity of limits

Example 2.1. A non-Hausdorff space

form push-out

(−∞, 0)
incl //

incl
��

R

��

R //M

every x ≥ 0 gives rise to x+ and x− in M

- (− 1
n)n has two limits 0+ and 0−

- 0+ and 0− can not be separated by opens

-M is not Hausdorff

- but locally homeomorphic to R

2

- regular

– can separate points from closed subsets

- paracompact: Every covering U = (Ui)i∈I of M has locally finite subcovering

– locally finite: Every m in M admits open nbhd m ∈ U ⊆M such that {i ∈ I | U∩Ui 6= ∅}
is finite.

— this is stronger then to require: {i ∈ I | x ∈ Ui} is finite for every x

– paracompact implies existence of continuous partitions of unity

- second countable: M has a countable base of topology.

– can work with sequences instead of nets in order to define closures or check continuity of

functions
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– if M is locally compact and second countable, then it admits an exhaustion by compact

subsets

Example 2.2. a (non)second countable space⊔
i∈I R is second countable if and only if I is countable. 2

Proposition 2.3 (Urysohn’s metrization theorem). The following conditions on M are

equivalent:

1. M is paracompact, second-countable regular space.

2. M is metrizable.

will combine paracompact, second-countable regular by saying metrizable

2.1.2 Locally euclidean spaces and topological manifolds

general principle: some conditions holds locally, if every point admits a nbhd on which this

condition holds

call the spaces Rn for n ≥ 0 euclidean spaces

M - a topological space

Definition 2.4. M is locally euclidean if every m in M admits an open nbhd m ∈ U ⊆M
such that U is homeomorphic to an euclidean space.

Example 2.5. Rn is locally euclidean: take Rn as neigbourhood. 2

Lemma 2.6. An open subset of Rn is is locally euclidean.

Proof. V ⊆ Rn open

- can not take Rn

x ∈ V ⊆ Rn
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- choose ε > 0 such that U := B(x, ε) ⊆ V (open ball)

- there exists homeomorphism B(x, ε)→ Rn

– y 7→ φ(‖y − x‖)(y − x)

– φ : [0, ε)→ [0,∞) continuous, monotoneous surjective, e.g. t 7→ t
ε−t

M - locally euclidean, m ∈M ,

- φ : U → Rn homeomorphism for neighbourhood U of m

- define the dimension of M at m by dimm(M) := n

Proposition 2.7. For every point m in M the number dimm(M) is well-defined.

Proof. must show that it does not depend on choice of homeomorphism

- φ′ : U ′ → Rn′ a second choice

- get homeomorphism φ′φ−1 : φ(U ∩ U ′)→ φ′(U ∩ U ′) between opens of euclidean spaces

- apply

Theorem 2.8 (invariance of the dimension). If an open subset of Rn is homeomorphic to

an open subset of Rn′, then n = n′

- this is usually shown in an algebraic topology course using homology

Corollary 2.9. The function m 7→ dimm(M) is locally constant.

if it is constant, then its value is called the dimension of M

Definition 2.10. M is a topological manifold if if is metrizable and locally euclidean.

Definition 2.11. A morphism between topological manifolds is just a continuous map.
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get category Mf top of topological manifolds and continuous maps

- it is not easy to provide examples of topological manifolds which do not come from smooth

ones

- therefore no specific examples here

2.1.3 Smooth manifolds

M - topological manifold

- a smooth structure on M is an additional datum

- a topological chart is pair (U, φ) of

– U ⊆M open

– φ : U → Rn (for some n) homeomorphism on image

- Atop := {(U, φ)} - set of topopogical charts

- since M is topological manifold:
⋃

(U,φ)∈Atop U = M

Definition 2.12. A subset A of Atop is an atlas if
⋃

(U,φ)∈A U = M .

- (U, φ), (U ′, φ′) ∈ Atop

- define transition function: φ′φ−1 : φ(U ∩ U ′)→ φ′(U ∩ U ′)

- is homeomorphism between open subsets of euclidean spaces by construction

Definition 2.13. A subset A of Atop is called smooth if all transition functions between

charts in A are smooth.

Note that atlasses on M from a poset w.r.t. inclusion

Definition 2.14. A smooth structure on M is a maximal smooth atlas.

Lemma 2.15. Every smooth atlas is contained in a uniquely determined maximal one.
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Proof. A - smooth atlas

Existence:

- call (U, φ) in Atop compatible with A if A ∪ {(U, φ)} is compatible

- show: if A′ is smooth, A ⊆ A′ and (U, φ) compatible with A, then also with A′

– must check that φ′φ−1 is smooth for all (U ′, φ′) ∈ A′

— consider m ∈ U ∩ U ′

— consider chart (V, ψ) in A at m

— factorize as (φ′ψ−1)(ψφ−1) - is defined near φ(m)

— get smoothness of φ′φ−1 near m

- let Ā consist of all (U, φ) which are compatible with A

- conclude: Ā is smooth atlas

– Ā is maximal, since it already contains all charts which could possibly added

unicity:

- let Ā′ is any maximal smooth atlas containing A

- then Ā′ ∪ Ā is smooth

– by maximality conclude Ā = Ā′

we say that A generates the smooth structure Ā

Definition 2.16. A smooth manifold is a pair (M,A) of a topological manifold with a

smooth structure.

- we use maximal atlas in order to have a good notion of equality of manifolds

- in order to describe a manifold it suffices to provide any generating smooth atlas

Definition 2.17. A smooth map between smooth manifolds (M,A) → (M ′,A′) is a con-

tinuous map such that composition φ′fφ−1 : φ(f−1(U ′) ∩ U)→ φ′(U ′) is smooth for every

pair of charts (U, φ) ∈ A and (U ′, φ′) ∈ A′.

Remark 2.18. It suffices to check the condition on f for charts in generating atlasses.
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Exercise! 2

get category Mf of smooth manifolds and smooth maps

have forgetful functor Mf →Mf top

Example 2.19.

Rn

- generating atlas (Rn, idRn)

any open subset U ⊆ Rn

- generating atlas (U,U → Rn)

morphisms between these examples are smooth maps in the usual sense

2

Example 2.20. open subsets of smooth manifolds are smooth manifolds 2

M - smooth manifold

Definition 2.21. A smooth function on M is a morphism M → R.

- the smooth functions on M form the R-algebra C∞(M)

Definition 2.22. A curve in M is a morphism γ : I →M with I an open interval in R.

2.2 Examples and constructions of smooth manifolds

2.2.1 Regular submanifolds

U ⊆ Rn open

g : U → Rk smooth

u in U

- have differential dg(u) : Rn → Rk, linear map

Definition 2.23. g is regular in u if dg(u) is surjective.
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consider subspace M ⊆ Rn

- is a metrizable topological space

Definition 2.24. M is a regular if for every m in M there exists a neighbourhood U of m

and a smooth function g : U → Rk such that M ∩ U = g−1(0) and g is regular at M .

call g a defining function of M at m

- set TmM := ker(dg(m)) - linear subspace fo Rn

Remark 2.25. TmM does note depend on choice of defining function g of M at m

Exercise! 2

Theorem 2.26 (Implizit function theorem). There exist open neigbourhoods 0 ∈ V ⊆
TmM and m ∈ U ′ ⊆ U such that:

1. For every v in V there exists a unique point ψ(v) in TmM
⊥ such that v+ψ(v)+m ∈

M ∩ U ′.

2. ψ : V → TmM
⊥ is smooth.

the map V 3 v 7→ v + ψ(v) +m ∈W := U ′ ∩M homeomorphism.

- inverse: W 3 φ(x) := x 7→ prTmM⊥(x−m)

take A := {(W,φ)} - set of all charts defined in this way

- domains cover M

Corollary 2.27. M is topological manifold.

Proposition 2.28. A is a smooth atlas.

Proof. is an atlas by construction

- A is a smooth:

- consider transition function

v 7→ φ′φ−1(v) = pr′
Tm′M

⊥(v + ψ(v) +m−m′) - this map is obviously smooth
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Definition 2.29. Call M with the smooth manifold structure constructed above a regular

submanifold

note that dimm(M) = n− k (when g : U → Rk is defining at m)

Example 2.30. detection of smooth maps into and from a regular submanifold

f : N →M is smooth iff f : N →M → Rn is smooth

f : M → N is smooth if it extends to a smooth function f̃ : Rn → N

Exercise!

2.2.2 Explicit examples of regular submanifolds

Sn ⊂ Rn+1 defined by f(x) = ‖x‖2 − r

the following examples have group structures

GLn(R) ⊆ Rn2
- open subset

SLn(R) ⊆ Rn2
- defined by A 7→ det(A)− 1

O(n) ⊆ Rn2
- defined by A 7→ AtA ∈ S2(Rn) ∼= R

n(n+1)
2 , dim(O(n)) = n(n−1)

2

SO(n) ⊆ O(n) open

U(n) ⊆ R2n2
- defined by A 7→ A∗A ∈ {hermitean matrices} ∼= Rn(n−1)+n, dim(U(n)) = n2

2.2.3 Cartesian products

Proposition 2.31. The category Mf admits cartesian products.

Proof. M,M ′ ∈Mf

- consider topological space M ×M ′

- is topological manifold

– a product of metrizable spaces is metrizable (take product metric)

- M ×M ′ is locally euclidean

– (m,m′) ∈M ×M ′
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– (U, φ) chart at m, (U ′, φ′) chart at m′

– (U × U ′, φ× φ′) is a chart of M ×M ′ at (m,m′)

— call this chart product chart

define smooth structure on M×M ′ as generated by product charts of charts of the smooth

structures

- check: this is compatible atlas

check

p : M ×M ′ →M and p′ : M ×M ′ →M ′ are smooth

- check smoothness using product charts in domain

- use φ1p(φ0 × φ′)−1 = φ1φ
−1
0

check that (M ×M ′, p, p′) satisfies the universal property

HomMf (N,M ×M ′)
(p,p′)→ HomMf (N,M)×HomMf (N,M

′)

is bijection

- injective:

– is clear since we have cartesian products of underlying sets

- surjective:

– f : N →M , f ′ : N →M ′ given

- f × f ′ : N → M ×M ′ is continuous (since work with cartesian product in topological

spaces)

- check smoothness using product charts:

– (φ1 × φ′1)(f × f ′)(φ0 × φ′0)−1 = (φ1fφ
−1
0 , φ′1f

′φ′,−10 ) is smooth

Example 2.32. Rn × Rn′ ∼= Rn+n′ (as manifolds)

S1 × · · · × S1 =: Tn (n factors) is called the n-torus
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M ⊆ Rn regular, M ′ ⊆ Rn′ regular, then M ×M ′ ⊆ Rn+n′ is regular 2

2.2.4 Lie groups

existence of cartesian products in a category ⇒ can talk about groups in this category:

general:

- C category with cartesian products

- ∗ - empty cartesian product

– prC : ∗ × C
∼=→ C - will often be used implicitly

idea: write group axioms in terms of diagrams of maps

Definition 2.33. A group in C is a triple (C, µ : C × C → C, e : ∗ → C) such that

C × C × C
µ(µ×idC)

//

µ(idC×µ)
��

C × C
µ

��

C × C µ
// C

(associativity)

C
e×idC//

idC

##

C × C
µ

��

C
idC

{{

idC×eoo

C

unit

commute and the shear map s : C × C (idC ,µ)→ C × C is an isomorphism.

- shear maps s encodes inverses I : C
idC×e→ C × C s−1

→ C × C pr2→ C

– advantage of using shear map: being a group is a property of (C, µ, e) - no additional

datum required

groups in Set are usual groups

groups in Top are topological groups

specialize to Mf

in Mf : ∗ ∼= R0
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- Hom(∗,M) ∼= underlying set of M

Definition 2.34. A group in Mf is called a Lie group.

Example 2.35. GL(n,R), SL(n,R), O(n), SO(n), U(n), all with matrix multiplication,

are Lie groups and unit given by identity matrix (interpreted as map ∗ →M)

- matrix multiplication End(Rn) × End(Rn) → End(Rn) is smooth and associative, com-

patible with identity relation

- restricts to the structures on the submanifolds

- shear map is an isomorphism:

– use that A 7→ A−1 is smooth on GL(n,R)

— either by formula involving determinants of adjuncts

— or by inverse function theorem

– inverse of shear map (A,B) 7→ (A,AB) is (A,B) 7→ (A,A−1B)

2

Example 2.36. Rn with + is a Lie group 2

if G is Lie group, then I : G→ G, g 7→ g−1 is smooth

actions:

general: C - category with cartesian products

- (G,µ, e) a group in C

- C an object

Definition 2.37. An action of G on C is a map a : G× C → C such that

G×G× C id×a
//

µ×idC
��

G× C
a
��

G× C a // C

associativity

15



and

C

idC
##

e×idC// G× C
a
��

C

unit

commute.

Example 2.38. G acts on itself with a = µ 2

Example 2.39. in Mf :

GL(n,R) acts on Rn by matrix multiplication

O(n) acts on Sn−1 2

2.3 Tangent vectors

idea:

- a tangent vector on a manifold M at m is a direction of an infinitesimal curve starting

at m

- can consider the derivative of functions in this direction

- axiomatization of the properties of this derivative ⇒ notion of a derivation

- will turn this idea up-side-down and use derivations in order to to define tangent vectors

2.3.1 Derivations

- k - a field

- consider commutative unital k-Algebras (e.g. k)

Definition 2.40. An augmented k-algebra is a pair (A, e) of a k-algebra A with a homo-

morphism e : A→ k.

A homomorphism of augmented k-algebras φ : (A, e) → (A′, e′) is a homomorphism of

k-algebras φ : A→ A′ such that e′φ = e.

Example 2.41. M a manifold

m in M
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- C∞(M) - is a R-algebra

- evm : C∞(M)→ R given by evm(f) := f(m) is an augmentation

F : M →M ′ smooth map of manifolds,

- m′ := F (m)

- get homomorphism F ∗ : (C∞(M ′), evm′)→ (C∞(M), evm) of augmented R-algebras

2

(A, e) - augmented k-algebra

Definition 2.42. A derivation of (A, e) is a k-linear map X : A→ k such that for all a, b

in A we have X(ab) = X(a)e(b) + e(a)X(b).

write Der(A, e) for k-vector space of derivations of (A, e)

Example 2.43. partial derivatives are derivations

consider C∞(Rn) with augmentation ev0

i ∈ N

- ∂i(0) : C∞(Rn)→ R given by f 7→ (∂if)(0) is a derivation 2

Example 2.44. derivations annihilate constants

(A, e) - augmented k-algebra

for X in Der(A, e)

- we have X(1A) = 0:

– X(1A) = X(12A) = 2X(1A)e(1A) = 2X(1A)

unit: k → A, λ 7→ λ1A

- these elements are called the constants

- e(λ1A) = λ

- by linearity: X(λ1A) = 0 2

consider homomorphism φ : (A, e)→ (A′, e′) of augmented k-algebras
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it induces a homomorphism

Der(φ) : Der(A′, e′)→ Der(A, e) given by Der(φ)(X)(a) := X(φ(a))

- check:

Der(φ)(X)(ab) = X(φ(ab)) = X(φ(a))e′(φ(b)) + e′(φ(a))X(φ(b))

= Der(φ)(X)(a)e(b) + e(a)Der(φ)(X)(b)

- Der is contravariant functor from augemented k-algebras to k-vector spaces

M - a manifold

- m in M

- consider poset Um of open neighbourhoods of M

- for U ⊆ V in Um get restriction map (C∞(V ), evm)→ (C∞(U), evm)

Definition 2.45. The augmented R-algebra of germs at m of smooth functions on M is

defined by (C∞m (M), evm) := colimU∈Uop
m

(C∞(U), evm) in augmented R-algebras.

we will work with the following explicit description:

- an element of C∞m (M) is represented by a pair (V, f) of V ∈ Um and f ∈ C∞(M)

- if U ⊆ V in Um, then (U, f|U ) represents the same element

for the moment we write [V, f ] for the element represented by (V, f)

- the algebra structure is defined as follows:

- [V, f ] + λ[V ′, f ′] = [V ∩ V ′, f|V ∩V ′ + λf ′|V ∩V ′ ]

- [V, f ] · [V ′, f ′] = [V ∩ V ′, f|V ∩V ′f ′|V ∩V ′ ]

Check: well-definedess

augmentation evm : C∞m (M)→ R: evm([V, f ]) = f(m)

Check: well-definedess

properties
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1. C∞(M)→ C∞m (M), f 7→ [M,f ] is surjective

Exercise!

2. m ∈ U ⊆M open:

- restriction C∞m (M)→ C∞m (U) is isomorphism preserving augmentation

Exercise!

3. U ⊆M open, m ∈ U ,

U ′ ⊆M ′ open, φ : U → U ′ isomorphism

- φ∗ : (C∞φ(m)(U
′), evφ(m))→ (C∞m (U), evm) is isomorphism

Exercise!

from now on instead of [U, f ] write f (the precise domain of f is irrelevant)

n := dim(M)

- conclude using a chart with φ(m) = 0: (C∞m (M), evm) ∼= (C∞0 (Rn), ev0)

Example 2.46. have derivation ∂i(0) : C∞0 (Rn) is defined by ∂i(0)(f) := (∂if)(0)

Check: is well-defined

Proposition 2.47. The derivations (∂i(0))i=1,...,n form a basis of Der(C∞0 (Rn), ev0).

Proof.

(∂i(0))i=1,...,n is linearly independent:

- assume that
∑n

i=1 λi∂i(0) = 0

– for every j:

— 0 = (
∑n

i=1 λi∂i(0))(xj) =
∑n

i=1 λi(∂ix
j)|x=0 = λj

(∂i(0))i=1,...,n spans:

- X in Der(C∞0 (Rn)) given

– set µi := X(xi)

– set Y :=
∑n

i=1 µi∂i(0)

19



- we will show that X = Y

– consider f ∈ C0(Rn)

– Taylor: there exists gi ∈ C∞0 (Rn) with gi(0) = 0 such that

f = f(0) +
n∑
i=1

(∂if)(0)xi +
n∑
i=1

xigi

calculate:

X(f) = X(f(0)) +X(

n∑
i=1

(∂if)(0)xi) +X(

n∑
i=1

xigi)

=

n∑
i=1

(∂if)(0)X(xi) +

n∑
i=1

(X(xi)gi(0) + xi(0)X(gi))

=

n∑
i=1

(∂if)(0)µi

= Y (f)

M smooth, m ∈M

Corollary 2.48. dimm(M) = dim Der(C∞m (M), evm).

Example 2.49. consider germs of continuous functions C0(Rn)

- then Der(C0(Rn), ev0) ∼= 0

– consider X in Der(C0(Rn), ev0)

– f ∈ C0(Rn)

– g := 3
√
f − f(0) ∈ C0(Rn)

– f = f(0) + g3

– X(f) = X(f(0)) +X(g3) = 0 + 3g(0)2X(g) = 0
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this shows: the concept of tangent space using derivations does not extend to topological

manifolds

2

2.3.2 Tangent vectors

Definition 2.50. The vector space TmM := Der(C∞m (M), evm) is called the tangent space

of M at m. Its dual T ∗mM is called the cotangent space of M at m.

m in M

- dimTmM = dimm(M) = dimT ∗mM

f ∈ C∞m (M)

- defines element df(m) ∈ T ∗mM by df(m)(X) := X(f) for all X in TmM

Definition 2.51. df(m) ∈ T ∗mM is called the derivative of f at m.

note Leibnitz rule:

d(ff ′)(m) = df(m)f ′(m) + f(m)df ′(m)

- verification:

d(ff ′)(m)(X) = X(ff ′) = X(f)f ′(m) + f(m)X(f ′) = df(m)(X)f ′(m) + f(m)df ′(m)(X)

(U, φ) - a chart

Definition 2.52. The components xi : U → R of φ (i.e., φ = (x1, . . . , xn)) are called the

coordinate functions on U associated to φ.

Corollary 2.53. (dxi(m))i=1,...,n is a basis of T ∗mM

we let (∂i(m))i=1,...,n be the dual basis of TmM

- i.e.: ∂i(m)(xj) = δi
j
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- every tangent vector X in TmM can uniquely be written as X =
∑n

i=1 µi∂i(m)

– must set µi := X(xi)

- note: these bases of TmM and T ∗mM depend on the choice of the chart (U, φ)

F : M →M ′ morphism of manifolds

set m′ := F (m)

- get F ∗m : (C∞m′(M), evm′)→ (C∞m (M), evm) - pull-back

- homomorphism of augmented R-algebras

Definition 2.54. The differential of F at m is the linear map TF (m) := Der(F ∗m) :

TmM → Tm′M
′.

- often also denoted by dF (m) or DF (m)

- explicitly: for X ∈ TmM the derivation TF (m)(X)(f) := X(F ∗mf)

- note: F must only be defined near m in order to get TF (m)

- observe chain rule: for F ′ : M ′ →M ′′:

T (F ′F )(m) = TF ′(F (m))TF (m) : TmM → Tm′′M
′′

Exercise!

f ∈ C∞(M)

df(m) = can ◦ df(m)

F : M ′ →M , F (m′) = m

chain rule implies:

Lemma 2.55. We have d(F ∗f)(m′) = df(m)TF (m′)

Proof. for X ′ in Tm′M
′
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d(F ∗f)(m′)(X ′) = X ′(F ∗f)

= TF (m′)(X ′)(f)

= df(m)TF (m′)(X ′)

V - f.d. vector space

- v in V

- as a consequence of Proposition 2.47:

Corollary 2.56. We have a canonical identification can : V
∼=→ TvV which sends X in V

to the derivation f 7→ d
dt |t=0

f(v + tX).

we often do not write can in formulas, be careful

consider map Lw : V → V , Lw(v) := v + w - translation by w

- this commutes:

V

∼= can
��

V

∼= can
��

TvV
dLw(v)

// Tv+wV

2.3.3 Change of coordinates

(U, φ) - a chart of M at m

can consider φ as isomorphism φ : U → φ(U)

- get isomorphism Tφ(m) : TmM → Tφ(m)Rn ∼= Rn (canonical iso implicitly used)

– characterized by Tφ(m)(∂i(m)) = ei (standard basis vector) for all i

- (U ′, φ′) second chart
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- have T (φ′φ−1)(φ(m)) ∈ GL(n,R)

– Jacobi matrix of φ′φ−1 at φ(m)

– chain rule for φ′ = (φ′φ−1) ◦ φ says:

Corollary 2.57.

TmM
Tφ(m)

{{

Tφ′(m)

##

Rn
T (φ′φ−1)(φ(m))

// Rn

denote charts by φ instead of (U, φ)

set ρφ′,φ(m) := T (φ′φ−1)(φ(m))

- is smooth function U ∩ U ′ → GL(n,Rn)

- satisfy the cocyle relations:

– ρφ,φ = 1

– ρφ′′,φ′ρφ′,φ = ρφ′′,φ (product in GL(n,R), on U ∩ U ′ ∩ U ′′))

— a consequence: ρ−1φ′,φ = ρφ,φ′ (inverse in GL(n,R)

2.3.4 geometric tangent vectors at regular submanifolds

M ⊆ Rn - regular submanifold

- define T geom
m M := ker(dg(m)) for defining function g of M at m

- call this geometric tangent space

a curve in M at m is a curve γ : I →M with 0 ∈ I and γ(0) = m

- interpret (∂t)|t=0γ as vector in Rn

Lemma 2.58. For every X in T geom
m M there exists a curve γ in M at m such that

(∂t)|t=0γ = X.

Proof. apply Implicit Function Theorem 2.26

get
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- suitable neighbourhood of 0 ∈ V ⊆ T geom
m M

- map ψ : V → TmM
⊥ such that v + ψ(v) +m is parametrization of M near m

claim: dψ(0) = 0

- g(v + ψ(v) +m) ≡ 0 implies

– dTmMg(m) + dTmM⊥g(m)dψ(0) = 0

– dTmM⊥g(m)dψ(0) = 0 since dTmMg(m) = 0 by definition of TmM

– dTmM⊥g(m) is isomorphism by regularity of g at m

— conclude dψ(0) = 0

- define γ(t) := tX + ψ(tX) +m

- then

(∂t)|t=0γ = X + dψ(0)(X) = X

M manifold, m in M (not necessarily submanifold)

- a curve γ in M at m induces a tangent vector γ′(0) := Tγ(∂1(0)) ∈ TmM

Proposition 2.59. There is an isomorphism T geom
m M ∼= TmM uniquely determined by the

condition that (∂t)|t=0γ is sent to γ′(0) for any curve in M at m.

