Differential Geometry

Ulrich Bunke

Contents

1	Pre	requisi	ites - what do participants know?	3
2	Smo	ooth m	nanifolds	4
	2.1	Topol	ogical and smooth manifolds manifolds	4
		2.1.1	Topological notions	4
		2.1.2	Locally euclidean spaces and topological manifolds $\ldots \ldots \ldots \ldots$	6
		2.1.3	Smooth manifolds	8
	2.2	Exam	ples and constructions of smooth manifolds	10
		2.2.1	Regular submanifolds	10
		2.2.2	Explicit examples of regular submanifolds	12
		2.2.3	Cartesian products	12
		2.2.4	Lie groups	14
	2.3	Tange	nt vectors	16
		2.3.1	Derivations	16
		2.3.2	Tangent vectors	21
		2.3.3	Change of coordinates	23
		2.3.4	geometric tangent vectors at regular submanifolds	24
		2.3.5	Discussion	26
	2.4	Fibre	bundles	27

		2.4.1	Bundles and bundle morphisms	27
		2.4.2	Fibre bundles and cocycles	28
		2.4.3	Sections	32
		2.4.4	Vector bundles and dual bundles	34
		2.4.5	Principal bundles	37
		2.4.6	Frame bundles and associated vector bundles	39
		2.4.7	Pull-back	42
	2.5	Vector	fields	44
		2.5.1	The commutator	44
		2.5.2	Integral curves	47
		2.5.3	Fundamental vector fields and actions	50
3	Cor	nectio	ns	53
	3.1	Linear	connection on vector bundles bundles	53
		3.1.1	Existence and classification	53
		3.1.2	Curvature	57
		3.1.3	Parallel transport	62
		3.1.4	Tensor algebra with connections, the first Chern class $\ldots \ldots \ldots$	67
		3.1.5	Metrics and connections	71
	3.2	Conne	ction of fibre bundles	76
		3.2.1	Horizontal bundles for submersions	76
		3.2.2	Connections on principal bundle	85
		3.2.3	Associated vector bundles	92
		3.2.4	Quotients	94
4	Rie	mannia	an geometry	99
	4.1	Conne	ctions on the tangent bundle	99

4.2	The Riemannian distance
4.3	Geodesics
4.4	Families of geodesics and Jacobi fields
4.5	Gauss lemma
4.6	Completeness
4.7	Properties of the Riemannian curvature
4.8	Isometries and second fundamental form
4.9	Conformal change of the metric
4.10	Lie groups
4.11	Energy and more
4.12	Coverings
4.13	Conjugate points

1 Prerequisites - what do participants know?

topological spaces

- Hausdorff
- second countable
- basis of topology
- compact subset

diffential calculus in many variables

- differentiability, partial derivatives
- Schwarz Lemma
- implicit function theorem
- submanifolds

 DGL

- vector fields on \mathbb{R}^n
- existence, uniqueness
- dependence of parameters and initial conditions
- flows

tensor algebra for vector spaces

- $V \otimes W$
- $-S^{2}(V)$
- $\Lambda^3 V^*$
- SO(n),

differential forms

- de Rahm
- integration of Stokes?

mathematical language

- category
- functor
- cartesian product

physics:

- lagrange and Hamilton formalism for classical mechanics
- electro-magnetism, Maxwell

2 Smooth manifolds

2.1 Topological and smooth manifolds manifolds

2.1.1 Topological notions

M - topological space:

consider following conditions:

- Hausdorff
- unicity of limits

Example 2.1. A non-Hausdorff space

form push-out

every $x \ge 0$ gives rise to x_+ and x_- in M

- $(-\frac{1}{n})_n$ has two limits 0_+ and 0_-
- 0_+ and 0_- can not be separated by opens
- $\mathchar`-M$ is not Hausdorff
- but locally homeomorphic to $\mathbb R$

- regular

- can separate points from closed subsets

- paracompact: Every covering $\mathcal{U} = (U_i)_{i \in I}$ of M has locally finite subcovering
- locally finite: Every m in M admits open $mbhd m \in U \subseteq M$ such that $\{i \in I \mid U \cap U_i \neq \emptyset\}$ is finite.

— this is stronger than to require: $\{i \in I \mid x \in U_i\}$ is finite for every x

- paracompact implies existence of continuous partitions of unity

- second countable: M has a countable base of topology.

– can work with sequences instead of nets in order to define closures or check continuity of functions

– if M is locally compact and second countable, then it admits an exhaustion by compact subsets

Example 2.2. a (non)second countable space

 $\bigsqcup_{i \in I} \mathbb{R}$ is second countable if and only if I is countable.

Proposition 2.3 (Urysohn's metrization theorem). *The following conditions on M* are *equivalent:*

- 1. M is paracompact, second-countable regular space.
- 2. M is metrizable.

will combine paracompact, second-countable regular by saying metrizable

2.1.2 Locally euclidean spaces and topological manifolds

general principle: some conditions holds locally, if every point admits a nbhd on which this condition holds

call the spaces \mathbb{R}^n for $n \ge 0$ euclidean spaces

 ${\cal M}$ - a topological space

Definition 2.4. *M* is locally euclidean if every *m* in *M* admits an open $nbhd m \in U \subseteq M$ such that *U* is homeomorphic to an euclidean space.

Example 2.5. \mathbb{R}^n is locally euclidean: take \mathbb{R}^n as neighbourhood.

Lemma 2.6. An open subset of \mathbb{R}^n is is locally euclidean.

Proof. $V \subseteq \mathbb{R}^n$ open

- can not take \mathbb{R}^n

 $x\in V\subseteq \mathbb{R}^n$

- choose $\epsilon > 0$ such that $U := B(x, \epsilon) \subseteq V$ (open ball)
- there exists homeomorphism $B(x,\epsilon) \to \mathbb{R}^n$
- $-y \mapsto \phi(\|y-x\|)(y-x)$

 $-\phi: [0,\epsilon) \to [0,\infty)$ continuous, monotoneous surjective, e.g. $t \mapsto \frac{t}{\epsilon-t}$

- M locally euclidean, $m \in M$,
- $\phi: U \to \mathbb{R}^n$ homeomorphism for neighbourhood U of m
- define the dimension of M at m by $\dim_m(M) := n$

Proposition 2.7. For every point m in M the number $\dim_m(M)$ is well-defined.

Proof. must show that it does not depend on choice of homeomorphism

- $\phi': U' \to \mathbb{R}^{n'}$ a second choice

- get homeomorphism $\phi'\phi^{-1}: \phi(U \cap U') \to \phi'(U \cap U')$ between opens of euclidean spaces - apply

Theorem 2.8 (invariance of the dimension). If an open subset of \mathbb{R}^n is homeomorphic to an open subset of $\mathbb{R}^{n'}$, then n = n'

- this is usually shown in an algebraic topology course using homology

Corollary 2.9. The function $m \mapsto \dim_m(M)$ is locally constant.

if it is constant, then its value is called the dimension of M

Definition 2.10. *M* is a topological manifold if if is metrizable and locally euclidean.

Definition 2.11. A morphism between topological manifolds is just a continuous map.

get category \mathbf{Mf}^{top} of topological manifolds and continuous maps

- it is not easy to provide examples of topological manifolds which do not come from smooth ones

- therefore no specific examples here

2.1.3 Smooth manifolds

M - topological manifold

- a smooth structure on ${\cal M}$ is an additional datum
- a topological chart is pair (U, ϕ) of

– $U\subseteq M$ open

 $-\phi: U \to \mathbb{R}^n$ (for some *n*) homeomorphism on image

- $\mathcal{A}^{\text{top}} := \{(U, \phi)\}$ - set of topopogical charts

- since M is topological manifold: $\bigcup_{(U,\phi)\in\mathcal{A}^{\mathrm{top}}} U = M$

Definition 2.12. A subset \mathcal{A} of \mathcal{A}^{top} is an atlas if $\bigcup_{(U,\phi)\in\mathcal{A}} U = M$.

- $(U, \phi), (U', \phi') \in \mathcal{A}^{\mathrm{top}}$
- define transition function: $\phi'\phi^{-1}: \phi(U \cap U') \to \phi'(U \cap U')$

- is homeomorphism between open subsets of euclidean spaces by construction

Definition 2.13. A subset \mathcal{A} of \mathcal{A}^{top} is called smooth if all transition functions between charts in \mathcal{A} are smooth.

Note that atlasses on M from a poset w.r.t. inclusion

Definition 2.14. A smooth structure on M is a maximal smooth atlas.

Lemma 2.15. Every smooth atlas is contained in a uniquely determined maximal one.

Proof. \mathcal{A} - smooth atlas

Existence:

- call (U, ϕ) in \mathcal{A}^{top} compatible with \mathcal{A} if $\mathcal{A} \cup \{(U, \phi)\}$ is compatible
- show: if \mathcal{A}' is smooth, $\mathcal{A} \subseteq \mathcal{A}'$ and (U, ϕ) compatible with \mathcal{A} , then also with \mathcal{A}'
- must check that $\phi'\phi^{-1}$ is smooth for all $(U', \phi') \in \mathcal{A}'$
- consider $m \in U \cap U'$
- consider chart (V, ψ) in \mathcal{A} at m
- factorize as $(\phi'\psi^{-1})(\psi\phi^{-1})$ is defined near $\phi(m)$
- get smoothness of $\phi' \phi^{-1}$ near m

- let $\overline{\mathcal{A}}$ consist of all (U, ϕ) which are compatible with \mathcal{A}

- conclude: $\overline{\mathcal{A}}$ is smooth atlas
- $-\bar{\mathcal{A}}$ is maximal, since it already contains all charts which could possibly added

unicity:

- let $\bar{\mathcal{A}}'$ is any maximal smooth at las containing \mathcal{A}
- then $\bar{\mathcal{A}}' \cup \bar{\mathcal{A}}$ is smooth
- by maximality conclude $\bar{\mathcal{A}} = \bar{\mathcal{A}}'$

we say that \mathcal{A} generates the smooth structure $\overline{\mathcal{A}}$

Definition 2.16. A smooth manifold is a pair (M, \mathcal{A}) of a topological manifold with a smooth structure.

- we use maximal atlas in order to have a good notion of equality of manifolds

- in order to describe a manifold it suffices to provide any generating smooth atlas

Definition 2.17. A smooth map between smooth manifolds $(M, \mathcal{A}) \to (M', \mathcal{A}')$ is a continuous map such that composition $\phi' f \phi^{-1} : \phi(f^{-1}(U') \cap U) \to \phi'(U')$ is smooth for every pair of charts $(U, \phi) \in \mathcal{A}$ and $(U', \phi') \in \mathcal{A}'$.

Remark 2.18. It suffices to check the condition on f for charts in generating atlasses.

Exercise!

get category Mf of smooth manifolds and smooth maps

have forgetful functor $\mathbf{M}\mathbf{f} \to \mathbf{M}\mathbf{f}^{\mathrm{top}}$

Example 2.19.

 \mathbb{R}^n

- generating atlas $(\mathbb{R}^n, \mathrm{id}_{\mathbb{R}^n})$

- any open subset $U\subseteq \mathbb{R}^n$
- generating atlas $(U, U \to \mathbb{R}^n)$

morphisms between these examples are smooth maps in the usual sense

Example 2.20. open subsets of smooth manifolds are smooth manifolds \Box

M - smooth manifold

Definition 2.21. A smooth function on M is a morphism $M \to \mathbb{R}$.

- the smooth functions on M form the \mathbb{R} -algebra $C^{\infty}(M)$

Definition 2.22. A curve in M is a morphism $\gamma : I \to M$ with I an open interval in \mathbb{R} .

2.2 Examples and constructions of smooth manifolds

2.2.1 Regular submanifolds

 $U \subseteq \mathbb{R}^n$ open $g: U \to \mathbb{R}^k$ smooth u in U

- have differential $dg(u) : \mathbb{R}^n \to \mathbb{R}^k$, linear map

Definition 2.23. g is regular in u if dg(u) is surjective.

consider subspace $M \subseteq \mathbb{R}^n$

- is a metrizable topological space

Definition 2.24. *M* is a regular if for every *m* in *M* there exists a neighbourhood *U* of *m* and a smooth function $g: U \to \mathbb{R}^k$ such that $M \cap U = g^{-1}(0)$ and *g* is regular at *M*.

call g a defining function of M at m

- set $T_m M := \ker(dg(m))$ - linear subspace fo \mathbb{R}^n

Remark 2.25. $T_m M$ does note depend on choice of defining function g of M at m Exercise!

Theorem 2.26 (Implizit function theorem). There exist open neighbourhoods $0 \in V \subseteq T_m M$ and $m \in U' \subseteq U$ such that:

- 1. For every v in V there exists a unique point $\psi(v)$ in $T_m M^{\perp}$ such that $v + \psi(v) + m \in M \cap U'$.
- 2. $\psi: V \to T_m M^{\perp}$ is smooth.

the map $V \ni v \mapsto v + \psi(v) + m \in W := U' \cap M$ homeomorphism.

- inverse: $W \ni \phi(x) := x \mapsto \operatorname{pr}_{T_m M^{\perp}}(x-m)$

take $\mathcal{A} := \{(W, \phi)\}$ - set of all charts defined in this way

- domains cover M

Corollary 2.27. M is topological manifold.

Proposition 2.28. \mathcal{A} is a smooth atlas.

Proof. is an atlas by construction

- \mathcal{A} is a smooth:

- consider transition function

$$v \mapsto \phi' \phi^{-1}(v) = \operatorname{pr}'_{T_{m'}M^{\perp}}(v + \psi(v) + m - m')$$
 - this map is obviously smooth \Box

Definition 2.29. Call M with the smooth manifold structure constructed above a regular submanifold

note that $\dim_m(M) = n - k$ (when $g: U \to \mathbb{R}^k$ is defining at m)

Example 2.30. detection of smooth maps into and from a regular submanifold

 $f:N\to M$ is smooth iff $f:N\to M\to \mathbb{R}^n$ is smooth

 $f: M \to N$ is smooth if it extends to a smooth function $\tilde{f}: \mathbb{R}^n \to N$

Exercise!

2.2.2 Explicit examples of regular submanifolds

 $S^n \subset \mathbb{R}^{n+1}$ defined by $f(x) = ||x||^2 - r$

the following examples have group structures

 $GL_n(\mathbb{R}) \subseteq \mathbb{R}^{n^2}$ - open subset $SL_n(\mathbb{R}) \subseteq \mathbb{R}^{n^2}$ - defined by $A \mapsto \det(A) - 1$ $O(n) \subseteq \mathbb{R}^{n^2}$ - defined by $A \mapsto A^t A \in S^2(\mathbb{R}^n) \cong \mathbb{R}^{\frac{n(n+1)}{2}}, \dim(O(n)) = \frac{n(n-1)}{2}$ $SO(n) \subseteq O(n)$ open $U(n) \subseteq \mathbb{R}^{2n^2}$ - defined by $A \mapsto A^*A \in \{hermitean \ matrices\} \cong \mathbb{R}^{n(n-1)+n}, \dim(U(n)) = n^2$

2.2.3 Cartesian products

Proposition 2.31. The category Mf admits cartesian products.

Proof. $M, M' \in \mathbf{Mf}$

- consider topological space $M\times M'$
- is topological manifold
- a product of metrizable spaces is metrizable (take product metric)
- $M \times M'$ is locally euclidean

$$(m,m')\in M imes M'$$

- $-(U,\phi)$ chart at $m, (U',\phi')$ chart at m'
- $-(U \times U', \phi \times \phi')$ is a chart of $M \times M'$ at (m, m')
- call this chart product chart

define smooth structure on $M\times M'$ as generated by product charts of charts of the smooth structures

- check: this is compatible atlas

check

- $p:M\times M'\to M$ and $p':M\times M'\to M'$ are smooth
- check smoothness using product charts in domain
- use $\phi_1 p(\phi_0 \times \phi')^{-1} = \phi_1 \phi_0^{-1}$

check that $(M \times M', p, p')$ satisfies the universal property

$$\operatorname{Hom}_{\mathbf{Mf}}(N, M \times M') \xrightarrow{(p,p')} \operatorname{Hom}_{\mathbf{Mf}}(N, M) \times \operatorname{Hom}_{\mathbf{Mf}}(N, M')$$

is bijection

- injective:

- is clear since we have cartesian products of underlying sets

- surjective:

 $-f: N \to M, f': N \to M'$ given

- $f \times f' : N \to M \times M'$ is continuous (since work with cartesian product in topological spaces)

- check smoothness using product charts:

$$-(\phi_1 \times \phi_1')(f \times f')(\phi_0 \times \phi_0')^{-1} = (\phi_1 f \phi_0^{-1}, \phi_1' f' \phi_0'^{-1})$$
 is smooth

Example 2.32. $\mathbb{R}^n \times \mathbb{R}^{n'} \cong \mathbb{R}^{n+n'}$ (as manifolds) $S^1 \times \cdots \times S^1 =: T^n$ (*n* factors) is called the *n*-torus $M\subseteq \mathbb{R}^n$ regular, $M'\subseteq \mathbb{R}^{n'}$ regular, then $M\times M'\subseteq \mathbb{R}^{n+n'}$ is regular

2.2.4 Lie groups

existence of cartesian products in a category \Rightarrow can talk about groups in this category: general:

- \mathcal{C} category with cartesian products
- * empty cartesian product

– $\mathrm{pr}_C: \ast \times C \xrightarrow{\cong} C$ - will often be used implicitly

idea: write group axioms in terms of diagrams of maps

Definition 2.33. A group in C is a triple $(C, \mu : C \times C \to C, e : * \to C)$ such that

commute and the shear map $s: C \times C \xrightarrow{(\mathrm{id}_C, \mu)} C \times C$ is an isomorphism.

- shear maps s encodes inverses $I: C \xrightarrow{\operatorname{id}_C \times e} C \times C \xrightarrow{s^{-1}} C \times C \xrightarrow{\operatorname{pr}_2} C$

– advantage of using shear map: being a group is a property of (C, μ, e) - no additional datum required

groups in ${\bf Set}$ are usual groups

groups in **Top** are topological groups

specialize to $\mathbf{M}\mathbf{f}$

in $\mathbf{Mf}: * \cong \mathbb{R}^0$

- Hom $(*, M) \cong$ underlying set of M

Definition 2.34. A group in Mf is called a Lie group.

Example 2.35. $GL(n, \mathbb{R})$, $SL(n, \mathbb{R})$, O(n), SO(n), U(n), all with matrix multiplication, are Lie groups and unit given by identity matrix (interpreted as map $* \to M$)

- matrix multiplication $\operatorname{End}(\mathbb{R}^n) \times \operatorname{End}(\mathbb{R}^n) \to \operatorname{End}(\mathbb{R}^n)$ is smooth and associative, compatible with identity relation

- restricts to the structures on the submanifolds
- shear map is an isomorphism:
- use that $A \mapsto A^{-1}$ is smooth on $GL(n, \mathbb{R})$
- either by formula involving determinants of adjuncts
- or by inverse function theorem
- inverse of shear map $(A, B) \mapsto (A, AB)$ is $(A, B) \mapsto (A, A^{-1}B)$

Example 2.36. \mathbb{R}^n with + is a Lie group

if G is Lie group, then $I: G \to G, g \mapsto g^{-1}$ is smooth

actions:

general: C - category with cartesian products

- (G, μ, e) a group in \mathcal{C}

- C an object

Definition 2.37. An action of G on C is a map $a: G \times C \to C$ such that

$$\begin{array}{ccc} G \times G \times C \xrightarrow{\operatorname{id} \times a} G \times C & associativity \\ & & \downarrow^{\mu \times \operatorname{id}_C} & \downarrow^a \\ & & G \times C \xrightarrow{a} C \end{array}$$

commute.

Example 2.38. G acts on itself with $a = \mu$

Example 2.39. in Mf:

 $GL(n,\mathbb{R})$ acts on \mathbb{R}^n by matrix multiplication

O(n) acts on S^{n-1}

2.3 Tangent vectors

idea:

- a tangent vector on a manifold M at m is a direction of an infinitesimal curve starting at m

- can consider the derivative of functions in this direction

- axiomatization of the properties of this derivative \Rightarrow notion of a derivation

- will turn this idea up-side-down and use derivations in order to to define tangent vectors

2.3.1 Derivations

- k - a field

- consider commutative unital k-Algebras (e.g. k)

Definition 2.40. An augmented k-algebra is a pair (A, e) of a k-algebra A with a homomorphism $e : A \to k$.

A homomorphism of augmented k-algebras $\phi : (A, e) \to (A', e')$ is a homomorphism of k-algebras $\phi : A \to A'$ such that $e'\phi = e$.

Example 2.41. M a manifold

m in ${\cal M}$

and

- $C^{\infty}(M)$ - is a \mathbb{R} -algebra

- $\operatorname{ev}_m : C^{\infty}(M) \to \mathbb{R}$ given by $\operatorname{ev}_m(f) := f(m)$ is an augmentation

 $F: M \to M'$ smooth map of manifolds,

- m' := F(m)
- get homomorphism $F^*: (C^{\infty}(M'), ev_{m'}) \to (C^{\infty}(M), ev_m)$ of augmented \mathbb{R} -algebras

(A, e) - augmented k-algebra

Definition 2.42. A derivation of (A, e) is a k-linear map $X : A \to k$ such that for all a, b in A we have X(ab) = X(a)e(b) + e(a)X(b).

write Der(A, e) for k-vector space of derivations of (A, e)

Example 2.43. partial derivatives are derivations

consider $C^{\infty}(\mathbb{R}^n)$ with augmentation ev_0

$$i \in \mathbb{N}$$

- $\partial_i(0): C^{\infty}(\mathbb{R}^n) \to \mathbb{R}$ given by $f \mapsto (\partial_i f)(0)$ is a derivation

Example 2.44. derivations annihilate constants

(A, e) - augmented k-algebra

for X in Der(A, e)

- we have $X(1_A) = 0$:

$$-X(1_A) = X(1_A^2) = 2X(1_A)e(1_A) = 2X(1_A)$$

unit: $k \to A, \lambda \mapsto \lambda 1_A$

- these elements are called the constants

$$- e(\lambda 1_A) = \lambda$$

- by linearity: $X(\lambda 1_A) = 0$

consider homomorphism $\phi: (A, e) \to (A', e')$ of augmented k-algebras

it induces a homomorphism

 $Der(\phi) : Der(A', e') \to Der(A, e)$ given by $Der(\phi)(X)(a) := X(\phi(a))$ - check:

$$Der(\phi)(X)(ab) = X(\phi(ab)) = X(\phi(a))e'(\phi(b)) + e'(\phi(a))X(\phi(b))$$
$$= Der(\phi)(X)(a)e(b) + e(a)Der(\phi)(X)(b)$$

- Der is contravariant functor from augemented k-algebras to k-vector spaces

M - a manifold

- m in M
- consider poset \mathcal{U}_m of open neighbourhoods of M
- for $U \subseteq V$ in \mathcal{U}_m get restriction map $(C^{\infty}(V), \mathrm{ev}_m) \to (C^{\infty}(U), \mathrm{ev}_m)$

Definition 2.45. The augmented \mathbb{R} -algebra of germs at m of smooth functions on M is defined by $(C_m^{\infty}(M), \operatorname{ev}_m) := \operatorname{colim}_{U \in \mathcal{U}_m^{\operatorname{op}}}(C^{\infty}(U), \operatorname{ev}_m)$ in augmented \mathbb{R} -algebras.

we will work with the following explicit description:

- an element of $C_m^{\infty}(M)$ is represented by a pair (V, f) of $V \in \mathcal{U}_m$ and $f \in C^{\infty}(M)$

- if $U \subseteq V$ in \mathcal{U}_m , then $(U, f_{|U})$ represents the same element

for the moment we write [V, f] for the element represented by (V, f)

- the algebra structure is defined as follows:

$$- [V, f] + \lambda[V', f'] = [V \cap V', f_{|V \cap V'} + \lambda f'_{|V \cap V'}]$$

$$- [V, f] \cdot [V', f'] = [V \cap V', f_{|V \cap V'} f'_{|V \cap V'}]$$

Check: well-definedess

augmentation $\mathrm{ev}_m: C^\infty_m(M) \to \mathbb{R} \colon \mathrm{ev}_m([V,f]) = f(m)$ Check: well-defined ess

properties

- 1. $C^{\infty}(M) \to C^{\infty}_m(M)$, $f \mapsto [M, f]$ is surjective Exercise!
- 2. m ∈ U ⊆ M open:
 restriction C[∞]_m(M) → C[∞]_m(U) is isomorphism preserving augmentation Exercise!
- 3. $U \subseteq M$ open, $m \in U$, $U' \subseteq M'$ open, $\phi : U \to U'$ isomorphism $-\phi^* : (C^{\infty}_{\phi(m)}(U'), \operatorname{ev}_{\phi(m)}) \to (C^{\infty}_m(U), \operatorname{ev}_m)$ is isomorphism Exercise!

from now on instead of [U, f] write f (the precise domain of f is irrelevant) $n := \dim(M)$

- conclude using a chart with $\phi(m) = 0$: $(C_m^{\infty}(M), ev_m) \cong (C_0^{\infty}(\mathbb{R}^n), ev_0)$

Example 2.46. have derivation $\partial_i(0) : C_0^{\infty}(\mathbb{R}^n)$ is defined by $\partial_i(0)(f) := (\partial_i f)(0)$ Check: is well-defined

Proposition 2.47. The derivations $(\partial_i(0))_{i=1,\dots,n}$ form a basis of $\text{Der}(C_0^{\infty}(\mathbb{R}^n), \text{ev}_0)$.

 $\begin{array}{l} Proof.\\ (\partial_i(0))_{i=1,\dots,n} \text{ is linearly independent:}\\ \text{- assume that } \sum_{i=1}^n \lambda_i \partial_i(0) = 0\\ \text{- for every } j:\\ \text{-- } 0 = (\sum_{i=1}^n \lambda_i \partial_i(0))(x^j) = \sum_{i=1}^n \lambda_i (\partial_i x^j)_{|x=0} = \lambda_j\\ (\partial_i(0))_{i=1,\dots,n} \text{ spans:}\\ \text{- } X \text{ in } \operatorname{Der}(C_0^{\infty}(\mathbb{R}^n)) \text{ given} \end{array}$

$$- \operatorname{set} \mu_i := X(x^i)$$

- set $Y := \sum_{i=1}^{n} \mu_i \partial_i(0)$

- we will show that X = Y
- consider $f \in C_0(\mathbb{R}^n)$

– Taylor: there exists $g_i \in C_0^{\infty}(\mathbb{R}^n)$ with $g_i(0) = 0$ such that

$$f = f(0) + \sum_{i=1}^{n} (\partial_i f)(0) x^i + \sum_{i=1}^{n} x^i g_i$$

calculate:

$$\begin{aligned} X(f) &= X(f(0)) + X(\sum_{i=1}^{n} (\partial_i f)(0) x^i) + X(\sum_{i=1}^{n} x^i g_i) \\ &= \sum_{i=1}^{n} (\partial_i f)(0) X(x^i) + \sum_{i=1}^{n} (X(x^i) g_i(0) + x^i(0) X(g^i)) \\ &= \sum_{i=1}^{n} (\partial_i f)(0) \mu_i \\ &= Y(f) \end{aligned}$$

с	-	_	_	-	

M smooth, $m \in M$

Corollary 2.48. $\dim_m(M) = \dim \operatorname{Der}(C_m^{\infty}(M), \operatorname{ev}_m).$

Example 2.49. consider germs of continuous functions $C_0(\mathbb{R}^n)$

- then $\operatorname{Der}(C_0(\mathbb{R}^n), \operatorname{ev}_0) \cong 0$
- consider X in $\operatorname{Der}(C_0(\mathbb{R}^n), \operatorname{ev}_0)$ - $f \in C_0(\mathbb{R}^n)$ - $g := {}^3\sqrt{f - f(0)} \in C_0(\mathbb{R}^n)$ - $f = f(0) + g^3$ - $X(f) = X(f(0)) + X(g^3) = 0 + 3g(0)^2 X(g) = 0$

this shows: the concept of tangent space using derivations does not extend to topological manifolds

2.3.2 Tangent vectors

Definition 2.50. The vector space $T_m M := \text{Der}(C_m^{\infty}(M), \text{ev}_m)$ is called the tangent space of M at m. Its dual $T_m^* M$ is called the cotangent space of M at m.

m in M

- $\dim T_m M = \dim_m(M) = \dim T_m^* M$

 $f \in C^{\infty}_m(M)$

- defines element $df(m) \in T_m^*M$ by df(m)(X) := X(f) for all X in T_mM

Definition 2.51. $df(m) \in T_m^*M$ is called the derivative of f at m.

note Leibnitz rule:

$$d(ff')(m) = df(m)f'(m) + f(m)df'(m)$$

- verification:

$$d(ff')(m)(X) = X(ff') = X(f)f'(m) + f(m)X(f') = df(m)(X)f'(m) + f(m)df'(m)(X)$$

 (U,ϕ) - a chart

Definition 2.52. The components $x^i : U \to \mathbb{R}$ of ϕ (i.e., $\phi = (x^1, \ldots, x^n)$) are called the coordinate functions on U associated to ϕ .

Corollary 2.53. $(dx^i(m))_{i=1,\dots,n}$ is a basis of T_m^*M

we let $(\partial_i(m))_{i=1,\dots,n}$ be the dual basis of $T_m M$ - i.e.: $\partial_i(m)(x^j) = \delta_i{}^j$

- every tangent vector X in $T_m M$ can uniquely be written as $X = \sum_{i=1}^n \mu_i \partial_i(m)$
- must set $\mu_i := X(x^i)$
- note: these bases of T_mM and T_m^*M depend on the choice of the chart (U,ϕ)

 $F: M \to M'$ morphism of manifolds

set
$$m' := F(m)$$

- get $F_m^*:(C^\infty_{m'}(M),\mathrm{ev}_{m'})\to (C^\infty_m(M),\mathrm{ev}_m)$ pull-back
- homomorphism of augmented $\mathbb R\text{-algebras}$

Definition 2.54. The differential of F at m is the linear map $TF(m) := Der(F_m^*) : T_m M \to T_{m'} M'$.

- often also denoted by dF(m) or DF(m)
- explicitly: for $X \in T_m M$ the derivation $TF(m)(X)(f) := X(F_m^* f)$
- note: F must only be defined near m in order to get TF(m)
- observe chain rule: for $F':M'\to M'':$

$$T(F'F)(m) = TF'(F(m))TF(m) : T_m M \to T_{m''}M''$$

Exercise!

$$f \in C^{\infty}(M)$$

$$df(m) = \operatorname{can} \circ df(m)$$

$$F : M' \to M, \ F(m') = m$$

chain rule implies:

Lemma 2.55. We have $d(F^*f)(m') = df(m)TF(m')$

Proof. for X' in $T_{m'}M'$

$$d(F^*f)(m')(X') = X'(F^*f) = TF(m')(X')(f) = df(m)TF(m')(X')$$

V - f.d. vector space

- v in V
- as a consequence of Proposition 2.47:

Corollary 2.56. We have a canonical identification can : $V \xrightarrow{\cong} T_v V$ which sends X in V to the derivation $f \mapsto \frac{d}{dt}_{|t=0} f(v+tX)$.

we often do not write can in formulas, be careful

consider map $L_w: V \to V, L_w(v) := v + w$ - translation by w

- this commutes:

2.3.3 Change of coordinates

 (U,ϕ) - a chart of M at m

can consider ϕ as isomorphism $\phi: U \to \phi(U)$

- get isomorphism $T\phi(m):T_mM\to T_{\phi(m)}\mathbb{R}^n\cong\mathbb{R}^n$ (canonical iso implicitly used)
- characterized by $T\phi(m)(\partial_i(m)) = e_i$ (standard basis vector) for all i

- (U',ϕ') second chart

- have $T(\phi'\phi^{-1})(\phi(m)) \in GL(n,\mathbb{R})$
- Jacobi matrix of $\phi' \phi^{-1}$ at $\phi(m)$
- chain rule for $\phi' = (\phi' \phi^{-1}) \circ \phi$ says:

Corollary 2.57.

denote charts by ϕ instead of (U, ϕ)

set
$$\rho_{\phi',\phi}(m) := T(\phi'\phi^{-1})(\phi(m))$$

- is smooth function $U \cap U' \to GL(n, \mathbb{R}^n)$
- satisfy the cocyle relations:
- $-\rho_{\phi,\phi}=1$
- $-\rho_{\phi'',\phi'}\rho_{\phi',\phi} = \rho_{\phi'',\phi} \text{ (product in } GL(n,\mathbb{R}), \text{ on } U \cap U' \cap U''))$
- a consequence: $\rho_{\phi',\phi}^{-1} = \rho_{\phi,\phi'}$ (inverse in $GL(n,\mathbb{R})$

2.3.4 geometric tangent vectors at regular submanifolds

 $M \subseteq \mathbb{R}^n$ - regular submanifold

- define $T_m^{\text{geom}} M := \ker(dg(m))$ for defining function g of M at m
- call this geometric tangent space
- a curve in M at m is a curve $\gamma: I \to M$ with $0 \in I$ and $\gamma(0) = m$
- interpret $(\partial_t)_{|t=0}\gamma$ as vector in \mathbb{R}^n

Lemma 2.58. For every X in $T_m^{\text{geom}}M$ there exists a curve γ in M at m such that $(\partial_t)_{|t=0}\gamma = X$.

Proof. apply Implicit Function Theorem 2.26 get

- suitable neighbourhood of $0 \in V \subseteq T^{\operatorname{geom}}_m M$
- map $\psi: V \to T_m M^{\perp}$ such that $v + \psi(v) + m$ is parametrization of M near m

claim:
$$d\psi(0) = 0$$

- $g(v + \psi(v) + m) \equiv 0$ implies
- $d_{T_mM}g(m) + d_{T^mM^{\perp}}g(m)d\psi(0) = 0$
- $d_{T^mM^{\perp}}g(m)d\psi(0) = 0$ since $d_{T_mM}g(m) = 0$ by definition of T_mM
- $d_{T^mM^{\perp}}g(m)$ is isomorphism by regularity of g at m
- conclude $d\psi(0) = 0$

- define $\gamma(t) := tX + \psi(tX) + m$

- then

$$(\partial_t)_{|t=0}\gamma = X + d\psi(0)(X) = X$$

M manifold, m in M (not necessarily submanifold)

- a curve γ in M at m induces a tangent vector $\gamma'(0) := T\gamma(\partial_1(0)) \in T_m M$

Proposition 2.59. There is an isomorphism $T_m^{\text{geom}} M \cong T_m M$ uniquely determined by the condition that $(\partial_t)_{|t=0}\gamma$ is sent to $\gamma'(0)$ for any curve in M at m.

Proof. observe:

- if γ_0, γ_1 are two curves in M at m and $(\partial_t)_{|t=0}\gamma_0 = (\partial_t)_{|t=0}\gamma_1$, then also $\gamma'_0(0) = \gamma'_1(0)$.

$$-f \in C^{\infty}(M)$$

- has smooth extension \tilde{f} to nbhd
- chain rule

$$-\gamma = \gamma_0, \gamma_1$$

$$-df(m)(\gamma'(0)) = \partial_1(0)(f\gamma) = \frac{d}{dt}_{|t=0}f(\gamma(t)) = \frac{d}{dt}_{|t=0}\tilde{f}(\gamma(t)) = d\tilde{f}(m)((\partial_t)_{|t=0}\gamma_i)$$

– use: definition of derivative df(m), definition of partial derivative $\partial_1(0)$, that \tilde{f} extends f, and classical chain rule for functions between euclidean spaces

- implies $df(\gamma'_0(0)) = df(\gamma'_1(0))$
- f arbitrary (note that $C^{\infty}(M) \to C^{\infty}_m(M)$ is surjective): $\gamma'_0(0) = \gamma'_1(0)$

define map $\kappa : T_m^{\text{geom}} M \to T_m M$ such that it sends X in $T_m^{\text{geom}} M$ to $\gamma'(0)$ for any curve γ in M at m with $(\partial_t)_{|t=0} \gamma = X$

- formula: $\kappa(X)(f) = d\tilde{f}(m)(X)$
- is linear in X, hence κ is linear

 κ is isomorphism:

- $\mathrm{pr}_{T^{\mathrm{geom}}_m M}: M \to T^{\mathrm{geom}}_m M$ - orthogonal projection

- calculate:
$$T \operatorname{pr}_{T_m^{\operatorname{geom}} M}(m)(\kappa(X)) = (\partial_t)_{|t=0} \operatorname{pr}_{T_m^{\operatorname{geom}} M}(tX + \psi(tX) + m) = X$$

for dimension reasons κ and $T \operatorname{pr}_{T_m^{\operatorname{geom}} M}(m)$ are inverse to each other

2.3.5 Discussion

$$f \in C^{\infty}(M)$$

- get
$$m \mapsto df(m) \in T_m^*M$$

- want to say that this depends smoothly on \boldsymbol{m}
- how?

form set $T^*M := \bigsqcup_{m \in M} T^*_m M$

- have canonical map $p: T^*M \to M$
- want to interpret df as a map $df: M \to T^*M, m \mapsto df(m)$ such that $pdf = id_M$

must equip T^*M with a suitable manifold structure

consider family of derivations $X = (X(m))_{m \in M}, X(m) \in T_m M$

- say: X is a smooth vector field if $m \mapsto X(m)(f)$ is smooth for every f in $C^{\infty}(M)$
- how can one formulate this in terms of the family X alone?
- form set $TM := \bigsqcup_{m \in M} T_m M$
- have map $p: TM \to M$
- interpret X as map

- must equip TM with manifold structure

Example 2.60. $T^{\text{geom}}M$ as regular submanifold

 $M\subseteq \mathbb{R}^n$ - regular submanifold

- define $T^{\mathrm{geom}}M:=\bigcup_{m\in M}\{m\}\times T^{\mathrm{geom}}_mM\subseteq \mathbb{R}^{2n}$ - just a subset

Lemma 2.61. $T^{\text{geom}}M$ is a regular submanifold.

Proof. construct local defining functions

$$(m,X)\in T^{\mathrm{geom}}M$$

- g on U defining function of M near m

 $(g, dg): (x, \xi) \mapsto (g(m), dg(m)(\xi))$ defines $T^{\text{geom}}M$ on $U \times \mathbb{R}^n$

- check regularity:

$$-d(g,dg)(m,X)=\left(egin{array}{cc} dg(m) & 0\ d^2g(m)(X,-) & dg(m) \end{array}
ight)$$

- is surjective since dg(m) is so

2.4 Fibre bundles

2.4.1 Bundles and bundle morphisms

B a manifold (the base)

F - a manifold (typical fibre)

Definition 2.62. A fibre bundle over B with typical fibre F is a smooth map $\pi : M \to B$ such that there exists:

- 1. $(U_{\alpha})_{\alpha}$ an open covering of B
- 2. a collection of diffeomorphisms $\psi_{\alpha} : \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times F$ (called local trivializations) such that

$$U_{\alpha} \times F \xleftarrow{\psi_{\alpha}} \pi^{-1}(U_{\alpha}) \xrightarrow{\text{incl}} M$$
$$\downarrow^{\text{pr}} \qquad \qquad \downarrow^{\pi}$$
$$U_{\alpha} \xrightarrow{\text{incl}} B$$

commutes.

Example 2.63. the trivial bundle $pr: B \times F \to B$

- local trivialization is $\psi = \mathrm{id}_{B \times F}$ defined on all of B

later: $TM \to M$ and $T^*M \to M$ will be fibre bundles with typical fibre \mathbb{R}^n

Definition 2.64. A morphism of fibre bundles is a commutative square

If the lower map is id_B , then we call this a morphism of fibre bundles over B.

2.4.2 Fibre bundles and cocycles

write $U_{\alpha,\beta} := U_{\alpha} \cap U_{\beta}$

the local trivializations determine maps (of sets) $\rho_{\alpha,\beta} : U_{\alpha,\beta} \to \operatorname{Aut}_{\mathbf{Mf}}(F)$ such that the following map is smooth

$$U_{\alpha,\beta} \times F \to U_{\alpha,\beta} \times F$$
, $\psi_{\alpha} \psi_{\beta}^{-1}(u,f) = (u, \rho_{\alpha,\beta}(u)(f))$

- we have cocycle condition

 $\begin{aligned} &-\rho_{\alpha,\beta}\rho_{\beta,\gamma}=\rho_{\alpha,\gamma} \text{ on } U_{\alpha,\beta,\gamma} \text{ for all } \alpha,\beta,\gamma\\ &-\rho_{\alpha,\alpha}\equiv \mathrm{id}_F \end{aligned}$

vice versa: a smooth cocycle is a family $\rho = (\rho_{\alpha,\beta})$ of maps $\rho_{\alpha,\beta} : U_{\alpha,\beta} \to \operatorname{Aut}_{\mathbf{Mf}}(F)$ such that

- $(u, f) \mapsto (u, \rho_{\alpha, \beta}(u)(f))$ is smooth
- cocyle conditions are satified

want to construct fibre bundles from cocycles

Example 2.65. B - a manifold of dimension n

 $F := \mathbb{R}^n$

 \mathcal{A} - the smooth structure of B

- gives covering by domains of smooth charts (U, ϕ)

- get cocyle with values in $GL(n, \mathbb{R}) \subseteq \operatorname{Aut}_{\mathbf{Mf}}(\mathbb{R}^n)$: $\rho_{\phi',\phi} := T(\phi'\phi^{-1})\phi$

the fibre bundle constructed from this data is the tangent bundle TB of B

could consider new cocycle $(\Lambda^3(\rho_{\alpha,\beta}^{*,-1}))_{\alpha,\beta}$ with values in $\operatorname{Aut}(\Lambda^3\mathbb{R}^{n,*})$

- associated fibre bundle is bundle of 3-forms $\Lambda^3 T^*B \to B$

Construction 2.66. start with the construction of $\pi: M \to B$ from the following data:

- $(U_{\alpha})_{\alpha}$ an open covering of B
- a smooth cocycle $\rho = (\rho_{\alpha,\beta})$ with values in Aut_{Mf}(F)

underlying set of M:

$$M := \bigsqcup_{\alpha \in A} U_{\alpha} \times F / \sim$$

- thereby $(u, f) \in U_{\alpha} \times F$ and $(u', f') \in U_{\alpha'} \times F$ are equivalent if u = u' and $f' = \rho_{\alpha',\alpha}(u)f$ - is equivalence relation by cocycle condition (check)

- write points in M as $[u,f]_{\alpha}$
- $\pi: M \to B$ sends $[u,f]_\alpha$ to u
- check: is well-defined

local trivializations:

$$\psi_{\alpha}: \pi^{-1}(U_{\alpha}) \stackrel{\cong}{\to} U_{\alpha} \times F$$

- $[u, f]_{\alpha} \mapsto (u, f)$

- check well-defineness:

- for every α : the map $U_{\alpha} \times F \ni (u, f) \mapsto [u, f]_{\alpha} \in M$ is injective - this follows since $\rho_{\alpha,\beta}$ has values in automorphisms

check:

$$U_{\alpha} \times F \xleftarrow{\psi_{\alpha}} \pi^{-1}(U_{\alpha}) \xrightarrow{\text{incl}} M$$
$$\downarrow^{\text{pr}} \qquad \qquad \downarrow^{\pi} \qquad \qquad \downarrow^{\pi}$$
$$U_{\alpha} \xrightarrow{\text{incl}} U_{\alpha} \xrightarrow{\text{incl}} B$$

commutes

check:

$$\psi_{\alpha}\psi_{\beta}^{-1}(u,f) = (u,\rho_{\alpha,\beta}(u)(f))$$

define topology on M: minimal such that all ψ_{α} are continuous

- by definition: $h: X \to M$ continuous if $\psi_{\alpha} h$ is continuous for all α

claim: ψ_{α} is a homeomorphism

- ψ_{α} is bijective amd continuous

- remains to show that ψ_{α}^{-1} is continuous

– this follows from: $\psi_{\beta}\psi_{\alpha}^{-1}$ is continuous for all β

Lemma 2.67. $f: M \to X$ continuous if $f\psi_{\alpha}^{-1}$ is continuous for all α

Proof. \Rightarrow : clear

 $\Leftarrow:$

U open in X

- must check that $f^{-1}(U)$ is open in M

- consider $m \in f^{-1}(U)$
- chose α s.t. $m \in \pi^{-1}(U_{\alpha})$
- since $f\psi_{\alpha}^{-1}$ is continuous there is open nbhd V of $\psi_{\alpha}(m)$ such that $f(\psi_{\alpha}^{-1}(V)) \subseteq U$
- then $\psi_{\alpha}^{-1}(V)$ is open nbhd of m in $f^{-1}(U)$

conclude: $f^{-1}(U)$ is open

 π is continuous:

- use $\pi \psi_{\alpha}^{-1} = \operatorname{pr} : U_{\alpha} \times F \to U_{\alpha}$ is continuous for all α

M is Hausdorff

- $m \neq m'$

$$- \text{ if } \pi(m) \neq \pi(m')$$

— use B is Hausdorff: find open V, V' in B with: $\pi(m) \in V, \pi(m') \in V', V \cap V' = \emptyset$

— then $\pi^{-1}(V)$ and $\pi^{-1}(V')$ separate m and m'

- $\text{ if } \pi(m) = \pi(m') \in U_{\alpha}, \, \psi_{\alpha}(m) = (u, f), \, \psi_{\alpha}(m') = (u, f'), \, f \neq f'$
- use that F is Hausdorff: find opens W, W' in F with $f \in W, f' \in W'$ and $W \cap W' = \emptyset$

— then $\psi_{\alpha}^{-1}(U_{\alpha} \times W)$ and $\psi_{\alpha}^{-1}(U_{\alpha} \times W')$ separate m and m'

M is locally euclidean: M is locally a product of topological manifolds

M is second countable:

- can cover ${\cal B}$ by a countable subcover of the given cover
- F is second countable

Proposition 2.68. A second countable locally euclidean Hausdorff space is regular and paracompact, hence a topological manifold.

Exercise: find proof by google

smooth structure:

for every chart (U, ϕ) of B and chart (W, κ) of F define chart $(\phi, \kappa)\psi_{\alpha} : \psi_{\alpha}^{-1}((U \cap U_{\alpha}) \times W) \to \phi(U \cap U_{\alpha}) \times \kappa(W)$

- these from an atlas
- transition functions are smooth

- given by $(x, v) \mapsto (\phi' \phi^{-1}(x), \kappa'(\rho(\phi^{-1}(x))(\kappa^{-1}(v))))$

equip M with smooth structure generated by this atlas

 ψ_{α} is smooth by construction

- check: π is smooth

2.4.3 Sections

Definition 2.69. The set of sections of a fibre bundle is defined by

$$\Gamma(B,M) := \{ s \in \operatorname{Hom}_{\mathbf{Mf}}(B,M) \mid \pi s = \operatorname{id}_B \}$$

we now describe sections in terms of the trivializations

consider section $s \in \Gamma(B, M)$

- get family (s_{α}) with $s_{\alpha} := \mathrm{pr}_F \psi_{\alpha} f : U_{\alpha} \to F$

- (s_{α}) satisfies: for all α, β : $\rho_{\alpha,\beta}(u)(f_{\beta}(u)) = f_{\beta}(u)$ for all u in $U_{\alpha,\beta}$
- we say that (s_{α}) is compatible

Lemma 2.70. There is a bijection between the sets:

- 1. $\Gamma(B, M)$
- 2. compatible familes (s_{α})

Proof. $s \in \Gamma(B, M)$ given:

- get compatible family (s_{α}) by

$$- s_{lpha} := \mathrm{pr}_F \psi_{lpha} s_{lpha}$$

compatible family (s_{α}) given

- define $s \in \Gamma(B, M)$ by
- $(-b \mapsto [b, s_{\alpha}(b)]_{\alpha}$ for any α with $b \in U_{\alpha}$
- check using compatibility relation: does not depend on choice of α
- check: s is smooth

check: these constructions are inverse to each other

Example 2.71. pr : $M \times \mathbb{R} \to \mathbb{R}$

$$\Gamma(M, M \times \mathbb{R}) \cong C^{\infty}(M)$$

$$s \mapsto (m \mapsto \operatorname{pr}_{\mathbb{R}} s(m))$$

$$f \mapsto (m \mapsto (m, f(m))$$

Example 2.72. - associated to cocycle $(\Lambda^n T(\phi' \phi^{-1})^{-1,*})\phi$:

- $\Omega^n(M) := \Gamma(M, \Lambda^n T^*M)$
- $n\text{-}\mathrm{forms}$ on M
- have map $d: C^{\infty}(M) \to \Omega^1(M)$
- describe locally:

-
$$f \mapsto (df_{\phi})$$

- $df_{\phi} := d(f\phi^{-1})\phi : U \to \mathbb{R}^{n,*}$

- check:

$$df_{\phi'} = d(f\phi'^{,-1})\phi' = d(f\phi^{-1}\phi\phi'^{,-1})\phi' = d(f\phi^{-1})\phi \circ T(\phi\phi'^{,-1})\phi' = T(\phi'\phi^{-1})^{*,-1}\phi(d(f\phi^{-1})\phi) = T(\phi'\phi^{-1})^{*,-1}df_{\phi'}$$

2.4.4 Vector bundles and dual bundles

in case the typical fibre of a bundle has an additional structure which is preserved by the values of cocycle the total space of the bundle has a corresponding structure

a vector bundle is a fibre bundle with a vector bundle structure on fibres

V - vector space

Definition 2.73. A vector bundle with typical V over B is a fibre bundle $\pi : E \to B$ with typical fibre V together with vector space structures on the fibres E_b such that there exists a cover of B by local trivializations (ψ_{α}) which are fibrewise vector space isomorphisms. Vector bundle morphisms are bundle morphisms which are fibrewise linear.

the associated cocyle to such a trivialization $\rho_{\alpha,\beta}$ takes values in GL(V) - the linear automorphisms of V

vice versa:

- assume that cocycle has values in GL(V)
- define linear structure on E_b as follows:
- chose α with $b \in U_{\alpha}$
- define structures by $[u, v]_{\alpha} + \lambda [u, v']_{\alpha} := [u, v + \lambda v']_{\alpha}$
- this is well-defined since cocyle is linear
- by construction: $E \to B$ is a vector bundle

 $E \rightarrow B$ - a vector bundle

- $-\Gamma(B, E)$ becomes $C^{\infty}(B)$ -module
- -s, s' two sections
- define: (s + s')(b) := s(b) + s'(b)

— define: fs(b) := f(b)s(b)

- show that the operations produce again smooth sections:

- calculate for local sections: s + fs' is represented by $(s_{\alpha} + fs'_{\alpha})_{\alpha}$ - has smooth members

 $\pi: E \to B$ - vector bundle, $e \in E, b := \pi(e)$

Lemma 2.74. 1. There exists a section s in $\Gamma(B, E)$ with s(b) = e

2. If $s \in \Gamma(B, E)$ satisfies s(b) = 0, then there exists a finite family of sections (t_i) in $\Gamma(B, E)$ and a finite family (f_i) in $C^{\infty}(B)$ such that $f_i(b) = 0$ for all i and $s = \sum_i f_i t_i$

the point in 1. is: the section exists globally!

Proof. 1.:

choose local trivialization $\psi: \pi^{-1}(U) \to U \times V$

$$-(b,v) := \psi(e)$$

- choose
$$\chi \in C_c^{\infty}(U)$$
 with $\chi(b) = 1$
- define $s \in \Gamma(B, M)$ by: $b \mapsto \begin{cases} \psi^{-1}(b, \chi(b)v) & b \in U \\ 0 & else \end{cases}$

2.:

- (v_i) basis of V
- (v^i) dual basis of V^*
- $u \mapsto s^{i}(u) := v^{i}(\mathrm{pr}_{V}\psi(\chi(u)s(u)) : U \to \mathbb{R}$
- -ith component of s in trivialization

- vanishes at b and is compactly supported on U

- Taylor

- there is decomposition $s^i = \sum_{j=1}^n f_j^i g^{i,j}$ = with $f_j^i \in C_c^{\infty}(U)$ and $f_j^i(b) = 0$ $(n = \dim_b B)$ - define $t^{i,j}: U \to E$ by: $t^{i,j}(u) := \psi^{-1}(u, \chi(u)g^{i,j}(u)v_i)$

-extend by zero to all of B

- have
$$s = (1 - \chi^2)s + \sum_{i,j} f_j^i t^{i,j}$$

dual bundle of a vector bundle $\pi: E \to B$:

- define set $E^* := \bigsqcup_{b \in B} E_b^*$
- have projection $\pi^*: E^* \to B$
- $\psi: \pi^{-1}(U) \to U \times V$
- $\psi^*: \pi^{*,-1}(U) \to U \times V^*$
- $-\psi^*(e^*) := (\pi^*(e^*), (v \mapsto e^*(\psi^{-1}(u, v))))$

- if $(\rho_{\alpha,\beta})$ - GL(V)-valued cocycle for E, then $(\rho_{\alpha,\beta}^{*,-1})$ is $GL(V^*)$ -valued cocycle for E^* - get topology and smooth structure on E^* such that $\pi^* : E^* \to B$ is vector bundle

Definition 2.75. $\pi^*: E^* \to is$ called the dual bundle of $\pi: E \to B$.

this works for other functors of tensor algebra as well

- e.g. $V\mapsto S^2(V^*)$
- yields bundle of symmetric bilinear forms $E^2(E^*) \to B$

have pairing $\langle -, - \rangle : \Gamma(B, E) \times_{C^{\infty}(B)} \Gamma(B, E^*) \to C^{\infty}(B)$

-
$$s \otimes \kappa \mapsto \kappa(b)(s(b))$$

- check smoothness

Proposition 2.76. The pairing induces an isomorphism of $C^{\infty}(B)$ -modules

$$\Gamma(B, E^*) \cong \operatorname{Hom}_{C^{\infty}(B)}(\Gamma(B, E), C^{\infty}(B))$$
.

Proof. κ in $\Gamma(B, E^*)$

- get
$$\hat{\kappa} \in \operatorname{Hom}_{C^{\infty}(B)}(\Gamma(B, E), C^{\infty}(B))$$
 by: $\hat{\kappa}(s)(b) := \kappa(b)(s(b))$

- $\hat{\kappa}(fs)(b) = \kappa(b)(f(b)s(b)) = f(b)\hat{\kappa}(s)(b)$ shows $C^{\infty}(B)$ -linearity

 $\hat{\kappa}$ in $\operatorname{Hom}_{C^{\infty}(B)}(\Gamma(B, E), C^{\infty}(B))$
- define κ in $\Gamma(B, E^*)$ as follows:

$$-b \in B$$

– define $\kappa(b): E_b \to \mathbb{R}$ such that:

 $-\kappa(b)(e) = \hat{\kappa}(s)(b), s$ any section of E with s(b) = e

— well-defined: s' second section

— $s - s' = \sum_i f_i t_i$ for sections t_i with $f_i(b) = 0$

$$-\hat{\kappa}(s')(b) - \hat{\kappa}(s)(b) = \sum_{i} f_i(b)\kappa(t_i) = 0$$

check smoothness of κ

check that these constructions are inverse to each other check $C^{\infty}(B)$ -linearity of isomorphism

- $s \in \Gamma(M, E^*)$
- define $\tilde{s}: E \to \mathbb{R}$ by $\tilde{s}(e) := s(\pi(e))(e)$
- is fibrewise linear

 $-C^{\infty}_{f-lin}(E,\mathbb{R}) \subseteq C^{\infty}(E,\mathbb{R})$ functions which are fibrewise linear

Lemma 2.77. We have a bijection $s \mapsto \tilde{s}$ between $\Gamma(M, E^*)$ and $C^{\infty}_{f-lin}(E, \mathbb{R})$.

Proof. $\tilde{s} \in C^{\infty}_{f-lin}(E, \mathbb{R})$ - define s(b) such that $s(b)(e) = \tilde{s}(e)$ for all $e \in E_b$.

Example 2.78. T^*M is the dual bundle of TX- $\Omega^1(M) \cong \operatorname{Hom}_{C^{\infty}(M)}(\mathcal{X}(M), C^{\infty}(M))$

2.4.5 Principal bundles

G - a Lie group $\pi: M \to B$ a fibrewise right action of G on M is a right action $M \times G \to M$ such that

commutes

Definition 2.79. A *G*-principal bundle over *B* is a fibre bundle $\pi : M \to B$ with typical fibre *G* together with a fibre-wise right *G*-action on *M* such that there exists a cover of *B* by local trivializations (ψ_{α}) with $\psi_{\alpha} : \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times G$ which is *G*-equivariant. Principal bundle morphisms are bundle morphisms which are *G*-equivariant.

- the associated cocyle has values in right-G-equivariant maps $G \to G$
- a right G-equivariant map $\rho: G \to G$ is given by left-multiplication with $\rho(e)$

- hence the coycle $\rho_{\alpha,\beta}$ has values in G (which acts on G by left multiplication) vice versa:

- given a G-valued cocycle the associated fibre bundle is a G-principal bundle
- we define the G-action by $[u,g]_{\alpha}h := [u,gh]_{\alpha}$.

assume that $M \to B$ is a *G*-principal bundle

- assume that there exists a section $s \in \Gamma(B, M)$
- then we define smooth map $B \times G \to M$, $(b,g) \mapsto s(b)g$
- is a bijection
- inverse is smooth (check in trivializations)
- $-s_{\alpha}: U_{\alpha} \to G$
- $-(u,g)\mapsto s_{\alpha}(u)g$
- inverse $(u,h) \mapsto (u, s_{\alpha}(u)^{-1}h)$

Corollary 2.80. There is a bijection between $\Gamma(B, M)$ and G-equivariant bundle isomor-

Corollary 2.81. A G-principal bundle is trivial if and only if it has a section.

Example 2.82. The map $S^1 \to S^1$ given by $z \mapsto z^n$ is a C_n -principal bundle. It is not trivial.

2.4.6 Frame bundles and associated vector bundles

- $\pi: E \to B$ a vector bundle with typical fibre V
- get associated frame bundle $Fr(E) \rightarrow B$
- a frame of E_b is an isomorphism $s: V \to E$
- the underlying set of Fr(E) is the set of frames of the fibres of E
- the projection $p: Fr(E) \to B$ sends the frames of the fibre E_b to b

- the group GL(V) acts from the right on Fr(E) by precomposition: $(s,g) \mapsto s \circ g$

- in order to define manifold structure find local trivializations and observe that cocycle is smooth

- choose $\psi_{\alpha} : \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times V$ local trivialization for E
- get $\Psi_{\alpha}: p^{-1}(U_{\alpha}) \to U_{\alpha} \times GL(V)$ by $\Psi_{\alpha}(s) = (p(s), \psi_{\alpha}(p(s), s(-)))$
- reproduces GL(V)-valued cocycle $\rho_{\alpha,\beta}$ of E now considered with values in $\operatorname{Aut}_{\mathbf{Mf}}(GL(V))$
- this cocycle is smooth (since GL(V) is Lie group)

- get associated GL(V)-principal bundle which will be denoted by $Fr(E) \to B$

 $M \to B$ - G-principal bundle

- $\kappa: G \to GL(V)$ homomorphism of Lie groups
- G-valued cocycle $\rho_{\alpha,\beta}$ for $M \to B$ gives GL(V)-valued cocycle $\kappa(\rho_{\alpha,\beta})$

phisms

- get associated vector bundle: notation $M\times_{G,\kappa}V\to B$
- have map $M \times V \to M \times_{G,\kappa} V$ given by
- $([u,g]_\alpha,v)\mapsto [u,\kappa(g)v]_\alpha$
- this is well-defined and smooth
- induces the equivalence relation such that $(m, \kappa(g)v) \sim (mg, v)$ for all g in G on $M \times V$
- Actually: $M \times_{G,\kappa} V$ is the quotient of $M \times V$ by this equivalence relation
- write [m, v] for the image of (m, v)
- have G-action on $C^{\infty}(M, V)$ by

$$(gf)(m) := \kappa(g)f(mg^{-1})$$

- can talk about fixed points $C^\infty(M,V)^G$

Lemma 2.83. $\Gamma(B, M \times_{G,\kappa} V) \cong C^{\infty}(M, V)^G$

Proof. want that $s(\pi(m)) = [m, f(m)]$ for all m in M

- given $s \in \Gamma(B, M \times_{G,\kappa} V)$
- define $f: M \to V$ as follows:
- let $m \in M$, then $s(\pi(m)) = [m, v]$
- this is the unique representative of $s(\pi(m))$ with first entry m
- set f(m) := v
- check: $f(mg) = \kappa(g)^{-1}v$
- check smoothness: $f \circ \psi_{\alpha}^{-1}(u,g) = \kappa(g)^{-1}s_{\alpha}(u)$

given
$$f \in C^{\infty}(M, V)^G$$

- define $s\in \Gamma(B,M\times_{G,\kappa}V)$ by s(b)=[m,f(m)] for any $m\in M_b$
- check: well-defined
- check smooth

check: these construction are mutually inverse

Example 2.84. $E \rightarrow B$ - vector bundle with fibre V

-
$$\operatorname{Fr}(E) \to B$$

- $\kappa = \operatorname{id}_{GL(V)}$
then $\operatorname{Fr}(E) \times_{GL(V), \operatorname{id}_{GL(V)}} V \cong E$
- $\operatorname{map} [s, v] \mapsto s(v)$

 $E \rightarrow B$ - vector bundle with typical fibre V

 $\kappa: G \to GL(V)$ - homomorphism

Definition 2.85. A reduction of the structure group of E to G is a pair $M \to B$ of a G-principal bundle and an isomorphism of vector bundles $M \times_G V \xrightarrow{\cong} E$.

Example 2.86. A reduction of the structure group to the trivial group is the same as a trivialization

 $V = V_0 \oplus V_1$ - $GL(V_0) \times GL(V_1) \subseteq GL(V)$

a reduction of the structure group to $GL(V_0) \times GL(V_1)$ is equivalent to an decomposition $E_0 \oplus E_1 \cong E$

 $-GL(V)^{+} = \{A \in GL(V) \mid \det(A) > 0\}$

a reduction of the structure group to $GL(V)^+$ is the same as the choice of an orientation

if V has a scalar product - get $O(V) \subseteq GL(V)$

a reduction of the structure group to O(V) is the same as the choice of an metric on E

2.4.7 Pull-back

 $f:B'\to B$ - map of manifolds

- get $h^*: C^{\infty}(B) \to C^{\infty}(B')$ - pull-back of functions $h^*f := f \circ h$.

extend this to fibre bundles $M \to B$

-
$$s(h(b'))$$
 is in $M_{h(b')}$

- want a new bundle over B^\prime with fibre $M_{h(b^\prime)}$ over b^\prime
- $\pi: M \to B$ fibre bundle with typical fibre F
- $f:B'\to B$ morphism
- consider pull-back in sets

$$\begin{array}{c} M' \xrightarrow{H} M \\ \downarrow_{\pi'} & \downarrow_{\pi} \\ B' \xrightarrow{h} B \end{array}$$

- (U,ψ) - local trivialization of π

- induces

$$\psi': \pi'^{-1}(h^{-1}(U)) \to U' \times F , \quad m' \mapsto (\pi'(m), \operatorname{pr}_F \psi(H(m)))$$

- (U', ψ') local trivialization of π'
- cocycle: (ρ'_{ψ_1,ψ_0}) (indexed by the local trivializations of π)

$$-
ho_{\psi_1,\psi_0}'(u')=
ho_{\psi_1,\psi_0}(h(u))$$

Definition 2.87. $\pi': M' \to B'$ is called the pull-back of $\pi: M \to B$ along h.

often write $M' := h^* M$

- the pull-back of a vector bundle is again a vector bundle
- the pull-back of a principal bundle is again a principal bundle

Lemma 2.88. The square

$$\begin{array}{c} M' \xrightarrow{H} M \\ \downarrow_{\pi'} & \downarrow_{\pi} \\ B' \xrightarrow{h} B \end{array}$$

is a cartesian square in Mf.