Proof. observe:

- if γ0, γ1 are two curves in M at m and (∂t)|t=0γ0 = (∂t)|t=0γ1, then also γ′0(0) = γ′1(0).

– f ∈ C∞(M)

– has smooth extension f̃ to nbhd

– chain rule

– γ = γ0, γ1

– df(m)(γ′(0)) = ∂1(0)(fγ) = d
dt |t=0

f(γ(t)) = d
dt |t=0

f̃(γ(t)) = df̃(m)((∂t)|t=0γi)

– use: definition of derivative df(m), definition of partial derivative ∂1(0), that f̃ extends

f , and classical chain rule for functions between euclidean spaces
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– implies df(γ′0(0)) = df(γ′1(0))

– f arbitrary (note that C∞(M)→ C∞m (M) is surjective): γ′0(0) = γ′1(0)

define map κ : T geom
m M → TmM such that it sends X in T geom

m M to γ′(0) for any curve γ

in M at m with (∂t)|t=0γ = X

- formula: κ(X)(f) = df̃(m)(X)

- is linear in X, hence κ is linear

κ is isomorphism:

- prT geom
m M : M → T geom

m M - orthogonal projection

- calculate: TprT geom
m M (m)(κ(X)) = (∂t)|t=0prT geom

m M (tX + ψ(tX) +m) = X

for dimension reasons κ and TprT geom
m M (m) are inverse to each other

2.3.5 Discussion

f ∈ C∞(M)

- get m 7→ df(m) ∈ T ∗mM

- want to say that this depends smoothly on m

– how?

form set T ∗M :=
⊔
m∈M T ∗mM

- have canonical map p : T ∗M →M

- want to interpret df as a map df : M → T ∗M , m 7→ df(m) such that pdf = idM

T ∗M

p

��

M

df
;;

M

must equip T ∗M with a suitable manifold structure

consider family of derivations X = (X(m))m∈M , X(m) ∈ TmM
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- say: X is a smooth vector field if m 7→ X(m)(f) is smooth for every f in C∞(M)

– how can one formulate this in terms of the family X alone?

form set TM :=
⊔
m∈M TmM

- have map p : TM →M

- interpret X as map

TM

p

��

M

X

<<

M

- must equip TM with manifold structure

Example 2.60. T geomM as regular submanifold

M ⊆ Rn - regular submanifold

- define T geomM :=
⋃
m∈M{m} × T

geom
m M ⊆ R2n - just a subset

Lemma 2.61. T geomM is a regular submanifold.

Proof. construct local defining functions

(m,X) ∈ T geomM

- g on U defining function of M near m

– (g, dg) : (x, ξ) 7→ (g(m), dg(m)(ξ)) defines T geomM on U × Rn

– check regularity:

– d(g, dg)(m,X) =

(
dg(m) 0

d2g(m)(X,−) dg(m)

)
- is surjective since dg(m) is so

2

2.4 Fibre bundles

2.4.1 Bundles and bundle morphisms

B a manifold (the base)
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F - a manifold (typical fibre)

Definition 2.62. A fibre bundle over B with typical fibre F is a smooth map π : M → B

such that there exists:

1. (Uα)α - an open covering of B

2. a collection of diffeomorphisms ψα : π−1(Uα) → Uα × F (called local trivializations)

such that

Uα × F
pr

��

π−1(Uα)
ψα
oo incl //

��

M

π

��

Uα Uα
incl // B

commutes.

Example 2.63. the trivial bundle pr : B × F → B

- local trivialization is ψ = idB×F defined on all of B 2

later: TM →M and T ∗M →M will be fibre bundles with typical fibre Rn

Definition 2.64. A morphism of fibre bundles is a commutative square

M //

��

M ′

��

B // B′

.

If the lower map is idB, then we call this a morphism of fibre bundles over B.

2.4.2 Fibre bundles and cocycles

write Uα,β := Uα ∩ Uβ

the local trivializations determine maps (of sets) ρα,β : Uα,β → AutMf (F ) such that the

following map is smooth

Uα,β × F → Uα,β × F , ψαψ
−1
β (u, f) = (u, ρα,β(u)(f))

- we have cocycle condition
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– ρα,βρβ,γ = ρα,γ on Uα,β,γ for all α, β, γ

– ρα,α ≡ idF

vice versa: a smooth cocycle is a family ρ = (ρα,β) of maps ρα,β : Uα,β → AutMf (F ) such

that

- (u, f) 7→ (u, ρα,β(u)(f)) is smooth

- cocyle conditions are satified

want to construct fibre bundles from cocycles

Example 2.65. B - a manifold of dimension n

F := Rn

A - the smooth structure of B

- gives covering by domains of smooth charts (U, φ)

- get cocyle with values in GL(n,R) ⊆ AutMf (Rn): ρφ′,φ := T (φ′φ−1)φ

the fibre bundle constructed from this data is the tangent bundle TB of B

could consider new cocycle (Λ3(ρ∗,−1α,β ))α,β with values in Aut(Λ3Rn,∗)

- associated fibre bundle is bundle of 3-forms Λ3T ∗B → B

2

Construction 2.66. start with the construction of π : M → B from the following data:

- (Uα)α an open covering of B

- a smooth cocycle ρ = (ρα,β) with values in AutMf (F )

underlying set of M :

M :=
⊔
α∈A

Uα × F/ ∼

- thereby (u, f) ∈ Uα×F and (u′, f ′) ∈ Uα′ ×F are equivalent if u = u′ and f ′ = ρα′,α(u)f

- is equivalence relation by cocycle condition (check)
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- write points in M as [u, f ]α

π : M → B sends [u, f ]α to u

- check: is well-defined

local trivializations:

ψα : π−1(Uα)
∼=→ Uα × F

- [u, f ]α 7→ (u, f)

- check well-defineness:

– for every α: the map Uα × F 3 (u, f) 7→ [u, f ]α ∈M is injective

– this follows since ρα,β has values in automorphisms

check:

Uα × F
pr

��

π−1(Uα)
ψα
oo incl //

��

M

π

��

Uα Uα
incl // B

commutes

check:

ψαψ
−1
β (u, f) = (u, ρα,β(u)(f))

define topology on M : minimal such that all ψα are continuous

- by definition: h : X →M continuous if ψαh is continuous for all α

claim: ψα is a homeomorphism

- ψα is bijective amd continuous

- remains to show that ψ−1α is continuous

– this follows from: ψβψ
−1
α is continuous for all β

Lemma 2.67. f : M → X continuous if fψ−1α is continuous for all α
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Proof. ⇒: clear

⇐:

U open in X

- must check that f−1(U) is open in M

- consider m ∈ f−1(U)

– chose α s.t. m ∈ π−1(Uα)

- since fψ−1α is continuous there is open nbhd V of ψα(m) such that f(ψ−1α (V )) ⊆ U

- then ψ−1α (V ) is open nbhd of m in f−1(U)

conclude: f−1(U) is open

π is continuous:

- use πψ−1α = pr : Uα × F → Uα is continuous for all α

M is Hausdorff

- m 6= m′

– if π(m) 6= π(m′)

— use B is Hausdorff: find open V, V ′ in B with: π(m) ∈ V , π(m′) ∈ V ′, V ∩ V ′ = ∅

— then π−1(V ) and π−1(V ′) separate m and m′

– if π(m) = π(m′) ∈ Uα, ψα(m) = (u, f), ψα(m′) = (u, f ′), f 6= f ′

— use that F is Hausdorff: find opens W,W ′ in F with f ∈W , f ′ ∈W ′ and W ∩W ′ = ∅

— then ψ−1α (Uα ×W ) and ψ−1α (Uα ×W ′) separate m and m′

M is locally euclidean: M is locally a product of topological manifolds

M is second countable:

- can cover B by a countable subcover of the given cover

- F is second countable
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Proposition 2.68. A second countable locally euclidean Hausdorff space is regular and

paracompact, hence a topological manifold.

Exercise: find proof by google

smooth structure:

for every chart (U, φ) ofB and chart (W,κ) of F define chart (φ, κ)ψα : ψ−1α ((U∩Uα)×W )→
φ(U ∩ Uα)× κ(W )

- these from an atlas

- transition functions are smooth

– given by (x, v) 7→ (φ′φ−1(x), κ′(ρ(φ−1(x))(κ−1(v))))

equip M with smooth structure generated by this atlas

ψα is smooth by construction

- check: π is smooth 2

2.4.3 Sections

Definition 2.69. The set of sections of a fibre bundle is defined by

Γ(B,M) := {s ∈ HomMf (B,M) | πs = idB}

M

π
��

B

s

>>

B

we now describe sections in terms of the trivializations

consider section s ∈ Γ(B,M)

- get family (sα) with sα := prFψαf : Uα → F

- (sα) satisfies: for all α, β: ρα,β(u)(fβ(u)) = fβ(u) for all u in Uα,β

– we say that (sα) is compatible
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Lemma 2.70. There is a bijection between the sets:

1. Γ(B,M)

2. compatible familes (sα)

Proof. s ∈ Γ(B,M) given:

- get compatible family (sα) by

– sα := prFψαs

compatible family (sα) given

- define s ∈ Γ(B,M) by

– b 7→ [b, sα(b)]α for any α with b ∈ Uα

– check using compatibility relation: does not depend on choice of α

– check: s is smooth

check: these constructions are inverse to each other

Example 2.71. pr : M × R→ R

Γ(M,M × R) ∼= C∞(M)

s 7→ (m 7→ prRs(m))

f 7→ (m 7→ (m, f(m)) 2

Example 2.72. - associated to cocycle (ΛnT (φ′φ−1)−1,∗)φ:

Ωn(M) := Γ(M,ΛnT ∗M)

- n-forms on M

have map d : C∞(M)→ Ω1(M)

- describe locally:

- f 7→ (dfφ)

- dfφ := d(fφ−1)φ : U → Rn,∗
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– check:

dfφ′ = d(fφ′,−1)φ′ = d(fφ−1φφ′,−1)φ′ = d(fφ−1)φ◦T (φφ′,−1)φ′ = T (φ′φ−1)∗,−1φ(d(fφ−1)φ) = T (φ′φ−1)∗,−1dfφ

2

2.4.4 Vector bundles and dual bundles

in case the typical fibre of a bundle has an additional structure which is preserved by the

values of cocycle the total space of the bundle has a corresponding structure

a vector bundle is a fibre bundle with a vector bundle structure on fibres

V - vector space

Definition 2.73. A vector bundle with typical V over B is a fibre bundle π : E → B with

typical fibre V together with vector space structures on the fibres Eb such that there exists

a cover of B by local trivializations (ψα) which are fibrewise vector space isomorphisms.

Vector bundle morphisms are bundle morphisms which are fibrewise linear.

the associated cocyle to such a trivialization ρα,β takes values in GL(V ) - the linear auto-

morphisms of V

vice versa:

- assume that cocycle has values in GL(V )

- define linear structure on Eb as follows:

– chose α with b ∈ Uα

– define structures by [u, v]α + λ[u, v′]α := [u, v + λv′]α

– this is well-defined since cocyle is linear

– by construction: E → B is a vector bundle

E → B - a vector bundle

-Γ(B,E) becomes C∞(B)-module

– s, s′ two sections

— define: (s+ s′)(b) := s(b) + s′(b)
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— define: fs(b) := f(b)s(b)

– show that the operations produce again smooth sections:

– calculate for local sections: s+ fs′ is represented by (sα + fs′α)α - has smooth members

π : E → B - vector bundle, e ∈ E, b := π(e)

Lemma 2.74. 1. There exists a section s in Γ(B,E) with s(b) = e

2. If s ∈ Γ(B,E) satisfies s(b) = 0, then there exists a finite family of sections (ti) in

Γ(B,E) and a finite family (fi) in C∞(B) such that fi(b) = 0 for all i and s =
∑

i fiti

the point in 1. is: the section exists globally!

Proof. 1.:

choose local trivialization ψ : π−1(U)→ U × V

- (b, v) := ψ(e)

- choose χ ∈ C∞c (U) with χ(b) = 1

- define s ∈ Γ(B,M) by: b 7→

{
ψ−1(b, χ(b)v) b ∈ U

0 else

2.:

- (vi) basis of V

- (vi) dual basis of V ∗

- u 7→ si(u) := vi(prV ψ(χ(u)s(u)) : U → R

– ith component of s in trivialization

– vanishes at b and is compactly supported on U

- Taylor

– there is decomposition si =
∑n

j=1 f
i
jg
i,j = with f ij ∈ C∞c (U) and f ij(b) = 0 (n = dimbB)

- define ti,j : U → E by: ti,j(u) := ψ−1(u, χ(u)gi,j(u)vi)

–extend by zero to all of B
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- have s = (1− χ2)s+
∑

i,j f
i
jt
i,j

dual bundle of a vector bundle π : E → B:

- define set E∗ :=
⊔
b∈B E

∗
b

- have projection π∗ : E∗ → B

- ψ : π−1(U)→ U × V

- ψ∗ : π∗,−1(U)→ U × V ∗

– ψ∗(e∗) := (π∗(e∗), (v 7→ e∗(ψ−1(u, v))))

– if (ρα,β) - GL(V )-valued cocycle for E, then (ρ∗,−1α,β ) is GL(V ∗)-valued cocycle for E∗

- get topology and smooth structure on E∗ such that π∗ : E∗ → B is vector bundle

Definition 2.75. π∗ : E∗ → is called the dual bundle of π : E → B.

this works for other functors of tensor algebra as well

- e.g. V 7→ S2(V ∗)

– yields bundle of symmetric bilinear forms E2(E∗)→ B

have pairing 〈−,−〉 : Γ(B,E)×C∞(B) Γ(B,E∗)→ C∞(B)

- s⊗ κ 7→ κ(b)(s(b))

- check smoothness

Proposition 2.76. The pairing induces an isomorphism of C∞(B)-modules

Γ(B,E∗) ∼= HomC∞(B)(Γ(B,E), C∞(B)) .

Proof. κ in Γ(B,E∗)

- get κ̂ ∈ HomC∞(B)(Γ(B,E), C∞(B)) by: κ̂(s)(b) := κ(b)(s(b))

- κ̂(fs)(b) = κ(b)(f(b)s(b)) = f(b)κ̂(s)(b) shows C∞(B)-linearity

κ̂ in HomC∞(B)(Γ(B,E), C∞(B))
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- define κ in Γ(B,E∗) as follows:

– b ∈ B

– define κ(b) : Eb → R such that:

– κ(b)(e) = κ̂(s)(b), s any section of E with s(b) = e

— well-defined: s′ second section

— s− s′ =
∑

i fitifor sections ti with fi(b) = 0

— κ̂(s′)(b)− κ̂(s)(b) =
∑

i fi(b)κ(ti) = 0

check smoothness of κ

check that these constructions are inverse to each other

check C∞(B)-linearity of isomorphism

s ∈ Γ(M,E∗)

- define s̃ : E → R by s̃(e) := s(π(e))(e)

- is fibrewise linear

– C∞f−lin(E,R) ⊆ C∞(E,R) functions which are fibrewise linear

Lemma 2.77. We have a bijection s 7→ s̃ between Γ(M,E∗) and C∞f−lin(E,R).

Proof. s̃ ∈ C∞f−lin(E,R)

- define s(b) such that s(b)(e) = s̃(e) for all e ∈ Eb.

Example 2.78. T ∗M is the dual bundle of TX

- Ω1(M) ∼= HomC∞(M)(X (M), C∞(M))

2.4.5 Principal bundles

G - a Lie group

π : M → B
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a fibrewise right action of G on M is a right action M ×G→M such that

M ×G
(m,g)7→mg

//

πprM
((

M

π
��

B

commutes

Definition 2.79. A G-principal bundle over B is a fibre bundle π : M → B with typical

fibre G together with a fibre-wise right G-action on M such that there exists a cover of B

by local trivializations (ψα) with ψα : π−1(Uα)→ Uα×G which is G-equivariant. Principal

bundle morphisms are bundle morphisms which are G-equivariant.

- the associated cocyle has values in right-G-equivariant maps G→ G

- a right G-equivariant map ρ : G→ G is given by left-multiplication with ρ(e)

- hence the coycle ρα,β has values in G (which acts on G by left multiplication)

vice versa:

- given a G-valued cocycle the associated fibre bunde is a G-principal bundle

– we define the G-action by [u, g]αh := [u, gh]α.

assume that M → B is a G-principal bundle

- assume that there exists a section s ∈ Γ(B,M)

- then we define smooth map B ×G→M , (b, g) 7→ s(b)g

– is a bijection

– inverse is smooth (check in trivializations)

– sα : Uα → G

– (u, g) 7→ sα(u)g

– inverse (u, h) 7→ (u, sα(u)−1h)

Corollary 2.80. There is a bijection between Γ(B,M) and G-equivariant bundle isomor-
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phisms

B ×G

##

∼= //M

~~

B

Corollary 2.81. A G-principal bundle is trivial if and only if it has a section.

Example 2.82. The map S1 → S1 given by z 7→ zn is a Cn-principal bundle. It is not

trivial. 2

2.4.6 Frame bundles and associated vector bundles

π : E → B - a vector bundle with typical fibre V

- get associated frame bundle Fr(E)→ B

– a frame of Eb is an isomorphism s : V → E

– the underlying set of Fr(E) is the set of frames of the fibres of E

– the projection p : Fr(E)→ B sends the frames of the fibre Eb to b

- the group GL(V ) acts from the right on Fr(E) by precomposition: (s, g) 7→ s ◦ g

- in order to define manifold structure find local trivializations and observe that cocycle is

smooth

– choose ψα : π−1(Uα)→ Uα × V local trivialization for E

- get Ψα : p−1(Uα)→ Uα ×GL(V ) by Ψα(s) = (p(s), ψα(p(s), s(−))

- reproduces GL(V )-valued cocycle ρα,β of E now considered with values in AutMf (GL(V ))

– this cocycle is smooth (since GL(V ) is Lie group)

- get associated GL(V )-principal bundle which will be denoted by Fr(E)→ B

M → B - G-principal bundle

- κ : G→ GL(V ) homomorphism of Lie groups

- G-valued cocycle ρα,β for M → B gives GL(V )-valued cocycle κ(ρα,β)
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- get associated vector bundle: notation M ×G,κ V → B

– have map M × V →M ×G,κ V given by

([u, g]α, v) 7→ [u, κ(g)v]α

- this is well-defined and smooth

- induces the equivalence relation such that (m,κ(g)v) ∼ (mg, v) for all g in G on M × V

– Actually: M ×G,κ V is the quotient of M × V by this equivalence relation

- write [m, v] for the image of (m, v)

have G-action on C∞(M,V ) by

(gf)(m) := κ(g)f(mg−1)

- can talk about fixed points C∞(M,V )G

Lemma 2.83. Γ(B,M ×G,κ V ) ∼= C∞(M,V )G

Proof. want that s(π(m)) = [m, f(m)] for all m in M

given s ∈ Γ(B,M ×G,κ V )

- define f : M → V as follows:

– let m ∈M , then s(π(m)) = [m, v]

— this is the unique representative of s(π(m)) with first entry m

— set f(m) := v

— check: f(mg) = κ(g)−1v

— check smoothness: f ◦ ψ−1α (u, g) = κ(g)−1sα(u)

given f ∈ C∞(M,V )G

- define s ∈ Γ(B,M ×G,κ V ) by s(b) = [m, f(m)] for any m ∈Mb

– check: well-defined

– check smooth
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check: these construction are mutually inverse

Example 2.84. E → B - vector bundle with fibre V

- Fr(E)→ B

- κ = idGL(V )

then Fr(E)×GL(V ),idGL(V )
V ∼= E

- map [s, v] 7→ s(v)

2

E → B - vector bundle with typical fibre V

κ : G→ GL(V ) - homomorphism

Definition 2.85. A reduction of the structure group of E to G is a pair M → B of a

G-principal bundle and an isomorphism of vector bundles M ×G V
∼=→ E.

Example 2.86. A reduction of the structure group to the trivial group is the same as a

trivialization

V = V0 ⊕ V1

- GL(V0)×GL(V1) ⊆ GL(V )

a reduction of the structure group to GL(V0)×GL(V1) is equivalent to an decomposition

E0 ⊕ E1
∼= E

- GL(V )+ = {A ∈ GL(V ) | det(A) > 0}

a reduction of the structure group to GL(V )+ is the same as the choice of an orientation

if V has a scalar product - get O(V ) ⊆ GL(V )

a reduction of the structure group to O(V ) is the same as the choice of an metric on E

2
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2.4.7 Pull-back

f : B′ → B - map of manifolds

- get h∗ : C∞(B)→ C∞(B′) - pull-back of functions h∗f := f ◦ h.

extend this to fibre bundles M → B

- s(h(b′)) is in Mh(b′)

- want a new bundle over B′ with fibre Mh(b′) over b′

π : M → B - fibre bundle with typical fibre F

- f : B′ → B morphism

- consider pull-back in sets

M ′
H //

π′

��

M

π
��

B′
h // B

- (U,ψ) - local trivialization of π

- induces

ψ′ : π′,−1(h−1(U))→ U ′ × F , m′ 7→ (π′(m),prFψ(H(m)))

- (U ′, ψ′) local trivialization of π′

- cocycle: (ρ′ψ1,ψ0
) (indexed by the local trivializations of π)

– ρ′ψ1,ψ0
(u′) = ρψ1,ψ0(h(u))

Definition 2.87. π′ : M ′ → B′ is called the pull-back of π : M → B along h.

often write M ′ := h∗M

- the pull-back of a vector bundle is again a vector bundle

- the pull-back of a principal bundle is again a principal bundle
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Lemma 2.88. The square

M ′
H //

π′

��

M

π
��

B′
h // B

is a cartesian square in Mf .

Proof. Exercise:

pull-back of sections:

- h∗ : Γ(B,M)→ Γ(B′, h∗M)

-. s 7→ (b′ 7→ h∗s = (b′, s(h(b′))) ∈M ′

Example 2.89. f : M →M ′ - morphism of manifolds

- interpret TF : TM ′ → TM as:

Df : TM ′ → f∗TM by universal property of pull-back 2

Example 2.90. pull-back of forms:

f : M ′ →M

- f∗ : Ω1(M)→ Ω1(M ′)

- f∗T ∗M
Df∗→ T ∗M ′

- f∗ : Ω1(M)→ Γ(M ′, f∗T ∗M)
Df∗→ Γ(M ′, T ∗M ′) = Ω1(M ′)

commutes:

C∞(M)
f∗
//

d
��

C∞(M ′)

d
��

Ω1(M)
f∗
// Ω1(M ′)

exercise:

2

Example 2.91. M,N - manifolds

- E →M , F → N - vector bundles

prM : M ×N →M , prN : M ×N → N projections
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- write E � F := pr∗ME ⊕ pr∗NF →M ×B

Example 2.92. have isomorphism T (M ×N)→ TM � TN

- given by DprM ⊕DprN

2

2

2.5 Vector fields

2.5.1 The commutator

Definition 2.93. X (M) := Γ(M,TM) is called the space of vector fields on M

is C∞(M) module

define action Γ(M,TM)× C∞(M)→ C∞(M)

- (X, f) 7→ (m 7→ X(m)(f))

some formulas:

- have rule (gX)(f) = gX(f)

- Leibnitzrule: X(gf) = X(f)g + fX(g)

- could say: X is in Der(C∞(M), idC∞(M))

- X(f)(m) = df(m)(X(m))

Lemma 2.94. For X,Y in X (M) there exists a uniquely determined Z in X (M) such that

Z(f) = X(Y (f))− Y (X(f)) for all f in C∞(M)

Proof. observe: f 7→ X(Y (f))− Y (X(f))(m) is a derivation
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X(Y (fg))− Y (X(fg)) = X(Y (f)g + fY (g))− Y (X(f)g + fX(g))

= X(Y (f))g + Y (f)X(g) +X(f)Y (g) + fX(Y (g))

−Y (X(f))g −X(f)Y (g)− Y (f)X(g)− fY (X(g))

= (X(Y (f))− Y (X(f)))g + f(X(Y (g))− Y (X(g)))

evaluate at m

- define value Z(m) as this derivation

– Z satisfies the formula

– must check smoothness: Exercise! (already done)

local formula:

- write [X,Y ] := Z

- local formula on chart on U

- [X,Y ]|U = [Xi∂i, Y
j∂j ] = (Xj∂jY

i − Y j∂jX
i)∂i

Lemma 2.95. X (M) with [−,−] forms a Lie algebra

note: [X, fY ] = f [X,Y ] +X(f)Y

- [−,−] is not C∞(M) - bilinear

h : M →M ′ diffeomorphism

- X ∈ X (M)

define h∗X such that h∗(h∗Xf) = X(h∗f) for all f in C∞(M)

– get h∗X(m′) := Th(h−1(m′))X(h−1(m′))

Lemma 2.96. h∗[X,Y ] = [h∗X,h∗Y ]

Proof. check chain rule: h∗(h∗[X,Y ])(f) = [X,Y ](h∗f)

h∗[h∗X,h∗Y ](f) = h∗h∗X(h∗Y (f))−h∗h∗Y (h∗X(f)) = h∗Xh∗(h∗Y (f))−Y h∗(h∗X(f)) =

[X,Y ](h∗f)
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Example 2.97. X ∈ X (M), Y ∈ X (N)

X � Y := DprMpr∗MX ⊕DprNpr∗NY ∈ X (M ×N)

[X0, X1] � [Y0, Y1] = [X0 � Y0, X1 � Y1]

2

the following explains meaning of commutator:

I ⊆ R open, 0 ∈ I

- consider map Φ : I ×M →M

– write Φ(t,m) = Φt(m) (family of endomorphisms of M smoothly parametrized by I)

– assume Φ0 = idM

- get vector field X := Φ′ (derivative by time at 0)

– X(m) := TΦ(0,m)(∂t)

– X(m) := (∂t)|t=0Φt(m)

– Y in X (M)

– define Φt,∗Y ∈ X (M) by

– consider Φt,∗Y (m) := TΦt(Φt(m))−1(Y (Φt(m))))

— note that for every m ∈ M the inverse TΦt(m)−1 exists for small |t| since dΦ0(m) =

idTmM

Lemma 2.98. (∂t)t=0Φt,∗Y (m) = [X,Y ](m)

Proof. calculate in chart

- use Taylor expansion and only keep constant and linear terms in t

Φt(m) = m+ tX(m) +O(t2)

TΦt(Φ(m)) = T (m+ tX(m)) +O(t2) = 1 + tTX(m) +O(t2)

TΦt(Φ(m))−1 = 1− tTX(m) +O(t2)
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TΦ−1t (Φt(m))(Y (Φt(x))) = (1− tTX(m))Y (m+ tX(m) +O(t2)) +O(t2)

= Y (m)− tTX(m)(Y (m)) + tTY (m)(X(m)) +O(t2)

= Y (m) + t[X,Y ](m) +O(t2)

2.5.2 Integral curves

X ∈ X (M) given

- consider intervals I ⊆ R

- for curve γ : I →M set: γ′(t) := Tγ(t)(∂t) ∈ Tγ(t)M

Definition 2.99. A curve γ : I → M is an integral curve of X if γ′(t) = X(γ(t)) for all

t ∈ I.

fix m ∈M , t0 ∈ R

Proposition 2.100. There exists a unique maximal integral curve γ : I → M of X with

γ(t0) = m

Proof. local existence and uniqueness:

- in chart at m: apply Picard- Lindeloef

- get interval I such that there is a unique integral curve γ : I →M with γ(t0) = m

unique continuation:

- γ0, γ1 : I → R two integral curves

- γ0(t0) = γ1(t0)

– then γ0 = γ1

— J := {γ0 = γ1}

— show by contradiction that J = I

— J is closed in I and contains t0

47



— assume: J 6= I

— assume: sup J < sup I

—- case: inf J > inf I similar

—- t1 := sup J

—- γ0(t1) = γ1(t1) (since J is closed)

—- then also [t1, t1 + ε) ∈ J for some small ε > 0 by local uniqueness

– contradiction!

apply Zorn to find maximal integral curves

if γ : I →M is maximal

- if sup I 6=∞ then limt↑sup I γ(t) does not exist

- if inf I 6= −∞ then limt↓inf I γ(t) does not exist

consider open subset U such that {0} ×M ⊆ U ⊆ R×M

- Φ : U →M some map

- write Φ(t,m) := Φt(m)

Definition 2.101. Φ is called a flow of X if

1. Φ0 = idM

2. For every m in M the curve t 7→ Φt(m) is an integral curve of X.

Proposition 2.102. There exists a unique maximal flow of X.

Proof. - Φ|U∩R×{m} is the maximal integral curve of X with γ(0) = m

- check smoothness and openness of U

- use smooth dependence of solutions of ODE on initial conditions

formulas: ΦtΦs = Φt+s (where defined)
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- Φ−t = Φ−1t

d
dt |t=0

Φ∗t f = X(f)

d
dt |t=0

Φt,∗(Y ) = [X,Y ]

Example 2.103. Newton Mechanics

M - position space of a mechanical system (encodes positions)

- TM - phase space (encodes position and velocity)

- X ∈ X (TM) - encodes law of involution

- integral curve γ : I → TM - time evolution of the system with initial condition γ(0) = Z

– base point of Z in M is initial condition

– Z itself is initial velocity

modelling circle

- Physical problem: find the correct M and X modelling the reality

- Mathematical problem: find γ

- Physical problem, verify model: compare prediction of the model with some measurement

– correct model if necessary

- Application: make predictions for not yet measured evolutions

Examples:

- mass point in force: M = R3

- X by Newtons Law

Example:

- rigid body

- M = R3 × SO(3) (center of mass and orientation in space)

- X by Newtons Law
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2.5.3 Fundamental vector fields and actions

G - Lie group

- use notation g := TeG

consider manifold M with right action a : M ×G→M

- use T(m,g)(M ×G) ∼= TmM ⊕ TgG

– g→ TmM ⊕ g
Ta(m,e)→ TmM ⊕ g

prTmM→ TmM

– for X in g set X](m) := Ta(m, e)(X) ∈ TmM

— fundamental vector of the action at m for X

– let m vary

– get fundamental vector field X] ∈ X (M)

consider case G = M

- for g ∈ G let Lg, Rg left- and right multiplication by g

– X](h) = TLg(e)(X).

LgLh = Lgh implies

- TLg(h)(X](h)) = TLg(h)TLh(e)(X) = TLgh(e)(X) = X](gh)

– shorter Lg,∗X
] = X]

Definition 2.104. The vector space GX (G) := {X ∈ X (G) | (∀g ∈ G | Lg,∗X = X)} is

called the space of left invariant vector fields on G.

for X in g have X] ∈ GX (G) - left invariant vector field

- any left-invariant vector field is uniquely is determined by value at e

- have isomorphism GX (G)
∼=→ g given by X 7→ X(e)

– is inverse to X 7→ X]

- Lh,∗[−,−] = [Lh,∗, Lh,∗] shows:
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– [−,−] restricts to GX (G)

— g - becomes sub-Lie algebra of X (G)

- get induced Lie algebra structure on g

Definition 2.105. g is called the Lie algebra of G.

- X 7→ X] is homomorphism of Lie algebras by definition

– [X,Y ]] = [X], Y ]]

Example 2.106. V - vector space

- GL(V ) ⊆ End(V ) open

- TeGL(V ) = End(V )

- X](g) = TLg(e)(X) = gX

- [X,Y ] = X(gY )− Y (gX) = XY − Y X

2

consider general action of G on M

Lemma 2.107. The map g→ X (M), X 7→ X], is a homomorphism of Lie algebras.

Proof. consider map f : M ×G→M ×G, (m, g) 7→ (mg, g)

- is diffeomorphism, inverse (m, g) 7→ (mg−1, g)

- f∗(0⊕X) = pr∗MX
] ⊕ pr∗GX

– omit to write pr

- [(0⊕X), (0⊕ Y )] = 0⊕ [X,Y ]

- [(X] ⊕X), (X] ⊕X)] = f∗[(0⊕X), (0⊕ Y )] = f∗(0⊕ [X,Y ]) = [X,Y ]] ⊕ [X,Y ]

- read of [X], Y ]] = [X,Y ]]

φ : G→ H - homomorphism of Lie groups

dφ(e) : g→ h
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Lemma 2.108. dφ(e) is homomorphism of Lie algebras.

Proof. get action of G on H by (h, g) 7→ hφ(g)

- for X in h

– X]
H - fundamental vector field of G-action on H

– is in HX (H)

– X]
H(e) = dφ(e)(X)

dφ(e)([X,Y ]) = [X]
H , Y

]
H ](e) = [dφ(e)(X), dφ(e)(Y )]

LgRh = RhLg implies

- Rg,∗ preserves GX (G)

- get (anti)action Ad : G→ GL(g) by automorphisms of Lie algebras

- ad := dAd(e) : g→ End(g) (anti)homomorphism of Lie algebras

Lemma 2.109. ad(X)(Y ) = −[X,Y ].

Proof. Exercise?

X ∈ g

- X] ∈ GX (G)

Lemma 2.110. The maximal integral curves of X have domain R

Proof. γ : I → G integral curve of X] with γ(t0) = e

- then gγ is integral curve of X] with γ(t0) = g

– (gγ)′ = dLg(γ(t))(X](γ(t))) = X](gγ(t))

γ : I → G maximal integral curve

- assume: t0 := sup I <∞
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- then

γ(t) :=

{
γ(t) t ∈ I

γ(t0)γ(t− t0) t ∈ I − t0
is extension of integral curve to I ∪ (t0 + I)

- contradiction to maximality

Φ : g× R×G→ G, (X, t, g) = ΦX
t (g)

- flow of X] starting at m at time t

Definition 2.111. We define the exponential map exp : g→ G, exp(X) := ΦX
1 (e).

Example 2.112. for GL(V )

- ΦX
t (g) = getX

- exp(X) = eX - usual matrix exponential 2

Example 2.113. consider G-action on M

- X ∈ g

- X]
M - fundamental vector field

- γ(t) := m exp(tX) is an integral curve of X]
M , hence defined on all of R

– calculate derivative at t0

–(∂s)s=tm exp(sX) = (∂s)s=0m exp(tX) exp(sX) = X]
M (γ(t)) 2

3 Connections

3.1 Linear connection on vector bundles bundles

3.1.1 Existence and classification

recall:

have differential d : C∞(M)→ Ω1(M)

- consider this as map X (M)× C∞(M) 3 (X, f) 7→ X(f) := df(X)

- generalizes to V -valued functions h ∈ C∞(M,V ):
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– write (X,h) 7→ ∇triv
X h = X(h)

— componentwise application of X

— uniquely characterized by

— v∗(∇triv
X h) = X(v∗h) for every v∗ ∈ V ∗

formulas:

∇triv
X+X′h = ∇triv

X h+∇triv
X′ h , ∇triv

fX h = f∇Xh

– C∞(M) -linear in the first argument

∇triv
X (h+ h′) = ∇triv

X h+∇triv
X h′ , ∇triv

X (hf) = f∇triv
X h+X(f)h

– C-linear and Leibnitz rule in the second argument

E → B - vector bundle

- want to consider ∇ : X (M)× Γ(B,E)→ Γ(B,E) with these properties:

Definition 3.1. A linear connection on E is a map ∇ : X (B) × Γ(B,E) → Γ(B,E)

(written as ∇(X, s) = ∇Xs) which is C∞(B)-linear in the first argument, C-linear in the

second and satisfies the Leibnitzrule ∇X(fs) = f∇Xs+X(f)s.

Example 3.2. E is trivial

- can choose trivialization ψ : E → B × V

– get identification Γ(B,E) ∼= C∞(B, V )

– s 7→ hs : b 7→ prV ψ(s(b))

– h 7→ sh : b 7→ ψ−1(b, h(b))

define connection ∇ on E such that h∇Xs = ∇triv
X hs

- ∇ depends on choice of trivialization

- ψ′ second trivialization, get ∇′, s 7→ h′s and h 7→ s′h

- ψ′ψ−1(u, v) = (u, ρ(u)(v)) transition function

54



– ρ : B → GL(V ) ⊆ End(V )

– h′s = ρ · hs

have C∞(B)-module isomorphism

Γ(B, T ∗M ⊗ End(E)) ∼= HomC∞(B)(X (B)⊗C∞(B) Γ(B,E),Γ(B,E))

sends ω to map X ⊗ s 7→ (b 7→ ω(b)(X(b)) · s(b))

write ω(X) · s := ω(X, s)

– define ω ∈ Γ(B, T ∗M ⊗ End(E)) such that hω(X)·s = ρ−1dρ(X) · hs

– h′∇′Xs
= ∇triv

X h′s = ∇triv
X (ρhs) = ρ(∇triv

X hs + ρ−1dρ(X)hs) = ρh∇Xs+ω(X)s = h′∇Xs+ω(X)s

read of: ∇′ = ∇+ ω

2

b in B

X,X ′ ∈ C∞(B), s, s′ ∈ Γ(B,E)

- ∇Xs(b) is locally determined at b

Lemma 3.3. If X(b) = X ′(b) and there exists a neighbourhood U of b such that s|U = s′|U ,

then (∇Xs)(b) = (∇X′s′)(b).

Proof. Assume that f, f ′ ∈ C∞(B) and f(b) = 0, f ′ ≡ 0 near B (in particular f ′(b) but

also all derivatives vanish)

- (∇fXs)(b) = f(b)(∇fXs)(b) = 0

- (∇X(f ′s))(b) = f ′(b)(∇Xs)(b) +X(f ′)(b)s(b) = 0

under the assumption can write X −X ′ = fY and s− s′ = f ′t for such a function

for X ∈ TbB define: ∇Xs := ∇X̃s(b) for any X̃ ∈ X (B) with X̃(b) = X
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Lemma 3.4. Linear connections exist and form an affine space over Γ(B, T ∗B⊗End(E)).

Proof. (Uα, ψα) covering of B by local trivializations

- locally finite

- get connection ∇α in Uα (e.g. the trivial one)

- choose partition of unity (χα) subordinate to covering

- define ∇ =
∑

α χα∇α

– interpretation:

– ∇Xs(b) =
∑

α χα(b)(∇αXs)(b)

– if b ∈ Uα, then (∇αXs)(b) is well-defined by Lemma 3.3

check:

∇ is linear connection:

Leibnitz:

∇X(fs)(b) =
∑
α

χα(b)(∇αXfs)(b)

= f(b)
∑
α

χα(b)(∇αXs)(b) +X(f)(b)
∑
α

χα(b)s(b)

= f∇X(s)(b) +X(f)s(b)

∇,∇′ two linear connections

- ω : X (M)× Γ(B,E)→ Γ(B,E)

- (X, s) 7→ ∇′Xs−∇Xs

– is C∞(B)-binlinear

– find unique ω ∈ Γ(B, T ∗B ⊗ End(E)) such that ω(X) · s = ∇′Xs−∇Xs

if ∇ is a connection and ω ∈ Γ(B, T ∗B ⊗ End(E)), then ∇+ ω is also a connection
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consider pull-back situation

h∗E
k //

��

E

��

B′
h // B

∇ - linear connection on E

Lemma 3.5. There is a unique linear connection h∗∇ on h∗E such that

k((h∗∇X′h∗s)) = ∇Xs

for any b′ ∈ B′, X ′ ∈ Tb′B′ and X := Th(b′)(X ′) and s ∈ Γ(B,E).

Proof. ∇′ any connection on E′

- write h∗∇ = ∇′ + ω

– determined ω from condition:

- k(ω(b′)(X ′) · (h∗s)(b′)) = ∇Y s− k(∇′X′h∗s)

– in order to see that ω is wel–defined:

– must show that right-hand side only depends on value of s:

— b := h(b′)

— assume s = ft with f(b) = 0

— ∇Y ft− k(∇′X′h∗(ft)) = Y (f)t(b′)− k(X(h∗f)h∗t(b′)) = (Y (f)−X(h∗f))t(b) = 0

—- used k(h∗t(b′)) = t(b)

—- Y (f) = X(h∗f since Y = Th(b′)(X)

- hence get ω as desired, is uniquely determined

3.1.2 Curvature

E → B vector bundle

∇ - linear connection
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- interpret ∇ as map Γ(B,E)→ Γ(B, T ∗B ⊗ E) = Ω1(B,E)

- s 7→ (X 7→ ∇Xs)

s ∈ Γ(B,E)

Definition 3.6. s is called parallel of ∇s = 0.

Example 3.7. consider ∇triv on C∞(B, V )

∇trivh = 0 is equivalent to the assertion that h is constant

fix b ∈ B and v ∈ V

- there exists h ∈ C∞(B, V ) with h(b) = v and ∇trivh = 0

- take constant function with value h

will see that a similar assertion for general connections on vector bundles is not true

2

in the following X,Y ∈ C∞(B), s ∈ Γ(B,E)

Lemma 3.8.

(X,Y, s) 7→ F∇(X,Y ) · s := ∇X(∇Y s)−∇Y (∇Xs)−∇[X,Y ]s

is C∞-linear in each argument and therefore determines an element F∇ ∈ Ω2(End(E)).

Proof.

∇fX(∇Y s)−∇Y (∇fXs)−∇[fX,Y ]s = f∇X(∇Y s)− f∇Y (∇Xs)− f∇[X,Y ]s− Y (f)∇Xs+ Y (f)∇Xs

= f(∇X(∇Y s)−∇Y (∇Xs)−∇[X,Y ]s)
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∇X(∇Y fs)−∇Y (∇Xfs)−∇[X,Y ]fs = ∇X(f∇Y s+ Y (f)s)−∇Y (f∇Xs+X(f)s)

−f∇[X,Y ]s− [X,Y ](f)s

= f∇X(∇Y s) +X(f)∇Y s+ Y (f)∇Xs+X(Y (f))s

−f∇Y (∇Xs)− Y (f)∇Xs−X(f)∇Y s− Y (X(f))s

−f∇[X,Y ]s− [X,Y ](f)s

= f(∇X(∇Y s)−∇Y (∇Xs)−∇[X,Y ]s)

Definition 3.9. F∇ is called the curvature of the connection ∇.

Example 3.10. have F∇
triv

= 0

- this is just the equality

- X(Y (h))− Y (X(h)) = [X,Y ](h) - definition of commutator 2

Lemma 3.11. If s ∈ Γ(B,E) is parallel, then F∇ · s = 0.

Proof. clear

Corollary 3.12. Fix b ∈ B. If for any e in E there exists a parallel section with se(b) = e,

then F∇(b) = 0.

Proof. (F∇(X,Y )(b) · e)(b) = (F∇(X,Y ) · sb)(b) = 0

F∇+ω(X,Y ) = F∇(X,Y ) +∇Xω(Y )−∇Y ω(X)− ω([X,Y ]) + [ω(X), ω(Y )] (1)

- define ∇∧ ω ∈ Ω2(M,End(E)) by

∇ω(X,Y )(s) := ∇X(ω(Y )s)−∇Y (ω(X)s)− ω([X,Y ])s
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- is C∞(B)-multilinear and therefore well-defined

F∇+ω = F∇ +∇∧ ω + [ω, ω] (2)

Example 3.13. E = B × R

- identify End(R) with trivial bundle with fibre R

- ∇ = ∇triv + ω

- ∇triv ∧ ω(X,Y ) = X(ω(Y ))− Y (ω(X))− ω([X,Y ]) = dω(X,Y )

– Cartan formula

– [ω(X), ω(Y )] = 0

- hence F∇
triv+ω = dω

curvature can be non-trivial

2

Example 3.14. Physics language

- ∇ - gauge field

- for trivialization of bundle ∇ = ∇triv + ω

– ω - gauge potential (depends on the trivialization, nota physical quantity)

– change of trivialization (gauge transformation):

– ω′ = ω + ρ−1dρ

– F∇ = ∇triv ∧ ω + [ω, ω] - field strength (measurable effect of the field)

choice of bundle depends on what one wants to model

- usually additional structures preserved: complex structures, metrics 2

Example 3.15. if dim(B) ≤ 1, then curvature always vanishes

Lemma 3.16. F h
∗∇ = h∗F∇

Proof. Exercise.

Example 3.17. B × V → B - trivial bundle
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- ∇triv - trivial connection

- h∇triv
X s = X(hs)

- P ∈ Γ(B,End(E))

- family of projections

– trP ∈ C∞(M)

– trP (b) = dimEb ∈ Z

– trP = rkP locally constant

– F := im(P ) = ker(1− P ) is subbundle of E

– for s ∈ Γ(B,F ) have ∇triv
X s ∈ Γ(B,E)

– ∇ on F by: ∇Xs := P∇triv
X s

— check Leibnitz, use Ps = s

— ∇X(fs) = Pf∇triv
X s+ PX(f)s = f∇Xs+X(f)s

∇ is the projection of ∇triv to X

calculate curvature

P 2 = P

- X(P 2) = X(P )P + PX(P ) = X(P )

- PX(P )P + PX(P ) = PX(P ) hence PX(P )P = 0

F∇(X,Y )s = P∇triv
X P∇triv

Y s− P∇triv
Y P∇triv

X s− P∇triv
[X,Y ]s

= PF∇
triv
s+ PX(P )∇triv

Y s− PY (P )∇triv
X s

= PX(P )(1− P )∇triv
Y s− PY (P )(1− P )∇triv

X s

= PX(P )(1− P )∇triv
Y Ps− PY (P )(1− P )∇triv

X Ps

= PX(P )(1− P )Y (P )Ps− PY (P )(1− P )X(P )Ps

F∇(X,Y ) = PX(P )(1− P )Y (P )P − PX(P )(1− P )Y (P )P

Example 3.18. i : S2
r ⊆ R3
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- sphere of radius r

- E = r∗TR3 → S2
r - trivial

- P : E → TS2
r - orthogonal projection

– get connection ∇ by projecting ∇triv

- P (ξ)(Z) = Z − r−2〈ξ, Z〉ξ

choose coordinates near northpole

ξ(x, y) 7→ (x, y,
√
r2 − x2 − y2)

matrix for P

P (x, y) =

 1− r−2x2 1− r−2yx r−2x
√
r2 − x2 − y2

1− r−2xy 1− r−2y2 yr−2
√
r2 − x2 − y2

1− xr−2
√
r2 − x2 − y2 1− r−2y

√
r2 − x2 − y2 (x2 + y2)r−2



X(P )(0) = r−1

 0 0 1

0 0 0

−1 0 0

 Y (P )(0) = r−1

 0 0 0

0 0 1

0 −1 0



P (0) =

 1 0 0

0 1 0

0 0 0

, 1− P (0) =

 0 0 0

0 0 0

0 0 1



(1−P (0))X(P )(0)P (0) = r−1

 0 0 0

0 0 0

−1 0 0

, (1−P (0))Y (P )(0)P (0) = r−1

 0 0 0

−1 0 0

0 −1 0



F∇(X,Y ) = P (0)Y (P )(0)(1− P (0))X(P )(0)P (0) = r−2

 0 −1 0

1 0 0

0 0 0

 2

3.1.3 Parallel transport

B = I - interval, t0 ∈ I
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E → B - vector bundle, e0 ∈ Et0
∇ - connection

Lemma 3.19. There exists a unique parallel section s ∈ Γ(I, E) such that s(t0) = e0.