Proof. Exercise:

pull-back of sections:

- $h^*: \Gamma(B, M) \to \Gamma(B', h^*M)$ -. $s \mapsto (b' \mapsto h^*s = (b', s(h(b'))) \in M'$

Example 2.89. $f: M \to M'$ - morphism of manifolds

- interpret $TF: TM' \to TM$ as:

 $Df:TM'\to f^*TM$ by universal property of pull-back

Example 2.90. pull-back of forms:

$$f: M' \to M$$

$$- f^*: \Omega^1(M) \to \Omega^1(M')$$

$$- f^*T^*M \xrightarrow{Df^*} T^*M'$$

$$- f^*: \Omega^1(M) \to \Gamma(M', f^*T^*M) \xrightarrow{Df^*} \Gamma(M', T^*M') = \Omega^1(M')$$
commutes:

commutes:

$$\begin{array}{c} C^{\infty}(M) \xrightarrow{f^{*}} C^{\infty}(M') \\ \downarrow^{d} \qquad \qquad \downarrow^{d} \\ \Omega^{1}(M) \xrightarrow{f^{*}} \Omega^{1}(M') \end{array}$$

exercise:

Example 2.91. M, N - manifolds

- $E \to M, \, F \to N$ - vector bundles

 $\mathrm{pr}_M: M \times N \to M, \, \mathrm{pr}_N: M \times N \to N$ projections

- write $E \boxplus F := \mathrm{pr}_M^* E \oplus \mathrm{pr}_N^* F \to M \times B$

Example 2.92. have isomorphism $T(M \times N) \to TM \boxplus TN$

- given by $D\mathrm{pr}_M\oplus D\mathrm{pr}_N$

2.5 Vector fields

2.5.1 The commutator

Definition 2.93. $\mathcal{X}(M) := \Gamma(M, TM)$ is called the space of vector fields on M

is $C^{\infty}(M)$ module

define action $\Gamma(M, TM) \times C^{\infty}(M) \to C^{\infty}(M)$

$$-(X, f) \mapsto (m \mapsto X(m)(f))$$

some formulas:

- have rule (gX)(f) = gX(f)
- Leibnitzrule: X(gf) = X(f)g + fX(g)
- could say: X is in $Der(C^{\infty}(M), id_{C^{\infty}(M)})$
- -X(f)(m) = df(m)(X(m))

Lemma 2.94. For X, Y in $\mathcal{X}(M)$ there exists a uniquely determined Z in $\mathcal{X}(M)$ such that Z(f) = X(Y(f)) - Y(X(f)) for all f in $C^{\infty}(M)$

Proof. observe: $f \mapsto X(Y(f)) - Y(X(f))(m)$ is a derivation

$$\begin{split} X(Y(fg)) - Y(X(fg)) &= X(Y(f)g + fY(g)) - Y(X(f)g + fX(g)) \\ &= X(Y(f))g + Y(f)X(g) + X(f)Y(g) + fX(Y(g)) \\ &- Y(X(f))g - X(f)Y(g) - Y(f)X(g) - fY(X(g)) \\ &= (X(Y(f)) - Y(X(f)))g + f(X(Y(g)) - Y(X(g))) \end{split}$$

evaluate at m

- define value Z(m) as this derivation
- -Z satisfies the formula
- must check smoothness: Exercise! (already done)

local formula:

- write [X, Y] := Z
- local formula on chart on ${\cal U}$

$$- [X,Y]_{|U} = [X^i \partial_i, Y^j \partial_j] = (X^j \partial_j Y^i - Y^j \partial_j X^i) \partial_i$$

Lemma 2.95. $\mathcal{X}(M)$ with [-,-] forms a Lie algebra

note: [X, fY] = f[X, Y] + X(f)Y- [-, -] is not $C^{\infty}(M)$ - bilinear

 $h: M \to M'$ diffeomorphism

-
$$X \in \mathcal{X}(M)$$

define h_*X such that $h^*(h_*Xf) = X(h^*f)$ for all f in $C^{\infty}(M)$

- get $h_*X(m') := Th(h^{-1}(m'))X(h^{-1}(m'))$

Lemma 2.96. $h_*[X,Y] = [h_*X,h_*Y]$

 $\begin{aligned} &Proof. \text{ check chain rule: } h^*(h_*[X,Y])(f) = [X,Y](h^*f) \\ &h^*[h_*X,h_*Y](f) = h^*h_*X(h_*Y(f)) - h^*h_*Y(h_*X(f)) = h^*Xh^*(h_*Y(f)) - Yh^*(h_*X(f)) = \\ &[X,Y](h^*f) \end{aligned}$

Example 2.97. $X \in \mathcal{X}(M), Y \in \mathcal{X}(N)$ $X \boxplus Y := D \operatorname{pr}_M \operatorname{pr}_M^* X \oplus D \operatorname{pr}_N \operatorname{pr}_N^* Y \in \mathcal{X}(M \times N)$ $[X_0, X_1] \boxplus [Y_0, Y_1] = [X_0 \boxplus Y_0, X_1 \boxplus Y_1]$

the following explains meaning of commutator:

- $I \subseteq \mathbb{R}$ open, $0 \in I$
- consider map $\Phi: I \times M \to M$
- write $\Phi(t,m) = \Phi_t(m)$ (family of endomorphisms of M smoothly parametrized by I)
- assume $\Phi_0 = \mathrm{id}_M$
- get vector field $X := \Phi'$ (derivative by time at 0)

$$-X(m) := T\Phi(0,m)(\partial_t)$$
$$-X(m) := (\partial_t)_{|t=0}\Phi_t(m)$$

- -Y in $\mathcal{X}(M)$
- define $\Phi_{t,*}Y \in \mathcal{X}(M)$ by
- consider $\Phi_{t,*}Y(m) := T\Phi_t(\Phi_t(m))^{-1}(Y(\Phi_t(m))))$

— note that for every $m \in M$ the inverse $T\Phi_t(m)^{-1}$ exists for small |t| since $d\Phi_0(m) = id_{T_mM}$

Lemma 2.98. $(\partial_t)_{t=0} \Phi_{t,*} Y(m) = [X, Y](m)$

Proof. calculate in chart

- use Taylor expansion and only keep constant and linear terms in t

$$\begin{split} \Phi_t(m) &= m + tX(m) + O(t^2) \\ T\Phi_t(\Phi(m)) &= T(m + tX(m)) + O(t^2) = 1 + tTX(m) + O(t^2) \\ T\Phi_t(\Phi(m))^{-1} &= 1 - tTX(m) + O(t^2) \end{split}$$

$$T\Phi_t^{-1}(\Phi_t(m))(Y(\Phi_t(x))) = (1 - tTX(m))Y(m + tX(m) + O(t^2)) + O(t^2)$$

= $Y(m) - tTX(m)(Y(m)) + tTY(m)(X(m)) + O(t^2)$
= $Y(m) + t[X, Y](m) + O(t^2)$

2.5.2 Integral curves

 $X \in \mathcal{X}(M)$ given

- consider intervals $I\subseteq \mathbb{R}$
- for curve $\gamma: I \to M$ set: $\gamma'(t) := T\gamma(t)(\partial_t) \in T_{\gamma(t)}M$

Definition 2.99. A curve $\gamma : I \to M$ is an integral curve of X if $\gamma'(t) = X(\gamma(t))$ for all $t \in I$.

fix $m \in M, t_0 \in \mathbb{R}$

Proposition 2.100. There exists a unique maximal integral curve $\gamma : I \to M$ of X with $\gamma(t_0) = m$

Proof. local existence and uniqueness:

- in chart at m: apply Picard- Lindeloef
- get interval I such that there is a unique integral curve $\gamma: I \to M$ with $\gamma(t_0) = m$

unique continuation:

- $\gamma_0, \gamma_1: I \to \mathbb{R}$ two integral curves
- $\gamma_0(t_0) = \gamma_1(t_0)$
- then $\gamma_0 = \gamma_1$
- $-J := \{\gamma_0 = \gamma_1\}$
- show by contradiction that J = I
- J is closed in I and contains t_0

— assume: $J \neq I$

- assume: $\sup J < \sup I$
- —- case: $\inf J > \inf I$ similar
- $t_1 := \sup J$
- $\gamma_0(t_1) = \gamma_1(t_1)$ (since J is closed)
- —- then also $[t_1, t_1 + \epsilon) \in J$ for some small $\epsilon > 0$ by local uniqueness
- contradiction!

apply Zorn to find maximal integral curves

if $\gamma: I \to M$ is maximal

- if $\sup I \neq \infty$ then $\lim_{t \uparrow \sup I} \gamma(t)$ does not exist
- if $\inf I \neq -\infty$ then $\lim_{t \downarrow \inf I} \gamma(t)$ does not exist

consider open subset U such that $\{0\} \times M \subseteq U \subseteq \mathbb{R} \times M$

- $\Phi: U \to M$ some map
- write $\Phi(t,m) := \Phi_t(m)$

Definition 2.101. Φ is called a flow of X if

- 1. $\Phi_0 = \mathrm{id}_M$
- 2. For every m in M the curve $t \mapsto \Phi_t(m)$ is an integral curve of X.

Proposition 2.102. There exists a unique maximal flow of X.

Proof. - $\Phi_{|U \cap \mathbb{R} \times \{m\}}$ is the maximal integral curve of X with $\gamma(0) = m$

- check smoothness and openness of U
- use smooth dependence of solutions of ODE on initial conditions

formulas: $\Phi_t \Phi_s = \Phi_{t+s}$ (where defined)

$$\begin{split} - \ \Phi_{-t} &= \Phi_t^{-1} \\ \frac{d}{dt}_{|t=0} \Phi_t^* f = X(f) \\ \frac{d}{dt}_{|t=0} \Phi_{t,*}(Y) &= [X,Y] \end{split}$$

Example 2.103. Newton Mechanics

M - position space of a mechanical system (encodes positions)

- TM phase space (encodes position and velocity)
- $X \in \mathcal{X}(TM)$ encodes law of involution
- integral curve $\gamma: I \to TM$ time evolution of the system with initial condition $\gamma(0) = Z$
- base point of Z in M is initial condition
- -Z itself is initial velocity

modelling circle

- Physical problem: find the correct M and X modelling the reality
- Mathematical problem: find γ
- Physical problem, verify model: compare prediction of the model with some measurement
- correct model if necessary
- Application: make predictions for not yet measured evolutions

Examples:

- mass point in force: $M=\mathbb{R}^3$
- X by Newtons Law

Example:

- rigid body
- $M = \mathbb{R}^3 \times SO(3)$ (center of mass and orientation in space)
- X by Newtons Law

2.5.3 Fundamental vector fields and actions

G - Lie group

- use notation $\mathfrak{g} := T_e G$

consider manifold M with right action $a:M\times G\to M$

- use $T_{(m,g)}(M \times G) \cong T_m M \oplus T_g G$ - $\mathfrak{g} \to T_m M \oplus \mathfrak{g} \xrightarrow{Ta(m,e)} T_m M \oplus \mathfrak{g} \xrightarrow{\operatorname{pr}_{T_m M}} T_m M$ - for X in \mathfrak{g} set $X^{\sharp}(m) := Ta(m,e)(X) \in T_m M$ — fundamental vector of the action at m for X - let m vary
- get fundamental vector field $X^{\sharp} \in \mathcal{X}(M)$

consider case G = M

- for $g \in G$ let L_g , R_g left- and right multiplication by g- $X^{\sharp}(h) = TL_g(e)(X)$.

$$\begin{split} L_g L_h &= L_{gh} \text{ implies} \\ - TL_g(h)(X^{\sharp}(h)) &= TL_g(h)TL_h(e)(X) = TL_{gh}(e)(X) = X^{\sharp}(gh) \\ - \text{ shorter } L_{q,*}X^{\sharp} &= X^{\sharp} \end{split}$$

Definition 2.104. The vector space ${}^{G}\mathcal{X}(G) := \{X \in \mathcal{X}(G) \mid (\forall g \in G \mid L_{g,*}X = X)\}$ is called the space of left invariant vector fields on G.

for X in $\mathfrak g$ have $X^{\sharp} \in {}^{G}\mathcal X(G)$ - left invariant vector field

- any left-invariant vector field is uniquely is determined by value at e
- have isomorphism ${}^G\mathcal{X}(G) \xrightarrow{\cong} \mathfrak{g}$ given by $X \mapsto X(e)$
- is inverse to $X \mapsto X^{\sharp}$
- $L_{h,*}[-,-] = [L_{h,*}, L_{h,*}]$ shows:

- -[-,-] restricts to ${}^{G}\mathcal{X}(G)$
- \mathfrak{g} becomes sub-Lie algebra of $\mathcal{X}(G)$
- get induced Lie algebra structure on ${\mathfrak g}$

Definition 2.105. \mathfrak{g} is called the Lie algebra of G.

- $X \mapsto X^{\sharp}$ is homomorphism of Lie algebras by definition
- $-[X,Y]^{\sharp} = [X^{\sharp},Y^{\sharp}]$

Example 2.106. V - vector space

- $GL(V) \subseteq End(V)$ open
- $T_eGL(V) = \operatorname{End}(V)$
- $X^{\sharp}(g) = TL_g(e)(X) = gX$
- [X, Y] = X(gY) Y(gX) = XY YX

consider general action of G on M

Lemma 2.107. The map $\mathfrak{g} \to \mathcal{X}(M)$, $X \mapsto X^{\sharp}$, is a homomorphism of Lie algebras.

Proof. consider map $f: M \times G \to M \times G, (m, g) \mapsto (mg, g)$

- is diffeomorphism, inverse $(m, g) \mapsto (mg^{-1}, g)$
- $f_*(0 \oplus X) = \mathrm{pr}_M^* X^{\sharp} \oplus \mathrm{pr}_G^* X$
- omit to write pr
- [(0 ⊕ X), (0 ⊕ Y)] = 0 ⊕ [X, Y]
 [(X[#] ⊕ X), (X[#] ⊕ X)] = f_{*}[(0 ⊕ X), (0 ⊕ Y)] = f_{*}(0 ⊕ [X, Y]) = [X, Y][#] ⊕ [X, Y]
 read of [X[#], Y[#]] = [X, Y][#]

 $\phi:G\to H$ - homomorphism of Lie groups $d\phi(e):\mathfrak{g}\to\mathfrak{h}$

Lemma 2.108. $d\phi(e)$ is homomorphism of Lie algebras.

Proof. get action of G on H by $(h,g) \mapsto h\phi(g)$

- for X in \mathfrak{h}
- $-X_{H}^{\sharp}$ fundamental vector field of *G*-action on *H*
- is in ${}^{H}\mathcal{X}(H)$
- $-X_H^{\sharp}(e) = d\phi(e)(X)$

$$d\phi(e)([X,Y]) = [X_H^{\sharp}, Y_H^{\sharp}](e) = [d\phi(e)(X), d\phi(e)(Y)]$$

 $L_g R_h = R_h L_g$ implies

- $R_{g,*}$ preserves ${}^{G}\mathcal{X}(G)$
- get (anti)action $\operatorname{Ad}:G\to GL(\mathfrak{g})$ by automorphisms of Lie algebras
- ad := $dAd(e) : \mathfrak{g} \to End(\mathfrak{g})$ (anti)homomorphism of Lie algebras

Lemma 2.109. ad(X)(Y) = -[X, Y].

Proof. Exercise?

 $X \in \mathfrak{g}$ - $X^{\sharp} \in {}^{G}\mathcal{X}(G)$

Lemma 2.110. The maximal integral curves of X have domain \mathbb{R}

Proof. $\gamma: I \to G$ integral curve of X^{\sharp} with $\gamma(t_0) = e$

- then $g\gamma$ is integral curve of X^{\sharp} with $\gamma(t_0) = g$

$$-(g\gamma)' = dL_g(\gamma(t))(X^{\sharp}(\gamma(t))) = X^{\sharp}(g\gamma(t))$$

 $\gamma: I \to G$ maximal integral curve

- assume: $t_0 := \sup I < \infty$

- then

$$\gamma(t) := \begin{cases} \gamma(t) & t \in I \\ \gamma(t_0)\gamma(t-t_0) & t \in I - t_0 \end{cases}$$
 is extension of integral curve to $I \cup (t_0 + I)$
- contradiction to maximality

 $\Phi:\mathfrak{g}\times\mathbb{R}\times G\to G,\qquad (X,t,g)=\Phi^X_t(g)$

- flow of X^{\sharp} starting at m at time t

Definition 2.111. We define the exponential map $\exp : \mathfrak{g} \to G$, $\exp(X) := \Phi_1^X(e)$.

Example 2.112. for GL(V)

- $\Phi_t^X(g) = g e^{tX}$

- $\exp(X) = e^X$ - usual matrix exponential

Example 2.113. consider G-action on M

- $X \in \mathfrak{g}$
- X_M^{\sharp} fundamental vector field

- $\gamma(t):=m\exp(tX)$ is an integral curve of $X_M^\sharp,$ hence defined on all of $\mathbb R$

– calculate derivative at t_0

$$-(\partial_s)_{s=t}m\exp(sX) = (\partial_s)_{s=0}m\exp(tX)\exp(sX) = X_M^{\sharp}(\gamma(t)) \qquad \Box$$

3 Connections

3.1 Linear connection on vector bundles bundles

3.1.1 Existence and classification

recall:

have differential $d: C^{\infty}(M) \to \Omega^{1}(M)$

- consider this as map $\mathcal{X}(M)\times C^\infty(M)\ni (X,f)\mapsto X(f):=d\!f(X)$

- generalizes to V-valued functions $h \in C^{\infty}(M, V)$:

- write $(X,h) \mapsto \nabla_X^{\text{triv}} h = X(h)$
- componentwise application of X
- uniquely characterized by

—
$$v^*(\nabla^{\operatorname{triv}}_X h) = X(v^*h)$$
 for every $v^* \in V^*$

formulas:

$$\nabla_{X+X'}^{\text{triv}}h = \nabla_X^{\text{triv}}h + \nabla_{X'}^{\text{triv}}h , \quad \nabla_{fX}^{\text{triv}}h = f\nabla_X h$$

 $-C^{\infty}(M)$ -linear in the first argument

$$\nabla^{\mathrm{triv}}_X(h+h') = \nabla^{\mathrm{triv}}_X h + \nabla^{\mathrm{triv}}_X h' \;, \quad \nabla^{\mathrm{triv}}_X(hf) = f \nabla^{\mathrm{triv}}_X h + X(f) h$$

 $- \mathbb{C}$ -linear and Leibnitz rule in the second argument

 $E \rightarrow B$ - vector bundle

- want to consider $\nabla : \mathcal{X}(M) \times \Gamma(B, E) \to \Gamma(B, E)$ with these properties:

Definition 3.1. A linear connection on E is a map $\nabla : \mathcal{X}(B) \times \Gamma(B, E) \to \Gamma(B, E)$ (written as $\nabla(X, s) = \nabla_X s$) which is $C^{\infty}(B)$ -linear in the first argument, \mathbb{C} -linear in the second and satisfies the Leibnitzrule $\nabla_X(fs) = f\nabla_X s + X(f)s$.

Example 3.2. E is trivial

- can choose trivialization $\psi: E \to B \times V$
- get identification $\Gamma(B, E) \cong C^{\infty}(B, V)$
- $-s \mapsto h_s : b \mapsto \operatorname{pr}_V \psi(s(b))$
- $-h \mapsto s_h : b \mapsto \psi^{-1}(b, h(b))$

define connection ∇ on E such that $h_{\nabla_X s} = \nabla^{\mathrm{triv}}_X h_s$

- ∇ depends on choice of trivialization
- ψ' second trivialization, get $\nabla', s \mapsto h'_s$ and $h \mapsto s'_h$
- $\psi'\psi^{-1}(u,v) = (u,\rho(u)(v))$ transition function

$$-\rho: B \to GL(V) \subseteq \operatorname{End}(V)$$

 $-h'_s = \rho \cdot h_s$

have $C^{\infty}(B)$ -module isomorphism

$$\Gamma(B, T^*M \otimes \operatorname{End}(E)) \cong \operatorname{Hom}_{C^{\infty}(B)}(\mathcal{X}(B) \otimes_{C^{\infty}(B)} \Gamma(B, E), \Gamma(B, E))$$

sends ω to map $X \otimes s \mapsto (b \mapsto \omega(b)(X(b)) \cdot s(b))$

write
$$\omega(X) \cdot s := \omega(X, s)$$

- define $\omega \in \Gamma(B, T^*M \otimes \operatorname{End}(E))$ such that $h_{\omega(X) \cdot s} = \rho^{-1} d\rho(X) \cdot h_s$
- $h' \cdot = \nabla^{\operatorname{triv}} h' = \nabla^{\operatorname{triv}}(ah) = a(\nabla^{\operatorname{triv}} h + a^{-1} d\rho(X)h) = ah_{\overline{\Sigma}} \cdot \dots \cdot (x) = h_{\overline{\Sigma}}$

$$-h'_{\nabla'_X s} = \nabla^{\mathrm{triv}}_X h'_s = \nabla^{\mathrm{triv}}_X (\rho h_s) = \rho(\nabla^{\mathrm{triv}}_X h_s + \rho^{-1} d\rho(X) h_s) = \rho h_{\nabla_X s + \omega(X) s} = h'_{\nabla_X s + \omega(X) s}$$

read of: $\nabla' = \nabla + \omega$

F		
1		
1		

b in B $X, X' \in C^{\infty}(B), s, s' \in \Gamma(B, E)$ - $\nabla_X s(b)$ is locally determined at b

Lemma 3.3. If X(b) = X'(b) and there exists a neighbourhood U of b such that $s_{|U} = s'_{|U}$, then $(\nabla_X s)(b) = (\nabla_{X'} s')(b)$.

Proof. Assume that $f, f' \in C^{\infty}(B)$ and $f(b) = 0, f' \equiv 0$ near B (in particular f'(b) but also all derivatives vanish)

$$- (\nabla_{fX}s)(b) = f(b)(\nabla_{fX}s)(b) = 0$$

- $(\nabla_X(f's))(b) = f'(b)(\nabla_Xs)(b) + X(f')(b)s(b) = 0$

under the assumption can write X - X' = fY and s - s' = f't for such a function

for $X \in T_b B$ define: $\nabla_X s := \nabla_{\tilde{X}} s(b)$ for any $\tilde{X} \in \mathcal{X}(B)$ with $\tilde{X}(b) = X$

Lemma 3.4. Linear connections exist and form an affine space over $\Gamma(B, T^*B \otimes \operatorname{End}(E))$.

Proof. $(U_{\alpha}, \psi_{\alpha})$ covering of B by local trivializations

- locally finite

- get connection ∇^{α} in U_{α} (e.g. the trivial one)
- choose partition of unity (χ_{α}) subordinate to covering
- define $\nabla = \sum_{\alpha} \chi_{\alpha} \nabla^{\alpha}$
- interpretation:
- $abla_X s(b) = \sum_lpha \chi_lpha(b) (
 abla^lpha_X s)(b)$
- if $b \in U_{\alpha}$, then $(\nabla_X^{\alpha} s)(b)$ is well-defined by Lemma 3.3

check:

 ∇ is linear connection:

Leibnitz:

$$\nabla_X(fs)(b) = \sum_{\alpha} \chi_{\alpha}(b) (\nabla_X^{\alpha} fs)(b)$$

= $f(b) \sum_{\alpha} \chi_{\alpha}(b) (\nabla_X^{\alpha} s)(b) + X(f)(b) \sum_{\alpha} \chi_{\alpha}(b) s(b)$
= $f \nabla_X(s)(b) + X(f) s(b)$

 ∇, ∇' two linear connections

- $\omega: \mathcal{X}(M) \times \Gamma(B, E) \to \Gamma(B, E)$
- $(X,s) \mapsto \nabla'_X s \nabla_X s$
- is $C^{\infty}(B)$ -binlinear
- find unique $\omega \in \Gamma(B, T^*B \otimes \operatorname{End}(E))$ such that $\omega(X) \cdot s = \nabla'_X s \nabla_X s$
- if ∇ is a connection and $\omega \in \Gamma(B, T^*B \otimes \operatorname{End}(E))$, then $\nabla + \omega$ is also a connection

consider pull-back situation

$$\begin{array}{c}
h^*E \xrightarrow{k} E \\
\downarrow \\
B' \xrightarrow{h} B
\end{array}$$

 ∇ - linear connection on E

Lemma 3.5. There is a unique linear connection $h^*\nabla$ on h^*E such that

$$k((h^*\nabla_{X'}h^*s)) = \nabla_X s$$

for any $b' \in B'$, $X' \in T_{b'}B'$ and X := Th(b')(X') and $s \in \Gamma(B, E)$.

Proof. ∇' any connection on E'

- write $h^* \nabla = \nabla' + \omega$

– determined ω from condition:

-
$$k(\omega(b')(X') \cdot (h^*s)(b')) = \nabla_Y s - k(\nabla'_{X'}h^*s)$$

- in order to see that ω is wel–defined:
- must show that right-hand side only depends on value of s:

$$\begin{split} &-b := h(b') \\ &- \text{ assume } s = ft \text{ with } f(b) = 0 \\ &- \nabla_Y ft - k(\nabla'_{X'}h^*(ft)) = Y(f)t(b') - k(X(h^*f)h^*t(b')) = (Y(f) - X(h^*f))t(b) = 0 \\ &- \text{ used } k(h^*t(b')) = t(b) \\ &- Y(f) = X(h^*f \text{ since } Y = Th(b')(X) \end{split}$$

- hence get ω as desired, is uniquely determined

3.1.2 Curvature

 $E \rightarrow B$ vector bundle

 ∇ - linear connection

- interpret ∇ as map $\Gamma(B,E)\to \Gamma(B,T^*B\otimes E)=\Omega^1(B,E)$

$$-s \mapsto (X \mapsto \nabla_X s)$$
$$s \in \Gamma(B, E)$$

Definition 3.6. *s* is called parallel of $\nabla s = 0$.

Example 3.7. consider ∇^{triv} on $C^{\infty}(B, V)$

 $\nabla^{\mathrm{triv}} h = 0$ is equivalent to the assertion that h is constant

fix $b \in B$ and $v \in V$

- there exists $h \in C^{\infty}(B, V)$ with h(b) = v and $\nabla^{\text{triv}} h = 0$

- take constant function with value \boldsymbol{h}

will see that a similar assertion for general connections on vector bundles is not true

in the following $X, Y \in C^{\infty}(B), s \in \Gamma(B, E)$

Lemma 3.8.

$$(X, Y, s) \mapsto F^{\nabla}(X, Y) \cdot s := \nabla_X(\nabla_Y s) - \nabla_Y(\nabla_X s) - \nabla_{[X, Y]} s$$

is C^{∞} -linear in each argument and therefore determines an element $F^{\nabla} \in \Omega^2(\operatorname{End}(E))$.

Proof.

$$\nabla_{fX}(\nabla_Y s) - \nabla_Y(\nabla_{fX} s) - \nabla_{[fX,Y]} s = f \nabla_X(\nabla_Y s) - f \nabla_Y(\nabla_X s) - f \nabla_{[X,Y]} s - Y(f) \nabla_X s + Y(f) \nabla_X s$$
$$= f(\nabla_X(\nabla_Y s) - \nabla_Y(\nabla_X s) - \nabla_{[X,Y]} s)$$

$$\begin{aligned} \nabla_X(\nabla_Y fs) - \nabla_Y(\nabla_X fs) - \nabla_{[X,Y]} fs &= \nabla_X(f\nabla_Y s + Y(f)s) - \nabla_Y(f\nabla_X s + X(f)s) \\ &\quad -f\nabla_{[X,Y]}s - [X,Y](f)s \end{aligned}$$
$$= f\nabla_X(\nabla_Y s) + X(f)\nabla_Y s + Y(f)\nabla_X s + X(Y(f))s \\ &\quad -f\nabla_Y(\nabla_X s) - Y(f)\nabla_X s - X(f)\nabla_Y s - Y(X(f))s \\ &\quad -f\nabla_{[X,Y]}s - [X,Y](f)s \end{aligned}$$
$$= f(\nabla_X(\nabla_Y s) - \nabla_Y(\nabla_X s) - \nabla_{[X,Y]}s)$$

Definition 3.9. F^{∇} is called the curvature of the connection ∇ .

Example 3.10. have $F^{\nabla^{\text{triv}}} = 0$

- this is just the equality

- X(Y(h)) - Y(X(h)) = [X, Y](h) - definition of commutator

Lemma 3.11. If $s \in \Gamma(B, E)$ is parallel, then $F^{\nabla} \cdot s = 0$.

Proof. clear

Corollary 3.12. Fix $b \in B$. If for any e in E there exists a parallel section with $s_e(b) = e$, then $F^{\nabla}(b) = 0$.

Proof. $(F^{\nabla}(X,Y)(b) \cdot e)(b) = (F^{\nabla}(X,Y) \cdot s_b)(b) = 0$

 $F^{\nabla+\omega}(X,Y) = F^{\nabla}(X,Y) + \nabla_X \omega(Y) - \nabla_Y \omega(X) - \omega([X,Y]) + [\omega(X),\omega(Y)] \quad (1)$

- define $\nabla \wedge \omega \in \Omega^2(M, \operatorname{End}(E))$ by

$$\nabla \omega(X,Y)(s) := \nabla_X(\omega(Y)s) - \nabla_Y(\omega(X)s) - \omega([X,Y])s$$

- is $C^{\infty}(B)$ -multilinear and therefore well-defined

$$F^{\nabla + \omega} = F^{\nabla} + \nabla \wedge \omega + [\omega, \omega]$$
⁽²⁾

Example 3.13. $E = B \times \mathbb{R}$

- identify $\operatorname{End}(\mathbb{R})$ with trivial bundle with fibre \mathbb{R}

- $\nabla = \nabla^{\mathrm{triv}} + \omega$

$$-\nabla^{\mathrm{triv}} \wedge \omega(X,Y) = X(\omega(Y)) - Y(\omega(X)) - \omega([X,Y]) = d\omega(X,Y)$$

- Cartan formula
- $-\left[\omega(X),\omega(Y)\right]=0$
- hence $F^{\nabla^{\mathrm{triv}}+\omega}=d\omega$

curvature can be non-trivial

Example 3.14. Physics language

- ∇ gauge field
- for trivialization of bundle $\nabla = \nabla^{\mathrm{triv}} + \omega$
- $-\omega$ gauge potential (depends on the trivialization, nota physical quantity)
- change of trivialization (gauge transformation):

$$-\omega' = \omega + \rho^{-1} d\rho$$
$$-F^{\nabla} = \nabla^{\text{triv}} \wedge \omega + [\omega, \omega] \text{ - field strength (measurable effect of the field)}$$

choice of bundle depends on what one wants to model

- usually additional structures preserved: complex structures, metrics

Example 3.15. if $\dim(B) \leq 1$, then curvature always vanishes

Lemma 3.16.
$$F^{h^*\nabla} = h^*F^{\nabla}$$

Proof. Exercise.