Proof. - solve ODE ∇∂ts = 0 with initial condition s(t0) = e0

local existence:

– analyse locally in trivialization

- ∇ = ∇triv + ω

- ∇∂t = ∂t + ω(∂t)

– consider s as V -valued function in t

- I 3 t 7→ A(t) := ω(t)(∂t) ∈ End(V )

- solve linear system of ODE with non-constant coefficients

– ∂ts = −A(t)s, s(t0) = e0

– is solvable and solution exists on I

global uniqueness

- s, s′ to solutions on I

- J = {s = s′} is non-empty (contains t0)

- is closed (solutions are continuous)

- from local uniqueness: J = I

let J ⊆ I maximal interval on which parallel extension s exists

- argue: J = I using local uniqueness

h : I ′ → I map

- s ∈ Γ(I, E), ∇s = 0

- then h∗∇h∗s = 0
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observe: let se0 be the parallel section with se0(t0) = e0

- the map e0 7→ se0 is linear

E → B - vector bundle

∇ - connection

- γ : [0, 1]→ B curve

- get map Eγ(0) → Eγ(1)

– get linear map ‖γ : Eγ(0) 3 e 7→ se(1) ∈ Eγ1
— here se parallel section of γ∗E → [0, 1] (w.r.t. γ∗∇) with value s(0) = e

Definition 3.20. The map ‖γ : Eγ(0) → Eγ(1) is called the parallel transport along γ.

some simple properties of parallel transport:

reparametrization invariant:

- φ : [0, 1]→ [0, 1] smooth, endpoint preserving

- ‖γ = ‖φ∗γ

every path can be reparametrized such that it is constant near endpoints

- can restrict to path’s which are constant near endpoints

- can then concatenate

γ′]γ =

{
γ(2t) t ≤ 1/2

γ′(2t− 1) t > 1/2

we have

‖γ′]γ = ‖γ′ ◦ ‖γ

‖γ−1
= ‖γ,−1

- set γτ (t) = γ(tτ) - piece of curve from γ(0) to γ(τ)

- s any section of E
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‖γ
−1
τ s(γ(τ)) ∈ Eγ(0) - depends on τ

– how?

Lemma 3.21. ∂τ‖γ
−1
τ s(γ(τ)) = ‖γ

−1
τ ∇γ′(τ)s

Proof. – is correct if s is parallel along γ (both sides vanish)

– more general section s = fσ with σ parallel

∂τ‖γ
−1
τ (fσ)(γ(τ)) = f(γ(τ)) ∂τ‖γ

−1
τ σ(γ(τ)) + γ′(τ)(f) ‖γ

−1
τ σ(γ(τ))

‖γ
−1
τ (∇γ′(τ)fσ) = f(γ(τ))‖γ

−1
τ ∇γ′(τ)σ + γ′(τ)(f)‖γ

−1
τ σ(γ(τ))

– is correct for sections of the form fσ with σ parallel along γ

– any section is R-linear combination of such

from now one:

- consider U ⊆ Rn - starlike rel 0

- bundle E → U

- V := E0

- connection ∇

- define trivialization Ψ : E → U × V by radial parallel transport

– x ∈ U yields curve γx(t) := tx from 0 to x

- set Ψ(e) := (π(e), ‖γπ(e),−1(e))

Corollary 3.22. A vector bundle on a starlike domain in Rn is trivial.

Proof. one can choose a connection

- then have radial trivialization

write

- ∇ = ∇triv + ω

- ω - End(V )-valued one-form

– investigate Taylor expansion of ω at 0
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Lemma 3.23. We have ω(tX)(Y ) = t
2F
∇(0)(X,Y ) +O(t2).

Proof. - s radially parallel

- ∇trivs = 0 by definition of ∇triv

consider X as constant vector field

- 0 = ∇Xs(tX) = ω(tX)(X)s(tX) for all radially parallel s

– ω(tX)(X) ≡ 0 (as function of t)

– evaluate at t = 0

— ω(0)(X) = 0 for all X

– derive at t = 0

– hence Xω(X)(0) = 0

– polarization

X,Y - constant vector fields

– Xω(Y ) + Y ω(X) = 0

– 1
2(Xω(Y )− Y ω(X)) = Xω(Y ) = (∂t)|t=0ω(tX)(Y )

– 1
2(∇∧ ω)(X,Y ) = Xω(Y )

— no commutator

– by (2): 1
2(∇∧ ω)(0)(X,Y ) = 1

2F
∇(0)(X,Y )

– ω(tX)(Y ) = t
2F
∇(0)(X,Y ) + o(t2)

interpretation:

consider concatenation of linear paths:

0→ tX → tX + tY → 0

- calculate parallel transport up to order t
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- e→ e→ e− ω(tX)(tY )e→ (e− ω(tX)(tY )e)

- alltogether e 7→ e− t2

2 F
∇(X,Y )s+O(t3)

Lemma 3.24. We have ∇ = ∇triv if and only if F∇ = 0.

Proof. ⇒

- clear

⇐

s - radially parallel section

- ∇triv
Y s = 0 by definition

- must show that ∇Y s = 0

– fix vector X in U

— show ∇Y s(X) = 0

– ∇Xs(tX) = 0 (s radially parallel)

– γtX curve from 0 to X

– ∂t‖γtX ,−1∇Y s(tX) = ‖γtX ,−1∇X∇Y s(tX) = ‖γtx,−1F∇(X,Y )s(tX) = 0

- ∇Y se(0) = 0 (initial condition)

– set t = 1

hence ∇Y s(tX) = 0 for all t

U - starlike

- x, y ∈ U

- γ curve from x to y

Corollary 3.25. If F∇ = 0, then the parallel transport ‖γ : Ex → Ey is independent of γ.

3.1.4 Tensor algebra with connections, the first Chern class

E,F → B vector bundles

∇E ,∇F connections
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Lemma 3.26. 1. There is a unique connection ∇E⊕F on E ⊕ F such that

∇E⊕F (s⊕ t) = ∇Es⊕∇F t .

2. There is a unique connection ∇E⊗F on E ⊗ F such that

∇E⊗F (s⊗ t) = ∇Es⊗ t+ s⊗∇F t .

3. There is a unique connection ∇Hom(E,F ) such that

(∇Hom(E,F )φ)(s) = ∇F (φ(s))− φ(∇Es) .

Proof. Exercise. Here is a trick for the tensor product:

write E ⊗ F as Hom(E∗, F )

E → B - vector bundle

- ∇ - connection

- define ∇∧− : Ωk(B,E)→ Ωk+1(B,E)

∇∧ ω(X0, . . . , Xk) :=
k∑
i=0

(−1)i∇Xiω(X0, . . . , X̂i . . . , Xk)

+
∑
i<j

(−1)i+jω([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j . . . , Xk)

Lemma 3.27. ∇∧ ω is well-defined.

Proof. must check:

- formula is alternating in (Xi)

- formula ist C∞(B)-linear in the Xi

for 1-form:
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∇∧ ω(X,Y ) = ∇Xω(Y )−∇Y ω(X)− ω([X,Y ])

for 2-form

∇∧ ω(X,Y, Z) = ∇Xω(Y, Z) +∇Y ω(Z,X) +∇Zω(X,Y )

+− ω([X,Y ], Z)− ω([Y,Z], X)− ω([Z,X], Y )

for trivial bundle under Ω(B,B × R) ∼= Ω(B) and ∇ = ∇triv: ∇ ∧ − = d - de Rham

differential

calculate:

∇∧∇(s)(X,Y ) = ∇X∇Y −∇Y∇Xs−∇[X,Y ]s = F∇s

Corollary 3.28. ∇ ∧ − : Ω(M,E)→ Ω(M,E) is a differential of a chain complex if and

only if F∇ = 0

note:

- Ω(B,E) is Ω(B) - module

- ∇(ω ∧ s) = dω ∧ s+ (−1)|ω|ω ∧∇Es

- ∇∧∇∧ = F∇∧

E → B - vector bundle

∇ connection

Lemma 3.29. (Bianchi identity)

∇End(E) ∧ F∇ = 0 .

Proof. verify locally

- can assume that commutators of X,Y, Z vanish

– take coordinate vector fields

- F∇(X,Y ) = [∇X ,∇Y ]
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- ∇End(E)
X F∇(Y,Z) = [∇X , [∇Y ,∇Z ]]

assertion is now Jacobi identity for endomorphisms of a vector space

E → B - vector bundle

- tr : End(E)→ B × R bundle morphism

- ∇ on E

- ∇triv on B × R

Lemma 3.30. ∇Hom(End(E),B×R)tr = 0

Proof. - to show: X(tr(φ)) = tr(∇Xφ)

- local trivialization

– sections of E are vector valued functions

– sections of End(E) are matrix valued functions

- ∇E = d+ ω

- ∇End(E)
X φ = X(φ) + [ω(X), φ]

- tr(∇End(E)
X φ) = tr(X(φ)) + tr([ω(X), φ]) = X(tr(φ))

E → B - vector bundle

- ∇ - connection

- trF∇ ∈ Ω2(B)

Lemma 3.31. dtrF∇ = 0

Proof. - assume that mutual commutators of X,Y, Z vanish

- Cartan formula

- dtrF∇(X,Y, Z) = X(trF∇(Y,Z))− Y (trF∇(X,Z)) + Z(trF∇(X,Y ))

- get dtrF∇(X,Y, Z) = tr(∇End(E)
X F∇(Y, Z) +∇End(E)

Y F∇(Z,X) +∇End(E)
Z F∇(X,Y )) = 0

with Bianchi
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dependence on the connection

trF∇+ω = trF∇ + tr(∇∧ ω) + tr[ω, ω]

- tr[ω, ω] = 0

- tr(∇∧ω)(X,Y ) = tr(∇End(E)
X ω(Y )−∇End(E)

Y ω(X)) = Xtr(ω(Y ))−Y tr(ω(X)) = (dtrω)(X,Y )

– Cartan formula

Definition 3.32. The vector space

Hn
dR(B) :=

ker(d : Ωn(B)→ Ωn+1(B))

im(d : Ωn−1(B)→ Ωn(B))

is called the nth de Rham cohomology of B.

Corollary 3.33. The class c1(E) := [trF∇] ∈ H2
dR(B) is independent of the choice of the

connection.

Definition 3.34. c1(E) is called the first Chern class of E.

if E is trivial

- E admits trivial connection ∇triv with zero curvature

- conclude c1(E) = 0

vice versa:

- if c1(E) 6= 0, then E is not trivial.

Note: we will see later that c1(E) = 0 always

3.1.5 Metrics and connections

E → B - vector bundle

- h ∈ Γ(B,S2(E∗))

– b ∈ B

— h(b) ∈ S2(E∗b ) - symmetric bilinear form

Definition 3.35. h is called a metric on E if h(b) > 0 for every b in B.

Definition 3.36. The pair (E, h) is called an euclidean vector bundle.
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Example 3.37. ψ : E ∼= B × V - trivialization

- choose metric hV on V

- get metric on E such that ψ is fibrewise isometry

2

E → B vector bundle

Lemma 3.38. There exists a metric on E.

Proof. cover B by local trivializations (Uα, ψα)

- (χα) - partition of unity

- get local metrics hα

- define for b ∈ B and e, e′ ∈ Eb:

h(e, e′) :=
∑
α

χα(b)hα(b)(e, e′)

- h is a metric on E

Lemma 3.39. Every subbundle F ⊂ E has a complement.

Proof. choose metric on E

- P ∈ Γ(B,End(E))

- P (b) - orthogonal projection onto F

- F⊥ := ker(1− P )

have deomposition E ∼= F ⊕ F⊥

note: h = hF ⊕ hF⊥

E → B vector bundle
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- hV - metric on V

- h metric on E

– a frame φ : V → E is orthogonal if it is an isometry

– get subbundle O(E, h) ⊆ Fr(E) of orthogonal frames

– is a O(V, hV ) - principal bundle

- have isomorphism O(E, h)×O(V,hV ) V
∼= E

– metric provides reduction of structure group to O(V, hV )

vice versa: assume E ∼= P ×O(V,hV ) V

- get metric h such that h([p, v], [p, v′]) = hV (v, v′)

∇ - connection

Definition 3.40. h is compatible with ∇ if ∇S2(E∗)h = 0.

also say: ∇ is a metric connection

note: ∇S
2(E∗)

X h(s, t) = X(h(s, t))− h(∇Xs, t)− h(s,∇Xt)

- hence compatibility is equivalent to relation

- dh(s, t) = h(∇s, t) + h(s,∇t)

Example 3.41. E ∼= B × V

h induced from hV

- ∇triv is compatible with h 2

Example 3.42. E → B vector bundle

- ∇ connection

- h metric, compatible with ∇

P ∈ Γ(B,End(E)) - family of projections

- F = im(P )

– have restricted metric hF
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- if P ∗ = P , then P∇ is compatible with hF

dhF (s, t) = h(∇s, t) + h(s,∇t) = h(∇s, P t) + h(Ps,∇t) = h(P∇s, t) + h(s, P∇t) =

hF (∇F s, t) + h(s,∇F t)

2

(E, h) euclidean vector bundle

γ : [0, 1]→ B - a curve

- ‖γ : Eγ(0) → Eγ(1)

Lemma 3.43. If ∇ and h are compatible, then ‖γ is isometric.

Proof. s, t - parallel sections along γ

- e = s(0), e′ = s′(0)

∂th(s, s′) = h(∇γ′(t)s, s′) + h(s,∇γ′(t)s′) = 0

- h(e, e′) = h(s, s′)(0) = h(s, s′)(1) = h(‖γ(e), ‖γ(e′))

(E, h) euclidean vector bundle

- ∇ - connection

– define new connection characterized by

h(∇∗Xs, t) = X(h(s, t))− h(s,∇Xt)

- t 7→ X(h(s, t))− h(s,∇Xt) is C∞(B)-linear

– hence there is a unique section ∇∗Xs ∈ Γ(B,E) satisfying condition

– check that (X, s) 7→ ∇∗Xs is a connection

Definition 3.44. ∇∗ is called the adjoint connection.

∇ and h are compatible if and only if ∇ = ∇∗

(∇∗)∗ = ∇

- interpret h as isomorphism h : E → E∗
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– then ∇∗ = h−1∇E∗h

define ω := ∇∗ −∇

Definition 3.45. The connection ∇u := ∇+ 1
2ω is called the orthogonalization of ∇

- ∇u is compatible with h

Corollary 3.46. Every euclidean vector bundle admits a metric connection.

∇,∇+ ω are both compatible if and only ω(X) = −ω(X)∗ for all X

Lemma 3.47. If ∇ is compatible, then F∇(X,Y ) = −F∇(X,Y )∗

Proof. Exercise

Corollary 3.48. For any vector bundle E → B we have c1(E) = 0.

Proof. E has metric

- can choose metric connection

- F∇(X,Y ) is antisymmetric

- trF∇
u
(X,Y ) = 0

- cohomology class c1(E) contains 0

Remark 3.49. to get non-trivial cohomology classes consider

s(∇)n := tr(F∇ ∧ . . . F∇︸ ︷︷ ︸
2n

) ∈ Ω4n(B)

- then dsn(∇) = 0

- sn(E) := [sn(∇)] ∈ H4n
dR(B) does not depend on ∇

these classes may indeed be non-trivial 2
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3.2 Connection of fibre bundles

3.2.1 Horizontal bundles for submersions

π : M → B smooth map

Definition 3.50. π is called:

1. a submersion if Tπ(m) : TmM → Tπ(m)B is surjective for every m in M .

2. an immersion if Tπ(m) : TmM → Tπ(m)B is injective for every m in M .

Example 3.51. π : M → B - a locally trivial fibre bundle

- then π is a submersion 2

consider submersion π : M → B

- Dπ : TM → π∗TB surjective

- dim(ker(Dπ)) has locally constant rank

- T vπ := kerDπ →M is a vector bundle bundle

Definition 3.52. The subbundle T vπ of TM is called the vertical subbundle of π.

Definition 3.53. A horizontal bundle for π is a subbundle T hM of TM such Dπ|ThM :

T hM → π∗TB is an isomorphism.

observe: assume that T hM is horizontal bundle

T vπ ⊕ T hM → TM is bundle isomorphism

- injective: T vπ ∩ T hM = 0 (since otherwise Dπ|ThM not injective)

- surjective: both bundles have the same dimension

Lemma 3.54. Horizontal bundles for π : M → B exist.

Proof. choose metric on TM

- get notion of orthogonal complement

- take T hM := T vπ⊥
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Example 3.55. π : E → B vector bundle

- have canonial isomorphism i : π∗E ∼= T vπ

– fix base point e ∈ Eb

– fibre of (π∗E)e is canonically isomorphic to Eb

– for f ∈ (π∗E)e consider curve t 7→ e+ tf in E

– tangent vector i(e)(f) at t = 0 is element of TE

– π(e+ tf) = b for all t implies Tπ(e)(i(e)(f)) = 0

— hence i(e)(f) ∈ T vπ

check in chart: i is a bundle isomorphism

∇ - connection on E

- will see that it determines a horizontal subbundle T h,∇E

– e ∈ Eb

– describe T h,∇e E

– we can find a section s with s(b) = e and ∇s(b) = 0

— only in the single point b, in general not on a larger subset

— in local trivialization:

—-∇ = ∇triv + ω

—- ∇Xs(b) = 0 means X(s)(b) + ω(b)(X)e = 0

—- s(b+X) = s(b)− ω(b)(X)e+O(X2)

—- Ts(b)(X) = −ω(b)(X) (does not depend on choice of s)

—- define T h,∇e E = Ts(b)(TbB)

—- π ◦ s = id implies Dπ(e)|Th,∇e E
is isomorphism

note: can recover ∇ from T h,∇M

2

π : M → B submersion

- T hM given
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- can define horizontal lift of vectors and vector fields.

b in B

- m ∈Mb

- X ∈ TbB

Definition 3.56. Xh ∈ TmM is called the horizontal lift of X if Tπ(m)(Xh) = X and

Xh ∈ T hmM .

- Xh is uniquely determined by X

- Xh = (Tπ|ThmM )−1(X)

consider now vector fields

- X ∈ X (B)

- define Xh ∈ X (M) such that Xh(m) is the horizontal lift of X(π(m))

Definition 3.57. Xh is called the horizontal lift of X.

- get map X (B)→ X (M), X 7→ Xh horizontal lift

- ist C∞(B) -linear: (fX)h = π∗(f)Xh

consider curve γ : I → B

Definition 3.58. A horizontal lift of γ is a curve γ̃ : I →M with

1. π ◦ γ̃ = γ

2. γ′(t) is horizontal for every t ∈ I

consider deviation from being a Lie algebra homomorphism

Lemma 3.59. The map X (B)×X (B)→ Γ(M,T vπ)

X (B)×X (B) 3 (X,Y ) 7→ T (X,Y ) = [Xh, Y h]− [X,Y ]h

takes values in Γ(M,T vπ) and is C∞(B)-linear.
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Proof. C∞(B) -linearity

T (fX, Y ) = [(fX)h, Y h]− [fX, Y ]h

= [π∗(f)Xh, Y h]− [fX, Y ]h

= π∗(f)[Xh, Y h]− f [X,Y ]h − Y h(π∗(f))Xh + π∗(Y (f))Xh

= π∗(f)T (X,Y )

used: Y h(π∗(f))(m) = Tπ(m)(Y h(m))(f) = Y (π(m))(f) = π∗(Y (f))(m)

- hence Y h(π∗(f)) = π∗(Y (f))

verticality:

must show that Dπ(m)(T (X,Y ))(m) = 0 for all m

- suffices to show that T (X,Y )(π∗(f)) = 0 for all f ∈ C∞(B)

T (X,Y )(π∗(f)) = [Xh, Y h](π∗(f))− [X,Y ]h(π∗(f))

= Xh(Y h(π∗(f))− Y h(Xh(π∗(f)))− π∗([X,Y ](f))

= Xh(π∗(Y (f)))− Y h(π∗(X(f)))− π∗([X,Y ](f))

= π∗(X(Y (f)))− π∗(Y (X(f)))− π∗([X,Y ](f))

= 0

Definition 3.60. T is called the curvature of T hπ

thus T ∈ Γ(M,Λ2T hM ⊗ T vπ)

Example 3.61. Example: M = B × F

- T hM = pr∗TB ⊆ TB � TF ∼= M

- T = 0 2

m ∈Mb, X,Y ∈ TbB

- then T (m)(X,Y ) ∈ T vm(X,Y ) is defined
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Definition 3.62. T is called the curvature of the horizontal subbundle T hM .

Example 3.63. π : E → B vector bundle

- ∇ - connection

- T h,∇M - associated horizontal subbundle

Lemma 3.64. For e ∈ Eb and X,Y ∈ TbB we have T (X,Y )(e) = −i(e)(F∇(b)(X,Y )(e))

Proof. - have explicit formula for horizontal lift in coordinates:

- notation for coordinates:

- for E: (b, v),

– b ∈ Rn base coordinate ,

– v ∈ V - fibre coordinate

- for TE: (b, v, β, ξ),

– b, β ∈ Rn,

– v, ξ ∈ V

π(b, v) := b

- Tπ(b, v)(β, ξ) = (b, β)

- (b, β) ∈ TnB

- vertical vectors: (b, v, 0, ξ) ∈ T v(b,v)E

– ∇ = ∇triv + ω

- horizontal lift of (b, β) at (b, v): (b, β)h = (b, v, β,−ω(b)(β)(v))

- for coordinate field: b 7→ (b, β) (consider β as constant function in b)

– horizontal lift: (b, v) 7→ (b, v, β,−ω(b)(β)(v))
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rite in the target [b, v, 0, ...]

T (b, v)((b, β), (b, β′)) = [(b, v) 7→ (b, v, β,−ω(b)(β)(v)), (b, v) 7→ (b, v, β′,−ω(b)(β′)(v))]

= −β(ω(−)(β′)(v)) + β′(ω(−)(β)(v)) +

ω(b)(β′)(ω(b)(β)(v))− ω(b)(β)(ω(b)(β′)(v))

= (∇∧ ω)(b)(β′, β)(v) + [ω(b)(β′), ω(b)(β)](v)

= −F∇(b)((b, β), (b, β′))(v)

2

consider pull-back situation

M ′
k //

π′

��

M

π
��

B′
h // B

connection T hπ induces connection T hπ′ by pull-back

dk : TM ′ → k∗TM ∼= T vM ⊕ T hM

- restricts to isomorphism dk|T vπ′ : T vπ′ → T vπ

- T hM ′ characterized by: T hm′M
′ = (Dk(m′))−1(T hk(m′)M

′)

- then dk = dk|T vπ′ ⊕ dkTh
m′M

′ : T vπ′ ⊕ T hM ′ → T vπ ⊕ T hM

- write T hM ′ = h∗T hM

obervation:

Corollary 3.65. If γ′ is horizontal curve in M ′, then k ◦ γ′ is horizontal in M

Definition 3.66. A morphism π : M → B between manifold (topological spaces) is called

proper if for every compact K ⊆ B the preimage π−1(K) is compact.

Example 3.67. π : M → B a fibre bundle with compact fibre F

- then π is proper
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π : (0,∞)→ R is not proper

- π−1([−1, 1]) = (0, 1] is not compact

If M is compact, then every map out of M is proper.

2

π : M → B submersion

- T hM - horizontal bundle

- γ : I → B - curve

- t0 ∈ I

Proposition 3.68. If π is proper, then for every m0 ∈ Mγ(t0) there exists a unique hori-

zontal lift γ̃ of γ with γ̃(t0) = m0.

Proof. assume B = I ⊆ R - interval

- ∂t ∈ X (I)

- ∂ht ∈ X (M)

- γ̃ must be integral curve of ∂ht

– therefore uniqueness

existence

claim: the integral curve γh of ∂ht with γh(t0) = m0 exists on I

by contradiction

- J ⊆ I max. existence interval of γh

- π ◦ γh(t) = t

- assume sup(J) = t < sup(I)

- from ODE theory: γh(s) does not have accumulation point for s ↑ t

- chose ε > 0 such that [t− ε, t] ⊆ I

- note that for s ≥ t− ε we have γh(s) ∈ π−1([t− ε, t])
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– π−1([t− ε, t]) is compact

– hence such accumulation point exists

— contradiction

general base

- pull-back along γ : I → B

M ′
k //

π′

��

M

π
��

I
γ
// B

- find horizontal lift γ̃′ : I →M ′

- then γ̃ = k ◦ γ̃′

Example 3.69. properness is necessary:

here is a counterexample

– (0,∞)→ R

– t0 = 1

— γh(t) := t exists only on (0,∞) (and not on R) 2

consider parallel transport

π : M → B - submersion

T hM given

- γ : [0, 1]→ B - a curve

- pull-back

γ∗M
k //

��

M

π
��

I
γ
// B
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- get induced γ∗T hM

- m0 ∈Mγ(0)

assume that π is proper (or γh exists for other reasons)

- can define horizontal lift of γ with start in m0

- take k ◦ γh

– denote now also as γh

– define ‖γ(m0) := γh(1)

Definition 3.70. The map ‖γ : Mγ(0) →Mγ(1) is called the parallel transport along γ with

respect to T hM .

here is a list of (essentially obvious) properties

- ‖γ : Mγ(0) →Mγ(1) is diffeomorphism

- is reparametrization invariant

- ‖γ′]γ = ‖γ′ ◦ ‖γ

- ‖γ−1
= ‖γ,−1

- if T = 0, then ‖γ is deformation invariant in γ

Lemma 3.71. A proper submersion M → I is a trivial bundle.

Proof. use parallel transport

fix t0 ∈ I

for t ∈ i define γt(u) := (1− u)t0 + ut

- curver from t to t0

define

Ψ : M × I ×Mt0

- Ψ(m) := ‖γπ(m)(m)

Lemma 3.72 (Ehresmann Theorem). A proper submersion is a locally trivial fibre bundle.

84



Proof. - choose connection

- b in B

- choose chart at B with range a starlike domain in Rn

- use radial parallel transport to trivialize

- M → B ×Mb

- M 3 m 7→ (π(m), ‖γπ(m),−1(m)) ∈ B ×Mb

– here γx is curve t 7→ tx from 0 to x

3.2.2 Connections on principal bundle

G - Lie group

π : P → B - a G-principal bundle

- have right G-action g 7→ Rg

- can ask that horizontal bundles are G-invariant.

Definition 3.73. A principal bundle connection on π : P → B is a G-invariant horizontal

bundle.

g - Lie algebra of G

- X ∈ g - X] ∈ X (P ) fundamental vector field of action

– X](p) = (∂t)|t=0Rexp(tX)
(p)

- in trivialization P = B ×G

- interpret X in GX (G)

– have X](b, g) = 0⊕X(g) ∈ TbB ⊕ TgG ∼= T(b,g)(B ×G)

– the values of X](p) for all X ∈ g generates T vπ

- G acts on itself by conjugation: (g, h) 7→ αg(h) := g−1hg

- action fixes e

- G acts on TeG = g by Lie algebra homomorphism Ad(g) := Tαg(e) ∈ End(g)
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- by definition: (∂t)|t=0g
−1 exp(tX)g = Ad(g−1)(X)

TRg(p)(X
](p)) = TRg(∂t)|t=0Rexp(tX)(p)

= (∂t)|t=0RgRexp(tX)(p)

= (∂t)|t=0Rg−1 exp(tX)g(pg)

= (Ad(g−1(X))](pg)

write g instead of P × g

define form ω : Ω1(M, g) by the following conditions:

- T hP = ker(ω)

- ω(p)(X](p)) = X for all X ∈ g

– this determines ω(p) since TpP ∼= T hp P ⊕ T vp π and X 7→ X](p), g→ T vp π is isomorphism

- G-invariance of T hP implies G-invariance of ω

Lemma 3.74. For every g in G we have R∗gω = Ad(g)ω

Proof. Ad(g) ∈ End(g) is applied to the values

for horizontal vectors: H ∈ T hp P

(R∗gω)(p)(H) = ω(pg)(TRg(X)) = 0 since TRg(X) ∈ T hpgP by invariance of T hP

for vertical vectors:

(R∗gω)(p)(X](p)) = ω(pg)(TRg(p)X
](p))

= ω(pg)((Ad(g−1)(X))](pg)) = Ad(g−1)(X)

= Ad(g−1)(ω(p)(X](p)))

Definition 3.75. A form ω ∈ Ω1(P, g) with
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1. ω(p)(X](p)) = X for all X ∈ g and p ∈ P

2. R∗gω = Ad(g−1)ω for all g in G

is called a connection 1-form.

Connection one-form provide an alternative description of principal bundle connections

- T hP determines ω

- ω determines T hP by T hP = ker(ω)

Maurer-Cartan form

θ ∈ Ω1(G, g)

- is the unique principal bundle connection 1-form on G→ ∗

- θ is determined by: for X left invariant: θ(X) = X(e)

- θ(g) = dLg−1(g)

- write often as g−1dg

leads to

d(g−1dg) = −g−1dg ∧ g−1dg = [g−1dg, g−1dg]

structure equation:

dθ = [θ, θ]

P → B - G - principal bundle

p ∈ P induces map ip : G→ P , ip(g) := pg

Corollary 3.76. ω ∈ Ω1(P, g) is a connection 1-form if and only if i∗pω = θ for every p in

P .

we say that ω is fibrewise Mauerer-Cartan

P - G-principal bundle

write Ad(P ) := P ×G g for associated vector bundle
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Lemma 3.77. Principal bundle connections exists and from an affine space over Ω1(B,Ad(P ))

Proof. P = B ×G trivial

- pr∗Gθ is connection 1-form

π : P → B general

- choose local trivializations (Uα,Ψα)

- get principal bundle connections ωα ∈ Ω1(π−1(Uα), g)

– pull-back of Maurer-Cartan form

- choose partition of unity (χα)

- ω(p) :=
∑

α χ(π(p))ωα(p)

– check that it is fibrewise Maurer-Cartan

ω, ω′ - two connection 1-forms

- δ := ω′ − ω ∈ Ω1(P, g)

- δ|T vπ = 0

- define δ̄(b) ∈ T ∗b B ⊗Ad(P )

- δ̄(b)(X) = [p, δ(p)(X̃)] for any p ∈ P and lift X̃ in TpP

– indepence of lifts: two lift differ by vertical vectors

– independence of p:

– [pg, δ(pg)(TRg(X̃))] = [pg,Ad(g−1)(δ(p)(X))] = [p, δ(p)(X)]

- get δ̄ ∈ Ω1(B,Ad(P ))

– vice versa: δ̄ given

if ω is connection 1-form and δ̄ ∈ Ω1(B,Ad(P ))

- define δ(p)(X̃) := Z ∈ g such that [p, Z] = δ̄(π(p))(Tπ(X))

check: ω′ := ω + δ is connection 1-form
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note: if G is not compact then π : P → B is not proper

- so the general result about existence horizontal lifts of curves do not apply

- but such lifts exist

Lemma 3.78. Horizontal lifts of curves with respect to a principal bundle connection exist.

Proof. π : P → I - G-principal bundle

- T hP - principal bundle connection

- γ : J → I max. horizontal lift

- assume sup(J) = t1 < sup(I)

choose any point p ∈ Pt

- there is horizontal curve σ : (t− ε, t+ ε)→ P with σ(t) = p

- for any g in G: σg is also horizontal

- there is g in G such that γ(t− ε/2) = σ(t− ε/2)g

- can prolong γ up to t+ ε with s 7→ σ(s)g

– contradiction to maximality of J

consider curvature

T ∈ Γ(P,Λ2π∗T ∗B ⊗ T vP )

- want to express this in terms of ω

set

Ω := dω + [ω, ω] ∈ Ω2(P, g)

- Ω(X,Y ) = X(ω(Y ))− Y (ω(X)) + ω([X,Y ])− [ω(X), ω(Y )]

Lemma 3.79. 1. R∗gΩ = Ad(g−1)Ω

2. If X is vertical, then Ω(X,Y ) = 0

3. ω(p)(T (p)(X,Y )) = −Ω(p)(Xh, Y h) for X,Y ∈ Tπ(p)B
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Proof. use

- Ad(g) is Lie algebra auto of g

- R∗gd = dR∗g

R∗gΩ = R∗g(dω + [ω, ω])

= dR∗gω + [R∗gω,R
∗
gω])

= dAd(g−1)ω + [Ad(g−1)ω,Ad(g−1)ω])

= Ad(g−1)dω + Ad(g−1)[ω, ω]

= Ad(g−1)Ω

X in g

ω(X]) = X - constant function with value X

- X](f) = (∂t)|t=0R
∗
exp(tX)f

- [X], Y ] = (∂t)|t=0DR
−1
exp(tX)(R

∗
exp(tX)(Y ))

- R∗g(ω(Y )) = R∗g(ω)(DR−1g (R∗g(Y )))

- (∂t)|t=0Ad(exp(tX)(Y ′)) = −[X,X ′]

Ω(X], Y ) = X](ω(Y ))− Y (ω(X]))− ω([X], Y ]) + [ω(X]), ω(Y )]

= X](ω(Y ))− Y (X) + ω([X], Y ]) + [X,ω(Y )]

= (∂t)|t=0R
∗
exp(tX)(ω(Y ))− ω((∂t)|t=0DR

−1
exp(tX)(R

∗
exp(tX)(Y ))) + [X,ω(Y )]

= (∂t)|t=0Ad(exp(tX))ω(Y ) + ω((∂t)|t=0DR
−1
exp(tX)(R

∗
exp(tX)(Y )))

−ω((∂t)|t=0DR
−1
exp(tX)(R

∗
exp(tX)(Y ))) + [X,ω(Y )]

= −[X,ω(Y )] + [X,ω(Y )]

= 0

use that ω vanishes on horizontal vectors:

- Ω(Xh, Y h) = dω(Xh, Y h) = −ω([X̃, Ỹ ])

- ω(T (X,Y )) = ω([Xh, Y h])
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ρ : G→ GL(V ) any representation

- write also ρ : g→ End(V ) for derivative at e (Lie algebra homomorphism)

-P (V ) := P ×G V associated bundle

- define Ωn(P, V )h,G (horizontal and G-invariant sections) as the subspace of Ωn(P, V ) of

sections with:

1. α(X1, . . . , Xn) = 0 if X1 is vertical

2. R∗gα = ρ(g−1)α

Lemma 3.80. We have a bijection between

Ωn(P, V )h,G
∼=→ Ωn(B,P (V )) , ω 7→ ω̄

such that

ᾱ(b)(X1, . . . , Xn) = [p, α(p)(X̃1, . . . , X̃n)]

for any p ∈ Pb and lifts X̃i of Xi

Proof. well defined:

- independent of choice of lifts:

– two lifts differ by vertical vector

– α vanishes on vertical vectors

- independent on p

– p′ = pG

– can take lifts Rg,∗X̃i

– α(pg)(Rg,∗X̃1, . . . , Rg,∗X̃n) = ρ(g−1)α(p)(X̃1, . . . , X̃n)

– [pg, ρ(g−1)v] = [p, v]

inverse map:
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α(p)(X̃1, . . . , X̃n) = Z where

- ᾱ(X1, . . . , Xn) = [p, Z]

- Xi = Tπ∗(X̃i)

Rω ∈ Ω2(B,Ad(P )) correspond to Ω.

Definition 3.81. Rω ∈ Ω2(B,Ad(P )) is called the curvature of the principal bundle con-

nection ω

note: Rω+δ = Rω +∇∧ δ + [δ, δ]

3.2.3 Associated vector bundles

ρ : G→ End(V ) representation

- ρ(P ) := P ×G V - associated vector bundle

- apply ρ to the cocycle for P

identify section spaces Γ(B, ρ(P )) ∼= Ω0(B, ρ(P )) ∼= C∞(P, V )G

- s 7→ s̃

– recall s̃ : P → V , R∗Gs̃ = ρ(g−1)s̃

– get s back: s(b) = [p, s̃(p)]

T hP - principal bundle connection

- define linear connection such that for X in X (B)

∇̃Xs = Xh(s̃)

checks

1. Xh(s̃) corresponds to section:

– use that Xh is invariant

– Xh commutes with R∗g
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- R∗g(X
h(s̃)) = Xh(R∗g s̃) = Xh(ρ(g−1)(s̃)) = ρ(g−1)(Xh(s̃))

2. (X, s) 7→ ∇Xs is C∞(B)-linear in X: clear

3. (X, s) 7→ ∇Xs satisfies Leibnitz rule: exercise

relation between curvatures:

have bundle morphism Ad(P )→ End(ρ(P ))

- P (ρ) : [p,X] 7→ [p, ρ(X)]

– well defined: [pg,Ad(g−1)(X)] 7→ [pg, dρ(Ad(g−1)(X))] = [pg, ρ(g−1)ρ(X)ρ(g−1)] =

[p, ρ(X)]

– extends to P (ρ) : Ω2(B,Ad(P ))→ Ω2(B,End(ρ(P ))

Lemma 3.82. We have the relation F∇ = P (ρ)(Rω)

Proof. Exercise!

γ : [0, 1]→ B - curve in B

- γ̃ horizontal lift an P

- t→ [γ̃(t), v] is parallel section of ρ(P ) along γ

- the parallel transport ‖γ : ρ(P )γ(0) → ρ(P )γ(1) is given by

- [γ̃(0), v] 7→ [γ̃(1), v]

from vector bundle connection to principal bundle connection on frame bundle

- ∇ linear connection on E → B given

- p in Fr(E), π(p) = b

- can choose local section f : B → P such that

- f(b) = p

- the section b′ 7→ f(b)(v) ∈ E is parallel in b

- define T hp P := Tf(TbB)

- check: this determines a principal bundle connection
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- under id(Fr(E)) ∼= E get back ∇ as associated linear connection

3.2.4 Quotients

M - manifold

G - Lie group

- G acts from the right on M

Definition 3.83. G acts freely if mg = m for some m in M implies that g = e.

Definition 3.84. G acts properly if M ×G→M ×M , (m, g) 7→ (m,mg) is proper.

- properness is a topological propery

G acts on topological space M

in the following: G is a group acting from the right on a topological space

Lemma 3.85. The quotient map π : M →M/G is open.

Proof. the quotient is characterized by universal property

- it follows that topology of M/G is generated by the subsets U with π−1(U) open

- this is the maximal topology such that π continuous

consider W ⊆M open

- want to show that π(W ) is open

– enough to show that π−1(π(W )) is open

– but π−1(π(W )) =
⋃
g∈GWg is open

— this last step uses that we consider quotient by group action and not an arbitrary

quotients by some equivalence relation

Lemma 3.86. If M is Hausdorff and G acts properly, then M/G is Hausdorff.

Proof. by contradiction:

consider m̄, m̄′ in M̄

94



assume: they are not separated by open sets

- consider preimages m,m′

- for every V, V ′ separating m,m′ in M

- V G ∩ V ′G 6= ∅

– equiv: V ∩ V ′G 6= ∅

- consider decreasing families for such neighborhoods: (Vi), (V ′i )

– get for every i:

– mi ∈ Vi, m′i ∈ V ′i , gi ∈ G with m′igi = mi

- conclude:

– mi → m

– m′i → m′

- conclude: (m′i,m
′
igi)→ (m′,m)

– by properness of M ×G→M ×M : (m′i, gi) has accumulation point (m′, g)

– by continuity: gm′ = m

– this implies: m̄′ = m̄ - a contradiction

Proposition 3.87. If G acts freely and properly, then the set M/G has a manifold structure

such that π : M →M/G is smooth and a G-principal bundle.

Proof. set B := G/M as topological quotient

- clarify general topological properties:

– π : M → B is open

– by properness of action: B is Hausdorff

– B is second countable

— (Ui)i - countable base of topology of M
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— (π(UiG))i is a countable base of topology of B

– B is paracompact

— we will show that B is locally euclidean:

— in particular it is locally compact

— a locally compact second countable Hausdorff space is paracompact

construct vertical bundle:

- X ∈ g

– for every m in M :

- g 3 X 7→ X](m) is injective

– here is the argument:

— if X](m) = 0, then (by uniqueness of integral curves) m exp(tX) = m for all t

— by freeness of action: exp(tX) = e for all t

— apply (∂t)|t=0: X = 0

- define T vπ ⊆ TM to be generated by the values of fundamental vector fields

– has constant rank dim(g)

– is a subbundle

- b ∈ B

– construct chart of B at b

— choose m ∈Mb

— choose vector fields Y1, . . . , Yr near m complementary to T vπ at m

– there exists nbhd 0 ∈ U ⊆ Rr such that

– H(t1, . . . , tr) := ΦYr
tr ◦ · · · ◦ ΦY1

t1
(m) is defined for (t1, . . . , tr) ∈ U

consider G-equivariant map F : U ×G→M given by (t, g) 7→ H(t)g

claim: TF (0, e) is isomorphism:
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- TF (0, e)(∂i) = Yi(m)

- TF (0, e)(X) = X](m)

- one can choose U and e ∈ V ⊆ G such that F : U × V →M is diffeomorphism

- claim: can make U smaller such that F : U ×G→M is diffeomorphism into image

– differential DF is isomorphism (by G-invariance calculation at m implies same at mg)

– enough to show first: this map is injective

– otherwise: find sequences (xi), (x′i) in U and (gi), (g′i) in G such that

— (xi, gi) 6= (x′i, g
′
i) for all i

— F (xi, gi) = F (x′i, g
′
i)

— xi → 0 , xi → 0.

— set hi := g−1i g′i

— then by equivariance: F (xi, e) = F (x′i, hi)

— H(x′i)hi = H(xi)→ m converges

— by properness hi → h (after going to subsequence)

— get mh = m

— by freeness: h = e

— but then (xi, e) and (x′i, hi) belong to U × V for large i

— conclude xi = x′i, h = e

— (xi, gi) = (x′i, g
′
i) for large i - contradiction

define chart φ of B near b = [m] by:

φ([m′]) = pr1(F
−1(m′))

- is independent of choice of representative of [m]

- is continuous: φ−1(W ) = pr1(π
−1(W )) is open since π is continuous and pr1 is open.

- its inverse is t 7→ π ◦H(t) is also continuous
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transition functions

define φ′ similarly using F ′

- φ′(φ−1(t)) = pr1(F
′−1(H(t))) is smooth

Example 3.88. G- Lie group

P → B - G- principal bundle

- B ∼= P/G

- ρ : G→ GL(V ) - representation

- G acts on P × V by (p, v)g 7→ (pg, ρ(g−1)v)

- P × V → (P × V )/G = P ×G,ρ V is G-principal bundle

2

Corollary 3.89. If G is compact and acts freely on M , then we have a G-principal bundle

M →M/G.

Corollary 3.90. If G is a closed subgroup of a Lie group H, then we have a G-principal

bundle H → H/G.

here we use ”Cartan’s Theorem”: A closed subgroup of a Lie group is a submanifold.

Example 3.91. many interesting manifolds arrise as quotients in this way

1. GL(V )/O(V, hV ) - manifold of scalar products on V

2. SO(n+ 1)/SO(n) ∼= Sn - oriented lines in Rn+1

3. U(n+ 1)/U(n)× U(1) ∼= CPn - lines in Cn+1

4. O(n+m)/O(n)×O(m) = Gr(n,m) - n-planes in Rn+m

5. U(n)/U(1)× · · · × U(1)︸ ︷︷ ︸
n×

- manifold of decompositions Cn = L1 ⊕ · · · ⊕ Ln into lines

2
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4 Riemannian geometry

4.1 Connections on the tangent bundle

M manifold

- consider connections ∇ on TM

- have torsion tensor

– T∇ ∈ Ω2(M,TM): T (X,Y ) = ∇XY −∇YX − [X,Y ]

- we say that ∇ is torsion-free if T∇ = 0

- for ω ∈ Ω1(M,End(TM))

– T∇+ω(X,Y ) = T∇(X,Y ) + ω(X)(Y )− ω(Y )(X)

Example 4.1. ∇ - any connection on TM

- ∇′ := ∇− 1
2T
∇ is torsionfree:

- interpret: T∇ ∈ Ω1(M,End(TM))

– T∇(X)(Y ) := T∇(X,Y )

– ∇′XY := ∇XY − 1
2T
∇(X,Y ) 2

Definition 4.2. A Riemannian metric on M is a metric g on TM . A Riemannian man-

ifold is a pair (M, g)

Proposition 4.3 (Levi-Civita connection). On a Riemannian manifold there exists a

unique connection which is compatible with the metric and torsion free.

Proof. uniqueness: ∇,∇′ two such connections

- ∇′ = ∇+ ω

- torsionfreeness of both: ω(X)Y − ω(Y )X = 0

- compatibility with metric: g(ω(X)Y, Z) = −g(Y, ω(X)Z)

– will show: these two conditions imply that ω = 0
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— calculate for arbitrary X,Y, Z:

g(ω(X)Y,Z) = g(ω(Y )X,Z)

= −g(X,ω(Y )Z)

= −g(X,ω(Z)Y )

= g(ω(Z)X,Y )

= g(ω(X)Z, Y )

= −g(Z, ω(X)Y )

= −g(ω(X)Y,Z)

— hence g(ω(X)Y,Z) = 0 for all X,Y, Z

– this shows that ω = 0

existence:

want to define ∇XY by :

2g(∇XY,Z) := Xg(Y, Z) + Y g(X,Z)− Zg(X,Y )

−g([X,Z], Y )− g([Y, Z], X) + g([X,Y ], Z)

here X,Y, Z ∈ X (M)

- claim: ∇XY ∈ X (M)

- must check C∞(M)-linearity of r.h.s. in Z:

– insert fZ:

— terms which derive f : X(f)g(Y,Z) + Y (f)g(X,Y )−X(f)g(Z, Y )− Y (f)g(X,Z) = 0

– must check C∞(M)-linearity of r.h.s. in X:

— insert fX:

— terms which derive f : Y (f)g(X,Z)− Z(f)g(X,Y ) + Z(f)g(X,Y )− Y (f)g(X,Z) = 0
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– must check Leibnitzrule of r.h.s. in Y :

— insert fY :

— terms which derive f : X(f)g(Y, Z) − Z(f)g(X,Y ) + Z(f)g(X,Y ) + X(f)g(Y,Z) =

2X(f)g(Y, Z)

— this the expected term

have now well-defined connection ∇

compatible with metric:

- use vector fields with vanishing commutator

- 2g(∇XY,Z) + 2g(∇XZ, Y ) = 2Xg(Y,Z) ok

torsion free :

- use vector fields with vanishing commutator

2g(∇XY, Z)− 2g(∇YX,Z) = 0 ok

Definition 4.4. The connection described in Prop. 4.3 is called the Levi-Civita connection.

Example 4.5. (M, g) Riemannian

- ∇M - Levi-Civita connection

- i : N ⊆M submanifold

- gN := Di∗g is Riemannian metric

- P : i∗TM → TN orthogonal projection

Lemma 4.6. P∇M is Levi-Civita connection on N .

Proof. P is orthogonal

- P∇M is compatible with metric

– locally near N have product structure: Rn×Rm−n such that N corresponds to Rn×{0}

– X,Y ∈ X (N)
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– can extend to X̃, Ỹ in M (constant in Rm−n-direction)

– then [X̃, Ỹ ] has values in TN

TP∇
M

(X,Y ) = P∇X̃ Ỹ − P∇Ỹ X̃ − [X,Y ]

= P (∇X̃ Ỹ − P∇Ỹ X̃ − [X̃, Ỹ ]

= PT∇(X̃, Ỹ )

= 0

Example 4.7. (Rm, geu) is Riemannian manifold

- geu. - canonical metric

- ∇triv is Levi-Civita connection

N ⊆ Rm submanifold

- i : N → Rm. - inclusion

- Di : TN → i∗TRm

- i∗geu =: g is induced Riemannian metric

- P∇triv is Levi-Civita connection

– is the tangential component of the derivative

historically important observation:

- a priori: the connection P∇triv depends on the embedding

- Levi-Civita: (1917 for surfaces) P∇triv only depends on induced metric, but not on

embedding

– we already know this

- later generalized by Weyl

2

notation for curvature R := F∇ ∈ Ω2(M,End(TM))

- note R(X,Y ) is antisymmetric since ∇ is compatible with metric
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4.2 The Riemannian distance

(M, g) Riemannian

- γ : [0, 1]→M path

– γ′ : [0, 1]→ TM speed

Definition 4.8. The length of γ is defined by

`(γ) =

∫ 1

0

√
g(γ′(t), γ′(t))dt .

properties of the length:

Lemma 4.9.