Example 3.17. $B \times V \rightarrow B$ - trivial bundle

- ∇^{triv} - trivial connection

$$-h_{\nabla_X^{\operatorname{triv}}s} = X(h_s)$$

- $P \in \Gamma(B, \operatorname{End}(E))$
- family of projections

$$-\operatorname{tr} P \in C^{\infty}(M)$$

- $-\operatorname{tr} P(b) = \dim E_b \in \mathbb{Z}$
- $-\operatorname{tr} P = \operatorname{rk} P$ locally constant
- $-F := \operatorname{im}(P) = \operatorname{ker}(1-P)$ is subbundle of E
- for $s \in \Gamma(B, F)$ have $\nabla_X^{\text{triv}} s \in \Gamma(B, E)$
- $-\nabla$ on F by: $\nabla_X s := P \nabla_X^{\text{triv}} s$
- check Leibnitz, use Ps = s

$$-\nabla_X(fs) = Pf\nabla_X^{\text{triv}}s + PX(f)s = f\nabla_X s + X(f)s$$

 ∇ is the projection of ∇^{triv} to X

calculate curvature

$$P^{2} = P$$
- $X(P^{2}) = X(P)P + PX(P) = X(P)$
- $PX(P)P + PX(P) = PX(P)$ hence $PX(P)P = 0$

$$\begin{split} F^{\nabla}(X,Y)s &= P\nabla_X^{\text{triv}} P\nabla_Y^{\text{triv}} s - P\nabla_Y^{\text{triv}} P\nabla_X^{\text{triv}} s - P\nabla_{[X,Y]}^{\text{triv}} s \\ &= PF^{\nabla^{\text{triv}}} s + PX(P)\nabla_Y^{\text{triv}} s - PY(P)\nabla_X^{\text{triv}} s \\ &= PX(P)(1-P)\nabla_Y^{\text{triv}} s - PY(P)(1-P)\nabla_X^{\text{triv}} s \\ &= PX(P)(1-P)\nabla_Y^{\text{triv}} Ps - PY(P)(1-P)\nabla_X^{\text{triv}} Ps \\ &= PX(P)(1-P)Y(P)Ps - PY(P)(1-P)X(P)Ps \end{split}$$

 $F^{\nabla}(X,Y) = PX(P)(1-P)Y(P)P - PX(P)(1-P)Y(P)P$ Example 3.18. $i:S_r^2 \subseteq \mathbb{R}^3$

- sphere of radius r
- $E=r^*T\mathbb{R}^3\to S^2_r$ trivial
- $P: E \rightarrow TS^2_r$ orthogonal projection
- get connection ∇ by projecting ∇^{triv}
- $P(\xi)(Z) = Z r^{-2} \langle \xi, Z \rangle \xi$

choose coordinates near northpole

$$\xi(x,y) \mapsto (x,y,\sqrt{r^2 - x^2 - y^2})$$

matrix for P

$$\begin{split} P(x,y) &= \begin{pmatrix} 1 - r^{-2}x^2 & 1 - r^{-2}yx & r^{-2}x\sqrt{r^2 - x^2 - y^2} \\ 1 - r^{-2}xy & 1 - r^{-2}y^2 & yr^{-2}\sqrt{r^2 - x^2 - y^2} \\ 1 - xr^{-2}\sqrt{r^2 - x^2 - y^2} & 1 - r^{-2}y\sqrt{r^2 - x^2 - y^2} & (x^2 + y^2)r^{-2} \end{pmatrix} \\ X(P)(0) &= r^{-1} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix} & Y(P)(0) = r^{-1} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix} \\ P(0) &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, & 1 - P(0) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ (1 - P(0))X(P)(0)P(0) &= r^{-1} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}, & (1 - P(0))Y(P)(0)P(0) = r^{-1} \begin{pmatrix} 0 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix} \\ F^{\nabla}(X,Y) &= P(0)Y(P)(0)(1 - P(0))X(P)(0)P(0) = r^{-2} \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \Box$$

3.1.3 Parallel transport

B=I - interval, $t_0\in I$

 $E \rightarrow B$ - vector bundle, $e_0 \in E_{t_0}$

 ∇ - connection

Lemma 3.19. There exists a unique parallel section $s \in \Gamma(I, E)$ such that $s(t_0) = e_0$.

Proof. - solve ODE $\nabla_{\partial t} s = 0$ with initial condition $s(t_0) = e_0$

local existence:

- analyse locally in trivialization

$$-\nabla = \nabla^{\mathrm{triv}} + \omega$$

$$-\nabla_{\partial_t} = \partial_t + \omega(\partial_t)$$

- consider s as V-valued function in t

$$-I \ni t \mapsto A(t) := \omega(t)(\partial_t) \in \operatorname{End}(V)$$

- solve linear system of ODE with non-constant coefficients

$$-\partial_t s = -A(t)s, \ s(t_0) = e_0$$

– is solvable and solution exists on I

global uniqueness

-
$$s, s'$$
 to solutions on I

- $J = \{s = s'\}$ is non-empty (contains t_0)
- is closed (solutions are continuous)
- from local uniqueness: J = I

let $J \subseteq I$ maximal interval on which parallel extension s exists

- argue: J = I using local uniqueness

 $h: I' \to I$ map

-
$$s \in \Gamma(I, E), \ \nabla s = 0$$

- then $h^*\nabla h^*s=0$

observe: let s_{e_0} be the parallel section with $s_{e_0}(t_0) = e_0$

- the map $e_0 \mapsto s_{e_0}$ is linear

 $E \to B$ - vector bundle

- ∇ connection
- $\gamma: [0,1] \to B$ curve
- get map $E_{\gamma(0)} \to E_{\gamma(1)}$
- get linear map $\|^{\gamma} : E_{\gamma(0)} \ni e \mapsto s_e(1) \in E_{\gamma_1}$
- here s_e parallel section of $\gamma^* E \to [0,1]$ (w.r.t. $\gamma^* \nabla$) with value s(0) = e

Definition 3.20. The map $\|^{\gamma}: E_{\gamma(0)} \to E_{\gamma(1)}$ is called the parallel transport along γ .

some simple properties of parallel transport:

reparametrization invariant:

- $\phi:[0,1]\rightarrow [0,1]$ smooth, endpoint preserving
- $\|^{\gamma} = \|^{\phi^*\gamma}$

every path can be reparametrized such that it is constant near endpoints

- can restrict to path's which are constant near endpoints
- can then concatenate

$$\gamma' \sharp \gamma = \begin{cases} \gamma(2t) & t \le 1/2\\ \gamma'(2t-1) & t > 1/2 \end{cases}$$

we have

$$\|\gamma'^{\sharp\gamma} = \|\gamma' \circ \|\gamma$$
$$\|\gamma^{-1} = \|\gamma^{,-1}$$

- set $\gamma_{\tau}(t) = \gamma(t\tau)$ - piece of curve from $\gamma(0)$ to $\gamma(\tau)$

- s any section of E

 $\|\gamma_{\tau}^{-1}s(\gamma(\tau)) \in E_{\gamma(0)}$ - depends on τ - how?

Lemma 3.21. $\partial_{\tau} \|^{\gamma_{\tau}^{-1}} s(\gamma(\tau)) = \|^{\gamma_{\tau}^{-1}} \nabla_{\gamma'(\tau)} s$

Proof. – is correct if s is parallel along γ (both sides vanish)

– more general section $s = f\sigma$ with σ parallel

$$\partial_{\tau} \|^{\gamma_{\tau}^{-1}}(f\sigma)(\gamma(\tau)) = f(\gamma(\tau)) \ \partial_{\tau} \|^{\gamma_{\tau}^{-1}} \sigma(\gamma(\tau)) + \gamma'(\tau)(f) \ \|^{\gamma_{\tau}^{-1}} \sigma(\gamma(\tau)) \|^{\gamma_{\tau}^{-1}}(\nabla_{\gamma'(\tau)}f\sigma) = f(\gamma(\tau)) \|^{\gamma_{\tau}^{-1}} \nabla_{\gamma'(\tau)}\sigma + \gamma'(\tau)(f) \|^{\gamma_{\tau}^{-1}} \sigma(\gamma(\tau))$$

– is correct for sections of the form $f\sigma$ with σ parallel along γ

– any section is \mathbb{R} -linear combination of such

from now one:

- consider $U\subseteq \mathbb{R}^n$ starlike rel0
- bundle $E \to U$
- $V := E_0$
- connection ∇
- define trivialization $\Psi: E \rightarrow U \times V$ by radial parallel transport
- $-x \in U$ yields curve $\gamma_x(t) := tx$ from 0 to x
- set $\Psi(e) := (\pi(e), \|^{\gamma_{\pi(e)}, -1}(e))$

Corollary 3.22. A vector bundle on a starlike domain in \mathbb{R}^n is trivial.

Proof. one can choose a connection

- then have radial trivialization

write

$$-\nabla = \nabla^{\mathrm{triv}} + \omega$$

- ω End(V)-valued one-form
- investigate Taylor expansion of ω at 0

Lemma 3.23. We have $\omega(tX)(Y) = \frac{t}{2}F^{\nabla}(0)(X,Y) + O(t^2)$.

Proof. - s radially parallel - $\nabla^{\text{triv}}s = 0$ by definition of ∇^{triv} consider X as constant vector field - $0 = \nabla_X s(tX) = \omega(tX)(X)s(tX)$ for all radially parallel s - $\omega(tX)(X) \equiv 0$ (as function of t)

- evaluate at t = 0
- $\omega(0)(X) = 0$ for all X
- derive at t = 0
- hence $X\omega(X)(0) = 0$

- polarization

X,Y - constant vector fields

$$-X\omega(Y) + Y\omega(X) = 0$$

$$-\frac{1}{2}(X\omega(Y) - Y\omega(X)) = X\omega(Y) = (\partial_t)_{|t=0}\omega(tX)(Y)$$
$$-\frac{1}{2}(\nabla \wedge \omega)(X,Y) = X\omega(Y)$$

— no commutator

$$- \text{ by } (2): \ \frac{1}{2} (\nabla \wedge \omega)(0)(X, Y) = \frac{1}{2} F^{\nabla}(0)(X, Y) - \omega(tX)(Y) = \frac{t}{2} F^{\nabla}(0)(X, Y) + o(t^2)$$

interpretation:

consider concatenation of linear paths:

$$0 \to tX \to tX + tY \to 0$$

- calculate parallel transport up to order t

 $- e \to e \to e - \omega(tX)(tY)e \to (e - \omega(tX)(tY)e)$ - alltogether $e \mapsto e - \frac{t^2}{2}F^{\nabla}(X,Y)s + O(t^3)$

Lemma 3.24. We have $\nabla = \nabla^{\text{triv}}$ if and only if $F^{\nabla} = 0$.

Proof. \Rightarrow

- clear

```
\Leftarrow
```

s - radially parallel section

- $\nabla_Y^{\text{triv}} s = 0$ by definition

- must show that $\nabla_Y s = 0$

– fix vector X in U

— show $\nabla_Y s(X) = 0$

 $-\nabla_X s(tX) = 0$ (s radially parallel)

– γ_{tX} curve from 0 to X

$$-\partial_t \|^{\gamma_{tX},-1} \nabla_Y s(tX) = \|^{\gamma_{tX},-1} \nabla_X \nabla_Y s(tX) = \|^{\gamma_{tx},-1} F^{\nabla}(X,Y) s(tX) = 0$$

- $\nabla_Y s_e(0) = 0$ (initial condition)

 $- \operatorname{set} t = 1$

hence $\nabla_Y s(tX) = 0$ for all t

 \boldsymbol{U} - starlike

- $x, y \in U$

- γ curve from x to y

Corollary 3.25. If $F^{\nabla} = 0$, then the parallel transport $\|^{\gamma} : E_x \to E_y$ is independent of γ .

3.1.4 Tensor algebra with connections, the first Chern class

 $E,F\to B$ vector bundles $\nabla^E,\nabla^F \text{ connections}$

Lemma 3.26. 1. There is a unique connection $\nabla^{E \oplus F}$ on $E \oplus F$ such that

$$\nabla^{E \oplus F}(s \oplus t) = \nabla^E s \oplus \nabla^F t \; .$$

2. There is a unique connection $\nabla^{E\otimes F}$ on $E\otimes F$ such that

$$\nabla^{E\otimes F}(s\otimes t) = \nabla^E s \otimes t + s \otimes \nabla^F t \; .$$

3. There is a unique connection $\nabla^{\text{Hom}(E,F)}$ such that

$$(\nabla^{\operatorname{Hom}(E,F)}\phi)(s) = \nabla^F(\phi(s)) - \phi(\nabla^E s)$$
.

Proof. Exercise. Here is a trick for the tensor product:

write $E \otimes F$ as $\operatorname{Hom}(E^*, F)$

- $E \to B$ vector bundle
- ∇ connection
- define $\nabla \wedge : \Omega^k(B, E) \to \Omega^{k+1}(B, E)$

$$\nabla \wedge \omega(X_0, \dots, X_k) := \sum_{i=0}^k (-1)^i \nabla_{X_i} \omega(X_0, \dots, \hat{X}_i, \dots, X_k) + \sum_{i < j} (-1)^{i+j} \omega([X_i, X_j], X_0, \dots, \hat{X}_i, \dots, \hat{X}_j, \dots, X_k)$$

Lemma 3.27. $\nabla \wedge \omega$ is well-defined.

Proof. must check:

- formula is alternating in (X_i)
- formula ist $C^{\infty}(B)$ -linear in the X_i

for 1-form:

$$\nabla \wedge \omega(X,Y) = \nabla_X \omega(Y) - \nabla_Y \omega(X) - \omega([X,Y])$$

for 2-form

$$\nabla \wedge \omega(X, Y, Z) = \nabla_X \omega(Y, Z) + \nabla_Y \omega(Z, X) + \nabla_Z \omega(X, Y) + - \omega([X, Y], Z) - \omega([Y, Z], X) - \omega([Z, X], Y)$$

for trivial bundle under $\Omega(B, B \times \mathbb{R}) \cong \Omega(B)$ and $\nabla = \nabla^{\text{triv}}$: $\nabla \wedge - = d$ - de Rham differential

calculate:

$$\nabla \wedge \nabla(s)(X,Y) = \nabla_X \nabla_Y - \nabla_Y \nabla_X s - \nabla_{[X,Y]} s = F^{\nabla} s$$

Corollary 3.28. $\nabla \wedge - : \Omega(M, E) \to \Omega(M, E)$ is a differential of a chain complex if and only if $F^{\nabla} = 0$

note:

- $\Omega(B, E)$ is $\Omega(B)$ - module - $\nabla(\omega \wedge s) = d\omega \wedge s + (-1)^{|\omega|} \omega \wedge \nabla^E s$ - $\nabla \wedge \nabla \wedge = F^{\nabla} \wedge$

 $E \rightarrow B$ - vector bundle

 ∇ connection

Lemma 3.29. (Bianchi identity)

$$\nabla^{\mathrm{End}(E)} \wedge F^{\nabla} = 0 \; .$$

Proof. verify locally

- can assume that commutators of X, Y, Z vanish

– take coordinate vector fields

- $F^{\nabla}(X,Y) = [\nabla_X, \nabla_Y]$

$$-\nabla_X^{\operatorname{End}(E)}F^{\nabla}(Y,Z) = [\nabla_X, [\nabla_Y, \nabla_Z]]$$

assertion is now Jacobi identity for endomorphisms of a vector space

- $E \rightarrow B$ vector bundle
- tr : $\operatorname{End}(E) \to B \times \mathbb{R}$ bundle morphism
- ∇ on E
- ∇^{triv} on $B\times \mathbb{R}$

Lemma 3.30. $\nabla^{\operatorname{Hom}(\operatorname{End}(E),B\times\mathbb{R})}\operatorname{tr} = 0$

Proof. - to show: $X(tr(\phi)) = tr(\nabla_X \phi)$

- local trivialization
- sections of E are vector valued functions
- sections of $\operatorname{End}(E)$ are matrix valued functions

$$\begin{aligned} &-\nabla^E = d + \omega \\ &-\nabla^{\operatorname{End}(E)}_X \phi = X(\phi) + [\omega(X), \phi] \\ &-\operatorname{tr}(\nabla^{\operatorname{End}(E)}_X \phi) = \operatorname{tr}(X(\phi)) + \operatorname{tr}([\omega(X), \phi]) = X(\operatorname{tr}(\phi)) \end{aligned}$$

- $E \rightarrow B$ vector bundle
- ∇ connection
- $\operatorname{tr} F^{\nabla} \in \Omega^2(B)$
- Lemma 3.31. $d \operatorname{tr} F^{\nabla} = 0$

Proof. - assume that mutual commutators of X, Y, Z vanish

- Cartan formula

 $\begin{array}{l} -d\mathrm{tr} F^{\nabla}(X,Y,Z) = X(\mathrm{tr} F^{\nabla}(Y,Z)) - Y(\mathrm{tr} F^{\nabla}(X,Z)) + Z(\mathrm{tr} F^{\nabla}(X,Y)) \\ - \mbox{get} \ d\mathrm{tr} F^{\nabla}(X,Y,Z) = \mathrm{tr}(\nabla_X^{\mathrm{End}(E)} F^{\nabla}(Y,Z) + \nabla_Y^{\mathrm{End}(E)} F^{\nabla}(Z,X) + \nabla_Z^{\mathrm{End}(E)} F^{\nabla}(X,Y)) = 0 \\ \mbox{with Bianchi} & \Box \end{array}$

dependence on the connection

$$\operatorname{tr} F^{\nabla+\omega} = \operatorname{tr} F^{\nabla} + \operatorname{tr}(\nabla \wedge \omega) + \operatorname{tr}[\omega, \omega]$$

$$- \operatorname{tr}[\omega, \omega] = 0$$

$$- \operatorname{tr}(\nabla \wedge \omega)(X, Y) = \operatorname{tr}(\nabla_X^{\operatorname{End}(E)} \omega(Y) - \nabla_Y^{\operatorname{End}(E)} \omega(X)) = X \operatorname{tr}(\omega(Y)) - Y \operatorname{tr}(\omega(X)) = (d \operatorname{tr} \omega)(X, Y)$$

$$- \operatorname{Cartan formula}$$

Definition 3.32. The vector space

$$H^n_{dR}(B) := \frac{\ker(d:\Omega^n(B) \to \Omega^{n+1}(B))}{\operatorname{im}(d:\Omega^{n-1}(B) \to \Omega^n(B))}$$

is called the nth de Rham cohomology of B.

Corollary 3.33. The class $c_1(E) := [tr F^{\nabla}] \in H^2_{dR}(B)$ is independent of the choice of the connection.

Definition 3.34. $c_1(E)$ is called the first Chern class of E.

if E is trivial

- E admits trivial connection ∇^{triv} with zero curvature
- conclude $c_1(E) = 0$

vice versa:

- if $c_1(E) \neq 0$, then E is not trivial.

Note: we will see later that $c_1(E) = 0$ always

3.1.5 Metrics and connections

 $E \rightarrow B$ - vector bundle - $h \in \Gamma(B, S^2(E^*))$ - $b \in B$ - $h(b) \in S^2(E_b^*)$ - symmetric bilinear form Definition 2.25 h is called a metric on E

Definition 3.35. h is called a metric on E if h(b) > 0 for every b in B.

Definition 3.36. The pair (E, h) is called an euclidean vector bundle.

Example 3.37. $\psi : E \cong B \times V$ - trivialization

- choose metric \boldsymbol{h}^{V} on V
- get metric on E such that ψ is fibrewise isometry

 $E \rightarrow B$ vector bundle

Lemma 3.38. There exists a metric on E.

Proof. cover B by local trivializations $(U_{\alpha}, \psi_{\alpha})$

- (χ_{α}) partition of unity
- get local metrics h^α
- define for $b \in B$ and $e, e' \in E_b$:

$$h(e,e') := \sum_{\alpha} \chi_{\alpha}(b) h^{\alpha}(b)(e,e')$$

- h is a metric on E

Lemma 3.39. Every subbundle $F \subset E$ has a complement.

Proof. choose metric on E

- $P \in \Gamma(B, \operatorname{End}(E))$
- P(b) orthogonal projection onto F
- $F^{\perp} := \ker(1-P)$

have deomposition $E \cong F \oplus F^{\perp}$

note: $h = h^F \oplus h^{F^{\perp}}$

 $E \rightarrow B$ vector bundle
- h^V metric on V
- h metric on E
- a frame $\phi: V \to E$ is orthogonal if it is an isometry
- get subbundle $O(E, h) \subseteq Fr(E)$ of orthogonal frames
- is a $O(V, h^V)$ principal bundle
- have isomorphism $O(E,h) \times_{O(V,h^V)} V \cong E$
- metric provides reduction of structure group to $O(V, h^V)$

vice versa: assume $E \cong P \times_{O(V,h^V)} V$

- get metric h such that $h([p,v],[p,v^\prime])=h^V(v,v^\prime)$

 ∇ - connection

Definition 3.40. *h* is compatible with ∇ if $\nabla^{S^2(E^*)}h = 0$.

also say: ∇ is a metric connection note: $\nabla_X^{S^2(E^*)}h(s,t) = X(h(s,t)) - h(\nabla_X s,t) - h(s,\nabla_X t)$ - hence compatibility is equivalent to relation

- $dh(s,t) = h(\nabla s,t) + h(s,\nabla t)$

Example 3.41. $E \cong B \times V$

h induced from h^{V}

- ∇^{triv} is compatible with h

Example 3.42. $E \rightarrow B$ vector bundle

- ∇ connection

- h metric, compatible with ∇

 $P \in \Gamma(B, \operatorname{End}(E))$ - family of projections

-
$$F = \operatorname{im}(P)$$

– have restricted metric h^F

- if $P^* = P$, then $P\nabla$ is compatible with h^F $dh^F(s,t) = h(\nabla s,t) + h(s,\nabla t) = h(\nabla s,Pt) + h(Ps,\nabla t) = h(P\nabla s,t) + h(s,P\nabla t) = h^F(\nabla^F s,t) + h(s,\nabla^F t)$

(E, h) euclidean vector bundle

 $\gamma:[0,1]\to B$ - a curve

- $\|^{\gamma}: E_{\gamma(0)} \to E_{\gamma(1)}$

Lemma 3.43. If ∇ and h are compatible, then \parallel^{γ} is isometric.

Proof. s,t - parallel sections along
$$\gamma$$

- $e = s(0), e' = s'(0)$
 $\partial_t h(s,s') = h(\nabla_{\gamma'(t)}s,s') + h(s,\nabla_{\gamma'(t)}s') = 0$
- $h(e,e') = h(s,s')(0) = h(s,s')(1) = h(\|^{\gamma}(e),\|^{\gamma}(e'))$

(E, h) euclidean vector bundle

- ∇ - connection

- define new connection characterized by

$$h(\nabla_X^* s, t) = X(h(s, t)) - h(s, \nabla_X t)$$

- $t \mapsto X(h(s,t)) h(s, \nabla_X t)$ is $C^{\infty}(B)$ -linear
- hence there is a unique section $\nabla^*_X s \in \Gamma(B, E)$ satisfying condition
- check that $(X,s) \mapsto \nabla_X^* s$ is a connection

Definition 3.44. ∇^* is called the adjoint connection.

 ∇ and h are compatible if and only if $\nabla=\nabla^*$

$$(\nabla^*)^* = \nabla$$

- interpret h as isomorphism $h: E \to E^*$

- then $\nabla^* = h^{-1} \nabla^{E^*} h$

define $\omega := \nabla^* - \nabla$

Definition 3.45. The connection $\nabla^u := \nabla + \frac{1}{2}\omega$ is called the orthogonalization of ∇

- ∇^u is compatible with h

Corollary 3.46. Every euclidean vector bundle admits a metric connection.

 $\nabla, \nabla + \omega$ are both compatible if and only $\omega(X) = -\omega(X)^*$ for all X

Lemma 3.47. If ∇ is compatible, then $F^{\nabla}(X,Y) = -F^{\nabla}(X,Y)^*$

Proof. Exercise

Corollary 3.48. For any vector bundle $E \to B$ we have $c_1(E) = 0$.

Proof. E has metric

- can choose metric connection
- $F^{\nabla}(X, Y)$ is antisymmetric

$$-\operatorname{tr} F^{\nabla^u}(X,Y) = 0$$

- cohomology class $c_1(E)$ contains 0

Remark 3.49. to get non-trivial cohomology classes consider

$$s(\nabla)_n := \operatorname{tr}(\underbrace{F^{\nabla} \wedge \dots F^{\nabla}}_{2n}) \in \Omega^{4n}(B)$$

- then $ds_n(\nabla) = 0$
- $s_n(E) := [s_n(\nabla)] \in H^{4n}_{dR}(B)$ does not depend on ∇
these classes may indeed be non-trivial

3.2 Connection of fibre bundles

3.2.1 Horizontal bundles for submersions

 $\pi: M \to B$ smooth map

Definition 3.50. π is called:

1. a submersion if $T\pi(m): T_m M \to T_{\pi(m)} B$ is surjective for every m in M.

2. an immersion if $T\pi(m): T_m M \to T_{\pi(m)} B$ is injective for every m in M.

Example 3.51. $\pi: M \to B$ - a locally trivial fibre bundle

- then π is a submersion

consider submersion $\pi: M \to B$

- $D\pi: TM \to \pi^*TB$ surjective

- $\dim(\ker(D\pi))$ has locally constant rank

- $T^v \pi := \ker D\pi \to M$ is a vector bundle bundle

Definition 3.52. The subbundle $T^{\nu}\pi$ of TM is called the vertical subbundle of π .

Definition 3.53. A horizontal bundle for π is a subbundle T^hM of TM such $D\pi_{|T^hM}$: $T^hM \to \pi^*TB$ is an isomorphism.

observe: assume that $T^h M$ is horizontal bundle

 $T^v\pi\oplus T^hM\to TM$ is bundle isomorphism

- injective: $T^v \pi \cap T^h M = 0$ (since otherwise $D\pi_{|T^h M}$ not injective)

- surjective: both bundles have the same dimension

Lemma 3.54. Horizontal bundles for $\pi : M \to B$ exist.

Proof. choose metric on TM

- get notion of orthogonal complement

- take $T^hM:=T^v\pi^\perp$

Example 3.55. $\pi : E \to B$ vector bundle

- have canonial isomorphism $i: \pi^* E \cong T^v \pi$
- fix base point $e \in E_b$
- fibre of $(\pi^* E)_e$ is canonically isomorphic to E_b
- for $f \in (\pi^* E)_e$ consider curve $t \mapsto e + tf$ in E
- tangent vector i(e)(f) at t = 0 is element of TE
- $-\pi(e+tf) = b$ for all t implies $T\pi(e)(i(e)(f)) = 0$
- hence $i(e)(f) \in T^v \pi$

check in chart: i is a bundle isomorphism

```
\nabla - connection on E
```

- will see that it determines a horizontal subbundle $T^{h,\nabla}E$
- $-e \in E_b$
- describe $T_e^{h,\nabla} E$
- we can find a section s with s(b) = e and $\nabla s(b) = 0$
- only in the single point b, in general not on a larger subset
- in local trivialization:
- $-\!\!-\!\!\nabla = \nabla^{\mathrm{triv}} + \omega$
- --- $\nabla_X s(b) = 0$ means $X(s)(b) + \omega(b)(X)e = 0$ --- $s(b+X) = s(b) - \omega(b)(X)e + O(X^2)$ --- $Ts(b)(X) = -\omega(b)(X)$ (does not depend on choice of s) --- define $T_e^{h,\nabla}E = Ts(b)(T_bB)$ --- $\pi \circ s = \text{id implies } D\pi(e)_{|T_e^{h,\nabla}E}$ is isomorphism note: can recover ∇ from $T^{h,\nabla}M$

 $\pi: M \to B$ submersion - $T^h M$ given - can define horizontal lift of vectors and vector fields.

b in B

- $m \in M_b$
- $X \in T_b B$

Definition 3.56. $X^h \in T_m M$ is called the horizontal lift of X if $T\pi(m)(X^h) = X$ and $X^h \in T_m^h M$.

- X^h is uniquely determined by X

-
$$X^h = (T\pi_{|T^h_m M})^{-1}(X)$$

consider now vector fields

-
$$X \in \mathcal{X}(B)$$

- define $X^h \in \mathcal{X}(M)$ such that $X^h(m)$ is the horizontal lift of $X(\pi(m))$

Definition 3.57. X^h is called the horizontal lift of X.

- get map $\mathcal{X}(B) \to \mathcal{X}(M), X \mapsto X^h$ horizontal lift
- ist $C^{\infty}(B)$ -linear: $(fX)^h = \pi^*(f)X^h$

consider curve $\gamma: I \to B$

Definition 3.58. A horizontal lift of γ is a curve $\tilde{\gamma}: I \to M$ with

- 1. $\pi \circ \tilde{\gamma} = \gamma$
- 2. $\gamma'(t)$ is horizontal for every $t \in I$

consider deviation from being a Lie algebra homomorphism

Lemma 3.59. The map $\mathcal{X}(B) \times \mathcal{X}(B) \to \Gamma(M, T^{v}\pi)$

$$\mathcal{X}(B) \times \mathcal{X}(B) \ni (X, Y) \mapsto T(X, Y) = [X^h, Y^h] - [X, Y]^h$$

takes values in $\Gamma(M, T^v \pi)$ and is $C^{\infty}(B)$ -linear.

Proof. $C^{\infty}(B)$ -linearity

$$T(fX,Y) = [(fX)^{h}, Y^{h}] - [fX,Y]^{h}$$

= $[\pi^{*}(f)X^{h}, Y^{h}] - [fX,Y]^{h}$
= $\pi^{*}(f)[X^{h}, Y^{h}] - f[X,Y]^{h} - Y^{h}(\pi^{*}(f))X^{h} + \pi^{*}(Y(f))X^{h}$
= $\pi^{*}(f)T(X,Y)$

used: $Y^h(\pi^*(f))(m) = T\pi(m)(Y^h(m))(f) = Y(\pi(m))(f) = \pi^*(Y(f))(m)$ - hence $Y^h(\pi^*(f)) = \pi^*(Y(f))$

verticality:

must show that $D\pi(m)(T(X,Y))(m) = 0$ for all m

- suffices to show that $T(X,Y)(\pi^*(f)) = 0$ for all $f \in C^{\infty}(B)$

$$\begin{split} T(X,Y)(\pi^*(f)) &= [X^h,Y^h](\pi^*(f)) - [X,Y]^h(\pi^*(f)) \\ &= X^h(Y^h(\pi^*(f)) - Y^h(X^h(\pi^*(f))) - \pi^*([X,Y](f)) \\ &= X^h(\pi^*(Y(f))) - Y^h(\pi^*(X(f))) - \pi^*([X,Y](f)) \\ &= \pi^*(X(Y(f))) - \pi^*(Y(X(f))) - \pi^*([X,Y](f)) \\ &= 0 \end{split}$$

- E		ъ.
		L
		L
		L

Definition 3.60. T is called the curvature of $T^h\pi$

thus $T \in \Gamma(M, \Lambda^2 T^h M \otimes T^v \pi)$ **Example 3.61.** Example: $M = B \times F$ - $T^h M = \operatorname{pr}^* TB \subseteq TB \boxplus TF \cong M$ - T = 0 $m \in M_b, X, Y \in T_b B$

- then $T(m)(X,Y) \in T_m^v(X,Y)$ is defined

Definition 3.62. T is called the curvature of the horizontal subbundle T^hM .