1. `(γ) is reparametrization invariant.

2. `(γop) = `(γ)

3. `(γ0]γ1) = `(γ0) + `(γ1)

Proof. Exercise:

assume: M is path-connected

- write γ : m→ m′ for path from m to m′

Definition 4.10. We define d : M ×M → [0,∞) by

d(m,m′) := inf
γ:m→m′

`(γ) .

Lemma 4.11. d is a metric on M which defines the topology.

Proof.

d(m,m) = 0

- use constant path

d(m,m′) = d(m′,m)
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- use `(γop) = `(γ)

d(m,m′) ≤ d(m,m′′) + d(m′′,m′)

- if γ0 : m→ m′′ and γ1 : m′′ → m, then γ1]γ0 : m→ m′′

– `(γ1]γ0) = `(γ0) + `(γ1)

– but we have more path’s from m to m′ to approximate d(m,m′) which do not go over

m′′

consider chart φ : U → Rn, φ(m) = 0

- have Euclidean metric deu on U (induced via φ)

– Claim: There exists a constants c, C > 0 such that cdeu(m,m′) ≤ d(m,m′) ≤ Cdeu(m,m′).

— this implies assertion about topology

— both metrics define the neighborhood filter at m

define ‖X‖2 using geu

- by continuity and local compactness after making U smaller:

– there exists C, c > 0 such that: c2‖X‖2 ≤ g(x)(X,X) ≤ C2‖X‖2 for all X

x ∈ U

assume that Bdeu(0, ‖x‖) ⊆ U

- upper estimate:

- take linear curve γ(t) := tx from 0 to x

d(0, x) ≤
∫ 1
0

√
g(γ′(t), γ′(t))dt ≤

∫ 1
0

√
g(tx)(x, x)dt ≤

∫ 1
0 C‖x‖dt = C‖x‖

lower estimate

- γ : 0→ x in U any curve

– first inequality below:

— straight curves are shortest in euclidean space

— mean value theorem
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– c‖x‖ ≤ c
∫ 1
0 ‖γ

′(t)‖dt ≤
∫ 1
0

√
g(γ′(t), γ′(t))dt = `(γ)

- every curve which leaves U is even longer

– minimize over all γ: c‖x‖ ≤ d(0, x)

this also shows that d(m,m′) = 0 implies m = m′

Question:

- can the distance be realized by a curve?

- how can one characterize such a curve?

4.3 Geodesics

(M, g) - Riemannian

γ : [0, 1]→M

Definition 4.12. The energy of γ is defined by

E(γ) :=

∫ 1

0
g(γ′(t), γ′(t))dt .

no square root

Cauchy-Schwarz: `(γ) ≤
√
E(γ)

- equality if g(γ′(t), γ′(t)) = const

– in this case g(γ′(t), γ′(t)) = `(γ)2

a family of curves with fixed ends is a smooth map γ : I × [0, 1] → M such that γ(u, 0)

and γ(u, 1) are constant

- here I ⊆ R

- write γ(u, t) := γu(t)

Definition 4.13. γ is critical for E if for every family of curves with fixed ends (γu)u∈I

with γ = γ0

(∂u)|u=0E(γu) = 0 .
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∇ - Levi-Civita

Proposition 4.14. γ is critical for E if and only if

∇∂tγ′(t) = 0 .

Proof. write ∂uγ = γ]

use that ∇ is compatible with metric and torsion free

(∂u)|u=0E(γu) =

∫ 1

0
(∂u)|u=0g(γ′u(t), γ′u(t))dt

= 2

∫ 1

0
g(∇∂uγ′u(t), γ′(t))|u=0dt

T∇=0
= 2

∫ 1

0
g(∇∂tγ](t), γ′(t))dt

=

∫ 1

0
∂tg(γ](t), γ′(t))dt−

∫ 1

0
g(γ](t),∇∂tγ′(t))dt

= g(γ], γ′)|10 −
∫ 1

0
g(γ](t),∇∂tγ′(t))dt

= −
∫ 1

0
g(γ](t),∇∂tγ′(t))dt

- can arrange (γu) such that γ] is arbitrary vector field along γ

– in chart γu = γ + uγ]

– globally glue using partition of unity

- conclude ∇∂tγ′(t) = 0 as necessary and sufficient condition

Definition 4.15. A curve γ in M satisfying ∇∂tγ′ = 0 is called a geodesic.

- in ccordinates

– ∇ = ∇triv + ω

– ∇∂t = ∂t + ω(γ(t))(γ′(t))
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– ∇∂tγ′ is equation: ∂tγ
′ + ω(γ(t))(γ′(t))(γ′(t)) = 0

– is second order ODE

– in ccordinates:

— set Γij,k∂i = ω(∂j)(∂k)

– ODE: γ′′,i = −Γij,kγ
jγk

corresponds to vector field S ∈ Γ(TM, T (TM))

- S is called the geodesic spray

– in coordinates

– x of M

– (x, ξ) of TM

– S(x, ξ) = (ξ,−ω(x)(ξ)(ξ))

– solution of geodesic equation uniquely determined by γ′(0) ∈ TM

Lemma 4.16. A geodesic has constant (absolute) speed

Proof.

γ - a geodesic

- ∂tg(γ′, γ′) = 2g(∇∂tγ′, γ′) = 0

- for every X in TM there exists maximal interval [0, a(X)) such that the geodesic with

initial condition X exists

– scale invariance

— if γ : I →M is geodesic, then γ(st) : s−1I →M is also one

— for a < a(X)

— then t→ γ(at) : [0, 1]→M exists with γ′(0) = aX
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Corollary 4.17. There exists a maximal neighbourhood U of the zero section of TM such

that for every X ∈ U there exists a geodesic γX : [0, 1] → M with γX,′(0) = X. This

geodesic is unique

Definition 4.18. The map exp : U →M , X 7→ γX(1) is called the exponential map.

for m in M write expm : (U ∩ TmM)→M for the restriction

Lemma 4.19. expm is diffeomorphism near 0

Proof. - X ∈ TmM

- interpret X in T0(TmM)

– T expm(X) = (∂t)|t=0 expm(tX) = X

- D expm(0) = idTmM

- in particular: is invertible

- expm is called exponential chart/coordinates

- t 7→ expm(tX) is geodesic with γ′(0) = X

Example 4.20. (Rn, geu)

- Levi-Civita connection is ∇triv

- x in Rn

- X in TxRn ∼= Rn

- geodesic with initial condition (x,X) is γ(t) := x+ tX

– indeed: γ′(t) ≡ X

– ∇triv
∂t

(γ′(t)) = 0

Exponential map: exp(x)(X) = x+X 2

Example 4.21. S2 ⊆ R3

- induced metric:
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- claim: big circles are geodesics

consider w.l.o.g. S2 ∩ {z = 0} parametrized as γ(t) = (cos(t), sin(t), 0)

- γ′(t) = (− sin(t), cos(t), 0)

- ∇∂tγ′(t) = P∇triv,R3

∂t
γ′(t) = P (− cos(t),− sin(t), 0) = 0

– vector points perpendicular to sphere

consider circle of latitude

- σ(t) := (
√

1− h2 cos(t),
√

1− h2 sin(t), h)

- σ′(t) = (−
√

1− h2 sin(t),
√

1− h2 cos(t), 0)

- ∇triv
∂t
σ′(t) = (−

√
1− h2 cos(t),−

√
1− h2 sin(t), 0)

- P∇triv
∂t
σ′(t) 6= 0 (h-component is missing) -

– σ is not a geodesic

2

4.4 Families of geodesics and Jacobi fields

want to understand T expm

- (Xu)u - family of vectors in TmM

- (t→ expm(tXu)) - family of geodesics

- want to understand vector field (∂u)|u=0 expm(tXu) as function of t

(γu)u - family of curves

- smooth map I × J →M , I, J intervals

Definition 4.22. (γu)u is a family of geodesics if γu is a geodesic for every u in I.

notation:

- γ′ - derivative by t

– γ] - derivative by u

- interpret formulas on pull-back of TM to I × J
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∇∂t∇∂tγ]
T∇=0

= ∇∂t∇∂uγ′
R
= ∇∂u∇∂tγ′ +R(γ′, γ])γ′

∇∂tγ
′=0

= R(γ′, γ])γ′

γ : I →M - geodesic

Definition 4.23. A section J ∈ Γ(I, γ∗TM) is called a Jacobi field if it satisfies the ODE

∇∂t∇∂tJ −R(γ′, J)γ′ = 0 .

- second order linear ODE

- space of Jacobi field is 2n-dimensional with n = dim(M)

- fix t0 ∈ I

- Jacobi field Y is uniquely determined by J(t0) and (∇∂tJ)(t0)

Example 4.24. Jacobi fields in Rn

- γ(t) = tX

- fix Y,Z in Rn

- then J(t) = Y + tZ is Jacobi field

- in fact tX + u(Y + tZ) = t(X + Z) + uY is family of geodesics

- alternatively: check ODE

2

Lemma 4.25. T expm(X) : TmM → Texpm(X)M is the linear map which sends Y in TmM

to the value of the Jacobi field J at t = 1 along t 7→ expm(tX) with initial values J(0) = 0

and ∇∂tJ(0) = Y .

Proof. consider J := t 7→ T expm(tX)(Y ) = (∂u)|u=0 expm(t(X + uY ))

- is Jacobi field J with

- J(0) = 0 (set t = 0 and differentiate by u)
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- ∇∂tJ(0) = (∇∂t)|t=0(tT expm(tX)(Y )) = Y

evaluate map at 1

Definition 4.26. (M, g) has negative/positive curvature if ±g(R(X,Y )Y,X) < 0 for all

m in M and lin. independent X,Y ∈ TmM .

Proposition 4.27. If (M, g) has non-positive curvature, then T expm(X) is an isomor-

phism for every X in the domain of definition.

Proof. suiffices to show injective

- by contradiction:

– assume:

— expm(X) define

– T expm(X)(Y ) = 0, but Y 6= 0

γ(t) := expm(tX) geodesic

- there exists Jacobi field J with

– J(0) = 0

– ∇∂tJ(0) = Y

– J(1) = 0

calculate

- scalar multiply ODE for J with J

0 = g(∇∂t∇∂tJ, J)− g(R(γ′, J)γ′, J)

= ∂tg(∇∂tJ, J)− g(∇∂tJ,∇∂tJ)− g(R(γ′, J)γ′, J)

integrate from 0 to 1

- 0 = g(∇tJ, J)|10 −
∫ 1
0 g(∇∂tJ,∇∂tJ)dt−

∫ 1
0 g(R(γ′, J)γ′, J)dt

- use:
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–
∫ 1
0 g(∇∂tJ,∇∂tJ)dt > 0 (since ∇∂tJ(0) 6= 0)

– use J(0) = 0, J(1) = 0

– get
∫ 1
0 g(R(γ′, J)J, γ′)dt > 0

- contradicts non-positive curvature

Corollary 4.28. Assume that (M, g) has non-positive curvature. If U ⊆ TmM is in the

domain of definition and (expm)|U is injective, then it is a diffeomorphism into its image.

Example 4.29. Rn is flat

- curvature is non-positive

- exp(0)(X) = X

- is diffeomorphism

Tn := Rn/Zn

- π : Rn → Tn projection π(x) = [x]

- T[x]R
n ∼= TxRn via Tπ(x)

- exp[x](dπ(x)(X)) = π(expx(Tπ(x)−1(X)) = π(x+ Tπ(x)−1(X))

- T exp[x] = Tπ(x) ◦ T exp(x) ◦ Tπ(x)−1 is isomorphism for all x

- exp[x] is not injective

2

Example 4.30. S2 in R3

N = (0, 0, 1) - northpole

- expm(πX) = S = (0, 0,−1) for every unit vector X in TNS
2

- T expm(πX) = 0, in particular not injective

- but S2 has positive curvature - hence not contradiction 2

4.5 Gauss lemma

geodesic balls
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- TmM has metric g(m)

– write ‖ − ‖ for length

– use this metric to define ball B(0, r) := {X ∈ TmM | ‖X‖ < r}

- assume: r > 0 such that expm is defined and diffeomorphism on B(0, r) in TmM

γ - geodesic

- J Jacobi field along γ

Lemma 4.31. We have g(J(t), γ′(t)) = tg(∇∂tJ(0), γ′(0)) + g(J(0), γ′(0)).

Proof. - scalar product of ODE by γ′:

– use g(R(γ′, J)γ′, γ′) = 0 by antisymmetry

– get g(∇∂t∇∂tJ, γ′) = 0

– 0 = ∂tg(∇∂tJ, γ′)− ∂tg(∇∂tJ,∇∂tγ′) = ∂tg(∇∂tJ, γ′)

hence g(∇∂tJ, γ′) is constant in t

- again: g(∇∂tJ, γ′) = ∂tg(J, γ′)

- hence g(J(t), γ′(t)) = tg(∇∂tJ(0), γ′(0)) + g(J(0), γ′(0))

Corollary 4.32. For every X in B(0, r) and Y ∈ TmM we have

g(T expm(X)(Y ), T expm(X)(X)) = g(Y,X) .

Proof. geodesic t 7→ exp(m)(tX)

- apply Lemma to Jacobi field with J(0) = 0, ∇∂tJ(0) = Y

- evaluate at t = 1

T expm preserves scalar products with radial vectors

assume: r > 0 such that expm is defined and diffeomorphism on B(0, r) in TmM

Proposition 4.33.

1. For every s ∈ (0, r) the subset expm(S(0, s)) is the metric distance s-sphere at m
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2. expm(B(0, r)) is the metric ball at m of radius r in M .

3. For X in B(0, r) the curve t 7→ expm(tX) realizes the distance between m and

expm(X).

4. If σ : [0, T ] is any curve from 0 to expm(X) with `(σ) = ‖X‖, then σ(t) = exp(f(t)X)

for f : [0, T ]→ [0, 1] monotoneous.

Proof. 1⇒ 2 is clear

show 2

- if ‖X‖ < s , then d(m, expm(X)) ≤ ‖X‖ < s

- hence expm(X) 6∈ expm(S(0, s))

- take s < s′ < r

- assume that m′ ∈M \ expm(B̄(0, s′))

Lemma 4.34. We have d(m,m′) ≥ s′.

- hence d(m,m′) = s implies m ∈ expm(S(0, s))

Proof. γ - curve from m to m′

- a maximal such that γ([0, a]) = {m}

– last time that γ meets m

- b minimal such that γ(v) ∈ expm(S(0, s′))

– first time of exit the s′-Ball

- σ := exp−1m (γ|(a,b])

– a curve from 0 to the s′-sphere in TmM (0 excluded)

- write g(m) as 〈−,−〉 (scalar product on TmM)

- express σ(t) in polar coordinates (for t ∈ (a, b])
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- σ(t) = ρ(t)ξ(t) , ξ(t) unit vector, ρ(t) := ‖σ(t)‖

– ξ(t) is well-defined since σ(t) 6= 0 since t > a

- σ′ = ρ′ξ + ρξ′

- define vector field Z(X) = X/‖X‖ on TmM \ {0}

– is radial unit-norm

– ξ(t) = Z(σ(t))

〈Z(σ(t)), σ′(t)〉 = 〈ξ(t), ρ′(t)ξ(t) + ρ(t)ξ′(t)〉 = ρ′(t)〈ξ(t), ξ(t)〉 = ρ′(t)

here we use: 0 = ∂t〈ξ(t), ξ(t)〉 = 2〈ξ(t), ξ′(t)〉

- Z̃ - image under expm(B(0, r))

- also unit-norm, since T expm preserves length of radial fields

- by Gauss Lemma and since Z̃(γ(t)) is radial at γ(t):

– g(Z̃(γ(t)), γ′(t)) = 〈Z(σ(t)), σ′(t)) = ρ′(t)

— use that Z̃ has unit-norm for second inequality (Cauchy-Schwarz)

`(γ) ≥ `(γ|(a,b]) (3)

=

∫ b

a

√
g(γ′(t), γ′(t))dt

≥
∫ b

a
g(Z̃(γ′(t)), γ′(t))dt

=

∫ b

a
ρ′(t)dt

= ρ(b)− 0

= s′

- γ was aritrary

- d(m,m′) ≥ s′
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- see that expm(S(0, s)) is s-distance sphere in M at m.

3:

clear: `(t 7→ expm(tX)) = ‖X‖

– constant speed ‖X‖

– d(m, expm(X)) = ‖X‖ by 1. since X ∈ S(0, X)

4:

γ : m→ expm(X) with length ‖X‖

- 0 ≤ a - last time with γ(a) = 0

- write γ(t) = expm(ρ(t)ξ(t))

- Cauchy-Schwarz

‖X‖ = `(γ)

≥
∫ T

a

√
g(σ′(t), σ′(t))dt

≥
∫ T

0
g(Z̃(σ′(t)), σ′(t))dt

=

∫ T

0
ρ′(t)dt

= ‖X‖

conclude: second inequality is equality

–
√
g(σ′(t), σ′(t)) = g(Z̃(σ′(t)), σ′(t)) for all t

— hence by converse of Cauchy-Schwarz in equality case:

— conclude σ′(t) ∼ Z̃(σ(t)), i.e. σ′ points in positive radial direction

— solve f ′(t)Z̃(σ(t))‖X‖ = σ′(t) for f

— f is monotoneous

– with initial condition f(T ) = 1

- then expm(f(t)Y ) = σ(t) for t ∈ (a, T ]
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– since expm(f(T )X) = expm(X) = σ(T )

– ∂t expm(f(t)X) = f ′(t)‖X‖Z̃(σ(t)) = σ′(t)

conclude further: σ is constant for t ≤ a (otherwise this piece contributes to length)

- set f(t) = 0 for t ∈ [0, a]

m ∈M

Lemma 4.35. There exists an open neighbourhood m ∈ W ⊆ M and r > 0 such that

(expm′)|B(0,r) is a diffeomorphism for all m′ ∈W

Proof. U ⊆ TM open domain of exp

consider map f : U →M ×M

- U 3 X 7→ (π(X), expπ(X)(X))

- 0→ TmM → T0m(TM)→ TmM → 0 exact

– first map vertical embedding i

– second map Tπ(m)

- choose split s : TmM → T0m(M)

- df(0m)(s(Y ) + i(X)) = (Y,X +A(Y ))

- A - some linear map

– df(0m) is upper triangular, hence invertible

– f is diffeomorphism on neighbourhood U ′ ⊆ U of 0m

- choose r and m ∈W such that

– r-ball-bundle over W is in U ′

m,m′ in M

γ : m→ m′ curve

on [0, T ]
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Lemma 4.36. If `(γ) = d(m,m′), then at every t ∈ (0, T ) there exists ε > 0 such that

0 < t− ε and t+ ε < T and γ(t+ s) = expγ(t)(f(s)X) for some vector X in Tγ(t)M for all

s ∈ (−ε, ε).

Proof. for any 0 ≤ a < b ≤ T

γ|[a,b] realizes distance between γ(a) and γ(b)

- otherwise could shorten path from m to m′

fix t

- can find r > 0 and s > 0 such that (expm′)|B(0,s) is diffeomorphism for all m′ in B(0, r)

- take ε so small that

– 0 < t− ε < t+ ε < T

– d(γ(t− ε), γ(t+ ε)) < s

– conclude: γ|(t−ε,t+ε) is reparametrized geodesic

– X is tangent at of this geodesic when it hits γ(t)

Corollary 4.37. If γ is a constant speed curve which realizes the distance between its

endpoints, then it is a geodesic.

4.6 Completeness

(M, g) - Riemannian manifold assume: connected

- have metric d

- (M,d) is metric space

– have notion of completeness

Definition 4.38. M is metrically complete if (M,d) is a complete metric space

Definition 4.39. M is metrically proper if (M,d) is a proper metric space

Example 4.40. M compact - then metrically complete
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(Rn, d) is complete

2

Definition 4.41. (M, g) is called geodesically complete at m if the exponential map expm

is defined on all of TmM . It is geodesically complete if it is geodesically complete at all

points.

- geodesically complete means: for every X in TM the geodesic with initial condition X

exists on all of R

Theorem 4.42 (Hopf-Rinow). Assume that M is connected. The following assertions are

equivalent.

1. (M, g) is geodesically complete.

2. (M, g) is geodesically complete at a point m.

3. The balls B̄(m, r) are compact for all r > 0.

4. (M, g) is metrically proper.

5. (M,d) is metrically complete.

In this case the distance between every two points in M can be realized by a curve (which

can be taken as a geodesic).

Proof. proof shema:

1⇒ 2⇒ 3⇒ 4⇒ 5⇒ 1

and 2⇒ realization of distance (is used for 2⇒ 3)

1⇒ 2

trivial

3⇒ 4:

- consider B̄(m′, r′)
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- it is contained in B̄(m, r′ + d(m,m′))

- closed subset of compact, hence itself compact

4⇒ 5:

(mi)i∈N - Cauchy sequence

- supi d(mi,m) <∞

- sequence is contained in compact B̄(m, r) for r sufficiently large

- Cauchy sequence has accumulation point

5⇒ 1:

- by contradiction

- (M, g) not geodesically complete

– take X in TM such that maximal geodesic γ with inital X defined on [0, T ]

— γ′([0, T ]) is not relative compact by ODE-theory

– but g(γ′(t), γ′(t)) = g(X,X) for all t

– for any sequence 0 ≤ tn ↑ T

— (γ(tn)) is Cauchy sequence in M

— use: d(γ(tn), γ(tm)) ≤ |tn − tm|

– has limit in M by metric completeness

— conclude: γ′([0, T ]) is relatively compact

— contradiction

must show

2⇒ 3:

Lemma 4.43. If (M,m) is geodesically complete at m, then every two points can be con-

nected by a distance-realizing geodesic.

Proof. choose r > 0 such that (expm)|B(0,2r) is diffeomorphism

m′ in M
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if d(m,m′) < r: write m′ = expm(X)

- t 7→ expm(tX) is geodesic m→ m′ which realizes distance

assume now d(m,m′) ≥ r

- choose sequence (γk)k∈N of curves γk : m→ m′ with: `(γk)→ d(m,m′)

- define tk ∈ (0, 1) first time with d(m, γk(tk)) = r

- by compactness of S(m, r): take subsequence - can assume γk(tk)→ q in S(m, r)

- d(m,m′) ≤ d(m, γk(tk)) + d(γk(tk),m
′) ≤ `(γk)

– k → 0 gives

– d(m,m′) = d(m, q) + d(q,m′)

- chose unique unit vector X ∈ TmM such that q = expm(rX)

- consider curve γ : [0, d(m,m′)]→M , γ(t) := exp(tX)

– it exists by assumption of geodesic completeness at m

- define subset I ⊆ [0, d(m,m′)]

I := {t ∈ [0, d(m,m′)] | d(m, γ(t)) = t & d(m, γ(t)) + d(γ(t),m′) = d(m,m′)}

- know r ∈ I

- claim: sup I = d(m,m′)

assume claim:

- d(m, γ(d(m,m′))) = d(m,m′)

- d(m, γ(d(m,m′))) + d(γ(d(m,m′)),m′) = d(m,m′), hence d(γ(d(m,m′)),m′) = 0

– hence γ(d(m,m′)) = m′

– `(γ) = d(m,m′)

— hence γ realizes distance between m and m′

proof of claim:
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- by contradiction:

– t := sup I < d(m,m′)

— know: r ≤ t

– p := γ(t)

– consider s > 0 such that t+ 2s < d(m,m′) and (expp)|B(0,2s) is diffeomorphism

– find x (as above) in S(p, s) such that d(p, x) + d(x,m′) = d(p,m′)

– let Y ∈ TpM be unit vector such that expp(sY ) = x

d(m,x) ≤ d(m, p) + d(p, x)

= d(m, p) + d(p,m′)− d(x,m′)

= d(m,m′)− d(p,m′) + d(p,m′)− d(x,m′)

= d(m,m′)− d(x,m′)

≤ d(m,x)

hence d(m,x) = d(m, p) + d(p, x) = t+ s

set σ(t) = expp(tY )

- `(γ|[0,t]) = d(m, p)

- `(σ|[0,s]) = s

– θ := γ|[0,t]]σ|[0,s] realizes distance between m and x

– this implies that Y = γ′(t) by Lemma 4.36

— hence x = γ(t+ s)

– t+ s ∈ I contradiction

2⇒ 3:

m in M

- r > 0
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- must show: B̄(m, r) is compact

(mk)k∈N sequence in B̄(m, r)

- γk : m→ mk geodesic on [0, 1], distance realizing

set Xk := γ′k(0)

- expm(Xk) = mk

- ‖Xk‖ ≤ r for all k

- assume after passing to subsequence: Xk → X by compactness of B̄(0, r)

– ‖X‖ ≤ r

– then expm(X) = m′ ∈ B̄(m, r)

– mk = expm(Xk)→ expm(X) = m′

thus (mk)k has converging subsequence

4.7 Properties of the Riemannian curvature

(M, g) - Riemannian manifold

- ∇ - Levi-Civita connection

- R ∈ Γ(M,Λ2T ∗M ⊗ End(TM)a) curvature

– recall: R(X,Y )(Z) <:= ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

Remark 4.44. in some books R is defined with the opposite sign 2

define R ∈ Γ(M,Λ2T ∗M ⊗ Λ2T ∗M)

R(X,Y, Z,W ) := g(R(X,Y )Z,W )

Lemma 4.45 (First Bianchi identity). R(X,Y )Z +R(Y,Z)X +R(Z,X)Y = 0

Proof. use torsion freeness
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- extend X,Y, Z to local fields, vanishing commutator,

R(X,Y )Z +R(Y, Z)X +R(Z,X)Y

= ∇X∇Y Z −∇Y∇XZ +∇Y∇ZX −∇Z∇YX +∇Z∇XY −∇X∇ZY

= ∇X∇ZY −∇Y∇ZX +∇Y∇ZX −∇Z∇XY +∇Z∇XY −∇X∇ZY

= 0

Lemma 4.46 (Second Bianchi identity). ∇∧R = 0

Proof. special case of Bianchy for linear connections

for fields X,Y, Z with mutually vanishing commutator 2. Bianchi means:

- ∇XR(Y, Z) +∇YR(Z,X) +∇ZR(X,Y ) = 0

Lemma 4.47. R(X,Y, Z,W ) = R(Z,W,X, Y ).

Proof. antisymmetrie in X,Y + first Bianchy

R(X,Y, Z,W ) = −R(Y,X,Z,W ) = R(X,Z, Y,W ) +R(Z, Y,X,W )

antisymmetrie in Z,W + first Bianchy

R(X,Y, Z,W ) = −R(X,Y,W,Z) = R(Y,W,X,Z) +R(W,X, Y, Z)

add

2R(X,Y, Z,W ) = R(X,Z, Y,W ) +R(Z, Y,X,W ) +R(Y,W,X,Z) +R(W,X, Y, Z)

also

2R(Z,W,X, Y ) = R(Z,X,W, Y ) +R(X,W,Z, Y ) +R(W,Y,Z,X) +R(Y, Z,W,X)

compare term by term + use antisymmetries

hence R ∈ Γ(M,S2(Λ2T ∗M))

consider linear map R(X,−)Y : TM → TM
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Definition 4.48. The Ricci curvature is defined by Ric(X,Y ) = −Tr(R(X,−)Y ).

Lemma 4.49. We have Ric(X,Y ) = Ric(Y,X)

Proof. (ei) - ONB

Ric(X,Y ) = −
∑

iR(X, ei, Y, ei)

- symmetry now obvious

Definition 4.50. The scalar curvature of M is defined by S =
∑

i Ric(ei, ej).

Example 4.51. Einstein equation

Definition 4.52. g satisfies the Einstein equation if Ric = λg for some λ ∈ C∞(M).

Lemma 4.53 (Schur). If n ≥ 3 and g satisfies the Einstein equation, then λ is constant.

Proof. calculate at point

use fields whose derivative vanish in this point

- then commutators also vanish (torsion freeness)

- use second Bianchy

URic(X,Y ) =
∑
i

g(∇UR(X, ei)ei, Y )

= −
∑
i

g(∇XR(ei, U)ei, Y )− g(∇eiR(U,X)ei, Y )

= −
∑
i

Xg(R(ei, U)ei, Y )− eig(R(U,X)ei, Y )

= XRic(U, Y ) + eig(R(U,X)Y, ei)

set X = Y = ej and sum

US = ejRic(U, ej) + eiRic(U, ei)

= 2ejRic(U, ej)

insert equation Ric = λg and get:
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- U(λ)n = 2ej(λ)g(U, ej) = 2U(λ)

– (n− 2)U(λ) = 0

— use n 6= 2

– conclude: U(λ) = 0

Definition 4.54. A metric satisfying Ric = λg is called an Einstein metric.

is a second order non-linear PDE for g

- λ = S
n

- field equation of general relativity

Given M : does M admit an Einstein metric?

not much known in general, many examples

2

Example 4.55. if (M, g) is Einstein, then S = nλ is constant

famous question:

Given M : does M admits a metric with S > 0

much is known

2

H ⊆ TmM 2-plane

choose X,Y ∈ H orthonormal

Definition 4.56. The sectional curvature of M in direction H is defined by

K(H) := R(X,Y, Y,X) .

independent of choice of X,Y , depends only on H

- second choice

- X ′ = aX + bY
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- Y ′ = −bX + aY

- with a2 + b2 = 1

R(X ′, Y ′, Y ′, X ′) = R(aX + bY,−bX + aY,−bX + aY, aX + bY )

= a2R(X,Y,−bX + aY, aX + bY )− b2R(Y,X,−bX + aY, aX + bY )

= R(X,Y,−bX + aY, aX + bY )

= R(X,Y, Y,X)

consider V - an euclidean vector space

R ∈ V ∗,⊗4

algebraic symmetries of the curvature tensor

1. R(X,Y, Z,W ) = −R(Y,X,Z,W )

2. R(X,Y, Z,W ) = −R(Z,W,X, Y )

3. R(X,Y, Z,W ) +R(Y,Z,X,W ) +R(Z,X, Y,W ) = 0

note that then also R(X,Y, Z,W ) = −R(X,Y,W,Z)

for X,Y ∈ V define K(X,Y ) := R(X,Y, Y,X)

- this is quadratic in X and Y

Lemma 4.57. The K determines R. If R,R′ ∈ V ∗,⊗4 satisfy the algebraic curvature

identities and K(X,Y ) = K ′(X,Y ) for all X,Y ∈ V , then R = R′.

Proof. polarize in X

R(X + Z, Y,X + T, Y ) = R(X,Y,X, Y ) +R(T, Y, T, Y ) + 2R(X,Y, Z, Y )

- use symmetry for last term

same with R′

- get R(X,Y, Z, Y ) = R′(X,Y, Z, Y )
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polarise in Y

R(X,Y +W,Z, Y +W ) = R(X,Y, Z, Y ) +R(X,W,Z,W ) +R(X,Y, Z,W ) +R(X,W,Z, Y )

- no symmetry anymore

get

R(X,Y, Z,W ) +R(X,W,Z, Y ) = R′(X,Y, Z,W ) +R′(X,W,Z, Y )

or

R(X,Y, Z,W )−R′(X,Y, Z,W ) = R′(X,W,Z, Y )−R(X,W,Z, Y )

or

R(X,Y, Z,W )−R′(X,Y, Z,W ) = R(Y,Z,X,W )−R′(Y,Z,X,W )

R(X,Y, Z,W )−R′(X,Y, Z,W ) is invariant under cyclic permutations of X,Y, Z

use first Bianchi 3(R(X,Y, Z,W )−R′(X,Y, Z,W )) = 0

Lemma 4.58. Assume that R ∈ V ∗,⊗4 satisfies the algebraic curvature identities. If

K(X,Y ) = k‖X‖2‖Y ‖2 for all X,Y with X ⊥ Y , then

R(X,Y, Z,W ) = k (〈Y,Z〉〈X,W 〉 − 〈X,Z〉〈Y,W 〉) .

Proof. RHS satisfies with Y = Z and X = W

k (〈Y, Y 〉〈X,X〉 − 〈X,Y 〉〈Y,X〉) = k‖X‖2‖Y ‖2

also satisfies curvature identities:

- antisymmetry in X,Y : inspection

- symmetry for exchange (X,Y )↔ (Z,W ): inspection

- antisymmetry in X,Y : inspection

- first Bianchy
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〈Y,Z〉〈X,W 〉 − 〈X,Z〉〈Y,W 〉

+〈Z,X〉〈Y,W 〉 − 〈Y,X〉〈Z,W 〉

+〈X,Y 〉〈Z,W 〉 − 〈Z, Y 〉〈X,W 〉

= 0

apply Lemma 4.57

Remark 4.59. assume R(X,Y, Z,W ) = k (〈Y, Z〉〈X,W 〉 − 〈X,Z〉〈Y,W 〉)

Ric(X,W ) = k(
∑

i (〈Ei, Ei〉〈X,W 〉 − 〈X,Ei〉〈Ei,W 〉) = k(n− 1)〈X,W 〉

R = kn(n− 1) 2

Definition 4.60. We say that the sectional curvature of (M, g) is constant at m if H 7→
K(m)(H) is constant.

Corollary 4.61. If the sectional curvature of M is constant at each point m in M , then

R(X,Y, Z,W ) =
S

n(n− 1)
(〈Y,Z〉〈X,W 〉 − 〈X,Z〉〈Y,W 〉)

for some constant S (equal to the scalar curvature).

Proof. at every point m:

apply Lemma 4.58

- R(m)(X,Y, Z,W ) = k(m) (〈Y,Z〉〈X,W 〉 − 〈X,Z〉〈Y,W 〉)

- Ric(m)(X,W ) = k(m)(
∑

i (〈Ei, Ei〉〈X,W 〉 − 〈X,Ei〉〈Ei,W 〉) = k(m)(n− 1)〈X,W 〉

- hence (M, g) is Einstein and k is locally constant by Lemma 4.53

S = kn(n− 1) (S - scalar curvature)

this gives formula

129



Example 4.62. 1. (Rn, geu) has constant sectional curvature 0.

2. (Sn, gSn) (unit sphere in Rn+1) has constant sectional curvature 1.

3. H := {(x, y) ∈ Rn−1 × R | y > 0} with metric: y−2geu (the hyperbolic space, upper

half-space model) has constant sectional curvature −1.

the calculations for the last two examples can be done directly, but are lengthy

- easier by using some theory 2

4.8 Isometries and second fundamental form

(M, g), (M ′, g′) - Riemannian manifolds

f : M →M ′

Definition 4.63. f is isometric of f∗g′ = g.

an isometric map is an immersion

Remark 4.64. (M ′, g′) - Riemannian manifold

f : M →M ′ - immersion

- define g := f∗g′

– this is a Riemannian metric on M

– f : (M, g)→ (M ′, g′) is isometric 2

- Df : TM → f∗TM ′

- f∗TM ′ ∼= TM ⊕ TM⊥

– first summand identified via Df

– P : f∗TM ′ → TM orthogonal projection

have already seen:

- can express Levi-Civita connection of M in terms of that of M ′

Lemma 4.65. ∇ = Pf∗∇′
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- ∇ is tangential component of f∗∇′

what about the normal component

- define: N := (1− P ) : f∗TM ′ → TM⊥ - projection on normal direction

- consider X,Y ∈ X (M)

- N∇′XY ∈ Γ(M,TM⊥)

Proposition 4.66. The map I : X (M) × X (M) → Γ(M,TM⊥) given by (X,Y ) 7→
I(X,Y ) := −N∇′XY is C∞-linear and symmetric.

Proof. - calculate at m ∈M

- extend here X,Y to vector fields in an open nbhd of f(m)

N∇′fXY = fN∇′XY

N∇′X(fY ) = fN∇′XY +X(f)NY = fN∇′XY since NY = 0

for symmetry: N∇′XY −N∇′YX = N [X,Y ] = 0

hence get I ∈ Γ(M,S2TM∗ ⊗ TM⊥)

Definition 4.67. I is called the second fundamental form of f .

Example 4.68. f : R1 → R2 canonical embedding

- get I = 0 2

Example 4.69. f : S2 → R3

- ξ - out-pointing normal vector vector field

- trivializes (TS2)⊥

- calculate 〈I(X,Y ), ξ〉

- because of rot. invariance suffices to calculate it at northpole

- 〈I(X,Y ), ξ〉 = −〈∇′XY, ξ〉

– coordinates: (x, y) - projection to (x, y) -plane
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– r :=
√
x2 + y2

– ξ(x, y) = (x, y,
√

1− r2)

– extend Y to tangential field by Y − 〈Y, ξ〉ξ

— check: is ⊥ ξ

– 〈∇′X(Y − 〈Y, ξ〉ξ), ξ〉 = −X〈Y, ξ〉 = −〈Y,∇′Xξ〉

— use here that ∇Xξ ⊥ ξ since ξ is unit vector field

- (∇′Xξ)(0, 0) = (X, 0)

- hence I(X,Y ) = 〈Y,X〉

same calculation also shows for Sn ⊆ Rn+1

- the second fundamental form satisfies 〈I(−,−), ξ〉 = gSn

2

(M, g), (M ′, g′) - Riemannian manifolds

- f : M →M ′ isometry

- consider geodesic γ in M

- Question: Is f ◦ γ geodesic in M ′?

– ∇′∂tγ
′ = ∇∂tγ′ − I(γ′, γ′)

Corollary 4.70. f ◦ γ is a geodesic if and only of I(γ′, γ′) ≡ 0

Definition 4.71. f is called totally geodesic if I = 0.

Corollary 4.72. The following are equivalent:

1. If f is totally geodesic.

2. then f sends all geodesics in M to geodesics in M ′.

Example 4.73. Rn ⊆ Rn+m is totally geodesic

Sn ⊆ Rn+1 is not totally geodesic 2
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Gauss equation expresses curvature of M in terms of curvature of M ′

f : M →M ′ isometric

- will write X for Tf(m)(X) and X ∈ TmM

I - second fundamental form

Theorem 4.74. For X,Y, Z,W ∈ TmM we have

R(X,Y, Z,W )−R′(X,Y, Z,W ) = g′(I(Y,Z), I(X,W ))− g′(I(X,Z), I(Y,W ))

Proof. ∇X∇Y Z = ∇′X∇Y Z + I(X,∇Y Z) = ∇′X∇′Y Z +∇′XI(Y,Z) + I(X,∇Y Z)

g′(∇′XI(Y,Z),W ) = −g′(I(Y,Z),∇′XW ) = g′(I(Y,Z), I(X,W ))

- calculate with commuting vector fields which are parallel at the given point m

– I(X,∇Y Z)(m) = 0

g(R(X,Y )Z,W ) = g(R′(X,Y )Z,W ) + g′(I(Y,Z), I(X,W ))− g′(I(X,Z), I(Y,W ))

Example 4.75. calculation of curvature of Sn

- have seen I = gξ for unit outward normal field ξ

- R′ = 0

get:

- R(X,Y, Z,W ) = 〈Y, Z〉〈X,W 〉 − 〈X,Z〉〈Y,W 〉

– Sn has constant sectional curvature 1

Ric = (n− 1)g

- Sn is Einstein with λ = n− 1

R = n(n− 1) - constant positive scalar curvature

2
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4.9 Conformal change of the metric

(M, g) - Riemannian manifold

f ∈ C∞(M)

- efg - new metric

Definition 4.76. We call g′ := efg the conformal change of g by ef .

Question: how does the Levi-Civita connection and the curvature change

prep:

- vector space V

- (ei)i - base of V

- (ei)i - dual base of V ∗

- consider V ∗ ⊗ End(V ) ∼= V ∗ ⊗ V ∗ ⊗ V

- φ ∈ V ∗

- can consider:

– φ⊗ 1 := φ⊗ idV = φ⊗ ei ⊗ ei

— φ(X)(Y ) = φ(X)Y

– φ] := ei ⊗ φ⊗ ei

– φ](X)(Y ) = φ(Y )X

– φ∗] := ei ⊗ 〈ei, ek〉ek ⊗ 〈φ, ej〉ej = ei ⊗ ei ⊗ φ(ej)ej

- use symbol a for antisymmetrization (without 1/2) in X,Y and in the endormorphism

part

– a(U(X,Y )) := U(X,Y )− U(Y,X)− U(X,Y )∗ + U(Y,X)∗

for h ∈ C∞(M)

- dh ∈ Ω1(M)

Definition 4.77. We define the gradient grad(h) ∈ X (M) of h by

g(grad(h),−) = dh .
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locally in ONB (ei)i:

- grad(h) = dh(ei)ei

locally in coordinates:

- grad(h) = gij∂jh∂j

– gij is inverse to gij = g(∂i, ∂j)

Lemma 4.78. We have

∇′ = ∇+
1

2
(df ⊗ 1 + df] − df∗] )

and

R′(X,Y ) = R(X,Y ) + a(
1

2
∇Xdf ⊗ Y −

1

8
‖df‖2(Y ∗ ⊗X) +

1

4
df ⊗ Y (f)X) .

Proof. recall formula for Levi-Civita connection

2g(∇XY,Z) := Xg(Y, Z) + Y g(X,Z)− Zg(X,Y )

−g([X,Z], Y )− g([Y, Z], X) + g([X,Y ], Z)

replace g by efg get ∇′

2g(∇′XY, Z) = 2g(∇XY,Z) +X(f)g(Y,Z) + Y (f)g(X,Z)− Z(f)g(X,Y )

2(∇′XY −∇XY ) = X(f)Y + Y (f)X − g(X,Y )grad(f)

∇′X −∇X = ω

- with 2ω = df ⊗ 1 + df] − df∗]

calculate R′:

R
′

= R+∇∧ ω + [ω, ω]

calculate with fields with vanishing commutator

(∇∧ ω)(X,Y ) = ∇Xω(Y )−∇Y ω(X)

(∇∧ (df ⊗ 1))(X,Y ) = ∇Xdf(Y )1−∇Y df(X)1 = X(Y (f))− Y (X(f)) = 0

- use ∇1 = 0 and [X,Y ] = 0
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(∇∧ df])(X,Y ) = ∇X(df ⊗ Y )− (X ↔ Y )

= ∇Xdf ⊗ Y + df ⊗∇XY − (X ↔ Y )

= ∇Xdf ⊗ Y − (X ↔ Y )

- use torsion-free

(∇∧ df∗] )(X,Y ) = ∇X(Y ∗ ⊗ grad(f))− (X ↔ Y )

= ∇XY ∗ ⊗ grad(f)) + Y ∗ ⊗∇Xgrad(f)− (X ↔ Y )

= Y ∗ ⊗∇Xgrad(f)− (X ↔ Y )

= (∇∧ df])(X,Y )∗

2(∇∧ ω)(X,Y ) = a(∇Xdf ⊗ Y )

4[ω(X), ω(Y )] = ((df ⊗X) ◦ (df ⊗ Y ) + (X∗ ⊗ grad(f)) ◦ (Y ∗ ⊗ grad(f))− (df ⊗X) ◦ (Y ∗ ⊗ grad(f))

−(X∗ ⊗ grad(f)) ◦ (df ⊗ Y )− (X � Y )

= Y (f)df ⊗X +X(f)Y ∗ ⊗ grad(f)− ‖df‖2Y ∗ ⊗X − 〈X,Y 〉df ⊗ grad(f)

−(X � Y )

= a(df ⊗ Y (f)X − 1

2
‖df‖Y ∗ ⊗X)

thus

R′(X,Y ) = R(X,Y ) + a(
1

2
∇Xdf ⊗ Y −

1

8
‖df‖2Y ∗ ⊗X +

1

4
df ⊗ Y (f)X)

- a means antisymmetrization (without 1/2) in X,Y and in the endormorphism part

- factor 1/8 instead of 1/4 correct!
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Example 4.79. f = constant

∇′ = ∇

R′ = R for curvature tensor

but R′(X,Y, Z,W ) = efR(X,Y, Z,W )

- Ric′ = e−fRic

- S′ = e−2fS

- K = e−fK

e.g. sphere Sn−1r of radius r is isometric to conformal change of unit sphere g′ = r2g

- sectional curvature of Sr is r−2

2

Example 4.80. the upper half plane

- H := {(x, y) ∈ Rn−1 × R | y > 0}

- metric: y−2geu

Definition 4.81. (H, y−2geu) is called the hyperbolic space.

Lemma 4.82. The hyperbolic space is complete and has constant sectional curvature −1.

Proof. - y−2 = ef

- f = −2 log(y)

- df = −2y−1dy

- 1
2(∇Xdf ⊗ Y ) = y−2Xndy ⊗ Y

- 1
8‖df‖

2(Y ∗ ⊗X) = 2−1y−2Y ∗ ⊗X

- 1
4(df ⊗ Y (f)X) = Y ny−2dy ⊗X

y4R′(X,Y, Z,W ) = XnZn〈Y,W 〉 − 2−1〈Y, Z〉〈X,W 〉+ Y nZn〈X,W 〉+ (anti− symm)

- sum of first and third term is symmetric in X,Y

- get

y4R′(X,Y, Z,W ) = −(〈Y, Z〉〈X,W 〉 − 〈X,Z〉〈Y,W 〉)
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– R′(X,Y, Z,W ) = −(g′(Y,Z)g′(X,W )− g′(X,Z)g′(Y,W ))

– constant sectional curvature K = −1

show completeness:

R+ × Rn−1 acts by isometry: (λ, z)(x, y) = (λx+ z, λy)

- this action is transitive

- the existence time for the unit speed geodesics on H has a uniform lower bound given by

the existence time at some base point

- H is geodesically complete

2

4.10 Lie groups

G - a Lie group

- Ad : G→ Aut(g) - adjoint representation

- consider Ad-invariant invariant scalar products on g

Example 4.83. assume: G is compact

- then such a scalar product exists

- dg - normalized invariant volume

- fix any scalar product B̃ on g

- define B(X,Y ) :=
∫
G B̃(Ad(g)(X),Ad(g)(Y ))dg

– B is Ad-invariant scalar product

Lemma 4.84. If g is simple, then B is unique up to normalization.

Proof. - B′ second Ad-invariant scalar product

- B′(X,Y ) = B(AX,Y ) for some symmetric A ∈ End(g)
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- Ad-invariance of B,B′ implies: Ad(g)AAd(g−1) = A for all g ∈ G

– differentiate: [adX,A] = 0

- if A is not λ1, then it has at least two eigenvalues

- λ - eigenvalue

– g(λ) ⊆ g proper eigensubspace

– is an ideal in g

— X ∈ g(λ)

— A([Y,X]) = A(ad(Y )(X)) = ad(Y )(A(X)) = λad(Y )(X) = λ[Y,X]

– existence of proper ideal is contradiction to simpleness of g

call G simple if g is simple

- G compact, simple

- Killingform −BG is invariant and positive definite

- hence any invariant scalar product is multiple of −BG

2

back to general situation

- for any scalar product B on g

– define Riemannian metric gB in G by left-invariant extension of B

– gB(h) := TL∗h−1B

— for left invariant fields X,Y ∈ GX (G)

— gB(X,Y ) = B(X(e), Y (e))

Corollary 4.85. (G, gB) is complete.

Proof. G acts transitively isometrically by isometries on (G, gB)
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if we assume that B is Ad-invariant, then can understand Riemannian geometry of (G, gB)

in a simple manner

Lemma 4.86. The following are equivalent:

1. The Riemannian metric g on G is left-and right invariant.

2. B = g(e) is Ad-invariant.

Proof. Exercise!