Example 3.63. $\pi: E \to B$ vector bundle

- ∇ - connection

- $T^{h,\nabla}M$ - associated horizontal subbundle

Lemma 3.64. For $e \in E_b$ and $X, Y \in T_b B$ we have $T(X, Y)(e) = -i(e)(F^{\nabla}(b)(X, Y)(e))$

Proof. - have explicit formula for horizontal lift in coordinates:

- notation for coordinates:
- for E: (b, v),
- $-b \in \mathbb{R}^n$ base coordinate,
- $\ v \in V$ fibre coordinate
- for TE: (b, v, β, ξ) ,
- $-b, \beta \in \mathbb{R}^n$,
- $-v, \xi \in V$
- $\pi(b, v) := b$

-
$$T\pi(b,v)(\beta,\xi) = (b,\beta)$$

- $(b,\beta) \in T_n B$
- vertical vectors: $(b, v, 0, \xi) \in T^v_{(b,v)}E$
- $-\nabla = \nabla^{\mathrm{triv}} + \omega$
- horizontal lift of (b,β) at (b,v): $(b,\beta)^h = (b,v,\beta,-\omega(b)(\beta)(v))$
- for coordinate field: $b \mapsto (b, \beta)$ (consider β as constant function in b)
- horizontal lift: $(b, v) \mapsto (b, v, \beta, -\omega(b)(\beta)(v))$

rite in the target [b, v, 0, ...]

$$\begin{split} T(b,v)((b,\beta),(b,\beta')) &= [(b,v) \mapsto (b,v,\beta,-\omega(b)(\beta)(v)),(b,v) \mapsto (b,v,\beta',-\omega(b)(\beta')(v))] \\ &= -\beta(\omega(-)(\beta')(v)) + \beta'(\omega(-)(\beta)(v)) + \\ &\omega(b)(\beta')(\omega(b)(\beta)(v)) - \omega(b)(\beta)(\omega(b)(\beta')(v)) \\ &= (\nabla \wedge \omega)(b)(\beta',\beta)(v) + [\omega(b)(\beta'),\omega(b)(\beta)](v) \\ &= -F^{\nabla}(b)((b,\beta),(b,\beta'))(v) \end{split}$$

consider pull-back situation

$$\begin{array}{c} M' \xrightarrow{k} M \\ \downarrow_{\pi'} & \downarrow_{\pi} \\ B' \xrightarrow{h} B \end{array}$$

connection $T^h\pi$ induces connection $T^h\pi'$ by pull-back

 $dk:TM'\to k^*TM\cong T^vM\oplus T^hM$

- restricts to isomorphism $dk_{|T^v\pi'}: T^v\pi' \to T^v\pi$

- T^hM' characterized by: $T^h_{m'}M' = (Dk(m'))^{-1}(T^h_{k(m')}M')$
- then $dk=dk_{|T^v\pi'}\oplus dk_{T^h_{m'}M'}:T^v\pi'\oplus T^hM'\to T^v\pi\oplus T^hM$
- write $T^h M' = h^* T^h M$

obervation:

Corollary 3.65. If γ' is horizontal curve in M', then $k \circ \gamma'$ is horizontal in M

Definition 3.66. A morphism $\pi : M \to B$ between manifold (topological spaces) is called proper if for every compact $K \subseteq B$ the preimage $\pi^{-1}(K)$ is compact.

Example 3.67. $\pi: M \to B$ a fibre bundle with compact fibre F

- then π is proper

 $\pi: (0, \infty) \to \mathbb{R}$ is not proper - $\pi^{-1}([-1, 1]) = (0, 1]$ is not compact

If M is compact, then every map out of M is proper.

- $\pi: M \to B$ submersion
- $T^h {\cal M}$ horizontal bundle
- $\gamma: I \to B$ curve
- $t_0 \in I$

Proposition 3.68. If π is proper, then for every $m_0 \in M_{\gamma(t_0)}$ there exists a unique horizontal lift $\tilde{\gamma}$ of γ with $\tilde{\gamma}(t_0) = m_0$.

- *Proof.* assume $B = I \subseteq \mathbb{R}$ interval
- $\partial_t \in \mathcal{X}(I)$
- $\partial_t^h \in \mathcal{X}(M)$
- $\tilde{\gamma}$ must be integral curve of ∂_t^h
- therefore uniqueness

existence

claim: the integral curve γ^h of ∂^h_t with $\gamma^h(t_0) = m_0$ exists on I

by contradiction

- $J \subseteq I$ max. existence interval of γ^h
- $-\pi \circ \gamma^h(t) = t$
- assume $\sup(J) = t < \sup(I)$
- from ODE theory: $\gamma^h(s)$ does not have accumulation point for $s\uparrow t$
- chose $\epsilon > 0$ such that $[t \epsilon, t] \subseteq I$
- note that for $s \ge t \epsilon$ we have $\gamma^h(s) \in \pi^{-1}([t \epsilon, t])$

- $-\pi^{-1}([t-\epsilon,t])$ is compact
- hence such accumulation point exists
- contradiction

general base

- pull-back along $\gamma: I \to B$

$$\begin{array}{ccc} M' & \stackrel{k}{\longrightarrow} M \\ & \downarrow_{\pi'} & \downarrow_{\pi} \\ I & \stackrel{\gamma}{\longrightarrow} B \end{array}$$

- find horizontal lift $\tilde{\gamma}':I\to M'$
- then $\tilde{\gamma}=k\circ\tilde{\gamma}'$

Example 3.69. properness is necessary:

here is a counterexample

$$\begin{aligned} &-(0,\infty) \to \mathbb{R} \\ &-t_0 = 1 \\ &-\gamma^h(t) := t \text{ exists only on } (0,\infty) \text{ (and not on } \mathbb{R}) \end{aligned}$$

consider parallel transport

```
\pi: M \to B - submersion
```

 $T^h {\cal M}$ given

- $\gamma:[0,1] \rightarrow B$ - a curve

- pull-back

- get induced $\gamma^* T^h M$
- $m_0 \in M_{\gamma(0)}$

assume that π is proper (or γ^h exists for other reasons)

- can define horizontal lift of γ with start in m_0
- take $k\circ\gamma^h$
- denote now also as γ^h
- define $\|\gamma(m_0) := \gamma^h(1)$

Definition 3.70. The map $\|^{\gamma} : M_{\gamma(0)} \to M_{\gamma(1)}$ is called the parallel transport along γ with respect to $T^h M$.

here is a list of (essentially obvious) properties

- $\|^{\gamma}: M_{\gamma(0)} \to M_{\gamma(1)}$ is diffeomorphism
- is reparametrization invariant
- $\|\gamma'^{\sharp\gamma} = \|\gamma' \circ \|\gamma$ $\|\gamma^{-1} = \|\gamma, -1$
- if T=0, then $\|^{\gamma}$ is deformation invariant in γ

Lemma 3.71. A proper submersion $M \to I$ is a trivial bundle.

Proof. use parallel transport fix $t_0 \in I$ for $t \in i$ define $\gamma_t(u) := (1-u)t_0 + ut$ - curver from t to t_0

define

$$\Psi: M \times I \times M_{t_0}$$
$$- \Psi(m) := \|^{\gamma_{\pi(m)}}(m)$$

Lemma 3.72 (Ehresmann Theorem). A proper submersion is a locally trivial fibre bundle.

Proof. - choose connection

- b in B

- choose chart at B with range a starlike domain in \mathbb{R}^n
- use radial parallel transport to trivialize

-
$$M \to B \times M_b$$

- $M \ni m \mapsto (\pi(m), \|^{\gamma_{\pi(m)}, -1}(m)) \in B \times M_b$
- here γ_x is curve $t \mapsto tx$ from 0 to x

3.2.2 Connections on principal bundle

- ${\cal G}$ Lie group
- $\pi: P \rightarrow B$ a G-principal bundle
- have right G-action $g \mapsto R_g$
- can ask that horizontal bundles are G-invariant.

Definition 3.73. A principal bundle connection on $\pi : P \to B$ is a *G*-invariant horizontal bundle.

- \mathfrak{g} Lie algebra of G
- $X\in \mathfrak{g}$ $X^{\sharp}\in \mathcal{X}(P)$ fundamental vector field of action
- $-X^{\sharp}(p) = (\partial_{t})_{|t=0} R_{\exp(tX)}(p)$
- in trivialization $P = B \times G$
- interpret X in ${}^{G}\mathcal{X}(G)$
- have $X^{\sharp}(b,g) = 0 \oplus X(g) \in T_b B \oplus T_g G \cong T_{(b,g)}(B \times G)$
- the values of $X^{\sharp}(p)$ for all $X \in \mathfrak{g}$ generates $T^{v}\pi$
- G acts on itself by conjugation: $(g,h)\mapsto \alpha_g(h):=g^{-1}hg$
- action fixes \boldsymbol{e}
- G acts on $T_eG = \mathfrak{g}$ by Lie algebra homomorphism $\operatorname{Ad}(g) := T\alpha_g(e) \in \operatorname{End}(\mathfrak{g})$

- by definition: $(\partial_t)_{|t=0}g^{-1}\exp(tX)g=\operatorname{Ad}(g^{-1})(X)$

$$TR_g(p)(X^{\sharp}(p)) = TR_g(\partial_t)|_{t=0}R_{\exp(tX)}(p)$$

= $(\partial_t)|_{t=0}R_gR_{\exp(tX)}(p)$
= $(\partial_t)|_{t=0}R_{g^{-1}\exp(tX)g}(pg)$
= $(\operatorname{Ad}(g^{-1}(X))^{\sharp}(pg))$

write ${\mathfrak g}$ instead of $P\times {\mathfrak g}$

define form $\omega : \Omega^1(M, \mathfrak{g})$ by the following conditions:

- $T^h P = \ker(\omega)$
- $\omega(p)(X^{\sharp}(p)) = X$ for all $X \in \mathfrak{g}$
- this determines $\omega(p)$ since $T_pP \cong T_p^hP \oplus T_p^v\pi$ and $X \mapsto X^{\sharp}(p), \mathfrak{g} \to T_p^v\pi$ is isomorphism
- G-invariance of T^hP implies G-invariance of ω

Lemma 3.74. For every g in G we have $R_g^*\omega = \operatorname{Ad}(g)\omega$

Proof. $Ad(g) \in End(\mathfrak{g})$ is applied to the values

for horizontal vectors: $H \in T_p^h P$ $(R_g^*\omega)(p)(H) = \omega(pg)(TR_g(X)) = 0$ since $TR_g(X) \in T_{pg}^h P$ by invariance of $T^h P$ for vertical vectors:

$$(R_g^*\omega)(p)(X^{\sharp}(p)) = \omega(pg)(TR_g(p)X^{\sharp}(p))$$

= $\omega(pg)((\operatorname{Ad}(g^{-1})(X))^{\sharp}(pg)) = \operatorname{Ad}(g^{-1})(X)$
= $\operatorname{Ad}(g^{-1})(\omega(p)(X^{\sharp}(p)))$

Definition 3.75. A form $\omega \in \Omega^1(P, \mathfrak{g})$ with

1. $\omega(p)(X^{\sharp}(p)) = X \text{ for all } X \in \mathfrak{g} \text{ and } p \in P$

2.
$$R_g^*\omega = \operatorname{Ad}(g^{-1})\omega$$
 for all g in G

is called a connection 1-form.

Connection one-form provide an alternative description of principal bundle connections

- T^hP determines ω
- ω determines $T^h P$ by $T^h P = \ker(\omega)$

Maurer-Cartan form

$$\theta \in \Omega^1(G, \mathfrak{g})$$

- is the unique principal bundle connection 1-form on $G \to \ast$
- θ is determined by: for X left invariant: $\theta(X) = X(e)$

$$-\theta(g) = dL_{q^{-1}}(g)$$

- write often as $g^{-1}dg$

leads to

$$d(g^{-1}dg) = -g^{-1}dg \wedge g^{-1}dg = [g^{-1}dg, g^{-1}dg]$$

structure equation:

$$d\theta = [\theta, \theta]$$

 $P \rightarrow B$ - G - principal bundle

 $p \in P$ induces map $i_p : G \to P, i_p(g) := pg$

Corollary 3.76. $\omega \in \Omega^1(P, \mathfrak{g})$ is a connection 1-form if and only if $i_p^* \omega = \theta$ for every p in P.

we say that ω is fibrewise Mauerer-Cartan

P - G-principal bundle

write $\operatorname{Ad}(P) := P \times_G \mathfrak{g}$ for associated vector bundle

Lemma 3.77. Principal bundle connections exists and from an affine space over $\Omega^1(B, \operatorname{Ad}(P))$

Proof. $P = B \times G$ trivial

- $\mathrm{pr}_G^*\theta$ is connection 1-form
- $\pi: P \to B$ general
- choose local trivializations $(U_{\alpha}, \Psi_{\alpha})$
- get principal bundle connections $\omega_{\alpha} \in \Omega^1(\pi^{-1}(U_{\alpha}), \mathfrak{g})$
- pull-back of Maurer-Cartan form
- choose partition of unity (χ_{α})

$$-\omega(p) := \sum_{\alpha} \chi(\pi(p))\omega_{\alpha}(p)$$

- check that it is fibrewise Maurer-Cartan

 ω,ω' - two connection 1-forms

$$-\delta := \omega' - \omega \in \Omega^1(P, \mathfrak{g})$$

- $\delta_{|T^v\pi} = 0$
- define $\bar{\delta}(b) \in T_b^*B \otimes \operatorname{Ad}(P)$

-
$$\overline{\delta}(b)(X) = [p, \delta(p)(\tilde{X})]$$
 for any $p \in P$ and lift \tilde{X} in $T_p P$

- indepence of lifts: two lift differ by vertical vectors
- independence of p:

$$-[pg,\delta(pg)(TR_g(X))] = [pg,\operatorname{Ad}(g^{-1})(\delta(p)(X))] = [p,\delta(p)(X)]$$

- get $\bar{\delta} \in \Omega^1(B, \operatorname{Ad}(P))$

– vice versa: $\bar{\delta}$ given

- if ω is connection 1-form and $\bar{\delta} \in \Omega^1(B, \mathrm{Ad}(P))$
- define $\delta(p)(\tilde{X}):=Z\in\mathfrak{g}$ such that $[p,Z]=\bar{\delta}(\pi(p))(T\pi(X))$
- check: $\omega' := \omega + \delta$ is connection 1-form

note: if G is not compact then $\pi: P \to B$ is not proper

- so the general result about existence horizontal lifts of curves do not apply

- but such lifts exist

Lemma 3.78. Horizontal lifts of curves with respect to a principal bundle connection exist.

- $\textit{Proof.}\ \pi: P \rightarrow I$ G-principal bundle
- $T^h {\cal P}$ principal bundle connection
- $\gamma: J \to I$ max. horizontal lift
- assume $\sup(J) = t_1 < \sup(I)$

choose any point $p \in P_t$

- there is horizontal curve $\sigma:(t-\epsilon,t+\epsilon)\to P$ with $\sigma(t)=p$
- for any g in G: σg is also horizontal
- there is g in G such that $\gamma(t-\epsilon/2) = \sigma(t-\epsilon/2)g$
- can prolong γ up to $t + \epsilon$ with $s \mapsto \sigma(s)g$
- contradiction to maximality of J

consider curvature

 $T \in \Gamma(P, \Lambda^2 \pi^* T^* B \otimes T^v P)$

- want to express this in terms of ω

 set

$$\begin{split} \Omega &:= d\omega + [\omega, \omega] \in \Omega^2(P, \mathfrak{g}) \\ - \Omega(X, Y) &= X(\omega(Y)) - Y(\omega(X)) + \omega([X, Y]) - [\omega(X), \omega(Y)] \end{split}$$

Lemma 3.79. *1.* $R_g^*\Omega = Ad(g^{-1})\Omega$

- 2. If X is vertical, then $\Omega(X, Y) = 0$
- 3. $\omega(p)(T(p)(X,Y)) = -\Omega(p)(X^h,Y^h)$ for $X, Y \in T_{\pi(p)}B$

Proof. use

- $\operatorname{Ad}(g)$ is Lie algebra auto of ${\mathfrak g}$

- $R_g^* d = d R_g^*$

$$\begin{split} R_g^* \Omega &= R_g^* (d\omega + [\omega, \omega]) \\ &= dR_g^* \omega + [R_g^* \omega, R_g^* \omega]) \\ &= d\operatorname{Ad}(g^{-1})\omega + [\operatorname{Ad}(g^{-1})\omega, \operatorname{Ad}(g^{-1})\omega]) \\ &= \operatorname{Ad}(g^{-1})d\omega + \operatorname{Ad}(g^{-1})[\omega, \omega] \\ &= \operatorname{Ad}(g^{-1})\Omega \end{split}$$

X in \mathfrak{g}

 $\omega(X^\sharp) = X$ - constant function with value X

$$\begin{aligned} -X^{\sharp}(f) &= (\partial_{t})_{|t=0} R^{*}_{\exp(tX)} f \\ - [X^{\sharp}, Y] &= (\partial_{t})_{|t=0} D R^{-1}_{\exp(tX)} (R^{*}_{\exp(tX)}(Y)) \\ - R^{*}_{g}(\omega(Y)) &= R^{*}_{g}(\omega) (D R^{-1}_{g}(R^{*}_{g}(Y))) \\ - (\partial_{t})_{|t=0} A d(\exp(tX)(Y')) &= -[X, X'] \\ \Omega(X^{\sharp}, Y) &= X^{\sharp}(\omega(Y)) - Y(\omega(X^{\sharp})) - \omega([X^{\sharp}, Y]) + [\omega(X^{\sharp}), \omega(Y)] \\ &= X^{\sharp}(\omega(Y)) - Y(X) + \omega([X^{\sharp}, Y]) + [X, \omega(Y)] \end{aligned}$$

$$= (\partial_t)_{|t=0} R^*_{\exp(tX)}(\omega(Y)) - \omega((\partial_t)_{|t=0} D R^{-1}_{\exp(tX)}(R^*_{\exp(tX)}(Y))) + [X, \omega(Y)]$$

$$= (\partial_t)_{|t=0} A d(\exp(tX)) \omega(Y) + \omega((\partial_t)_{|t=0} D R^{-1}_{\exp(tX)}(R^*_{\exp(tX)}(Y)))$$

$$-\omega((\partial_t)_{|t=0} D R^{-1}_{\exp(tX)}(R^*_{\exp(tX)}(Y))) + [X, \omega(Y)]$$

$$= -[X, \omega(Y)] + [X, \omega(Y)]$$

$$= 0$$

use that ω vanishes on horizontal vectors:

-
$$\Omega(X^h, Y^h) = d\omega(X^h, Y^h) = -\omega([\tilde{X}, \tilde{Y}])$$

- $\omega(T(X, Y)) = \omega([X^h, Y^h])$

 $\rho: G \to GL(V)$ any representation

- write also $\rho:\mathfrak{g}\to \operatorname{End}(V)$ for derivative at e (Lie algebra homomorphism)

 $-P(V) := P \times_G V$ associated bundle

- define $\Omega^n(P,V)^{h,G}$ (horizontal and G-invariant sections) as the subspace of $\Omega^n(P,V)$ of sections with:

1. $\alpha(X_1, \ldots, X_n) = 0$ if X_1 is vertical

2.
$$R_g^* \alpha = \rho(g^{-1}) \alpha$$

Lemma 3.80. We have a bijection between

$$\Omega^n(P,V)^{h,G} \stackrel{\cong}{\to} \Omega^n(B,P(V)) , \quad \omega \mapsto \bar{\omega}$$

such that

$$\bar{\alpha}(b)(X_1,\ldots,X_n) = [p,\alpha(p)(\tilde{X}_1,\ldots,\tilde{X}_n)]$$

for any $p \in P_b$ and lifts \tilde{X}_i of X_i

Proof. well defined:

- independent of choice of lifts:

- two lifts differ by vertical vector

- $-\alpha$ vanishes on vertical vectors
- independent on \boldsymbol{p}

$$-p'=pG$$

– can take lifts
$$R_{g,*} ilde{X}_i$$

$$-\alpha(pg)(R_{g,*}\tilde{X}_1,\ldots,R_{g,*}\tilde{X}_n) = \rho(g^{-1})\alpha(p)(\tilde{X}_1,\ldots,\tilde{X}_n)$$
$$-[pg,\rho(g^{-1})v] = [p,v]$$

inverse map:

$$\alpha(p)(\tilde{X}_1, \dots, \tilde{X}_n) = Z \text{ where}$$

- $\bar{\alpha}(X_1, \dots, X_n) = [p, Z]$
- $X_i = T\pi_*(\tilde{X}_i)$

$R^{\omega} \in \Omega^2(B, \operatorname{Ad}(P))$ correspond to Ω .

Definition 3.81. $R^{\omega} \in \Omega^2(B, \operatorname{Ad}(P))$ is called the curvature of the principal bundle connection ω

note: $R^{\omega+\delta} = R^{\omega} + \nabla \wedge \delta + [\delta, \delta]$

3.2.3 Associated vector bundles

 $\rho: G \to \operatorname{End}(V)$ representation

- $\rho(P) := P \times_G V$ - associated vector bundle

- apply ρ to the cocycle for P

identify section spaces $\Gamma(B, \rho(P)) \cong \Omega^0(B, \rho(P)) \cong C^\infty(P, V)^G$

- $s \mapsto \tilde{s}$

- recall
$$\tilde{s}: P \to V, R_G^* \tilde{s} = \rho(g^{-1}) \tilde{s}$$

– get s back: $s(b) = [p, \tilde{s}(p)]$

 $T^h P$ - principal bundle connection

- define linear connection such that for X in $\mathcal{X}(B)$

$$\widetilde{\nabla_X s} = X^h(\tilde{s})$$

checks

1. $X^h(\tilde{s})$ corresponds to section:

– use that X^h is invariant

 $-X^h$ commutes with R_g^*

$$- R_g^*(X^h(\tilde{s})) = X^h(R_g^*\tilde{s}) = X^h(\rho(g^{-1})(\tilde{s})) = \rho(g^{-1})(X^h(\tilde{s}))$$

- 2. $(X,s) \mapsto \nabla_X s$ is $C^{\infty}(B)$ -linear in X: clear
- 3. $(X, s) \mapsto \nabla_X s$ satisfies Leibnitz rule: exercise

relation between curvatures:

have bundle morphism $\operatorname{Ad}(P) \to \operatorname{End}(\rho(P))$ - $P(\rho) : [p, X] \mapsto [p, \rho(X)]$ - well defined: $[pg, \operatorname{Ad}(g^{-1})(X)] \mapsto [pg, d\rho(\operatorname{Ad}(g^{-1})(X))] = [pg, \rho(g^{-1})\rho(X)\rho(g^{-1})] = [p, \rho(X)]$ - extends to $P(\rho) : \Omega^2(B, \operatorname{Ad}(P)) \to \Omega^2(B, \operatorname{End}(\rho(P)))$

Lemma 3.82. We have the relation $F^{\nabla} = P(\rho)(R^{\omega})$

Proof. Exercise!

- $\gamma: [0,1] \to B$ curve in B
- $\tilde{\gamma}$ horizontal lift an P

- $t \to [\tilde{\gamma}(t), v]$ is parallel section of $\rho(P)$ along γ

- the parallel transport $\|^{\gamma}: \rho(P)_{\gamma(0)} \to \rho(P)_{\gamma(1)}$ is given by

-
$$[\tilde{\gamma}(0), v] \mapsto [\tilde{\gamma}(1), v]$$

from vector bundle connection to principal bundle connection on frame bundle

- ∇ linear connection on $E \to B$ given
- p in Fr(E), $\pi(p) = b$
- can choose local section $f: B \to P$ such that

$$-f(b) = p$$

- the section $b' \mapsto f(b)(v) \in E$ is parallel in b
- define $T_p^h P := Tf(T_b B)$
- check: this determines a principal bundle connection

- under $id(Fr(E)) \cong E$ get back ∇ as associated linear connection

3.2.4 Quotients

M - manifold

- G Lie group
- G acts from the right on M

Definition 3.83. G acts freely if mg = m for some m in M implies that g = e.

Definition 3.84. G acts properly if $M \times G \to M \times M$, $(m, g) \mapsto (m, mg)$ is proper.

- properness is a topological propery

 ${\cal G}$ acts on topological space ${\cal M}$

in the following: G is a group acting from the right on a topological space

Lemma 3.85. The quotient map $\pi: M \to M/G$ is open.

Proof. the quotient is characterized by universal property

- it follows that topology of M/G is generated by the subsets U with $\pi^{-1}(U)$ open

- this is the maximal topology such that π continuous

consider $W \subseteq M$ open

- want to show that $\pi(W)$ is open
- enough to show that $\pi^{-1}(\pi(W))$ is open
- but $\pi^{-1}(\pi(W)) = \bigcup_{q \in G} Wg$ is open

— this last step uses that we consider quotient by group action and not an arbitrary quotients by some equivalence relation \Box

Lemma 3.86. If M is Hausdorff and G acts properly, then M/G is Hausdorff.

Proof. by contradiction: consider \bar{m}, \bar{m}' in \bar{M} assume: they are not separated by open sets

- consider preimages m, m'
- for every V, V' separating m, m' in M
- $VG \cap V'G \neq \emptyset$
- equiv: $V \cap V'G \neq \emptyset$
- consider decreasing families for such neighborhoods: $(V_i), (V'_i)$
- get for every i:
- $-m_i \in V_i, m'_i \in V'_i, g_i \in G$ with $m'_i g_i = m_i$
- conclude:
- $-m_i \rightarrow m$
- $-m'_i
 ightarrow m'$
- conclude: $(m'_i,m'_ig_i) \to (m',m)$
- by properness of $M \times G \to M \times M$: (m'_i, g_i) has accumulation point (m', g)
- by continuity: gm' = m
- this implies: $\bar{m}' = \bar{m}$ a contradiction

Proposition 3.87. If G acts freely and properly, then the set M/G has a manifold structure such that $\pi: M \to M/G$ is smooth and a G-principal bundle.

Proof. set B := G/M as topological quotient

- clarify general topological properties:
- $-\pi: M \to B$ is open
- by properness of action: B is Hausdorff
- -B is second countable
- $(U_i)_i$ countable base of topology of M

 $-(\pi(U_iG))_i$ is a countable base of topology of B

- -B is paracompact
- we will show that B is locally euclidean:
- in particular it is locally compact
- a locally compact second countable Hausdorff space is paracompact

construct vertical bundle:

- $X \in \mathfrak{g}$
- for every m in M:
- $\mathfrak{g} \ni X \mapsto X^{\sharp}(m)$ is injective

– here is the argument:

- if $X^{\sharp}(m) = 0$, then (by uniqueness of integral curves) $m \exp(tX) = m$ for all t
- by freeness of action: $\exp(tX) = e$ for all t

— apply
$$(\partial_t)_{|t=0}$$
: $X = 0$

- define $T^v\pi\subseteq TM$ to be generated by the values of fundamental vector fields
- has constant rank $\dim(\mathfrak{g})$
- is a subbundle
- $b \in B$
- construct chart of B at b
- choose $m \in M_b$
- choose vector fields Y_1, \ldots, Y_r near *m* complementary to $T^v \pi$ at *m*
- there exists nbhd $0 \in U \subseteq \mathbb{R}^r$ such that
- $-H(t_1,\ldots,t_r):=\Phi_{t_r}^{Y_r}\circ\cdots\circ\Phi_{t_1}^{Y_1}(m)$ is defined for $(t_1,\ldots,t_r)\in U$

consider G-equivariant map $F:U\times G\to M$ given by $(t,g)\mapsto H(t)g$

claim: TF(0, e) is isomorphism:

- $TF(0,e)(\partial_i) = Y_i(m)$
- $TF(0,e)(X) = X^{\sharp}(m)$
- one can choose U and $e \in V \subseteq G$ such that $F: U \times V \to M$ is diffeomorphism
- claim: can make U smaller such that $F: U \times G \to M$ is diffeomorphism into image
- differential DF is isomorphism (by G-invariance calculation at m implies same at mg)
- enough to show first: this map is injective
- otherwise: find sequences (x_i) , (x'_i) in U and (g_i) , (g'_i) in G such that
- $-(x_i,g_i) \neq (x'_i,g'_i) \text{ for all } i$
- $F(x_i,g_i) = F(x_i',g_i')$

$$-x_i \to 0$$
, $x_i \to 0$.

- $\text{ set } h_i := g_i^{-1} g_i'$
- then by equivariance: $F(x_i, e) = F(x'_i, h_i)$
- $-H(x_i')h_i = H(x_i) \rightarrow m$ converges
- by properness $h_i \to h$ (after going to subsequence)
- get mh = m
- by freeness: h = e
- but then (x_i, e) and (x'_i, h_i) belong to $U \times V$ for large i
- conclude $x_i = x'_i, h = e$
- $-(x_i, g_i) = (x'_i, g'_i)$ for large i contradiction

define chart ϕ of B near b = [m] by:

$$\phi([m']) = \mathrm{pr}_1(F^{-1}(m'))$$

- is independent of choice of representative of [m]
- is continuous: $\phi^{-1}(W) = \operatorname{pr}_1(\pi^{-1}(W))$ is open since π is continuous and pr_1 is open.
- its inverse is $t\mapsto \pi\circ H(t)$ is also continuous

transition functions

define ϕ' similarly using F'- $\phi'(\phi^{-1}(t)) = \operatorname{pr}_1(F'^{-1}(H(t)))$ is smooth

Example 3.88. G- Lie group

 $P \rightarrow B$ - G- principal bundle - $B \cong P/G$

- $\rho: G \to GL(V)$ representation
- G acts on $P \times V$ by $(p, v)g \mapsto (pg, \rho(g^{-1})v)$
- $P \times V \to (P \times V)/G = P \times_{G,\rho} V$ is G-principal bundle

Corollary 3.89. If G is compact and acts freely on M, then we have a G-principal bundle $M \to M/G$.

Corollary 3.90. If G is a closed subgroup of a Lie group H, then we have a G-principal bundle $H \to H/G$.

here we use "Cartan's Theorem": A closed subgroup of a Lie group is a submanifold.

Example 3.91. many interesting manifolds arrise as quotients in this way

- 1. $GL(V)/O(V, h^V)$ manifold of scalar products on V
- 2. $SO(n+1)/SO(n) \cong S^n$ oriented lines in \mathbb{R}^{n+1}
- 3. $U(n+1)/U(n) \times U(1) \cong \mathbb{CP}^n$ lines in \mathbb{C}^{n+1}
- 4. $O(n+m)/O(n) \times O(m) = Gr(n,m)$ *n*-planes in \mathbb{R}^{n+m}
- 5. $U(n)/\underbrace{U(1)\times\cdots\times U(1)}_{n\times}$ manifold of decompositions $\mathbb{C}^n = L_1 \oplus \cdots \oplus L_n$ into lines

4 Riemannian geometry

4.1 Connections on the tangent bundle

M manifold

- consider connections ∇ on TM
- have torsion tensor

$$-T^{\nabla} \in \Omega^2(M, TM): T(X, Y) = \nabla_X Y - \nabla_Y X - [X, Y]$$

- we say that ∇ is torsion-free if $T^{\nabla} = 0$

- for
$$\omega \in \Omega^1(M, \operatorname{End}(TM))$$

- $T^{\nabla+\omega}(X, Y) = T^{\nabla}(X, Y) + \omega(X)(Y) - \omega(Y)(X)$

Example 4.1. ∇ - any connection on TM

 $\begin{aligned} -\nabla' &:= \nabla - \frac{1}{2} T^{\nabla} \text{ is torsionfree:} \\ - \text{ interpret: } T^{\nabla} \in \Omega^{1}(M, \operatorname{End}(TM)) \\ - T^{\nabla}(X)(Y) &:= T^{\nabla}(X, Y) \\ - \nabla'_{X} Y &:= \nabla_{X} Y - \frac{1}{2} T^{\nabla}(X, Y) \end{aligned} \qquad \Box$

Definition 4.2. A Riemannian metric on M is a metric g on TM. A Riemannian manifold is a pair (M, g)

Proposition 4.3 (Levi-Civita connection). On a Riemannian manifold there exists a unique connection which is compatible with the metric and torsion free.