Lemma 4.87. If B is Ad-invariant, then the Levi-Civita connection on (G, gB) is deter-

mined by ∇XY = 1
2 [X,Y ] for X,Y ∈ GX (G).

Proof. show first: there is a unique connection ∇ on TG such that ∇XY = 1
2 [X,Y ] for

X,Y ∈ GX (G)

- have trivialization Φ : TG ∼= G× g

– X ∈ TgG 7→ (g, TLg−1(g)(X))

– this determines trivial connection ∇triv

– X ∈ GX (G) goes to constant function with value X(e)

– this trivial connection satisfies for ∇XY = 0 for X,Y ∈ GX (G)

– consider ω ∈ Ω1(G,TG) defined by:

– ω(X)(Y ) = 1
2TLg(e)([TLg−1(g)(X), TLg−1(g)(Y )])

— i.e. for X,Y ∈ GX (G): ω(X)(Y ) = 1
2 [X,Y ]

— then ∇ := ∇triv + ω is a connection

—- ∇ satisfies the condition

—- uniqueness is clear since ω is determined by condition

∇ is Levi-Civita:

- calculate with X,Y, Z ∈ GX (G)

– torsion-free:

– ∇XY −∇YX = 1
2 [X,Y ]− 1

2 [Y,X] = [X,Y ]
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– compatible with metric:

— Xg(Y,Z) = 0

— gB(∇XY,Z) + gB(Y,∇XZ) = 1
2B([X(e), Y (e)], Z(e)) + 1

2B(Y (e), [X(e), Z(e)]) = 0

– it is here where we use invariance of B

X ∈ g

- interpret X ∈ GX (G)

- get integral curve curve t 7→ γ(t) := exp(tX) in G

– γ(0) = e

- γ′(t) = X(γ(t))

– γ(t) := exp((t+ s)X) = exp(tX) exp(sX) (one-parameter subgroup

Lemma 4.88. Assume that (G, gB) is defined with invariant B. The curve γ is a geodesic

Proof. γ′(t) = X(γ(t))

- ∇∂tγ′(t) = ∇γ′(t)X = ∇X(γ(t))X = [X,X](γ(t)) = 0

conclude: exp = expe

- exp: exponential map of G in the sense of Lie groups

- expe: exponential map of G in the sense of Riemannian geometry

all geodesics are of the form

t 7→ g exp(tX) for some g in G and X in g

Corollary 4.89. A Lie subgroup H of G is a totally geodesic submanifold.

curvature:

R(X,Y )Z = 1
2([X, [Y,Z]]− [Y, [X,Z]]− [[X,Y ], Z]) = [[X,Y ], Z]

by Jacobi
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Ric(X,W ) =
∑

i gB([[X, ei], ei],W ) = −
∑

i gB([X, ei], [W, ei]) =
∑

i g([W, [X, ei], ei) =

K(W,X)

– K is the Killing form

Corollary 4.90. If we choose B proportional to the Killing form, then (G, gB) is Einstein.

Remark 4.91. one could ask more generally: for which scalar products B on g is (G, gB)

Einstein

- there are many more examples (quite recent) 2

4.11 Energy and more

(M, g) - Riemannian

- recall definitions of energy and length of a curve γ : [0, a]→M

– E(γ) =
∫ a
0 g(γ′(t), γ′(t))dt

– `(γ) =
∫ a
0

√
g(γ′(t), γ′(t))dt

Cauchy-Schwarz: `(γ)2 ≤ aE(γ) (for any curve)

γ : m→ m′

- note: `(γ) = d(m,m′) implies that γ is geodesic

Lemma 4.92. Assume `(γ) = d(m,m′). Then for any curve σ : m → m′ we have

E(γ) ≤ E(σ) with equality iff σ is a minimizing geodesic.

Proof. γ is geodesic

- speed2 g(γ′(t), γ′(t)) is constant

- speed d(m,m′)/a

– E(γ) = a · d(m,m′)2/a2 = `(γ)2/a

- aE(γ) = `(γ)2 ≤ `(σ)2 ≤ aE(σ)

- if equality: `(σ) = d(m,m′) and hence σ is minimizing geodesic
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Example 4.93. meridians from north to southpole on S2 show:

- E(γ) = E(σ) does not imply γ = σ

2

already know: geodesics are precisely critical curves for E

- (γu)u variation of geodesic γ rel endpoints

– 0 = (∂u)|u=0E(γu)

- we now consider second derivative of E(γu)

– variation field γ]u(t) := ∂uγu(t)

— is a section of γ∗TM

Lemma 4.94.

(∂u)|u=0E(γu) = −2

∫ a

0
g(γ],∇2

∂tγ
] +R(γ], γ′)γ′)dt .

Proof.

∂uE(γu) =

∫ a

0
∂ug(γ′u, γ

′
u)dt

= 2

∫ a

0
g(∇∂uγ′u, γ′u)dt

= 2

∫ a

0
g(∇∂tγ]u, γ′u)dt

= −2

∫ a

0
g(γ]u,∇∂tγ′u)dt

- use here ∇ is torsion free for ∇∂uγ′u = ∇∂tγ
]
u

- γ]u(0) = 0 and γ]u(a) = 0 for partial integration

apply (∂u)|u=0
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(∂2uE(γu))|u=0 = −2(

∫ a

0
g(∇∂uγ]u,∇∂tγ′u)dt))|u=0 − 2(

∫ a

0
g(γ]u,∇∂u∇∂tγ′u)dt)|u=0

= −2(

∫ a

0
g(γ]u,∇∂u∇∂tγ′u)dt)|u=0

= −2

∫ a

0
g(γ], (∇∂u∇∂tγ′u)|u=0)dt

- use here γ0 is geodesic to drop first summand

(∇∂u∇∂tγ′u)|u=0 = ∇∂t(∇∂uγ′u)|u=0 +R(γ], γ′)γ′ = ∇2
∂tγ

] +R(γ], γ′)γ′

- drop subscript 0 (for u-variable)

insert this formula - get result

Remark 4.95. assume γ] is Jacobi field

- then (∂2uE(γu))|u=0 = 0

- Hessian of E has a zero at γ

- the existence of a Jacobi field which vanishes at the endpoints of the geodesic is a strong

condition

– the endpoints are called conjugate (will be discussed later) 2

lower estimates of symmetric bilinear forms

- V real euclidean vector space

- B - symmetric bilinear form on V

- c ∈ R

– say: B ≥ c if B(v, v) ≥ c for every unit vector v in V

- equivalently: write B(v, w) = 〈Av,w〉 for symmetric endomorphism A

– B ≥ c iff all eigenvalues of A are bounded below by c

(M, g) Riemannian manifold
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- Ric(m) is symmetric bilinear form on TmM

– condition Ric(m) ≥ c makes sense

- say: Ric ≥ c if Ric(m) ≥ c for all m in M

recall definition of diameter of metric space (X, d): diam(X) = supx,x′∈X d(x, x′)

Theorem 4.96 (Bonnet-Myers). If (M, g) is complete and Ric ≥ c > 0, then M is compact

and diam(M) ≤ π
√

n−1
c .

Proof. by contradiction

- assume that there exists m,m′ in M with ` := d(m,m′) > π
√

n−1
c

– chose minimizing geodesic γ : [0, 1]→M from m to m′

— this is possible by completeness assumption

– γ is also energy minimizing

(ei)i=1,n parallel ONB γ∗TM

- such that en := γ′

`

– Vj(t) := sin(πt)ej(t) section of γ∗TM

— observe: Vj(0) = 0, Vj(1) = 0

insert in formula for second variation of energy formula

E′′j := −2

∫ 1

0
g(Vj , V

′′
j +R(Vj , γ

′)γ′)dt

= 2

∫ 1

0
sin(πt)2(π2 − `2K(γ(t))(ej(t), en(t))dt

sum over j = 1, . . . , n− 1

- use∑
jK(γ(t))(ej(t), en(t)) = Ric(en(t), en(t)) ≥ c > (n−1)π2

`2
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n−1∑
j=1

E′′j < 2

∫ 1

0
sin(πt)2((n− 1)π2 − `2 (n− 1)π2

`2
)dt = 0

hence E
′′
j < 0 for at least one j

- can find variation of γ which decreases energy

- contradiction to γ being energy minimizing

Remark 4.97. the constant in Bonnet-Myers is optimal

- Snr has diameter πr

- Ric = (n− 1)r−2

2

4.12 Coverings

M - a connected manifold

Definition 4.98. A covering of M is a fibre bundle M̃ →M with discrete fibres.

can characterize coverings by the unique path lifting property

- π : M̂ →M a smooth map between manifolds

Lemma 4.99. The following are equivalent:

1. π : M̂ →M is a covering.

2. π has the unique path lifting property saying: Given any bold diagram

{t0}
t0 7→m̂0 //

��

M̂

π

��

I
γ
//

γ̂m̂0

M

there exists a unique dotted arrow rendering the diagram commutative

Proof. sketch:
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1⇒2:

- M̂ →M has a canonical flat connection T hM̂ := TM̂

– (since T vπ = 0 by discreteness of fibres)

- given bold diagram:

– γ̂m̂0 is unique horizontal lift of γ with γ̂(t0) = m̂0

2⇒1:

- m0 ∈M

– choose small ball m0 ∈ B ⊆M

— for m ∈ B let γm : [0, 1]→ B be radial curve from m0 to m

— define Φ : B × M̂m0 →M local trivialization such that Φ(b, m̂0) = γ̂m̂0
m (1)

Definition 4.100. M is simply connected if every connected covering M̃ → M is an

isomorphism.

more facts about coverings:

Proposition 4.101. There exists a connected covering M̃ → M such that M̃ is simply

connected (it is called the universal covering).

Proof. idea of construction:

- fix point m0

– a point in M̃ is a pair (m, [γ]) where m ∈M , γ : m0 → m a curve, [γ] - homotopy class

— M̃ →M given by (m, [γ])→ m

— define manifold structure such that this is local diffeomorphism

— check unique path lifting:

—- if σ is path in M starting in m

—- unique lift starting in (m, [γ]) is t 7→ (σ(t), [σ≤t]γ])

show M̃ is connected
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- (γ(t), [γ≤t] is path from (m0, [constm0 ]) to (m, [γ])

check M̃ is simply connected

- M̂ → M̃ covering, connected

– must show that injective:

— assume m̂0, m̂
′
0 two points in fibre at (m0, [constm0 ])

— chose path γ̂ from m̂→ m̂′

— γ̃ - path in M̃

— is closed loop at (m0, [constm0 ])

— is zero homotopic

—- this implies m̂0 = m̂′0 (it is at this point where the argument is sketchy since this fact

has not been shown above)

Lemma 4.102. The universal covering has the following universal property: Given bold

part of the diagram

{m̃}m̃→m̂ //

��

M̂

covering

��

M̃ //

φ

M

the dotted arrow exists and is unique making the diagram commutative.

Proof. existence:

- m̃′ in M̃

- choose path σ̃ : m̃→ m̃′

- σ - image in M

- σ̂ - unique lift in M̂ starting in m̂

- define φ(m̃′) = σ̂(1)

- check continuity of φ
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- uniqueness of φ

-

Corollary 4.103. The universal covering is uniquely determined up to isomorphism of

fibre bundle.

Definition 4.104. The group π1(M) of fibrewise diffeomorphisms of M̃ is called the fun-

damental group of M .

Lemma 4.105. M̃ →M is a π1(M)-principal bundle.

Proof. must show: π1(M) acts simply transitively on fibres

- consider fibre over given point m

- g ∈ π1(M)

- m̃′, m̃ ∈ M̃ over m

- apply universal property for M̂ = M̃

- if gm̃ = m̃, then g = id by uniqueness clause

- can find g such that g(m̃) = m̃′ by existence clause

(follows easily from universal property)

Remark 4.106. - the usual definition of π1(M) is as the group of homotopy classes of

loops [σ] in M at some base point m0 with concatenation

– right-action in the model by (m, [γ])[σ] = (m, [γ]σ])

2

Corollary 4.107. If (M, g) is a complete Riemannian manifold with Ric ≥ c > 0, then

π1(M) is finite.

Proof. - π : M̃ →M is immersion

- g̃ := π∗g satisfies R̃ic ≥ c > 0

- (M̃, g̃) is also complete
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- hence M̃ is compact by Bonnet-Myers

- π has finite fibres

- hence π1(M) is finite

Example 4.108. choose p, q a primes, different

- let Cp act on C2 by [n](z1, z2) = (e
2πin

p z1, e
2πinq

p z2)

- this is isometric

- preserves S3 ⊆ C2

- acts freely on S3

Definition 4.109. The lense space L(p, q) is the quotient S3/Cp with respect to this action.

have covering S3 → L(p, q)

- can choose metric on L(p, q) such that the covering is isometric

- then L(p, q) has constant sectional curvature 1

- S3 → L(p, q) is the universal covering

- π1(L(p, q)) = Cp

2

Recall: (M, g)

- if M has K ≤ 0, then expm is diffeo near every point of TmM

Lemma 4.110. If (M, g) is complete and has K < 0, then expm : TmM → M is a

covering.

Proof. we check unique path lifting property

- equip TmM with metric g′ := exp∗m g

- radial curves t 7→ tX are geodesics in this metric

– exist for all times

— (TmM, g′) is complete by Hopf-Rinow

γ : [0, 1]→M path
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- x ∈ exp−1m (γ(0)) start point for lift

– if lift of γ exists, then it is unique (since expm is local diffeo)

– for some t > 0 there exists lift γ̃ on [0, t) (again by local diffeo)

– let t be maximal with this property

— want to show: t = 1

assume t < 1

- tn ↑ t

– γ(tn)→ γ(t)

– d(γ̃(0)), γ̃(tn)) ≤ `(γ̃≤tn) = `(γ≤tn) is uniformly bounded

— by compactness of balls of (TmM, g′)

— get converging subsequence γ̃(tn)→ x′

— consider lift σ̃ of γ with σ̃(t) = x′ near t

— same limit point as γ̃

— expm local diffeo near x′

— γ̃ = σ̃ for t′ ≤ t

— σ̃ extends γ̃ to some times larger than t

—- contradiction to maximality of t

Corollary 4.111. If (M, g) is complete with K ≤ 0, then the universal covering of M is

diffeomorphic to Rn.

Example 4.112. Tn = Rn/Zn (this is the universal covering of the torus)

- has K = 0

- T̃n ∼= Rn 2

Example 4.113. - here many examples of compact quotients of the hyperbolic space

- these are compact Riemannian manifolds with constant negative sectional curvature

2
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4.13 Conjugate points

(M, g) - Riemannian manifold

γ : I →M geodesic

p, q ∈ I

Definition 4.114. The pair of points p, q is called conjugate if there exists a non-zero

Jacobi field along γ with J(p) = 0 = J(q).

Remark 4.115. if p, q is conjugate, and γ(t) = expm((t − p)X), then T expm((q − p)X)

is not an isomorphism 2

Remark 4.116. in the condition for conjugate points can assume that J ⊥ γ′

- n = dim(M)

- can decompose space of Jacobi fields into 2-dim subspaces of Jacobifields parallel to γ′

and 2n− 2-dim subspace of fields orthogonal to γ′

– this is because of g(J(t), γ′(t)) = g(J(p), γ′(p)) + (t− p)g(∇∂tJ(p), γ′(p))

– if J ' γ′ then:

– if J(p) = 0, ∇∂tJ(p) ' γ′(p)

– g(J(t), γ′(t)) = (t− p)g(∇∂tJ(p), γ′(p)) non-zero linear

– J has no zero other than p

Jacobi fields with two zeros are orthgonoal to γ′

2

consider manifold (M, g), (M̃, g̃)

- dim(M̃) ≥ dimM

γ : [0, a]→M , γ̃ : [0, a]→ M̃ geodesics

- ‖γ′(t)‖ = ‖γ̃(t)‖ - same velocity

J Jacobi along γ, J̃ Jacobi along γ̃

write ∇tJ = J ′ etc
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Theorem 4.117 (Rauch Comparison). Assume:

1. J(0) = 0, J̃(0) = 0

2. g(J ′(0), γ′(0)) = g̃(J̃ ′(0), γ̃′(0))

3. ‖J ′(0)‖ = ‖J̃ ′(0)‖

4. γ̃ has no conjugate point on (0, a]

5. for all t ∈ [0, a] and planes H ⊆ Tγ(t)M containing γ′(t) and H̃ ⊆ Tγ̃(t)M̃ containing

γ̃′(t) we have K(H) ≤ K̃(H̃) (sectional curvature).

Then ‖J̃‖ ≤ ‖J‖ with equality at some t only if K̃(J̃(s), γ̃′(s)) = K(J(s), γ′(s)) for all

s ∈ [0, t].

Example 4.118. assume: (M, g) has constant section curvature K

- γ geodesic of speed ‖γ′(t)‖ = v

- R(X,Y, Z,W ) = K(g(Y,Z)g(X,W )− g(X,Z)g(Y,W ))

– implies with J ⊥ γ′

– R(γ′, J)γ′ = −Kv2J

– conclude: J ′′ = R(γ′, J)γ′ = −Kv2J

– for K > 0

– J(t) = J(0) cos(
√
Kvt)J(0) + 1√

Kv
sin(
√
Kvt)J ′(0)

discuss conjugate points:

J(0) = 0

J(q) = 0, J ′(0) 6= 0

then sin(
√
Kvq) = 0

- smallest q:

q =
2π

v
√
K

– distance between conjugate points is 2π√
K

153



2

(M, g) general

Corollary 4.119. If M has upper sectional curvature bound k > 0, then the distance

between any two conjugate points on a geodesic with speed v bounded below by 2π
v
√
k

.

Example 4.120. If M has non-positive curvature than γ has no pairs of conjugate points.

2

the following prepares the proof:

γ : [0, a] curve in (M, g)

- V ∈ Γ(M,γ∗TM)

- t ∈ [0, a]

– define index form by:

It(V ) :=

∫ t

0

(
‖V ′(s)‖2 +R(γ′(s), V (s), γ′(s), V (s))

)
ds

γ : [0, a] geodesic in (M, g)

- no conjugate points in (0, a]

- J - Jacobi along γ, J ⊥ γ′

- V ∈ Γ(M,γ∗TM), V ⊥ γ′

Lemma 4.121. Jacobi-fields minimize index form for fields ⊥ γ′ with given boundary

values: If J is a Jacobi field along γ with J(0) = V (0) = 0 and J(t) = V (t), then

It(J) ≤ It(V ) with equality only if V = J .

Proof. choose basis (Ji)i=1,...,n−1 of Jacobi fields along γ with Ji(0) = 0 Ji ⊥ γ′

- J =
∑

i aiJi for constants (ai)i

- V =
∑

i fiJi, (fi)i real-valued functions

– note: fi is smooth at t = 0
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‖V ′‖+R(γ′, V, γ′, V ) = g(
∑
i

(f ′iJi + fiJ
′
i),
∑
j

(f ′jJj + fjJ
′
j))−R(γ′,

∑
i

fiJi, γ
′,
∑
j

fjJj)

= g(
∑
i

f ′iJi,
∑
j

f ′jJj) + g(
∑
i

f ′iJi,
∑
j

fjJ
′
j) + g(

∑
i

fiJ
′
i ,
∑
j

f ′jJj)

+ g(
∑
i

fiJ
′
i ,
∑
j

fjJ
′
j) + g(

∑
i

fiJ
′′
i ,
∑
j

fjJj)

g(
∑
i

fiJi,
∑
j

fjJ
′
j)
′ = g(

∑
i

f ′iJi,
∑
j

fjJ
′
j) + g(

∑
i

fiJ
′
i ,
∑
j

fjJ
′
j) + g(

∑
i

fiJi,
∑
j

f ′jJ
′
j)

+(
∑
i

fiJi,
∑
j

fjJ
′′
j )

substract:

‖V ′‖+R(γ′, V, γ′, V )− g(
∑
i

fiJi,
∑
j

fjJ
′
j)
′ (4)

= g(
∑
i

f ′iJi,
∑
j

f ′jJj) + g(
∑
i

fiJ
′
i ,
∑
j

f ′jJj)− g(
∑
i

fiJi,
∑
j

f ′jJ
′
j)

will show: the last two terms cancel

- follows from (g(J ′i , Jj)− g(Ji, J
′
j))(t) = 0

- have (g(J ′i , Jj)− g(Ji, J
′
j))(0) = 0

(g(J ′i , Jj)− g(Ji, J
′
j))
′ = (g(J ′′i , Jj) + g(J ′i , J

′
j)− g(J ′i , J

′
j)− g(Ji, J

′′
j )

= R(γ′, Ji, γ
′, Jj)−R(γ′, Jj , γ

′, Ji)

= 0

- hence g(
∑

i fiJ
′
i ,
∑

j f
′
jJj)− g(

∑
i fiJi,

∑
j f
′
jJ
′
j) = 0

integrate (4) from 0 to t
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It(V ) = g(V (t),
∑

j fjJ
′
j(t)) +

∫ t
0 ‖
∑
f ′iJi‖2ds

It(J) = g(J(t),
∑

j ajJ
′
j(t))

V (t) = J(t) implies ai = fi(t)

It(V )− It(J) =
∫ t
0 ‖
∑
f ′iJi‖2d

this implies both assertions

Proof of Rauch. J = J⊥ ⊕ J>

J̃ = J̃⊥ ⊕ J̃>

‖J>‖ = ‖J>(0)‖+ t‖J>(0)′‖

‖J̃>‖ = ‖J̃>(0)‖+ t‖J̃>(0)′‖

hence ‖J>‖ = ‖J̃>‖

consider now length of orthogonal component

- assume J ⊥ γ′ J̃ ⊥ γ̃′

– J 6= 0

- set v := ‖J‖, ṽ := ‖J̃‖

– ṽ has no zero on (0, a] (by absense of conjugate points assumption)

l’Hospital

limt→0
v(t)
ṽ(t) = limt→0

v′′(t)
ṽ′′(t) = ‖J ′(0)‖2

ṽ′′(t) = 1

- use v′′(0) = g(J ′′(0), J(0)) + 2‖J ′(0)‖2 and J ′(0) 6= 0 (since J 6= 0)

will show (v(t)ṽ(t))
′ ≥ 0

equivalently: v′ṽ ≥ vṽ′

- this implies assertion

fix t
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- if v(t) = 0, then v′(t) = 2g(J ′(t), J(t)) = 0

- inequality holds

– similarly if ṽ(t) = 0

assume v(t) 6= 0, ṽ(t) 6= 0

- set U(s) := J(s)
v(t) , Ũ(s) := J̃(s)

ṽ(t)

v′(t)

v(t)
=

2g(J ′(t), J(t))

v(t)2

= 2g(U ′(t), U(t))

= (‖U‖2)′

=

∫ t

0
(‖U‖2)′′(s)ds

= 2

∫ t

0
(‖U ′(s)‖2 +R(γ′(s), U(s), γ′(s), U(s)))ds

= 2It(U)

analoguous

ṽ′(t)
ṽ(t) = 2It(Ũ)

must show

It(Ũ) ≤ It(U)

choose parallel basis (ei)i=1,...,n of γ∗TM

choose parallel basis (ẽi)i=1,...,ñ of γ̃∗TM̃

such that

- γ′(t) = ‖γ′‖e1, γ̃′(t) = ‖γ̃′‖ẽ1

- e2(t) = U(t), ẽ2(t) = Ũ(t)

this gives isometric and parallel map

- φ : Γ([0, a], γ∗TM)→ Γ([0, a], γ̃∗TM̃)
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– ei 7→ ẽi, i = 1, . . . , n

have It(U) ≤ It(φ(U)) (by curvature inequality)

apply Lemma 4.121

It(Ũ) ≤ It(φ(U)) ≤ It(U)

this gives estimate:

for equality:

‖J̃(t)‖ = ‖J(t)‖

- then v′(s)ṽ = v(s)ṽ′(s) for all s ∈ [0, t]

- It(Ũ) = It(φ(U))

- hence φ(U) is Jacobi field

- compare initial condition and value at t: φ(U) = Ũ

- K̃(γ̃′(s), J̃(s)) = K(γ′(s), J(s))
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