Proof. uniqueness: ∇, ∇' two such connections

- $\nabla' = \nabla + \omega$
- torsionfreeness of both: $\omega(X)Y \omega(Y)X = 0$
- compatibility with metric: $g(\omega(X)Y, Z) = -g(Y, \omega(X)Z)$
- will show: these two conditions imply that $\omega = 0$

— calculate for arbitrary X, Y, Z:

$$g(\omega(X)Y,Z) = g(\omega(Y)X,Z)$$

$$= -g(X,\omega(Y)Z)$$

$$= -g(X,\omega(Z)Y)$$

$$= g(\omega(Z)X,Y)$$

$$= g(\omega(X)Z,Y)$$

$$= -g(Z,\omega(X)Y)$$

$$= -g(\omega(X)Y,Z)$$

— hence $g(\omega(X)Y,Z) = 0$ for all X,Y,Z

– this shows that $\omega=0$

existence:

want to define $\nabla_X Y$ by :

$$2g(\nabla_X Y, Z) := Xg(Y, Z) + Yg(X, Z) - Zg(X, Y) -g([X, Z], Y) - g([Y, Z], X) + g([X, Y], Z)$$

here $X, Y, Z \in \mathcal{X}(M)$

- claim: $\nabla_X Y \in \mathcal{X}(M)$
- must check $C^{\infty}(M)$ -linearity of r.h.s. in Z:
- insert fZ:

— terms which derive f: X(f)g(Y,Z) + Y(f)g(X,Y) - X(f)g(Z,Y) - Y(f)g(X,Z) = 0

- must check $C^{\infty}(M)$ -linearity of r.h.s. in X:
- insert fX:
- terms which derive f: Y(f)g(X,Z) Z(f)g(X,Y) + Z(f)g(X,Y) Y(f)g(X,Z) = 0

- must check Leibnitzrule of r.h.s. in Y:

— insert fY:

— terms which derive f: X(f)g(Y,Z) - Z(f)g(X,Y) + Z(f)g(X,Y) + X(f)g(Y,Z) = 2X(f)g(Y,Z)

— this the expected term

have now well-defined connection ∇

compatible with metric:

- use vector fields with vanishing commutator

$$-2g(\nabla_X Y, Z) + 2g(\nabla_X Z, Y) = 2Xg(Y, Z) \text{ ok}$$

torsion free :

- use vector fields with vanishing commutator

 $2g(\nabla_X Y, Z) - 2g(\nabla_Y X, Z) = 0$ ok

Definition 4.4. The connection described in Prop. 4.3 is called the Levi-Civita connection.

Example 4.5. (M, g) Riemannian

- ∇^M Levi-Civita connection
- $i:N\subseteq M$ submanifold
- $g^N := Di^*g$ is Riemannian metric
- $P: i^*TM \to TN$ orthogonal projection

Lemma 4.6. $P\nabla^M$ is Levi-Civita connection on N.

Proof. P is orthogonal

- $P\nabla^M$ is compatible with metric
- locally near N have product structure: $\mathbb{R}^n \times \mathbb{R}^{m-n}$ such that N corresponds to $\mathbb{R}^n \times \{0\}$
- $-X,Y \in \mathcal{X}(N)$

– can extend to \tilde{X}, \tilde{Y} in M (constant in \mathbb{R}^{m-n} -direction)

– then $[\tilde{X}, \tilde{Y}]$ has values in TN

$$T^{P\nabla^{M}}(X,Y) = P\nabla_{\tilde{X}}\tilde{Y} - P\nabla_{\tilde{Y}}\tilde{X} - [X,Y]$$

$$= P(\nabla_{\tilde{X}}\tilde{Y} - P\nabla_{\tilde{Y}}\tilde{X} - [\tilde{X},\tilde{Y}]$$

$$= PT^{\nabla}(\tilde{X},\tilde{Y})$$

$$= 0$$

Example 4.7. (\mathbb{R}^m, g_{eu}) is Riemannian manifold

- g_{eu} . canonical metric
- ∇^{triv} is Levi-Civita connection
- $N\subseteq \mathbb{R}^m$ submanifold
- $i: N \to \mathbb{R}^m$. inclusion
- $Di:TN \to i^*T\mathbb{R}^m$
- $i^*g_{eu} =: g$ is induced Riemannian metric
- $P\nabla^{\mathrm{triv}}$ is Levi-Civita connection
- is the tangential component of the derivative

historically important observation:

- a priori: the connection $P\nabla^{\text{triv}}$ depends on the embedding

- Levi-Civita: (1917 for surfaces) $P\nabla^{\text{triv}}$ only depends on induced metric, but not on embedding

- we already know this
- later generalized by Weyl

notation for curvature $R := F^{\nabla} \in \Omega^2(M, \operatorname{End}(TM))$

- note R(X,Y) is antisymmetric since ∇ is compatible with metric

4.2 The Riemannian distance

 $\left(M,g\right)$ Riemannian

-
$$\gamma: [0,1] \to M$$
 path

$$-\gamma':[0,1] \to TM$$
 speed

Definition 4.8. The length of γ is defined by

$$\ell(\gamma) = \int_0^1 \sqrt{g(\gamma'(t), \gamma'(t))} dt \; .$$

properties of the length:

Lemma 4.9.

- 1. $\ell(\gamma)$ is reparametrization invariant.
- 2. $\ell(\gamma^{\mathrm{op}}) = \ell(\gamma)$
- 3. $\ell(\gamma_0 \sharp \gamma_1) = \ell(\gamma_0) + \ell(\gamma_1)$

Proof. Exercise:

assume: M is path-connected

- write $\gamma:m\to m'$ for path from m to m'

Definition 4.10. We define $d: M \times M \rightarrow [0, \infty)$ by

$$d(m,m') := \inf_{\gamma:m \to m'} \ell(\gamma) .$$

Lemma 4.11. d is a metric on M which defines the topology.

Proof.

$$d(m,m) = 0$$

- use constant path

d(m, m') = d(m', m)

- use $\ell(\gamma^{\mathrm{op}}) = \ell(\gamma)$

$$d(m, m') \leq d(m, m'') + d(m'', m')$$

- if $\gamma_0 : m \to m''$ and $\gamma_1 : m'' \to m$, then $\gamma_1 \sharp \gamma_0 : m \to m''$
 $-\ell(\gamma_1 \sharp \gamma_0) = \ell(\gamma_0) + \ell(\gamma_1)$

– but we have more path's from m to m' to approximate d(m,m') which do not go over $m^{\prime\prime}$

consider chart $\phi: U \to \mathbb{R}^n, \ \phi(m) = 0$

- have Euclidean metric d_{eu} on U (induced via ϕ)
- Claim: There exists a constants c, C > 0 such that $cd_{eu}(m, m') \le d(m, m') \le Cd_{eu}(m, m')$.
- this implies assertion about topology
- both metrics define the neighborhood filter at m

define $||X||^2$ using g_{eu}

- by continuity and local compactness after making \boldsymbol{U} smaller:
- there exists C, c > 0 such that: $c^2 \|X\|^2 \le g(x)(X, X) \le C^2 \|X\|^2$ for all X

 $x \in U$

- assume that $B_{d_{eu}}(0, ||x||) \subseteq U$
- upper estimate:
- take linear curve $\gamma(t) := tx$ from 0 to x

$$d(0,x) \le \int_0^1 \sqrt{g(\gamma'(t),\gamma'(t))} dt \le \int_0^1 \sqrt{g(tx)(x,x)} dt \le \int_0^1 C \|x\| dt = C \|x\|$$

lower estimate

- $\gamma: 0 \to x$ in U any curve
- first inequality below:
- straight curves are shortest in euclidean space
- mean value theorem

 $|-c||x|| \leq c \int_0^1 ||\gamma'(t)|| dt \leq \int_0^1 \sqrt{g(\gamma'(t), \gamma'(t))} dt = \ell(\gamma)$

- every curve which leaves U is even longer
- minimize over all γ : $c \|x\| \le d(0, x)$

this also shows that d(m, m') = 0 implies m = m'

Question:

- can the distance be realized by a curve?
- how can one characterize such a curve?

4.3 Geodesics

$$(M,g)$$
 - Riemannian

$$\gamma: [0,1] \to M$$

Definition 4.12. The energy of γ is defined by

$$E(\gamma) := \int_0^1 g(\gamma'(t), \gamma'(t)) dt \; .$$

no square root

Cauchy-Schwarz:
$$\ell(\gamma) \leq \sqrt{E(\gamma)}$$

- equality if $g(\gamma'(t), \gamma'(t)) = \text{const}$
- in this case $g(\gamma'(t), \gamma'(t)) = \ell(\gamma)^2$

a family of curves with fixed ends is a smooth map $\gamma : I \times [0,1] \to M$ such that $\gamma(u,0)$ and $\gamma(u,1)$ are constant

- here $I\subseteq \mathbb{R}$
- write $\gamma(u,t) := \gamma_u(t)$

Definition 4.13. γ is critical for E if for every family of curves with fixed ends $(\gamma_u)_{u \in I}$ with $\gamma = \gamma_0$

$$(\partial_u)_{|u=0} E(\gamma_u) = 0 \; .$$

 ∇ - Levi-Civita

Proposition 4.14. γ is critical for E if and only if

$$\nabla_{\partial_t}\gamma'(t)=0 \ .$$

Proof. write $\partial_u \gamma = \gamma^{\sharp}$

use that ∇ is compatible with metric and torsion free

$$\begin{aligned} (\partial_u)_{|u=0} E(\gamma_u) &= \int_0^1 (\partial_u)_{|u=0} g(\gamma'_u(t), \gamma'_u(t)) dt \\ &= 2 \int_0^1 g(\nabla_{\partial_u} \gamma'_u(t), \gamma'(t))_{|u=0} dt \\ T^{\nabla} = 0 & 2 \int_0^1 g(\nabla_{\partial_t} \gamma^{\sharp}(t), \gamma'(t)) dt \\ &= \int_0^1 \partial_t g(\gamma^{\sharp}(t), \gamma'(t)) dt - \int_0^1 g(\gamma^{\sharp}(t), \nabla_{\partial_t} \gamma'(t)) dt \\ &= g(\gamma^{\sharp}, \gamma')|_0^1 - \int_0^1 g(\gamma^{\sharp}(t), \nabla_{\partial_t} \gamma'(t)) dt \\ &= -\int_0^1 g(\gamma^{\sharp}(t), \nabla_{\partial_t} \gamma'(t)) dt \end{aligned}$$

- can arrange (γ_u) such that γ^{\sharp} is arbitrary vector field along γ
- in chart $\gamma_u = \gamma + u \gamma^{\sharp}$
- globally glue using partition of unity

- conclude $\nabla_{\partial_t}\gamma'(t)=0$ as necessary and sufficient condition

Definition 4.15. A curve γ in M satisfying $\nabla_{\partial_t} \gamma' = 0$ is called a geodesic.

- in ccordinates

$$-\nabla =
abla^{ ext{triv}} + \omega$$

 $-\nabla_{\partial_t} = \partial_t + \omega(\gamma(t))(\gamma'(t))$

- $-\nabla_{\partial_t}\gamma'$ is equation: $\partial_t\gamma' + \omega(\gamma(t))(\gamma'(t))(\gamma'(t)) = 0$
- is second order ODE
- in ccordinates:

$$- \operatorname{set} \Gamma^{i}_{j,k} \partial_{i} = \omega(\partial_{j})(\partial_{k})$$

– ODE:
$$\gamma''^{,i} = -\Gamma^i_{j,k} \gamma^j \gamma^k$$

corresponds to vector field $S \in \Gamma(TM, T(TM))$

- S is called the geodesic spray
- in coordinates
- -x of M
- $-(x,\xi)$ of TM
- $-S(x,\xi)=(\xi,-\omega(x)(\xi)(\xi))$

- solution of geodesic equation uniquely determined by $\gamma'(0) \in TM$

Lemma 4.16. A geodesic has constant (absolute) speed

Proof.

- γ a geodesic
- $\partial_t g(\gamma',\gamma') = 2g(\nabla_{\partial_t}\gamma',\gamma') = 0$

- for every X in TM there exists maximal interval [0, a(X)) such that the geodesic with initial condition X exists

- scale invariance
- if $\gamma: I \to M$ is geodesic, then $\gamma(st): s^{-1}I \to M$ is also one
- for a < a(X)
- then $t \to \gamma(at) : [0,1] \to M$ exists with $\gamma'(0) = aX$

Corollary 4.17. There exists a maximal neighbourhood U of the zero section of TM such that for every $X \in U$ there exists a geodesic $\gamma^X : [0,1] \to M$ with $\gamma^{X,\prime}(0) = X$. This geodesic is unique

Definition 4.18. The map $\exp: U \to M, X \mapsto \gamma^X(1)$ is called the exponential map.

for m in M write $\exp_m : (U \cap T_m M) \to M$ for the restriction

Lemma 4.19. \exp_m is diffeomorphism near 0

- Proof. $X \in T_m M$
- interpret X in $T_0(T_m M)$
- $-T\exp_m(X) = (\partial_t)_{|t=0}\exp_m(tX) = X$
- $D \exp_m(0) = \mathrm{id}_{T_m M}$
- in particular: is invertible

- \exp_m is called exponential chart/coordinates

- $t \mapsto \exp_m(tX)$ is geodesic with $\gamma'(0) = X$

Example 4.20. (\mathbb{R}^n, g_{eu})

- Levi-Civita connection is ∇^{triv}
- x in \mathbb{R}^n
- X in $T_x \mathbb{R}^n \cong \mathbb{R}^n$
- geodesic with initial condition (x, X) is $\gamma(t) := x + tX$
- indeed: $\gamma'(t) \equiv X$
- $-\nabla^{\mathrm{triv}}_{\partial_t}(\gamma'(t)) = 0$

Exponential map: $\exp(x)(X) = x + X$

Example 4.21. $S^2 \subseteq \mathbb{R}^3$

- induced metric:
- claim: big circles are geodesics

consider w.l.o.g. $S^2 \cap \{z = 0\}$ parametrized as $\gamma(t) = (\cos(t), \sin(t), 0)$

- $\gamma'(t) = (-\sin(t), \cos(t), 0)$

- $\nabla_{\partial_t} \gamma'(t) = P \nabla_{\partial_t}^{\operatorname{triv},\mathbb{R}^3} \gamma'(t) = P(-\cos(t), -\sin(t), 0) = 0$

- vector points perpendicular to sphere

consider circle of latitude

$$-\sigma(t) := (\sqrt{1-h^2}\cos(t), \sqrt{1-h^2}\sin(t), h)$$

$$-\sigma'(t) = (-\sqrt{1-h^2}\sin(t), \sqrt{1-h^2}\cos(t), 0)$$

$$-\nabla_{\partial t}^{\text{triv}}\sigma'(t) = (-\sqrt{1-h^2}\cos(t), -\sqrt{1-h^2}\sin(t), 0)$$

$$-P\nabla_{\partial t}^{\text{triv}}\sigma'(t) \neq 0 \text{ (h-component is missing)} -$$

 $-\sigma$ is not a geodesic

4.4 Families of geodesics and Jacobi fields

want to understand $T\exp_m$

- $(X_u)_u$ family of vectors in $T_m M$
- $(t \to \exp_m(tX_u))$ family of geodesics
- want to understand vector field $(\partial_u)|_{u=0} \exp_m(tX_u)$ as function of t

 $(\gamma_u)_u$ - family of curves

- smooth map $I\times J\to M,\,I,J$ intervals

Definition 4.22. $(\gamma_u)_u$ is a family of geodesics if γ_u is a geodesic for every u in I.

notation:

- γ' derivative by t
- $-\gamma^{\sharp}$ derivative by u
- interpret formulas on pull-back of TM to $I\times J$

$$\nabla_{\partial_t} \nabla_{\partial_t} \gamma^{\sharp} \stackrel{T \nabla = 0}{=} \nabla_{\partial_t} \nabla_{\partial_u} \gamma'$$

$$\stackrel{R}{=} \nabla_{\partial_u} \nabla_{\partial_t} \gamma' + R(\gamma', \gamma^{\sharp}) \gamma'$$

$$\stackrel{\nabla_{\partial_t} \gamma' = 0}{=} R(\gamma', \gamma^{\sharp}) \gamma'$$

 $\gamma: I \to M$ - geodesic

Definition 4.23. A section $J \in \Gamma(I, \gamma^*TM)$ is called a Jacobi field if it satisfies the ODE

$$\nabla_{\partial_t} \nabla_{\partial_t} J - R(\gamma', J) \gamma' = 0 \; .$$

- second order linear ODE
- space of Jacobi field is 2*n*-dimensional with $n = \dim(M)$
- fix $t_0 \in I$
- Jacobi field Y is uniquely determined by $J(t_0)$ and $(\nabla_{\partial_t} J)(t_0)$

Example 4.24. Jacobi fields in \mathbb{R}^n

- $\gamma(t) = tX$
- fix Y, Z in \mathbb{R}^n
- then J(t) = Y + tZ is Jacobi field
- in fact tX + u(Y + tZ) = t(X + Z) + uY is family of geodesics
- alternatively: check ODE

Lemma 4.25. $T \exp_m(X) : T_m M \to T_{\exp_m(X)} M$ is the linear map which sends Y in $T_m M$ to the value of the Jacobi field J at t = 1 along $t \mapsto \exp_m(tX)$ with initial values J(0) = 0 and $\nabla_{\partial_t} J(0) = Y$.

Proof. consider $J := t \mapsto T \exp_m(tX)(Y) = (\partial_u)_{|u=0} \exp_m(t(X+uY))$

- is Jacobi field J with
- J(0) = 0 (set t = 0 and differentiate by u)

$$-\nabla_{\partial_t} J(0) = (\nabla_{\partial_t})_{|t=0} (tT \exp_m(tX)(Y)) = Y$$

evaluate map at 1

Definition 4.26. (M,g) has negative/positive curvature if $\pm g(R(X,Y)Y,X) < 0$ for all m in M and lin. independent $X, Y \in T_m M$.

Proposition 4.27. If (M,g) has non-positive curvature, then $T \exp_m(X)$ is an isomorphism for every X in the domain of definition.

Proof. suffices to show injective

- by contradiction:
- assume:
- $-\exp_m(X)$ define
- $-T \exp_m(X)(Y) = 0$, but $Y \neq 0$

 $\gamma(t) := \exp_m(tX)$ geodesic

- there exists Jacobi field ${\cal J}$ with
- -J(0) = 0

$$-\nabla_{\partial_t} J(0) = Y$$

$$-J(1) = 0$$

calculate

- scalar multiply ODE for J with J

$$0 = g(\nabla_{\partial_t} \nabla_{\partial_t} J, J) - g(R(\gamma', J)\gamma', J)$$

= $\partial_t g(\nabla_{\partial_t} J, J) - g(\nabla_{\partial_t} J, \nabla_{\partial_t} J) - g(R(\gamma', J)\gamma', J)$

integrate from 0 to 1

-
$$0 = g(\nabla_t J, J)|_0^1 - \int_0^1 g(\nabla_{\partial_t} J, \nabla_{\partial_t} J) dt - \int_0^1 g(R(\gamma', J)\gamma', J) dt$$

- use:

- $-\int_{0}^{1} g(\nabla_{\partial_{t}} J, \nabla_{\partial_{t}} J) dt > 0 \text{ (since } \nabla_{\partial_{t}} J(0) \neq 0)$ - use J(0) = 0, J(1) = 0- get $\int_{0}^{1} g(R(\gamma', J)J, \gamma') dt > 0$
- contradicts non-positive curvature

Corollary 4.28. Assume that (M, g) has non-positive curvature. If $U \subseteq T_m M$ is in the domain of definition and $(\exp_m)_{|U}$ is injective, then it is a diffeomorphism into its image.

Example 4.29. \mathbb{R}^n is flat

- curvature is non-positive
- $-\exp(0)(X) = X$
- is diffeomorphism

$$T^n := \mathbb{R}^n / \mathbb{Z}^n$$

- $\pi : \mathbb{R}^n \to T^n$ projection $\pi(x) = [x]$
- $T_{[x]}R^n \cong T_x \mathbb{R}^n$ via $T\pi(x)$
- $\exp_{[x]}(d\pi(x)(X)) = \pi(\exp_x(T\pi(x)^{-1}(X))) = \pi(x + T\pi(x)^{-1}(X))$
- $T \exp_{[x]} = T\pi(x) \circ T \exp(x) \circ T\pi(x)^{-1}$ is isomorphism for all x
- $\exp_{[x]}$ is not injective

Example 4.30. S^2 in \mathbb{R}^3

N = (0, 0, 1) - northpole - $\exp_m(\pi X) = S = (0, 0, -1)$ for every unit vector X in $T_N S^2$ - $T \exp_m(\pi X) = 0$, in particular not injective - but S^2 has positive curvature - hence not contradiction

4.5 Gauss lemma

geodesic balls

- $T_m M$ has metric g(m)
- write $\|-\|$ for length
- use this metric to define ball $B(0,r) := \{X \in T_m M \mid ||X|| < r\}$

- assume: r > 0 such that \exp_m is defined and diffeomorphism on B(0, r) in $T_m M$ γ - geodesic

- J Jacobi field along γ

Lemma 4.31. We have $g(J(t), \gamma'(t)) = tg(\nabla_{\partial_t} J(0), \gamma'(0)) + g(J(0), \gamma'(0)).$

Proof. - scalar product of ODE by γ' :

- use $g(R(\gamma', J)\gamma', \gamma') = 0$ by antisymmetry

 $- get g(\nabla_{\partial_t} \nabla_{\partial_t} J, \gamma') = 0$

 $-0 = \partial_t g(\nabla_{\partial_t} J, \gamma') - \partial_t g(\nabla_{\partial_t} J, \nabla_{\partial_t} \gamma') = \partial_t g(\nabla_{\partial_t} J, \gamma')$

hence $g(\nabla_{\partial_t} J, \gamma')$ is constant in t

- again: $g(\nabla_{\partial_t} J, \gamma') = \partial_t g(J, \gamma')$ - hence $g(J(t), \gamma'(t)) = tg(\nabla_{\partial_t} J(0), \gamma'(0)) + g(J(0), \gamma'(0))$

Corollary 4.32. For every X in B(0,r) and $Y \in T_mM$ we have

$$g(T \exp_m(X)(Y), T \exp_m(X)(X)) = g(Y, X) .$$

Proof. geodesic $t \mapsto \exp(m)(tX)$

- apply Lemma to Jacobi field with J(0) = 0, $\nabla_{\partial_t} J(0) = Y$
- evaluate at t = 1

 $T\exp_m$ preserves scalar products with radial vectors

assume: r > 0 such that \exp_m is defined and diffeomorphism on B(0, r) in $T_m M$

Proposition 4.33.

1. For every $s \in (0,r)$ the subset $\exp_m(S(0,s))$ is the metric distance s-sphere at m

- 2. $\exp_m(B(0,r))$ is the metric ball at m of radius r in M.
- 3. For X in B(0,r) the curve $t \mapsto \exp_m(tX)$ realizes the distance between m and $\exp_m(X)$.
- 4. If $\sigma : [0,T]$ is any curve from 0 to $\exp_m(X)$ with $\ell(\sigma) = ||X||$, then $\sigma(t) = \exp(f(t)X)$ for $f : [0,T] \to [0,1]$ monotoneous.

Proof. $1 \Rightarrow 2$ is clear

show 2

- if $\|X\| < s$, then $d(m, \exp_m(X)) \leq \|X\| < s$
- hence $\exp_m(X) \not\in \exp_m(S(0,s))$
- take s < s' < r
- assume that $m' \in M \setminus \exp_m(\bar{B}(0, s'))$

Lemma 4.34. We have $d(m, m') \ge s'$.

- hence d(m, m') = s implies $m \in \exp_m(S(0, s))$
- *Proof.* γ curve from m to m'
- a maximal such that $\gamma([0, a]) = \{m\}$
- last time that γ meets m
- b minimal such that $\gamma(v) \in \exp_m(S(0, s'))$
- first time of exit the s'-Ball
- $-\sigma := \exp_m^{-1}(\gamma_{|(a,b]})$
- a curve from 0 to the s'-sphere in $T_m M$ (0 excluded)
- write g(m) as $\langle -, \rangle$ (scalar product on $T_m M$)
- express $\sigma(t)$ in polar coordinates (for $t \in (a, b]$)

- $\sigma(t) = \rho(t) \xi(t)$, $\xi(t)$ unit vector, $\rho(t) := \|\sigma(t)\|$
- $-\xi(t)$ is well-defined since $\sigma(t) \neq 0$ since t > a
- $\sigma' = \rho' \xi + \rho \xi'$
- define vector field Z(X) = X/||X|| on $T_m M \setminus \{0\}$
- is radial unit-norm

$$-\xi(t) = Z(\sigma(t))$$

$$\langle Z(\sigma(t)), \sigma'(t) \rangle = \langle \xi(t), \rho'(t)\xi(t) + \rho(t)\xi'(t) \rangle = \rho'(t)\langle \xi(t), \xi(t) \rangle = \rho'(t)$$

here we use: $0 = \partial_t \langle \xi(t), \xi(t) \rangle = 2\langle \xi(t), \xi'(t) \rangle$

- \tilde{Z} image under $\exp_m(B(0,r))$
- also unit-norm, since $T\exp_m$ preserves length of radial fields
- by Gauss Lemma and since $\tilde{Z}(\gamma(t))$ is radial at $\gamma(t)$:

$$-g(Z(\gamma(t)),\gamma'(t)) = \langle Z(\sigma(t)),\sigma'(t) \rangle = \rho'(t)$$

— use that \tilde{Z} has unit-norm for second inequality (Cauchy-Schwarz)

$$\ell(\gamma) \geq \ell(\gamma_{|(a,b]})$$

$$= \int_{a}^{b} \sqrt{g(\gamma'(t), \gamma'(t))} dt$$

$$\geq \int_{a}^{b} g(\tilde{Z}(\gamma'(t)), \gamma'(t)) dt$$

$$= \int_{a}^{b} \rho'(t) dt$$

$$= \rho(b) - 0$$

$$= s'$$

$$(3)$$

- γ was aritrary

- $d(m,m') \geq s'$

- see that $\exp_m(S(0,s))$ is s-distance sphere in M at m.

3:

clear:
$$\ell(t \mapsto \exp_m(tX)) = ||X||$$

- constant speed $||X||$
- $d(m, \exp_m(X)) = ||X||$ by 1. since $X \in S(0, X)$

4:

- $\gamma:m\to \exp_m(X)$ with length $\|X\|$
- $0 \le a$ last time with $\gamma(a) = 0$
- write $\gamma(t) = \exp_m(\rho(t)\xi(t))$
- Cauchy-Schwarz

$$\begin{split} \|X\| &= \ell(\gamma) \\ &\geq \int_{a}^{T} \sqrt{g(\sigma'(t), \sigma'(t))} dt \\ &\geq \int_{0}^{T} g(\tilde{Z}(\sigma'(t)), \sigma'(t)) dt \\ &= \int_{0}^{T} \rho'(t) dt \\ &= \|X\| \end{split}$$

conclude: second inequality is equality

 $-\sqrt{g(\sigma'(t),\sigma'(t))} = g(\tilde{Z}(\sigma'(t)),\sigma'(t))$ for all t

- hence by converse of Cauchy-Schwarz in equality case:
- conclude $\sigma'(t) \sim \tilde{Z}(\sigma(t))$, i.e. σ' points in positive radial direction

— solve
$$f'(t)\tilde{Z}(\sigma(t))||X|| = \sigma'(t)$$
 for f

-f is monotoneous

- with initial condition f(T) = 1
- then $\exp_m(f(t)Y) = \sigma(t)$ for $t \in (a, T]$

- since $\exp_m(f(T)X) = \exp_m(X) = \sigma(T)$ - $\partial_t \exp_m(f(t)X) = f'(t) ||X|| \tilde{Z}(\sigma(t)) = \sigma'(t)$

conclude further: σ is constant for $t \le a$ (otherwise this piece contributes to length) - set f(t) = 0 for $t \in [0, a]$

 $m \in M$

Lemma 4.35. There exists an open neighbourhood $m \in W \subseteq M$ and r > 0 such that $(\exp_{m'})_{|B(0,r)}$ is a diffeomorphism for all $m' \in W$

Proof. $U \subseteq TM$ open domain of exp

consider map $f:U\to M\times M$

- $U \ni X \mapsto (\pi(X), \exp_{\pi(X)}(X))$
- $-0 \to T_m M \to T_{0_m}(TM) \to T_m M \to 0$ exact
- first map vertical embedding i
- second map $T\pi(m)$
- choose split $s: T_m M \to T_{0_m}(M)$
- $df(0_m)(s(Y) + i(X)) = (Y, X + A(Y))$

- A - some linear map

 $-df(0_m)$ is upper triangular, hence invertible

– f is diffeomorphism on neighbourhood $U'\subseteq U$ of 0_m

- choose r and $m \in W$ such that
- -r-ball-bundle over W is in U'

m, m' in M

 $\gamma:m\to m'$ curve

on [0,T]

Lemma 4.36. If $\ell(\gamma) = d(m, m')$, then at every $t \in (0, T)$ there exists $\epsilon > 0$ such that $0 < t - \epsilon$ and $t + \epsilon < T$ and $\gamma(t + s) = \exp_{\gamma(t)}(f(s)X)$ for some vector X in $T_{\gamma(t)}M$ for all $s \in (-\epsilon, \epsilon)$.

Proof. for any $0 \le a < b \le T$

 $\gamma_{|[a,b]}$ realizes distance between $\gamma(a)$ and $\gamma(b)$

- otherwise could shorten path from m to m'

fix t

- can find r > 0 and s > 0 such that $(\exp_{m'})_{|B(0,s)}$ is diffeomorphism for all m' in B(0,r)
- take ϵ so small that
- $-0 < t \epsilon < t + \epsilon < T$
- $-d(\gamma(t-\epsilon), \gamma(t+\epsilon)) < s$
- conclude: $\gamma_{\mid (t-\epsilon,t+\epsilon)}$ is reparametrized geodesic
- X is tangent at of this geodesic when it hits $\gamma(t)$

Corollary 4.37. If γ is a constant speed curve which realizes the distance between its endpoints, then it is a geodesic.

4.6 Completeness

(M, g) - Riemannian manifold assume: connected

- have metric \boldsymbol{d}
- (M, d) is metric space
- have notion of completeness

Definition 4.38. *M* is metrically complete if (M, d) is a complete metric space

Definition 4.39. *M* is metrically proper if (M, d) is a proper metric space

Example 4.40. *M* compact - then metrically complete

Definition 4.41. (M,g) is called geodesically complete at m if the exponential map \exp_m is defined on all of $T_m M$. It is geodesically complete if it is geodesically complete at all points.

- geodesically complete means: for every X in TM the geodesic with initial condition X exists on all of \mathbb{R}

Theorem 4.42 (Hopf-Rinow). Assume that M is connected. The following assertions are equivalent.

- 1. (M, g) is geodesically complete.
- 2. (M,g) is geodesically complete at a point m.
- 3. The balls $\overline{B}(m,r)$ are compact for all r > 0.
- 4. (M,g) is metrically proper.
- 5. (M, d) is metrically complete.

In this case the distance between every two points in M can be realized by a curve (which can be taken as a geodesic).

Proof. proof shema:

 $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 4 \Rightarrow 5 \Rightarrow 1$

and $2 \Rightarrow$ realization of distance (is used for $2 \Rightarrow 3$)

 $1 \Rightarrow 2$

trivial

 $3 \Rightarrow 4$:

- consider $\bar{B}(m',r')$

- it is contained in $\overline{B}(m, r' + d(m, m'))$
- closed subset of compact, hence itself compact
- $4 \Rightarrow 5$:
- $(m_i)_{i\in\mathbb{N}}$ Cauchy sequence
- $\sup_i d(m_i, m) < \infty$
- sequence is contained in compact $\overline{B}(m,r)$ for r sufficiently large
- Cauchy sequence has accumulation point

 $5 \Rightarrow 1$:

- by contradiction
- (M,g) not geodesically complete
- take X in TM such that maximal geodesic γ with initial X defined on [0,T]
- $-\gamma'([0,T])$ is not relative compact by ODE-theory
- but $g(\gamma'(t), \gamma'(t)) = g(X, X)$ for all t
- for any sequence $0 \leq t_n \uparrow T$
- $-(\gamma(t_n))$ is Cauchy sequence in M
- use: $d(\gamma(t_n), \gamma(t_m)) \le |t_n t_m|$
- has limit in M by metric completeness
- conclude: $\gamma'([0,T])$ is relatively compact

- contradiction

must show

 $2 \Rightarrow 3$:

Lemma 4.43. If (M, m) is geodesically complete at m, then every two points can be connected by a distance-realizing geodesic.

Proof. choose r > 0 such that $(\exp_m)_{|B(0,2r)}$ is diffeomorphism

m' in M

if d(m, m') < r: write $m' = \exp_m(X)$

- $t\mapsto \exp_m(tX)$ is geodesic $m\to m'$ which realizes distance

assume now $d(m, m') \ge r$

- choose sequence $(\gamma_k)_{k\in\mathbb{N}}$ of curves $\gamma_k: m \to m'$ with: $\ell(\gamma_k) \to d(m, m')$
- define $t_k \in (0,1)$ first time with $d(m, \gamma_k(t_k)) = r$
- by compactness of S(m,r): take subsequence can assume $\gamma_k(t_k) \to q$ in S(m,r)
- $-d(m,m') \le d(m,\gamma_k(t_k)) + d(\gamma_k(t_k),m') \le \ell(\gamma_k)$
- $-k \rightarrow 0$ gives
- -d(m,m') = d(m,q) + d(q,m')
- chose unique unit vector $X \in T_m M$ such that $q = \exp_m(rX)$
- consider curve $\gamma:[0,d(m,m')]\to M$, $\gamma(t):=\exp(tX)$
- it exists by assumption of geodesic completeness at m
- define subset $I \subseteq [0, d(m, m')]$

$$I := \{t \in [0, d(m, m')] \mid d(m, \gamma(t)) = t \& d(m, \gamma(t)) + d(\gamma(t), m') = d(m, m')\}$$

- know $r \in I$
- claim: $\sup I = d(m, m')$

assume claim:

$$\begin{aligned} -d(m, \gamma(d(m, m'))) &= d(m, m') \\ -d(m, \gamma(d(m, m'))) + d(\gamma(d(m, m')), m') &= d(m, m'), \text{ hence } d(\gamma(d(m, m')), m') = 0 \\ -\text{ hence } \gamma(d(m, m')) &= m' \\ -\ell(\gamma) &= d(m, m') \end{aligned}$$

— hence γ realizes distance between m and m'

proof of claim:

- by contradiction:

$$-t := \sup I < d(m, m')$$

- know: $r \leq t$
- $-p := \gamma(t)$
- consider s > 0 such that t + 2s < d(m, m') and $(\exp_p)_{|B(0,2s)}$ is diffeomorphism
- find x (as above) in S(p,s) such that d(p,x) + d(x,m') = d(p,m')
- let $Y \in T_p M$ be unit vector such that $\exp_p(sY) = x$

$$d(m, x) \leq d(m, p) + d(p, x)$$

= $d(m, p) + d(p, m') - d(x, m')$
= $d(m, m') - d(p, m') + d(p, m') - d(x, m')$
= $d(m, m') - d(x, m')$
 $\leq d(m, x)$

hence d(m, x) = d(m, p) + d(p, x) = t + s

set $\sigma(t) = \exp_p(tY)$

$$-\ell(\gamma_{\mid [0,t]}) = d(m,p)$$

- $\ell(\sigma_{\mid [0,s]}) = s$
- $\theta := \gamma_{\mid [0,t]} \sharp \sigma_{\mid [0,s]}$ realizes distance between m and x
- this implies that $Y = \gamma'(t)$ by Lemma 4.36
- hence $x = \gamma(t+s)$
- $-t + s \in I$ contradiction

 $2 \Rightarrow 3:$ m in M - r > 0 - must show: $\overline{B}(m,r)$ is compact

 $(m_k)_{k\in\mathbb{N}}$ sequence in $\bar{B}(m,r)$

- $\gamma_k : m \to m_k$ geodesic on [0, 1], distance realizing

set $X_k := \gamma'_k(0)$ - $\exp_m(X_k) = m_k$ - $||X_k|| \le r$ for all k

- assume after passing to subsequence: $X_k \to X$ by compactness of $\bar{B}(0,r)$

- $\|X\| \leq r$
- then $\exp_m(X) = m' \in \overline{B}(m, r)$
- $-m_k = \exp_m(X_k) \to \exp_m(X) = m'$
- thus $(m_k)_k$ has converging subsequence

4.7 Properties of the Riemannian curvature

(M,g) - Riemannian manifold

- ∇ Levi-Civita connection
- $R \in \Gamma(M, \Lambda^2 T^*M \otimes \operatorname{End}(TM)^a)$ curvature

- recall: $R(X,Y)(Z) <:= \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z$

Remark 4.44. in some books R is defined with the opposite sign

define $R \in \Gamma(M, \Lambda^2 T^* M \otimes \Lambda^2 T^* M)$

$$R(X, Y, Z, W) := g(R(X, Y)Z, W)$$

Lemma 4.45 (First Bianchi identity). R(X, Y)Z + R(Y, Z)X + R(Z, X)Y = 0

Proof. use torsion freeness

- extend X, Y, Z to local fields, vanishing commutator,

$$R(X,Y)Z + R(Y,Z)X + R(Z,X)Y$$

$$= \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z + \nabla_Y \nabla_Z X - \nabla_Z \nabla_Y X + \nabla_Z \nabla_X Y - \nabla_X \nabla_Z Y$$

$$= \nabla_X \nabla_Z Y - \nabla_Y \nabla_Z X + \nabla_Y \nabla_Z X - \nabla_Z \nabla_X Y + \nabla_Z \nabla_X Y - \nabla_X \nabla_Z Y$$

$$= 0$$

Lemma 4.46 (Second Bianchi identity). $\nabla \wedge R = 0$

Proof. special case of Bianchy for linear connections

for fields X, Y, Z with mutually vanishing commutator 2. Bianchi means: - $\nabla_X R(Y, Z) + \nabla_Y R(Z, X) + \nabla_Z R(X, Y) = 0$

Lemma 4.47. R(X, Y, Z, W) = R(Z, W, X, Y).

Proof. antisymmetrie in X, Y + first Bianchy R(X, Y, Z, W) = -R(Y, X, Z, W) = R(X, Z, Y, W) + R(Z, Y, X, W)antisymmetrie in Z, W + first Bianchy R(X, Y, Z, W) = -R(X, Y, W, Z) = R(Y, W, X, Z) + R(W, X, Y, Z)add 2R(X, Y, Z, W) = R(X, Z, Y, W) + R(Z, Y, X, W) + R(Y, W, X, Z) + R(W, X, Y, Z)also

2R(Z, W, X, Y) = R(Z, X, W, Y) + R(X, W, Z, Y) + R(W, Y, Z, X) + R(Y, Z, W, X)compare term by term + use antisymmetries

hence $R \in \Gamma(M, S^2(\Lambda^2 T^*M))$

consider linear map $R(X, -)Y : TM \to TM$

Definition 4.48. The Ricci curvature is defined by $\operatorname{Ric}(X,Y) = -\operatorname{Tr}(R(X,-)Y)$.

Lemma 4.49. We have $\operatorname{Ric}(X, Y) = \operatorname{Ric}(Y, X)$

Proof. (e_i) - ONB Ric $(X, Y) = -\sum_i R(X, e_i, Y, e_i)$ - symmetry now obvious

Definition 4.50. The scalar curvature of M is defined by $S = \sum_i \operatorname{Ric}(e_i, e_j)$.

Example 4.51. Einstein equation

Definition 4.52. g satisfies the Einstein equation if $\operatorname{Ric} = \lambda g$ for some $\lambda \in C^{\infty}(M)$.

Lemma 4.53 (Schur). If $n \ge 3$ and g satisfies the Einstein equation, then λ is constant.

Proof. calculate at point

use fields whose derivative vanish in this point

- then commutators also vanish (torsion freeness)

- use second Bianchy

$$\begin{aligned} U\mathrm{Ric}(X,Y) &= \sum_{i} g(\nabla_{U}R(X,e_{i})e_{i},Y) \\ &= -\sum_{i} g(\nabla_{X}R(e_{i},U)e_{i},Y) - g(\nabla_{e_{i}}R(U,X)e_{i},Y) \\ &= -\sum_{i} Xg(R(e_{i},U)e_{i},Y) - e_{i}g(R(U,X)e_{i},Y) \\ &= X\mathrm{Ric}(U,Y) + e_{i}g(R(U,X)Y,e_{i}) \end{aligned}$$

set $X = Y = e_j$ and sum

$$US = e_j \operatorname{Ric}(U, e_j) + e_i \operatorname{Ric}(U, e_i)$$
$$= 2e_j \operatorname{Ric}(U, e_j)$$

insert equation $\operatorname{Ric} = \lambda g$ and get:

- $U(\lambda)n = 2e_j(\lambda)g(U, e_j) = 2U(\lambda)$ - $(n-2)U(\lambda) = 0$ - use $n \neq 2$ - conclude: $U(\lambda) = 0$

Definition 4.54. A metric satisfying $\text{Ric} = \lambda g$ is called an Einstein metric.

is a second order non-linear PDE for g

 $-\lambda = \frac{S}{n}$

- field equation of general relativity

Given M: does M admit an Einstein metric?

not much known in general, many examples

Example 4.55. if (M,g) is Einstein, then $S = n\lambda$ is constant

famous question:

Given M: does M admits a metric with S > 0

much is known

$H \subseteq T_m M$ 2-plane choose $X, Y \in H$ orthonormal

Definition 4.56. The sectional curvature of M in direction H is defined by

$$K(H) := R(X, Y, Y, X) .$$

independent of choice of X, Y, depends only on H

- second choice

- X' = aX + bY

$$-Y' = -bX + aY$$

- with $a^2 + b^2 = 1$

$$\begin{aligned} R(X',Y',Y',X') &= & R(aX+bY,-bX+aY,-bX+aY,aX+bY) \\ &= & a^2R(X,Y,-bX+aY,aX+bY) - b^2R(Y,X,-bX+aY,aX+bY) \\ &= & R(X,Y,-bX+aY,aX+bY) \\ &= & R(X,Y,Y,X) \end{aligned}$$

consider V- an euclidean vector space

 $R \in V^{*,\otimes 4}$

algebraic symmetries of the curvature tensor

- 1. R(X, Y, Z, W) = -R(Y, X, Z, W)
- 2. R(X,Y,Z,W) = -R(Z,W,X,Y)
- 3. R(X, Y, Z, W) + R(Y, Z, X, W) + R(Z, X, Y, W) = 0

note that then also R(X, Y, Z, W) = -R(X, Y, W, Z)

- for $X, Y \in V$ define K(X, Y) := R(X, Y, Y, X)
- this is quadratic in X and Y

Lemma 4.57. The K determines R. If $R, R' \in V^{*,\otimes 4}$ satisfy the algebraic curvature identities and K(X,Y) = K'(X,Y) for all $X, Y \in V$, then R = R'.

Proof. polarize in X

R(X + Z, Y, X + T, Y) = R(X, Y, X, Y) + R(T, Y, T, Y) + 2R(X, Y, Z, Y)

- use symmetry for last term

same with R'

- get R(X, Y, Z, Y) = R'(X, Y, Z, Y)

polarise in Y

$$\begin{split} R(X,Y+W,Z,Y+W) &= R(X,Y,Z,Y) + R(X,W,Z,W) + R(X,Y,Z,W) + R(X,W,Z,Y) \\ \text{- no symmetry anymore} \\ \text{get} \\ R(X,Y,Z,W) + R(X,W,Z,Y) &= R'(X,Y,Z,W) + R'(X,W,Z,Y) \\ \text{or} \\ R(X,Y,Z,W) - R'(X,Y,Z,W) &= R'(X,W,Z,Y) - R(X,W,Z,Y) \\ \text{or} \\ R(X,Y,Z,W) - R'(X,Y,Z,W) &= R(Y,Z,X,W) - R'(Y,Z,X,W) \\ R(X,Y,Z,W) - R'(X,Y,Z,W) &= R(Y,Z,X,W) - R'(Y,Z,X,W) \\ R(X,Y,Z,W) - R'(X,Y,Z,W) &= \text{ invariant under cyclic permutations of } X,Y,Z \end{split}$$

use first Bianchi 3(R(X, Y, Z, W) - R'(X, Y, Z, W)) = 0

Lemma 4.58. Assume that $R \in V^{*,\otimes 4}$ satisfies the algebraic curvature identities. If $K(X,Y) = k ||X||^2 ||Y||^2$ for all X, Y with $X \perp Y$, then

$$R(X, Y, Z, W) = k\left(\langle Y, Z \rangle \langle X, W \rangle - \langle X, Z \rangle \langle Y, W \rangle\right)$$

Proof. RHS satisfies with Y = Z and X = W

 $k\left(\langle Y,Y\rangle\langle X,X\rangle-\langle X,Y\rangle\langle Y,X\rangle\right)=k\|X\|^2\|Y\|^2$

also satisfies curvature identities:

- antisymmetry in X, Y: inspection
- symmetry for exchange $(X, Y) \leftrightarrow (Z, W)$: inspection
- antisymmetry in X, Y: inspection
- first Bianchy

$$\begin{split} \langle Y, Z \rangle \langle X, W \rangle &- \langle X, Z \rangle \langle Y, W \rangle \\ &+ \langle Z, X \rangle \langle Y, W \rangle - \langle Y, X \rangle \langle Z, W \rangle \\ &+ \langle X, Y \rangle \langle Z, W \rangle - \langle Z, Y \rangle \langle X, W \rangle \\ &= 0 \end{split}$$

apply Lemma 4.57

Remark 4.59. assume $R(X, Y, Z, W) = k (\langle Y, Z \rangle \langle X, W \rangle - \langle X, Z \rangle \langle Y, W \rangle)$ $\operatorname{Ric}(X, W) = k(\sum_{i} (\langle E_i, E_i \rangle \langle X, W \rangle - \langle X, E_i \rangle \langle E_i, W \rangle) = k(n-1) \langle X, W \rangle$ R = kn(n-1)

Definition 4.60. We say that the sectional curvature of (M,g) is constant at m if $H \mapsto K(m)(H)$ is constant.

Corollary 4.61. If the sectional curvature of M is constant at each point m in M, then

$$R(X, Y, Z, W) = \frac{S}{n(n-1)} \left(\langle Y, Z \rangle \langle X, W \rangle - \langle X, Z \rangle \langle Y, W \rangle \right)$$

for some constant S (equal to the scalar curvature).

Proof. at every point m:

apply Lemma 4.58

- $R(m)(X, Y, Z, W) = k(m) \left(\langle Y, Z \rangle \langle X, W \rangle - \langle X, Z \rangle \langle Y, W \rangle \right)$

- $\operatorname{Ric}(m)(X,W) = k(m)(\sum_{i} (\langle E_i, E_i \rangle \langle X, W \rangle - \langle X, E_i \rangle \langle E_i, W \rangle) = k(m)(n-1)\langle X, W \rangle$

- hence (M, g) is Einstein and k is locally constant by Lemma 4.53

S = kn(n-1) (S - scalar curvature)

this gives formula

Example 4.62. 1. (\mathbb{R}^n, g_{eu}) has constant sectional curvature 0.

- 2. (S^n, g_{S^n}) (unit sphere in \mathbb{R}^{n+1}) has constant sectional curvature 1.
- 3. $H := \{(x, y) \in \mathbb{R}^{n-1} \times \mathbb{R} \mid y > 0\}$ with metric: $y^{-2}g_{eu}$ (the hyperbolic space, upper half-space model) has constant sectional curvature -1.

the calculations for the last two examples can be done directly, but are lengthy

- easier by using some theory

4.8 Isometries and second fundamental form

 $(M,g),\,(M',g')$ - Riemannian manifolds $f:M\to M'$

Definition 4.63. f is isometric of $f^*g' = g$.

an isometric map is an immersion

Remark 4.64. (M', g') - Riemannian manifold

 $f: M \to M'$ - immersion

- define
$$g := f^*g'$$

– this is a Riemannian metric on M

 $-f:(M,g) \to (M',g')$ is isometric

-
$$Df:TM \to f^*TM'$$

-
$$f^*TM' \cong TM \oplus TM^{\perp}$$

- first summand identified via ${\cal D}f$
- $-P: f^*TM' \to TM$ orthogonal projection

have already seen:

- can express Levi-Civita connection of M in terms of that of M^\prime

Lemma 4.65. $\nabla = Pf^*\nabla'$

- ∇ is tangential component of $f^* \nabla'$

what about the normal component

- define: $N := (1 P) : f^*TM' \to TM^{\perp}$ projection on normal direction
- consider $X, Y \in \mathcal{X}(M)$
- $N \nabla'_X Y \in \Gamma(M, TM^{\perp})$

Proposition 4.66. The map $I : \mathcal{X}(M) \times \mathcal{X}(M) \to \Gamma(M, TM^{\perp})$ given by $(X, Y) \mapsto I(X, Y) := -N\nabla'_X Y$ is C^{∞} -linear and symmetric.

Proof. - calculate at $m \in M$

- extend here X, Y to vector fields in an open nbhd of f(m)

$$\begin{split} &N\nabla'_{fX}Y = fN\nabla'_XY\\ &N\nabla'_X(fY) = fN\nabla'_XY + X(f)NY = fN\nabla'_XY \text{ since } NY = 0\\ &\text{for symmetry: } N\nabla'_XY - N\nabla'_YX = N[X,Y] = 0 \end{split}$$

hence get $I \in \Gamma(M, S^2TM^* \otimes TM^{\perp})$

Definition 4.67. I is called the second fundamental form of f.

Example 4.68. $f : \mathbb{R}^1 \to \mathbb{R}^2$ canonical embedding

- get
$$I = 0$$

Example 4.69. $f: S^2 \to \mathbb{R}^3$

- ξ out-pointing normal vector vector field
- trivializes $(TS^2)^{\perp}$
- calculate $\langle I(X,Y),\xi\rangle$
- because of rot. invariance suffices to calculate it at northpole

$$- \langle I(X,Y),\xi \rangle = -\langle \nabla'_X Y,\xi \rangle$$

– coordinates: (x, y) - projection to (x, y) -plane

$$-r := \sqrt{x^2 + y^2}$$

 $-\xi(x, y) = (x, y, \sqrt{1 - r^2})$

– extend Y to tangential field by $Y-\langle Y,\xi\rangle\xi$

— check: is $\perp \xi$

$$-\langle \nabla'_X(Y-\langle Y,\xi\rangle\xi),\xi\rangle = -X\langle Y,\xi\rangle = -\langle Y,\nabla'_X\xi\rangle$$

- use here that $\nabla_X \xi \perp \xi$ since ξ is unit vector field
- $(\nabla'_X \xi)(0,0) = (X,0)$
- hence $I(X, Y) = \langle Y, X \rangle$

same calculation also shows for $S^n \subseteq \mathbb{R}^{n+1}$

- the second fundamental form satisfies $\langle I(-,-),\xi\rangle=g_{S^n}$

- (M,g), (M',g') Riemannian manifolds
- $f: M \to M'$ isometry
- consider geodesic γ in M
- Question: Is $f \circ \gamma$ geodesic in M'?

$$-
abla_{\partial_t}\gamma' =
abla_{\partial_t}\gamma' - I(\gamma',\gamma')$$

Corollary 4.70. $f \circ \gamma$ is a geodesic if and only of $I(\gamma', \gamma') \equiv 0$

Definition 4.71. f is called totally geodesic if I = 0.

Corollary 4.72. The following are equivalent:

- 1. If f is totally geodesic.
- 2. then f sends all geodesics in M to geodesics in M'.

Example 4.73. $\mathbb{R}^n \subseteq \mathbb{R}^{n+m}$ is totally geodesic

 $S^n \subseteq \mathbb{R}^{n+1}$ is not totally geodesic

Gauss equation expresses curvature of M in terms of curvature of M'

- $f: M \to M'$ isometric
- will write X for Tf(m)(X) and $X \in T_m M$

 ${\cal I}$ - second fundamental form

Theorem 4.74. For $X, Y, Z, W \in T_m M$ we have

$$R(X, Y, Z, W) - R'(X, Y, Z, W) = g'(I(Y, Z), I(X, W)) - g'(I(X, Z), I(Y, W))$$

$$\begin{split} & \textit{Proof. } \nabla_X \nabla_Y Z = \nabla'_X \nabla_Y Z + I(X, \nabla_Y Z) = \nabla'_X \nabla'_Y Z + \nabla'_X I(Y, Z) + I(X, \nabla_Y Z) \\ & g'(\nabla'_X I(Y, Z), W) = -g'(I(Y, Z), \nabla'_X W) = g'(I(Y, Z), I(X, W)) \end{split}$$

- calculate with commuting vector fields which are parallel at the given point m- $I(X, \nabla_Y Z)(m) = 0$

$$g(R(X,Y)Z,W) = g(R'(X,Y)Z,W) + g'(I(Y,Z),I(X,W)) - g'(I(X,Z),I(Y,W))$$

Example 4.75. calculation of curvature of S^n

- have seen $I=g\xi$ for unit outward normal field ξ
- R' = 0

get:

$$-R(X,Y,Z,W) = \langle Y,Z \rangle \langle X,W \rangle - \langle X,Z \rangle \langle Y,W \rangle$$

 $-S^n$ has constant sectional curvature 1

$$\operatorname{Ric} = (n-1)g$$

- S^n is Einstein with $\lambda = n - 1$

R = n(n-1) - constant positive scalar curvature

4.9 Conformal change of the metric

 $(\boldsymbol{M},\boldsymbol{g})$ - Riemannian manifold

$$f \in C^{\infty}(M)$$

- $e^f g$ - new metric

Definition 4.76. We call $g' := e^f g$ the conformal change of g by e^f .

Question: how does the Levi-Civita connection and the curvature change

prep:

- vector space V

-
$$(e_i)_i$$
 - base of V

- $(e^i)_i$ dual base of V^*
- consider $V^* \otimes \operatorname{End}(V) \cong V^* \otimes V^* \otimes V$

-
$$\phi \in V^*$$

- can consider:

$$\begin{split} &-\phi \otimes 1 := \phi \otimes \operatorname{id}_{V} = \phi \otimes e^{i} \otimes e_{i} \\ &- \phi(X)(Y) = \phi(X)Y \\ &- \phi_{\sharp} := e^{i} \otimes \phi \otimes e_{i} \\ &- \phi_{\sharp}(X)(Y) = \phi(Y)X \\ &- \phi_{\sharp}^{*} := e^{i} \otimes \langle e_{i}, e_{k} \rangle e^{k} \otimes \langle \phi, e^{j} \rangle e_{j} = e^{i} \otimes e^{i} \otimes \phi(e_{j})e_{j} \end{split}$$

- use symbol a for antisymmetrization (without 1/2) in X, Y and in the endormorphism part

$$\begin{split} &-a(U(X,Y)):=U(X,Y)-U(Y,X)-U(X,Y)^*+U(Y,X)^*\\ &\text{for }h\in C^\infty(M)\\ &\text{-}dh\in \Omega^1(M) \end{split}$$

Definition 4.77. We define the gradient $grad(h) \in \mathcal{X}(M)$ of h by

$$g(\operatorname{grad}(h), -) = dh$$
.

locally in ONB $(e_i)_i$: - grad $(h) = dh(e_i)e_i$

locally in coordinates:

- grad $(h) = g^{ij} \partial_j h \partial_j$ - g^{ij} is inverse to $g_{ij} = g(\partial_i, \partial_j)$

Lemma 4.78. We have

$$\nabla' = \nabla + \frac{1}{2} (df \otimes 1 + df_{\sharp} - df_{\sharp}^*)$$

and

$$R'(X,Y) = R(X,Y) + a(\frac{1}{2}\nabla_X df \otimes Y - \frac{1}{8} \|df\|^2 (Y^* \otimes X) + \frac{1}{4} df \otimes Y(f)X)$$

Proof. recall formula for Levi-Civita connection

$$2g(\nabla_X Y, Z) := Xg(Y, Z) + Yg(X, Z) - Zg(X, Y) -g([X, Z], Y) - g([Y, Z], X) + g([X, Y], Z)$$

replace g by $e^f g$ get ∇' $2g(\nabla'_X Y, Z) = 2g(\nabla_X Y, Z) + X(f)g(Y, Z) + Y(f)g(X, Z) - Z(f)g(X, Y)$ $2(\nabla'_X Y - \nabla_X Y) = X(f)Y + Y(f)X - g(X, Y)\text{grad}(f)$ $\nabla'_X - \nabla_X = \omega$ - with $2\omega = df \otimes 1 + df_{\sharp} - df_{\sharp}^*$

calculate R':

$$R' = R + \nabla \wedge \omega + [\omega, \omega]$$

calculate with fields with vanishing commutator

$$(\nabla \wedge \omega)(X, Y) = \nabla_X \omega(Y) - \nabla_Y \omega(X)$$
$$(\nabla \wedge (df \otimes 1))(X, Y) = \nabla_X df(Y) - \nabla_Y df(X) = X(Y(f)) - Y(X(f)) = 0$$
$$- \text{ use } \nabla 1 = 0 \text{ and } [X, Y] = 0$$

$$\begin{aligned} (\nabla \wedge df_{\sharp})(X,Y) &= \nabla_X (df \otimes Y) - (X \leftrightarrow Y) \\ &= \nabla_X df \otimes Y + df \otimes \nabla_X Y - (X \leftrightarrow Y) \\ &= \nabla_X df \otimes Y - (X \leftrightarrow Y) \end{aligned}$$

- use torsion-free

$$\begin{aligned} (\nabla \wedge df^*_{\sharp})(X,Y) &= \nabla_X (Y^* \otimes \operatorname{grad}(f)) - (X \leftrightarrow Y) \\ &= \nabla_X Y^* \otimes \operatorname{grad}(f)) + Y^* \otimes \nabla_X \operatorname{grad}(f) - (X \leftrightarrow Y) \\ &= Y^* \otimes \nabla_X \operatorname{grad}(f) - (X \leftrightarrow Y) \\ &= (\nabla \wedge df_{\sharp})(X,Y)^* \end{aligned}$$

 $2(\nabla \wedge \omega)(X,Y) = a(\nabla_X df \otimes Y)$

$$\begin{aligned} 4[\omega(X), \omega(Y)] &= ((df \otimes X) \circ (df \otimes Y) + (X^* \otimes \operatorname{grad}(f)) \circ (Y^* \otimes \operatorname{grad}(f)) - (df \otimes X) \circ (Y^* \otimes \operatorname{grad}(f)) \\ &- (X^* \otimes \operatorname{grad}(f)) \circ (df \otimes Y) - (X \leftrightarrows Y) \\ &= Y(f)df \otimes X + X(f)Y^* \otimes \operatorname{grad}(f) - \|df\|^2 Y^* \otimes X - \langle X, Y \rangle df \otimes \operatorname{grad}(f) \\ &- (X \leftrightarrows Y) \\ &= a(df \otimes Y(f)X - \frac{1}{2} \|df\|Y^* \otimes X) \end{aligned}$$

thus

$$R'(X,Y) = R(X,Y) + a(\frac{1}{2}\nabla_X df \otimes Y - \frac{1}{8} \|df\|^2 Y^* \otimes X + \frac{1}{4} df \otimes Y(f)X)$$

- a means antisymmetrization (without 1/2) in X, Y and in the endormorphism part

- factor 1/8 instead of 1/4 correct!

Example 4.79. f = constant $\nabla' = \nabla$ R' = R for curvature tensor but $R'(X, Y, Z, W) = e^f R(X, Y, Z, W)$ - Ric' = e^{-f} Ric - $S' = e^{-2f}S$ - $K = e^{-f}K$

e.g. sphere S_r^{n-1} of radius r is isometric to conformal change of unit sphere $g' = r^2 g$ - sectional curvature of S_r is r^{-2}

Example 4.80. the upper half plane

-
$$H := \{(x, y) \in \mathbb{R}^{n-1} \times \mathbb{R} \mid y > 0\}$$

- metric: $y^{-2}g_{eu}$

Definition 4.81. $(H, y^{-2}g_{eu})$ is called the hyperbolic space.

Lemma 4.82. The hyperbolic space is complete and has constant sectional curvature -1.

$$\begin{array}{l} Proof. -y^{-2} = e^{f} \\ -f = -2\log(y) \\ -df = -2y^{-1}dy \\ -\frac{1}{2}(\nabla_{X}df\otimes Y) = y^{-2}X^{n}dy\otimes Y \\ -\frac{1}{8}\|df\|^{2}(Y^{*}\otimes X) = 2^{-1}y^{-2}Y^{*}\otimes X \\ -\frac{1}{4}(df\otimes Y(f)X) = Y^{n}y^{-2}dy\otimes X \\ y^{4}R'(X,Y,Z,W) = X^{n}Z^{n}\langle Y,W\rangle - 2^{-1}\langle Y,Z\rangle\langle X,W\rangle + Y^{n}Z^{n}\langle X,W\rangle + (anti-symm) \\ - \text{ sum of first and third term is symmetric in } X,Y \\ - \text{get} \end{array}$$

 $y^4 R'(X,Y,Z,W) = -(\langle Y,Z\rangle\langle X,W\rangle - \langle X,Z\rangle\langle Y,W\rangle)$

- -R'(X, Y, Z, W) = -(g'(Y, Z)g'(X, W) g'(X, Z)g'(Y, W))
- constant sectional curvature ${\cal K}=-1$

show completeness:

 $\mathbb{R}^+ \times \mathbb{R}^{n-1}$ acts by isometry: $(\lambda, z)(x, y) = (\lambda x + z, \lambda y)$

- this action is transitive

- the existence time for the unit speed geodesics on H has a uniform lower bound given by the existence time at some base point

- H is geodesically complete

4.10 Lie groups

 ${\cal G}$ - a Lie group

- Ad : $G \to \operatorname{Aut}(\mathfrak{g})$ adjoint representation
- consider Ad-invariant invariant scalar products on ${\mathfrak g}$

Example 4.83. assume: G is compact

- then such a scalar product exists
- dg normalized invariant volume
- fix any scalar product \tilde{B} on \mathfrak{g}

- define
$$B(X,Y) := \int_G B(\operatorname{Ad}(g)(X), \operatorname{Ad}(g)(Y)) dg$$

-B is Ad-invariant scalar product

Lemma 4.84. If \mathfrak{g} is simple, then B is unique up to normalization.

Proof. - B' second Ad-invariant scalar product - B'(X,Y) = B(AX,Y) for some symmetric $A \in \text{End}(\mathfrak{g})$

- Ad-invariance of B, B' implies: $\operatorname{Ad}(g)A\operatorname{Ad}(g^{-1}) = A$ for all $g \in G$
- differentiate: [adX, A] = 0
- if A is not $\lambda 1$, then it has at least two eigenvalues
- λ eigenvalue
- $-\mathfrak{g}(\lambda) \subseteq \mathfrak{g}$ proper eigensubspace
- is an ideal in ${\mathfrak g}$
- $-X \in \mathfrak{g}(\lambda)$

$$-A([Y,X]) = A(\mathrm{ad}(Y)(X)) = \mathrm{ad}(Y)(A(X)) = \lambda \mathrm{ad}(Y)(X) = \lambda[Y,X]$$

– existence of proper ideal is contradiction to simpleness of \mathfrak{g}

- call G simple if \mathfrak{g} is simple
- G compact, simple
- Killingform $-B_{\cal G}$ is invariant and positive definite
- hence any invariant scalar product is multiple of $-B_{\cal G}$

back to general situation

- for any scalar product B on $\mathfrak g$
- define Riemannian metric g_B in G by left-invariant extension of B
- $-g_B(h) := TL_{h^{-1}}^*B$
- for left invariant fields $X, Y \in {}^{G}\mathcal{X}(G)$
- $--g_B(X,Y) = B(X(e),Y(e))$

Corollary 4.85. (G, g_B) is complete.

Proof. G acts transitively isometrically by isometries on (G, g_B)

if we assume that B is Ad-invariant, then can understand Riemannian geometry of (G, g_B) in a simple manner

Lemma 4.86. The following are equivalent:

- 1. The Riemannian metric g on G is left-and right invariant.
- 2. B = g(e) is Ad-invariant.

Proof. Exercise!

Lemma 4.87. If B is Ad-invariant, then the Levi-Civita connection on (G, g_B) is determined by $\nabla_X Y = \frac{1}{2}[X, Y]$ for $X, Y \in {}^G \mathcal{X}(G)$.

Proof. show first: there is a unique connection ∇ on TG such that $\nabla_X Y = \frac{1}{2}[X,Y]$ for $X, Y \in {}^G\mathcal{X}(G)$

- have trivialization $\Phi: TG \cong G \times \mathfrak{g}$
- $-X \in T_g G \mapsto (g, TL_{q^{-1}}(g)(X))$
- this determines trivial connection $\nabla^{\rm triv}$
- $-X \in {}^{G}\mathcal{X}(G)$ goes to constant function with value X(e)
- this trivial connection satisfies for $\nabla_X Y = 0$ for $X, Y \in {}^G \mathcal{X}(G)$
- consider $\omega \in \Omega^1(G, TG)$ defined by:

$$-\omega(X)(Y) = \frac{1}{2}TL_g(e)([TL_{q^{-1}}(g)(X), TL_{q^{-1}}(g)(Y)])$$

— i.e. for $X, Y \in {}^G\mathcal{X}(G)$: $\omega(X)(Y) = \frac{1}{2}[X, Y]$

- then $\nabla := \nabla^{\mathrm{triv}} + \omega$ is a connection
- —- ∇ satisfies the condition

—- uniqueness is clear since ω is determined by condition

 ∇ is Levi-Civita:

- calculate with $X, Y, Z \in {}^{G}\mathcal{X}(G)$
- torsion-free:

 $- \nabla_X Y - \nabla_Y X = \frac{1}{2}[X, Y] - \frac{1}{2}[Y, X] = [X, Y]$

– compatible with metric:

$$- Xg(Y,Z) = 0 - g_B(\nabla_X Y,Z) + g_B(Y,\nabla_X Z) = \frac{1}{2}B([X(e),Y(e)],Z(e)) + \frac{1}{2}B(Y(e),[X(e),Z(e)]) = 0$$

– it is here where we use invariance of ${\cal B}$

$X\in\mathfrak{g}$

- interpret $X \in {}^{G}\mathcal{X}(G)$
- get integral curve curve $t\mapsto \gamma(t):=\exp(tX)$ in G

$$-\gamma(0)=e$$

-
$$\gamma'(t) = X(\gamma(t))$$

 $-\gamma(t) := \exp((t+s)X) = \exp(tX)\exp(sX)$ (one-parameter subgroup

Lemma 4.88. Assume that (G, g_B) is defined with invariant B. The curve γ is a geodesic

Proof.
$$\gamma'(t) = X(\gamma(t))$$

- $\nabla_{\partial_t}\gamma'(t) = \nabla_{\gamma'(t)}X = \nabla_{X(\gamma(t))}X = [X, X](\gamma(t)) = 0$

conclude: $\exp = \exp_e$

- exp: exponential map of G in the sense of Lie groups

- $\exp_e:$ exponential map of G in the sense of Riemannian geometry

all geodesics are of the form

 $t \mapsto g \exp(tX)$ for some g in G and X in \mathfrak{g}

Corollary 4.89. A Lie subgroup H of G is a totally geodesic submanifold.

curvature:

 $R(X,Y)Z = \frac{1}{2}([X,[Y,Z]] - [Y,[X,Z]] - [[X,Y],Z]) = [[X,Y],Z]$ by Jacobi

$$\operatorname{Ric}(X,W) = \sum_{i} g_B([[X,e_i],e_i],W) = -\sum_{i} g_B([X,e_i],[W,e_i]) = \sum_{i} g([W,[X,e_i],e_i) = K(W,X)$$

-K is the Killing form

Corollary 4.90. If we choose B proportional to the Killing form, then (G, g_B) is Einstein.

Remark 4.91. one could ask more generally: for which scalar products B on \mathfrak{g} is (G, g_B) Einstein

- there are many more examples (quite recent)

4.11 Energy and more

(M,g) - Riemannian

- recall definitions of energy and length of a curve $\gamma: [0, a] \to M$

$$-E(\gamma) = \int_0^a g(\gamma'(t), \gamma'(t))dt$$
$$-\ell(\gamma) = \int_0^a \sqrt{g(\gamma'(t), \gamma'(t))}dt$$

Cauchy-Schwarz: $\ell(\gamma)^2 \leq a E(\gamma)$ (for any curve)

 $\gamma:m\to m'$

- note: $\ell(\gamma) = d(m, m')$ implies that γ is geodesic

Lemma 4.92. Assume $\ell(\gamma) = d(m, m')$. Then for any curve $\sigma : m \to m'$ we have $E(\gamma) \leq E(\sigma)$ with equality iff σ is a minimizing geodesic.

Proof. γ is geodesic

- speed² $g(\gamma'(t), \gamma'(t))$ is constant
- speed d(m, m')/a

$$-E(\gamma) = a \cdot d(m, m')^2 / a^2 = \ell(\gamma)^2 / a$$

$$- aE(\gamma) = \ell(\gamma)^2 \le \ell(\sigma)^2 \le aE(\sigma)$$

- if equality: $\ell(\sigma) = d(m, m')$ and hence σ is minimizing geodesic

Example 4.93. meridians from north to southpole on S^2 show:

- $E(\gamma) = E(\sigma)$ does not imply $\gamma = \sigma$

already know: geodesics are precisely critical curves for E

- $(\gamma_u)_u$ variation of geodesic γ rel endpoints

$$-0 = (\partial_u)_{|u=0} E(\gamma_u)$$

- we now consider second derivative of $E(\gamma_u)$
- variation field $\gamma_u^{\sharp}(t) := \partial_u \gamma_u(t)$
- is a section of γ^*TM

Lemma 4.94.

$$(\partial_u)_{|u=0} E(\gamma_u) = -2 \int_0^a g(\gamma^\sharp, \nabla^2_{\partial_t} \gamma^\sharp + R(\gamma^\sharp, \gamma') \gamma') dt \; .$$

Proof.

$$\partial_{u}E(\gamma_{u}) = \int_{0}^{a} \partial_{u}g(\gamma'_{u},\gamma'_{u})dt$$
$$= 2\int_{0}^{a}g(\nabla_{\partial_{u}}\gamma'_{u},\gamma'_{u})dt$$
$$= 2\int_{0}^{a}g(\nabla_{\partial_{t}}\gamma^{\sharp}_{u},\gamma'_{u})dt$$
$$= -2\int_{0}^{a}g(\gamma^{\sharp}_{u},\nabla_{\partial_{t}}\gamma'_{u})dt$$

- use here ∇ is torsion free for $\nabla_{\partial_u} \gamma'_u = \nabla_{\partial_t} \gamma^{\sharp}_u$ - $\gamma^{\sharp}_u(0) = 0$ and $\gamma^{\sharp}_u(a) = 0$ for partial integration

apply $(\partial_u)_{|u=0}$

$$\begin{aligned} (\partial_u^2 E(\gamma_u))_{|u=0} &= -2(\int_0^a g(\nabla_{\partial_u} \gamma_u^{\sharp}, \nabla_{\partial_t} \gamma_u') dt))_{|u=0} - 2(\int_0^a g(\gamma_u^{\sharp}, \nabla_{\partial_u} \nabla_{\partial_t} \gamma_u') dt)_{|u=0} \\ &= -2(\int_0^a g(\gamma_u^{\sharp}, \nabla_{\partial_u} \nabla_{\partial_t} \gamma_u') dt)_{|u=0} \\ &= -2\int_0^a g(\gamma^{\sharp}, (\nabla_{\partial_u} \nabla_{\partial_t} \gamma_u')_{|u=0}) dt \end{aligned}$$

- use here γ_0 is geodesic to drop first summand

$$(\nabla_{\partial_u} \nabla_{\partial_t} \gamma'_u)|_{u=0} = \nabla_{\partial_t} (\nabla_{\partial_u} \gamma'_u)|_{u=0} + R(\gamma^\sharp, \gamma')\gamma' = \nabla^2_{\partial_t} \gamma^\sharp + R(\gamma^\sharp, \gamma')\gamma$$

- drop subscript 0 (for *u*-variable)

insert this formula - get result

Remark 4.95. assume γ^{\sharp} is Jacobi field

- then $(\partial_u^2 E(\gamma_u))|_{u=0} = 0$
- Hessian of E has a zero at γ

- the existence of a Jacobi field which vanishes at the endpoints of the geodesic is a strong condition

- the endpoints are called conjugate (will be discussed later) \Box

lower estimates of symmetric bilinear forms

- ${\cal V}$ real euclidean vector space
- B symmetric bilinear form on V
- $c\in\mathbb{R}$

- say: $B \ge c$ if $B(v, v) \ge c$ for every unit vector v in V

- equivalently: write $B(v, w) = \langle Av, w \rangle$ for symmetric endomorphism A

 $- B \geq c$ iff all eigenvalues of A are bounded below by c

(M,g) Riemannian manifold
- $\operatorname{Ric}(m)$ is symmetric bilinear form on $T_m M$
- condition $\operatorname{Ric}(m) \ge c$ makes sense
- say: $\operatorname{Ric} \ge c$ if $\operatorname{Ric}(m) \ge c$ for all m in M

recall definition of diameter of metric space (X, d): diam $(X) = \sup_{x,x' \in X} d(x, x')$

Theorem 4.96 (Bonnet-Myers). If (M, g) is complete and $\text{Ric} \ge c > 0$, then M is compact and $\text{diam}(M) \le \pi \sqrt{\frac{n-1}{c}}$.

Proof. by contradiction

- assume that there exists m,m' in M with $\ell:=d(m,m')>\pi\sqrt{\frac{n-1}{c}}$

- chose minimizing geodesic $\gamma: [0,1] \to M$ from m to m'
- this is possible by completeness assumption
- $-\gamma$ is also energy minimizing

$$(e_i)_{i=1,n}$$
 parallel ONB γ^*TM

- such that $e_n := \frac{\gamma'}{\ell}$
- $-V_j(t) := \sin(\pi t)e_j(t)$ section of γ^*TM

- observe:
$$V_i(0) = 0, V_i(1) = 0$$

insert in formula for second variation of energy formula

$$E_j'' := -2 \int_0^1 g(V_j, V_j'' + R(V_j, \gamma')\gamma')dt$$

= $2 \int_0^1 \sin(\pi t)^2 (\pi^2 - \ell^2 K(\gamma(t))(e_j(t), e_n(t))dt$

sum over $j = 1, \ldots, n-1$

- use

$$\sum_{j} K(\gamma(t))(e_{j}(t), e_{n}(t)) = \operatorname{Ric}(e_{n}(t), e_{n}(t)) \ge c > \frac{(n-1)\pi^{2}}{\ell^{2}}$$

$$\sum_{j=1}^{n-1} E_j'' < 2 \int_0^1 \sin(\pi t)^2 ((n-1)\pi^2 - \ell^2 \frac{(n-1)\pi^2}{\ell^2}) dt = 0$$

hence $E_j^{''} < 0$ for at least one j

- can find variation of γ which decreases energy

- contradiction to γ being energy minimizing

Remark 4.97. the constant in Bonnet-Myers is optimal

- S_r^n has diameter πr
- $\operatorname{Ric} = (n-1)r^{-2}$

4.12 Coverings

 ${\cal M}$ - a connected manifold

Definition 4.98. A covering of M is a fibre bundle $\tilde{M} \to M$ with discrete fibres.

can characterize coverings by the unique path lifting property

- $\pi: \hat{M} \to M$ a smooth map between manifolds

Lemma 4.99. The following are equivalent:

1. $\pi: \hat{M} \to M$ is a covering.

2. π has the unique path lifting property saying: Given any bold diagram

there exists a unique dotted arrow rendering the diagram commutative Proof. sketch: $1 \Rightarrow 2:$

- $\hat{M} \rightarrow M$ has a canonical flat connection $T^h \hat{M} := T \hat{M}$
- (since $T^v \pi = 0$ by discreteness of fibres)
- given bold diagram:
- $-\hat{\gamma}^{\hat{m}_0}$ is unique horizontal lift of γ with $\hat{\gamma}(t_0) = \hat{m}_0$

 $2 \Rightarrow 1$:

- $m_0 \in M$
- choose small ball $m_0 \in B \subseteq M$
- for $m \in B$ let $\gamma_m : [0,1] \to B$ be radial curve from m_0 to m
- define $\Phi: B \times \hat{M}_{m_0} \to M$ local trivialization such that $\Phi(b, \hat{m}_0) = \hat{\gamma}_m^{\hat{m}_0}(1)$

Definition 4.100. M is simply connected if every connected covering $\tilde{M} \to M$ is an isomorphism.

more facts about coverings:

Proposition 4.101. There exists a connected covering $\tilde{M} \to M$ such that \tilde{M} is simply connected (it is called the universal covering).

Proof. idea of construction:

- fix point m_0
- a point in \tilde{M} is a pair $(m, [\gamma])$ where $m \in M, \gamma : m_0 \to m$ a curve, $[\gamma]$ homotopy class
- $\tilde{M} \to M$ given by $(m, [\gamma]) \to m$
- define manifold structure such that this is local diffeomorphism
- check unique path lifting:
- —- if σ is path in M starting in m
- —- unique lift starting in $(m, [\gamma])$ is $t \mapsto (\sigma(t), [\sigma_{\leq t} \sharp \gamma])$

show \tilde{M} is connected

- $(\gamma(t), [\gamma_{\leq t}]$ is path from $(m_0, [\text{const}_{m_0}])$ to $(m, [\gamma])$

check \tilde{M} is simply connected

- $\hat{M} \rightarrow \tilde{M}$ covering, connected

– must show that injective:

- assume \hat{m}_0, \hat{m}'_0 two points in fibre at $(m_0, [\text{const}_{m_0}])$
- chose path $\hat{\gamma}$ from $\hat{m} \to \hat{m}'$
- $-\tilde{\gamma}$ path in M
- is closed loop at $(m_0, [\text{const}_{m_0}])$
- is zero homotopic

—- this implies $\hat{m}_0 = \hat{m}'_0$ (it is at this point where the argument is sketchy since this fact has not been shown above)

Lemma 4.102. The universal covering has the following universal property: Given bold part of the diagram

the dotted arrow exists and is unique making the diagram commutative.

Proof. existence:

- \tilde{m}' in \tilde{M}
- choose path $\tilde{\sigma}: \tilde{m} \to \tilde{m}'$
- σ image in M
- $\hat{\sigma}$ unique lift in \hat{M} starting in \hat{m}
- define $\phi(\tilde{m}') = \hat{\sigma}(1)$
- check continuity of ϕ

- uniqueness of ϕ

Corollary 4.103. The universal covering is uniquely determined up to isomorphism of fibre bundle.

Definition 4.104. The group $\pi_1(M)$ of fibrewise diffeomorphisms of \tilde{M} is called the fundamental group of M.

Lemma 4.105. $\tilde{M} \to M$ is a $\pi_1(M)$ -principal bundle.

Proof. must show: $\pi_1(M)$ acts simply transitively on fibres

- consider fibre over given point m
- $g \in \pi_1(M)$
- $\tilde{m}', \tilde{m} \in \tilde{M}$ over m
- apply universal property for $\hat{M} = \tilde{M}$
- if $g\tilde{m} = \tilde{m}$, then g = id by uniqueness clause
- can find g such that $g(\tilde{m}) = \tilde{m}'$ by existence clause

(follows easily from universal property)

Remark 4.106. - the usual definition of $\pi_1(M)$ is as the group of homotopy classes of loops $[\sigma]$ in M at some base point m_0 with concatenation

- right-action in the model by $(m, [\gamma])[\sigma] = (m, [\gamma \sharp \sigma])$

Corollary 4.107. If (M,g) is a complete Riemannian manifold with $\text{Ric} \ge c > 0$, then $\pi_1(M)$ is finite.

- Proof. $\pi:\tilde{M}\rightarrow M$ is immersion
- $\tilde{g}:=\pi^*g$ satisfies $\tilde{\mathrm{Ric}}\geq c>0$
- (\tilde{M}, \tilde{g}) is also complete

- hence \tilde{M} is compact by Bonnet-Myers
- π has finite fibres
- hence $\pi_1(M)$ is finite

Example 4.108. choose p, q a primes, different

- let C_p act on \mathbb{C}^2 by $[n](z_1, z_2) = (e^{2\pi i \frac{n}{p}} z_1, e^{2\pi i \frac{nq}{p}} z_2)$
- this is isometric
- preserves $S^3 \subseteq \mathbb{C}^2$
- acts freely on S^3

Definition 4.109. The lense space L(p,q) is the quotient S^3/C_p with respect to this action.

have covering $S^3 \to L(p,q)$

- can choose metric on L(p,q) such that the covering is isometric
- then L(p,q) has constant sectional curvature 1
- $S^3 \to L(p,q)$ is the universal covering
- $\pi_1(L(p,q)) = C_p$

Recall: (M,g)

- if M has $K \leq 0,$ then \exp_m is diffeo near every point of $T_m M$

Lemma 4.110. If (M,g) is complete and has K < 0, then $\exp_m : T_m M \to M$ is a covering.

Proof. we check unique path lifting property

- equip $T_m M$ with metric $g' := \exp_m^* g$
- radial curves $t \mapsto tX$ are geodesics in this metric
- exist for all times
- $(T_m M, g')$ is complete by Hopf-Rinow

 $\gamma: [0,1] \to M$ path

- $x \in \exp_m^{-1}(\gamma(0))$ start point for lift
- if lift of γ exists, then it is unique (since \exp_m is local diffeo)
- for some t > 0 there exists lift $\tilde{\gamma}$ on [0, t) (again by local diffeo)
- let t be maximal with this property
- want to show: t = 1

assume t < 1

- $t_n \uparrow t$
- $-\gamma(t_n) \rightarrow \gamma(t)$
- $-d(\tilde{\gamma}(0)), \tilde{\gamma}(t_n)) \leq \ell(\tilde{\gamma}_{\leq t_n}) = \ell(\gamma_{\leq t_n})$ is uniformly bounded
- by compactness of balls of $(T_m M, g')$
- get converging subsequence $\tilde{\gamma}(t_n) \to x'$
- consider lift $\tilde{\sigma}$ of γ with $\tilde{\sigma}(t) = x'$ near t
- same limit point as $\tilde{\gamma}$
- \exp_m local diffeo near x'
- $-\tilde{\gamma} = \tilde{\sigma} \text{ for } t' \leq t$
- $\tilde{\sigma}$ extends $\tilde{\gamma}$ to some times larger than t
- —- contradiction to maximality of t

Corollary 4.111. If (M, g) is complete with $K \leq 0$, then the universal covering of M is diffeomorphic to \mathbb{R}^n .

Example 4.112. $T^n = \mathbb{R}^n / \mathbb{Z}^n$ (this is the universal covering of the torus)

- has
$$K = 0$$

- $\tilde{T}^n \cong \mathbb{R}^n$

Example 4.113. - here many examples of compact quotients of the hyperbolic space - these are compact Riemannian manifolds with constant negative sectional curvature

4.13 Conjugate points

(M,g) - Riemannian manifold $\gamma: I \to M \text{ geodesic}$ $p,q \in I$

Definition 4.114. The pair of points p, q is called conjugate if there exists a non-zero Jacobi field along γ with J(p) = 0 = J(q).

Remark 4.115. if p, q is conjugate, and $\gamma(t) = \exp_m((t-p)X)$, then $T \exp_m((q-p)X)$ is not an isomorphism

Remark 4.116. in the condition for conjugate points can assume that $J \perp \gamma'$

- $n = \dim(M)$

- can decompose space of Jacobi fields into 2-dim subspaces of Jacobi fields parallel to γ' and 2n-2-dim subspace of fields orthogonal to γ'

- this is because of $g(J(t), \gamma'(t)) = g(J(p), \gamma'(p)) + (t-p)g(\nabla_{\partial_t} J(p), \gamma'(p))$
- if $J \simeq \gamma'$ then:

- if
$$J(p) = 0$$
, $\nabla_{\partial_t} J(p) \simeq \gamma'(p)$

$$-g(J(t), \gamma'(t)) = (t-p)g(\nabla_{\partial_t}J(p), \gamma'(p))$$
 non-zero linear

– J has no zero other than p

Jacobi fields with two zeros are orthogonal to γ'

consider manifold (M, g), (\tilde{M}, \tilde{g}) - dim $(\tilde{M}) \ge$ dim M $\gamma : [0, a] \to M$, $\tilde{\gamma} : [0, a] \to \tilde{M}$ geodesics - $\|\gamma'(t)\| = \|\tilde{\gamma}(t)\|$ - same velocity J Jacobi along γ , \tilde{J} Jacobi along $\tilde{\gamma}$ write $\nabla_t J = J'$ etc

Theorem 4.117 (Rauch Comparison). Assume:

- 1. $J(0) = 0, \ \tilde{J}(0) = 0$
- 2. $g(J'(0), \gamma'(0)) = \tilde{g}(\tilde{J}'(0), \tilde{\gamma}'(0))$
- 3. $||J'(0)|| = ||\tilde{J}'(0)||$
- 4. $\tilde{\gamma}$ has no conjugate point on (0, a]
- 5. for all $t \in [0, a]$ and planes $H \subseteq T_{\gamma(t)}M$ containing $\gamma'(t)$ and $\tilde{H} \subseteq T_{\tilde{\gamma}(t)}\tilde{M}$ containing $\tilde{\gamma}'(t)$ we have $K(H) \leq \tilde{K}(\tilde{H})$ (sectional curvature).

Then $\|\tilde{J}\| \leq \|J\|$ with equality at some t only if $\tilde{K}(\tilde{J}(s), \tilde{\gamma}'(s)) = K(J(s), \gamma'(s))$ for all $s \in [0, t]$.

Example 4.118. assume: (M, g) has constant section curvature K

- γ geodesic of speed $\|\gamma'(t)\| = v$ - R(X, Y, Z, W) = K(g(Y, Z)g(X, W) - g(X, Z)g(Y, W))- implies with $J \perp \gamma'$ - $R(\gamma', J)\gamma' = -Kv^2J$ - conclude: $J'' = R(\gamma', J)\gamma' = -Kv^2J$ - for K > 0- $J(t) = J(0)\cos(\sqrt{K}vt)J(0) + \frac{1}{\sqrt{K}v}\sin(\sqrt{K}vt)J'(0)$

discuss conjugate points:

J(0) = 0 $J(q) = 0, J'(0) \neq 0$ then $\sin(\sqrt{K}vq) = 0$ - smallest q:

$$q = \frac{2\pi}{v\sqrt{K}}$$

– distance between conjugate points is $\frac{2\pi}{\sqrt{K}}$

(M,g) general

Corollary 4.119. If M has upper sectional curvature bound k > 0, then the distance between any two conjugate points on a geodesic with speed v bounded below by $\frac{2\pi}{v\sqrt{k}}$.

Example 4.120. If M has non-positive curvature than γ has no pairs of conjugate points.

the following prepares the proof:

- $\gamma: [0, a]$ curve in (M, g)
- $V \in \Gamma(M, \gamma^*TM)$
- $t \in [0, a]$
- define index form by:

$$I_t(V) := \int_0^t \left(\|V'(s)\|^2 + R(\gamma'(s), V(s), \gamma'(s), V(s)) \right) ds$$

- $\gamma : [0, a]$ geodesic in (M, g)
- no conjugate points in (0, a]
- J Jacobi along $\gamma,\,J\perp\gamma'$
- $V \in \Gamma(M, \gamma^*TM), V \perp \gamma'$

Lemma 4.121. Jacobi-fields minimize index form for fields $\perp \gamma'$ with given boundary values: If J is a Jacobi field along γ with J(0) = V(0) = 0 and J(t) = V(t), then $I_t(J) \leq I_t(V)$ with equality only if V = J.

Proof. choose basis $(J_i)_{i=1,\dots,n-1}$ of Jacobi fields along γ with $J_i(0) = 0$ $J_i \perp \gamma'$

- $J = \sum_{i} a_i J_i$ for constants $(a_i)_i$
- $V = \sum_{i} f_i J_i$, $(f_i)_i$ real-valued functions
- note: f_i is smooth at t = 0

$$\begin{split} \|V'\| + R(\gamma', V, \gamma', V) &= g(\sum_{i} (f'_{i}J_{i} + f_{i}J'_{i}), \sum_{j} (f'_{j}J_{j} + f_{j}J'_{j})) - R(\gamma', \sum_{i} f_{i}J_{i}, \gamma', \sum_{j} f_{j}J_{j}) \\ &= g(\sum_{i} f'_{i}J_{i}, \sum_{j} f'_{j}J_{j}) + g(\sum_{i} f'_{i}J_{i}, \sum_{j} f_{j}J'_{j}) + g(\sum_{i} f_{i}J'_{i}, \sum_{j} f_{j}J'_{j}) + g(\sum_{i} f_{i}J'_{i}, \sum_{j} f'_{j}J_{j}) \\ &+ g(\sum_{i} f_{i}J'_{i}, \sum_{j} f_{j}J'_{j}) + g(\sum_{i} f_{i}J''_{i}, \sum_{j} f_{j}J_{j}) \end{split}$$

$$g(\sum_{i} f_{i}J_{i}, \sum_{j} f_{j}J_{j}')' = g(\sum_{i} f_{i}'J_{i}, \sum_{j} f_{j}J_{j}') + g(\sum_{i} f_{i}J_{i}', \sum_{j} f_{j}J_{j}') + g(\sum_{i} f_{i}J_{i}, \sum_{j} f_{j}'J_{j}') + (\sum_{i} f_{i}J_{i}, \sum_{j} f_{j}J_{j}'')$$

substract:

$$\|V'\| + R(\gamma', V, \gamma', V) - g(\sum_{i} f_{i}J_{i}, \sum_{j} f_{j}J'_{j})'$$

$$= g(\sum_{i} f'_{i}J_{i}, \sum_{j} f'_{j}J_{j}) + g(\sum_{i} f_{i}J'_{i}, \sum_{j} f'_{j}J_{j}) - g(\sum_{i} f_{i}J_{i}, \sum_{j} f'_{j}J'_{j})$$

$$(4)$$

will show: the last two terms cancel

- follows from $(g(J'_i, J_j) g(J_i, J'_j))(t) = 0$ have $(g(J'_i, J_j) g(J_i, J'_j))(0) = 0$

$$(g(J'_i, J_j) - g(J_i, J'_j))' = (g(J''_i, J_j) + g(J'_i, J'_j) - g(J'_i, J'_j) - g(J_i, J''_j)$$

= $R(\gamma', J_i, \gamma', J_j) - R(\gamma', J_j, \gamma', J_i)$
= 0

- hence $g(\sum_i f_i J_i', \sum_j f_j' J_j) - g(\sum_i f_i J_i, \sum_j f_j' J_j') = 0$

integrate (4) from 0 to t

$$\begin{split} I_t(V) &= g(V(t), \sum_j f_j J'_j(t)) + \int_0^t \|\sum f'_i J_i\|^2 ds \\ I_t(J) &= g(J(t), \sum_j a_j J'_j(t)) \\ V(t) &= J(t) \text{ implies } a_i = f_i(t) \\ I_t(V) - I_t(J) &= \int_0^t \|\sum f'_i J_i\|^2 d \\ \text{this implies both assertions} \end{split}$$

Proof of Rauch. $J = J^{\perp} \oplus J^{\top}$ $\tilde{J} = \tilde{J}^{\perp} \oplus \tilde{J}^{\top}$ $\|J^{\top}\| = \|J^{\top}(0)\| + t\|J^{\top}(0)'\|$ $\|\tilde{J}^{\top}\| = \|\tilde{J}^{\top}(0)\| + t\|\tilde{J}^{\top}(0)'\|$ hence $\|J^{\top}\| = \|\tilde{J}^{\top}\|$

consider now length of orthogonal component

~

- assume
$$J \perp \gamma' \ J \perp \tilde{\gamma}'$$

- $J \neq 0$

- set
$$v := \|J\|, \, \tilde{v} := \|\tilde{J}\|$$

– \tilde{v} has no zero on (0,a] (by absense of conjugate points assumption)

l'Hospital

$$\begin{split} \lim_{t\to 0} \frac{v(t)}{\tilde{v}(t)} &= \lim_{t\to 0} \frac{v''(t)}{\tilde{v}''(t)} = \frac{\|J'(0)\|^2}{\tilde{v}''(t)} = 1 \\ \text{- use } v''(0) &= g(J''(0), J(0)) + 2\|J'(0)\|^2 \text{ and } J'(0) \neq 0 \text{ (since } J \neq 0) \\ \text{will show } (\frac{v(t)}{\tilde{v}(t)})' &\geq 0 \\ \text{equivalently: } v'\tilde{v} \geq v\tilde{v}' \\ \text{- this implies assertion} \end{split}$$

fix t

- if v(t) = 0, then v'(t) = 2g(J'(t), J(t)) = 0
- inequality holds
- similarly if $\tilde{v}(t) = 0$

assume
$$v(t) \neq 0$$
, $\tilde{v}(t) \neq 0$
- set $U(s) := \frac{J(s)}{v(t)}$, $\tilde{U}(s) := \frac{\tilde{J}(s)}{\tilde{v}(t)}$

$$\frac{v'(t)}{v(t)} = \frac{2g(J'(t), J(t))}{v(t)^2}$$

$$= 2g(U'(t), U(t))$$

$$= (||U||^2)'$$

$$= \int_0^t (||U||^2)''(s)ds$$

$$= 2\int_0^t (||U'(s)||^2 + R(\gamma'(s), U(s), \gamma'(s), U(s)))ds$$

$$= 2I_t(U)$$

analoguous

$$\frac{\tilde{v}'(t)}{\tilde{v}(t)} = 2I_t(\tilde{U})$$

must show

$$I_t(\tilde{U}) \le I_t(U)$$

choose parallel basis $(e_i)_{i=1,...,n}$ of γ^*TM choose parallel basis $(\tilde{e}_i)_{i=1,...,\tilde{n}}$ of $\tilde{\gamma}^*T\tilde{M}$ such that

-
$$\gamma'(t) = \|\gamma'\|e_1, \, \tilde{\gamma}'(t) = \|\tilde{\gamma}'\|\tilde{e}_1$$

- $e_2(t) = U(t), \, \tilde{e}_2(t) = \tilde{U}(t)$

this gives isometric and parallel map

- $\phi: \Gamma([0,a], \gamma^*TM) \to \Gamma([0,a], \tilde{\gamma}^*T\tilde{M})$

 $-e_i\mapsto \tilde{e}_i, i=1,\ldots,n$

have $I_t(U) \leq I_t(\phi(U))$ (by curvature inequality) apply Lemma 4.121 $I_t(\tilde{U}) \leq I_t(\phi(U)) \leq I_t(U)$ this gives estimate:

for equality:

$$\|\tilde{J}(t)\| = \|J(t)\|$$

- then $v'(s)\tilde{v} = v(s)\tilde{v}'(s)$ for all $s \in [0, t]$

-
$$I_t(\tilde{U}) = I_t(\phi(U))$$

- hence $\phi(U)$ is Jacobi field
- compare initial condition and value at $t \colon \phi(U) = \tilde{U}$

-
$$\tilde{K}(\tilde{\gamma}'(s), \tilde{J}(s)) = K(\gamma'(s), J(s))$$